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ABSTRACT
An important result in discrepancy due to Banaszczyk states that

for any set of n vectors in Rm of ℓ2 norm at most 1 and any convex

body K in Rm of Gaussian measure at least half, there exists a ±1

combination of these vectors which lies in 5K . This result implies

the best known bounds for several problems in discrepancy. Ba-

naszczyk’s proof of this result is non-constructive and a major open

problem has been to give an efficient algorithm to find such a ±1

combination of the vectors.

In this paper, we resolve this question and give an efficient ran-

domized algorithm to find a ±1 combination of the vectors which

lies in cK for c > 0 an absolute constant. This leads to new efficient

algorithms for several problems in discrepancy theory.
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1 INTRODUCTION
Let (X ,S) be a finite set system, with X = {1, 2, . . . ,n} and S =
{S1, S2, . . . , Sm } a collection of subsets of X . Given a two-coloring

x : X → {−1, 1}, the discrepancy of a set S is defined as x (S ) =
|
∑
i ∈S x (i ) | and measures the imbalance between the number of
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elements in S colored −1 and 1. The discrepancy of the set system

(X ,S) is defined as

disc (S) = min

x :X→{−1,1}
max

S ∈S
x (S )

and is the minimum imbalance achieved by all the sets in S over

all possible two-colorings.

Discrepancy is defined more generally for anym × n matrix A
as,

disc (A) = min

x ∈{−1,1}n
∥Ax ∥∞.

That is, minimum achievable ℓ∞ norm of the vector Ax over all

two-colorings x of the columns of A. This can be seen as a vec-

tor balancing problem: given vectors v1, . . . ,vn ∈ R
m

(specified

by the columns of A), find a two-coloring x : [n] → {−1, 1} to

minimize ∥
∑n
i=1

x (i )vi ∥∞. The set system view mentioned earlier

corresponds to the special case where A is the incidence matrix of

the set system with columns indexed by elements in X and rows

by sets in S.

Discrepancy is a widely studied topic and has applications to

many areas in mathematics and computer science. In particular in

computer science, it arises naturally in computational geometry,

data structure lower bounds, rounding in approximation algorithms,

combinatorial optimization, communication complexity, pseudo-

randomness and differential privacy. For more on these connections

we refer the reader to [Cha00, Mat09, CST
+
14, Nik14].

One of the earliest techniques employed in discrepancy was

linear algebraic in nature and similar to the well known iterated

rounding technique [Bár08, BF81, LRS11]. Though this technique

gave surprisingly good bounds for some problems in discrepancy,

there remained a big gap between the bounds obtained and the

lower bounds known for these problems.

A huge breakthrough was made in the early 80’s with Beck’s

partial coloringmethod [Bec81], that was further refined by Spencer

to the entropy method [Spe85]. A similar approach based on ideas

from convex geometry was developed independently by Gluskin

[Glu89]. Roughly speaking, this method guarantees the existence

of a coloring of a constant fraction of the elements where every set

in the set system incurs a low discrepancy. This is then repeated

O (logn) times in order to get a coloring of all the n elements. The

partial coloring method led to improved bounds for many problems
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in discrepancy and in particular, it led to the famous “six standard

deviations" theorem of Spencer [Spe85]: given a set system with

n sets and n points, there exists a coloring of discrepancy at most

6

√
n. This bound is tight up to constant factors.

While the original proofs of the partial coloring method were

based on the pigeonhole principle and were non-algorithmic, over

the past few years several new algorithmic versions of the par-

tial coloring method have been developed [Ban10, LM12, Rot14a,

HSS14, ES14]. In particular, all known applications of partial col-

oring [Spe85, Mat09] can now be made algorithmic. These ideas

have also led to new results in approximation algorithms [Rot13,

BCKL14, BN16, NTZ13].

Despite its huge success, the partial coloring method gives sub-

optimal bounds for many problems. The reason is that the partial

coloring step only colors a constant fraction of the points and hence

must be repeated O (logn) times before all the n points are colored.

The discrepancies incurred at each of these steps are independent

of each other and in fact can add up adversarially. Consider for

instance the long-standing Beck-Fiala problem [BF81] about dis-

crepancy of low-degree set systems, where every point lies in at

most t sets. Here, one round of partial coloring ensures a discrep-

ancy of O (
√
t ) to every set, but over all the O (logn) rounds the

discrepancy ends up being O (
√
t logn). On the other hand, the

Beck-Fiala conjecture is that the discrepancy of such set systems

should be O (
√
t ). Such logarithmic factor gaps also exist in several

other problems in discrepancy for similar reasons.

Banaszczyk’s Method. One of the key results in discrepancy is

the following result by Banaszczyk.

Theorem 1.1 ([Ban98]). Given any convex body K ⊆ Rm of
Gaussian measure γm (K ) ≥ 1/2, and vectors v1, . . . ,vn ∈ R

m of
ℓ2 norm at most 1, there exists a coloring x : [n] → {−1, 1} such
that
∑n
i=1

x (i )vi ∈ cK , where c is an absolute constant. In particular,
c = 5 suffices.

Here the Gaussian measure γm (S ) of any measurable set S ⊆ Rm

is defined as

γm (S ) = Pr[д ∈ S] =

∫
y∈S

1

(2π )m/2

e−∥y ∥
2/2dy

where д is a standard Gaussian random vector in Rm .

In contrast to the partial coloring method, Theorem 1.1 gives

a full coloring directly, resulting in improved bounds for several

problems in a direct black box way. For instance, Banaszczyk’s re-

sult implies a discrepancy bound of O (
√
t logn) for the Beck-Fiala

problem and more generally, a O (
√

logn) bound for the Komlós

problem. This follows by noting that a O (
√

logm) scaling of the

hypercube [−1, 1]
m

has Gaussian volume at least half (using stan-

dard reductions, we can assumem ≤ n). Similarly, [MNT14] used

it to find coloring with discrepancy at most O (
√

logn) times the

γ2-norm, and [Lar14] used it to give update-query tradeoffs for

dynamic data structures.

Theorem 1.1 was also used in a very interesting non-black box

way in a later work by Banaszczyk [Ban12] to show improved

bounds for several variants of the Steinitz problem. Recently, [Nik17]

used this to obtain improved bounds for the Tusnady’s problem.

Banaszczyk’s proof is highly elegant and based on deep ideas

from convex geometry. However, his approach is non-algorithmic

and finding an algorithmic version of Theorem 1.1 has been a major

challenge in discrepancy [Rot14b, Nik14, DGLN16]. Partial progress

was made on this recently [BDG16, BG17, LRR17] and algorithms

achieving the same bounds as Banaszczyk for the Komlós problem

and for the Steinitz problem in the ℓ∞ normwere obtained. Roughly,

these results correspond to the case when the convex body K in

Theorem 1.1 is a scaling of the hypercube, and the question about

general convex bodies remained open.

In a recent result, [DGLN16] reformulated Banaszczyk’s result

in terms of certain subgaussian distributions and reduced the ques-

tion of finding an algorithmic version of Banaszczyk’s result to

constructing such subgaussian distributions. To state this result, we

first need some definitions. A random vector Y taking values in Rm

is said to be subgaussian with parameter σ > 0 (or σ -subgaussian)
if for all θ ∈ Rm ,

E
[
e⟨θ,Y ⟩

]
≤ e (σ

2/2) ∥θ ∥2
2 .

Observe that a standard Gaussian random vector is 1-subgaussian.

We can now state the result in [DGLN16]. Let v1, . . . ,vn ∈ R
m

be vectors of ℓ2 norm at most 1 and let x0 ∈ [−1, 1]
n
. Then a

distribution D on {−1, 1}n is said to satisfy property P (x0) if for
x sampled from D, the random variable

∑n
i=1

(x (i ) − x0 (i ))vi is σ -
subgaussian, for some absolute constant σ > 0. Moreover, for every

i for which x0 (i ) ∈ {−1, 1} we have x (i ) = x0 (i ) with probability

one."

In the statement below, if we care only about symmetric convex

bodies then we can assume x0 = 0.

Theorem 1.2 ([DGLN16]). Theorem 1.1 (up to the exact value of
c) is equivalent to the existence of a x0 ∈ [−1, 1]

n and a distribution
D supported on {−1, 1}n satisfying P (x0).

More precisely, for v1, . . . ,vn ∈ R
m of ℓ2 norm at most 1 and a

convex body K ⊆ Rm of Gaussian measure at least 1/2, there exists
x0 ∈ [−1, 1]

n such that

(i)

∑
x0 (i )vi ∈ K ,

(ii) Prx∼D [

∑n
i=1

x (i )vi ∈ cK] ≥ 1/2,

whereD is a distribution satisfying P (x0) and c := c (σ ) is an absolute
constant.

Furthermore, for a symmetric convex body (i.e.K = −K), the choice
x0 = 0 suffices, and for a general convex body given by a membership
oracle, x0 can be computed in expected polynomial time.

The above theorem implies that to get a constructive version of

Theorem 1.1 for any convex body it suffices to give an algorithm that

can efficiently sample from a σ -subgaussian distribution satisfying

P (x0). Furthermore, restricting the sampler to the choice x0 = 0,

gives a universal algorithm for finding colorings landing inside any

symmetric convex body of Gaussian measure at least 1/2.

1.1 Main Result
In this paper we give the first efficient algorithm for obtaining

Banaszczyk’s result (Theorem 1.1), which also yields a new con-

structive proof, by providing a new random walk procedure to

sample from the requisite subgaussian coloring distributions. We

dub this procedure the Gram-Schmidt walk and state its guarantees

below:
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Theorem 1.3 (Gram-SchmidtWalk). There is a polynomial-time
randomized algorithm that, given as input vectorsv1, . . . ,vn ∈ R

m of
ℓ2 norm at most 1 and x0 ∈ [−1, 1]

n , outputs a coloring x ∈ {−1, 1}n

such that the random variable
∑n
i=1

(x (i ) − x0 (i ))vi is subgaussian
with parameter σ =

√
40 ≈ 6.32.

Our algorithm in fact runs in time of O (n · (n +m)ω ), where ω
is the exponent of matrix multiplication. In particular, it runs in n
iterations (one variable gets colored at each iteration), and in each

iteration the most expensive step is solving a linear system in n
variables andm equations, which can be done in timeO ((n +m)ω ).

Comparing to the previous Banaszczyk inspired random walk

samplers, [BDG16, BG17] guaranteed that for each i ∈ [m],

⟨ei ,
∑n
i=1

(x (i ) − x0 (i ))vi ⟩ is O (1)-subgaussian, where e1, . . . , em
are the standard basis vectors in Rm , and [DGLN16] guaranteed

full O (
√

logn)-subgaussianity (i.e. along all directions). That is,

prior work either achieved O (1)-subgaussanity only for coordinate

directions or full O (
√

logn)-subgaussianity, whereas Theorem 1.3

gives the first full O (1)-subgaussianity guarantee.

Interestingly, for the previous samplers mentioned above, each

walk step is indexed by the solution to a semidefinite program,

whereas in contrast, the walk steps for the new sampler require only

basic linear algebra, namely, the Gram-Schmidt orthogonalization.

We note however that the idea for the walk was inspired by the

constructive proof of [DGLN16] for the existence of solutions to

the Komlós vector coloring program of Nikolov [Nik13], where the

Gram-Schmidt orthogonalization plays a crucial role in the analysis.

1.2 Other Results
Theorem 1.3 directly gives an algorithm for previous black box

applications of Banaszczyk’s result.

Komlós problem. This is a generalization of the Beck-Fiala prob-

lem and is defined as follows: given anm×n matrixAwith columns

of ℓ2 norm at most one, find a coloring x ∈ {−1, 1}n to mini-

mize disc (A) = ∥Ax ∥∞. The Komlós conjecture [Spe87] states that

disc (A) = O (1) and is a generalisation of the Beck-Fiala conjecture.

Theorem 1.1 directly gives O (
√

logn) bound for the Komlós prob-

lem [Ban98]. While algorithms to find such a coloring were recently

given in [BDG16, BG17, LRR17], theorem 1.3 gives another, more

direct, algorithm to find such a coloring.

ℓp Discrepancy. For p ∈ [1,∞), the ℓp discrepancy of an m ×

n matrix A under a coloring x is defined as

(
1

m ∥Ax ∥
p
p
)

1/p
. Ma-

tousek [Mat98] showed an ℓp discrepancy bound of O (pt1/2) for
the Beck-Fiala problem, using partial coloring methods. An im-

proved bound of O (p1/2) for the more general Komlós setting fol-

lows directly from Banaszczyk’s result (and a standard estimate of

the Gaussian measure of ℓp -ball). Our result gives an algorithmic

version of this bound.

Corollary 1.4. There is an efficient randomized algorithm which
given a matrixAwith n columns of ℓ2 norm at most 1, and p ∈ [1,∞),
finds a {−1, 1}n coloring with expected ℓp discrepancy O (

√
p).

Interestingly, a single algorithm given by Theorem 1.3 produces

a (random) coloring that simultaneously achieves this bound for

every p ∈ [1,∞). In contrast, the coloring in Banaszczyk’s approach
depends on the body K which is different for different values of p.

Discrepancy relative to γ2-norm. Given anm × n matrix A and a

set J ⊆ [n], let A | J denote them × |J | matrix restricted to columns

of A in J . The hereditary discrepancy of A is defined as

herdisc (A) = max

J ⊆[n]

disc (A | J ).

Hereditary discrepancy is often a better measure of the complexity

of a set system than the discrepancy. It is also rather well behaved;

while no polynomial time algorithm can distinguish between set

systems with zero discrepancy and set systems withO (
√
n) discrep-

ancy (assuming P , NP ) [CNN11], hereditary discrepancy can be

efficiently approximated. It was shown in [MNT14] that for any

matrixA, there exists an efficiently computable quantity γ2 (A) such
that

Ω(γ2 (A)/ logm) ≤ herdisc (A) ≤ O (γ2 (A)
√

logm). (1)

The proof for the upper bound above was non-constructive in the

sense that, given any J ⊆ [n], it was not known how to efficiently

find a coloring x : J → {−1, 1} with discrepancy of A | J bounded by
the right hand side of (1). Using Theorem 1.3, we get an algorithm

to find such a coloring.

Corollary 1.5. There exists an efficient randomized algorithm
that, given any m × n matrix A and J ⊆ [n], returns a coloring
x : J → {−1, 1} such that with constant probability,

∥A | J x ∥∞ = O (γ2 (A)
√

logm).

A Generalization of Banaszczyk’s result. We also give a general-

ization of Theorem 1.1. Let Bm
2

denote the Euclidean ball in Rm of

radius 1 and centred at the origin.

Theorem 1.6. Let S1, S2, . . . , Sn be sets such that for each i ∈ [n],
Si ⊆ B

m
2

and 0 lies in the convex hull of Si . Then for any convex
body K with γm (K ) ≥ 1/2, there exist vectors vi ∈ Si such that∑n
i=1

vi ∈ cK , where c > 0 is an absolute constant. Moreover, there is
an efficient algorithm to find these vectors.

Theorem 1.1 is the special case of the above theorem, obtained by

taking Si = {−vi ,vi } for each i ∈ [n]. We will constructively reduce

Theorem 1.6 to Theorem 1.1, which implies that an algorithm for the

latter also gives an algorithm for the former. Similar generalizations

for several other problems in discrepancy are mentioned in [Bár08].

1.3 Organization of the Paper
We state the algorithm for Theorem 1.3 in Section 2. The analysis

is in Section 3; with a sketch of the main ideas in Section 3.3. The

applications are discussed in Section 4.

2 ALGORITHM DESCRIPTION: THE
GRAM-SCHMIDTWALK

The algorithm will proceed in time steps t = 1, 2, . . . ,n, and will

maintain a fractional coloring xt ∈ [−1, 1]
n
at all time steps. Let x0

be an arbitrary initial fractional coloring. Let xt denote the coloring
at the end of time step t . An element i is called alive at time t if
|xt−1 (i ) | < 1 and frozen (or fixed) otherwise. Let At ⊆ [n] denote

the set of alive elements at time t .
We now give some notation to describe the update step at each

time t . Let n(t ) ∈ At denote largest indexed element that is alive
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at time t . We call n(t ) the pivot element at time t . Let Vt denote
the subspace spanned by the vectors {vi : i ∈ At , i , n(t )} and let

v⊥ (t ) := ΠV ⊥t
vn (t ) denote the projection of vn (t ) orthogonal to Vt .

Note that v⊥ (t ) depends on t and not just on vn (t ) ; this is because
in our algorithm,At (and henceVt ) may change between time steps

even if n(t ) remains the same. From the perspective of the walk,

v⊥ (t ) will correspond to the direction that the output of the random
walk will move in during timestep t . To justify the name of the

walk, note that v⊥ (t ) is simply the last vector of the Gram-Schmidt

orthogonalization of the ordered sequence of vectors (vi )i ∈At .
We now describe the algorithm formally.

Algorithm description:
Input: vectors v1, . . . ,vn ∈ R

m
of ℓ2 norm at most one; an

initial coloring x0 ∈ [−1, 1]
n
.

Output: coloring x ∈ {−1, 1}n .

(1) Given the initial coloring x0, initialize A1 =

{i ∈ [n] : |x0 (i ) | < 1}, n(1) = max {i ∈ A1} and t =
1.

(2) While At , ∅, do the following:

(a) Compute an update direction ut =

(ut (1), . . . ,ut (n)) ∈ R
n
as follows:

• if i < At set ut (i ) = 0.

• if i = n(t ) set ut (i ) = 1.

• for i ∈ At \ {n(t )} set ut (i ) to satisfy v⊥ (t ) =
vn (t ) +

∑
i ∈At \{n (t ) } ut (i )vi .

(b) Let δ−t < 0 < δ+t be the unique negative and

positive solutions for δ , respectively, for the equa-
tion maxi ∈At |xt−1 (i ) + δut (i ) | = 1. Update the

coloring xt−1 randomly as

xt = xt−1 + δtut

where δt ∈ {δ
−
t ,δ
+
t } is chosen randomly as

δt =



δ−t with probability

δ+t
δ+t −δ

−
t

δ+t with probability

−δ−t
δ+t −δ

−
t

.

(c) Update At+1 = {i ∈ [n] : |xt (i ) | < 1}, n(t + 1) =
max{i ∈ At+1} and t ← t + 1.

(3) Output xt .

3 ALGORITHM ANALYSIS
We proceed now to the analysis of our algorithm. In the first sub-

section we develop some preliminaries which will be helpful later.

3.1 Preliminaries
To bound the discrepancy, we will use a concentration inequality

which is a variant of Freedman’s inequality for martingales [Fre75].

The following lemma will be useful.

Lemma 3.1. Let X be a random variable such that X ≤ 1. Then for
any λ > 0,

E[eλX ] ≤ exp

(
λE[X ] + (eλ − λ − 1)E[X 2

]

)
.

Proof. Let f (x ) = eλx−λx−1

x 2
where we set f (0) = λ2/2. It can

be verified that f (x ) is increasing for all x . This implies eλx ≤
f (1)x2 + 1 + λx for any x ≤ 1. Taking expectation, this becomes

E[eλX ] ≤ 1 + E[λX ] + f (1)E[X 2
]

= 1 + λE[X ] + (eλ − λ − 1)E[X 2
]

≤ eλE[X ]+(eλ−λ−1)E[X 2
]

where the last inequality uses the fact that 1 + x ≤ ex . □

We will use the following concentration inequality to bound the

discrepancy. This is a slight modification of Freedman’s inequality

given by Yin-Tat Lee and we show its proof below.

Lemma 3.2. Let X1, . . . ,Xn and Z0,Z1, . . . ,Zn be random vari-
ables that satisfy

(1) Z0 is deterministic,
(2) Zt − Zt−1 ≤ Xt for all t = 1, . . . ,n with probability one,
(3) Xt ≤ 1 for all t = 1, . . . ,n with probability one, and
(4) E[Xt + X

2

t |Z1, . . . ,Zt−1] ≤ 0 for all t = 1, . . . ,n with proba-
bility one.

Then
E[eZn ] ≤ eZ0 .

Proof. Let λ > 0 be a real number to be determined later. We

shorthand as Et−1[·] the conditional expectation E[·|Z1, . . . ,Zt−1].

We first bound Et−1[eλZt ] for which we observe the following:

Et−1

[
eλZt

]
= eλZt−1Et−1

[
eλ (Zt−Zt−1 )

]

≤ eλZt−1Et−1

[
eλXt

]

≤ eλZt−1
exp

(
λEt−1[Xt ] + (eλ − λ − 1)Et−1

[
X 2

t
] )

≤ eλZt−1
exp

(
(eλ − 2λ − 1)Et−1

[
X 2

t
] )

where we used Lemma 3.1 in the second last inequality. The last

inequality uses Et−1[Xt ] ≤ −Et−1[X 2

t ] . Set λ > 0 to be the (unique)

solution of eλ−2λ−1 = 0. As ex ≤ 1+x+x2
for x ≤ 1, for 0 < λ < 1

we have

eλ − 2λ − 1 ≤ λ2 − λ < 0.

Thus, it must hold that λ ≥ 1. Then we get Et−1[eλZt ] ≤ eλZt−1
.

And thus by induction, E[eλZn ] ≤ E[eλZ0
] = eλZ0

, since Z0

is deteministic. Since λ ≥ 1, by Jensen’s inequality E[eZn ] ≤

E[eλZn ]
1/λ ≤ eZ0

, as needed. □

3.2 Notations and Preliminary Observations
We can now start with the analysis of the algorithm. Since at the

end of each time step t , at least one more element gets colored −1

or 1, the algorithm clearly terminates in at most n steps. To simplify

notations, if the algorithm terminates after t < n steps and outputs

xt , we set xt+1 = . . . = xn := xt . As we maintain ∥xt ∥∞ ≤ 1 for all

time steps t , we see that xn ∈ {−1, 1}n .

It should also be noted in step (2.a) of the algorithm that such a

direction ut always exists. This is because vn (t ) −v
⊥ (t ) lies in the

subspace Vt and hence there always exist ut (i )’s such that

vn (t ) −v
⊥ (t ) = −

∑
i ∈At \{n (t ) }

ut (i )vi .
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This then gives

v⊥ (t ) = vn (t ) +
∑

i ∈At \{n (t ) }

ut (i )vi =
∑
i ∈At

ut (i )vi .

As ut (i ) = 0 if i < At , we obtain that

v⊥ (t ) =
n∑
i=1

ut (i )vi . (2)

We now focus on showing the subgaussianity bound in Theo-

rem 1.3. Henceforth, we fix a vector θ ∈ Rm with respect to which

we want to show subgaussianity. Let A be them × n matrix whose

columns are given by v1, . . . ,vn . Define Y :=
∑n
i=1

(x (i ) − x0 (i ))vi
and let

disc (θ ) = ⟨θ ,Y ⟩

= ⟨θ ,
n∑
i=1

(x (i ) − x0 (i ))vi ⟩

=

n∑
i=1

(x (i ) − x0 (i ))⟨θ ,vi ⟩

and hence ⟨θ ,Y ⟩ can be seen as the discrepancy of the “row" θTA,

which has ⟨θ ,vi ⟩ as its i
th

entry.

Let us denote the respective signed discrepancy at the end of

time step t by

disct := ⟨θ ,
n∑
i=1

(xt (i ) − x0 (i ))vi ⟩ =
n∑
i=1

(xt (i ) − x0 (i ))⟨θ ,vi ⟩,

let

∆tx := xt − xt−1 = δtut

denote the coloring update at time t , and let

∆tdisc := disct − disct−1 =

n∑
i=1

⟨θ ,vi ⟩∆tx (i )

= δt

n∑
i=1

⟨θ ,vi ⟩ut (i )

be the change in discrepancy at time t . Our end goal is to show that

E[ediscn ] ≤ e (σ
2/2) ∥θ ∥2

2 , for σ = O (1) to be computed later.

A key observation is that the change in discrepancy at time t
depends only on the vector v⊥ (t ).

Lemma 3.3. At each time step t , ∆tdisc = δt ⟨θ ,v
⊥ (t )⟩.

Proof. The change in discrepancy at time t is

∆tdisc = δt

n∑
i=1

⟨θ ,vi ⟩ut (i )

= δt ⟨θ ,
n∑
i=1

ut (i )vi ⟩

= δt ⟨θ ,v
⊥ (t )⟩,

where the last equality follows by (2). □

3.3 Main Ideas
Before we give the technical details, we describe the main ideas

of the analysis, which are simple, and then give a roadmap of the

analysis.

First, as our algorithm can start with any initial coloring x0, we

may assume without loss of generality that the vectors v1, . . . ,vn
are linearly independent. Otherwise, we can apply a standard pre-

processing step that removes linear dependencies, by finding some

linear dependency among the vectors and making an update step

which incurs zero discrepancy. Our algorithm can be viewed as a

randomized extension of the above dependent rounding approach.

Suppose for a moment that the element that got colored at each

time step was the pivot. That is, the elements got colored in the

order n,n− 1, . . . , 1. Then, at time t , the pivot is n(t ) = n− t + 1 and

the vectors v⊥ (t ) can be described as follows. Let w1, . . . ,wn be

the orthonormal vectors obtained by applying the Gram-Schmidt

orthonormalization procedure (GS) on the vectors v1, . . . ,vn in

that order. That is,w1 = v1/∥v1∥ and for i > 1,wi is the projection

of vi orthogonal to v1, . . . ,vi−1, normalized to have unit norm. By

our assumption that vi are linearly independent, each wi is non-

zero. It is easily checked that v⊥ (t ) = ⟨vn (t ) ,wn (t )⟩wn (t ) . Another

observation that will be useful later is thatwn (t ) (and hence v⊥ (t ))
depends only on the set {v1, . . . ,vn (t )−1

} and not the particular

order in which GS is applied to this set.

Now δt is a mean-zero random variable which is independently

chosen at each time t . Also |δt | ≤ 2 for all t (see Lemma 3.6). This

suggests that the moment generating function of the discrepancy is

E
[
edisc (θ )

]
= E

[
e
∑n
t=1

δt ⟨θ,v⊥ (t )⟩
]
≤ eO (1) ·

∑n
t=1
⟨θ,v⊥ (t )⟩2 .

But this is at most eO (1) · ∥θ ∥2
2 as∑

t
⟨θ ,v⊥ (t )⟩2 =

∑
t
⟨θ , ⟨vn (t ) ,wn (t )⟩wn (t )⟩

2

≤
∑
t
⟨θ ,wn (t )⟩

2

≤ ∥θ ∥2
2
.

Here the first inequality follows as |⟨vn (t ) ,wn (t )⟩| ≤ 1 as thewi ’s

are orthonormal unit vectors and ∥vi ∥2 ≤ 1 for each i . The sec-
ond inequality follows as

∑
i ⟨θ ,wi ⟩

2 ≤ ∥θ ∥2
2
for any orthonormal

collection of vectorswi .

There are two issues that need to be addressed in the simpli-

fied description above. First, non-pivot elements may get colored

sometimes. That is, the variables may not get colored in the order

n,n − 1, . . . , 1. The key point of the analysis is to show that this

only makes the problem easier. To make this a bit more precise,

let us view

∑
i ⟨θ ,wi ⟩

2 ≤ ∥θ ∥2
2
as the energy budget initially avail-

able to us. If some non-pivot element xk is colored at some time t ,
then the GS procedure (without vk ) will produce a different set of
orthonormal vectors {w ′i }. However we can bound the increase

⟨θ ,w ′n (t )⟩
2 − ⟨θ ,wn (t )⟩

2

in the pivot’s energy by the amount ⟨θ ,wk ⟩
2
which was available

to us, but we will never use it anymore as k will never be a pivot

once it is colored. The formal analysis later on will divide the time

steps into phases where the pivot element remains the same during

a phase and consider the evolution of v⊥ (t ) in each phase.
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A second technical issue is that to obtain a subgaussian distribu-

tion for all θ ∈ Rm , we need to control the variance of the energy

which requires that |⟨θ ,v⊥ (t⟩) | = O (1). Let us refer to the times

when this does not happen as bad times. To get around this issue

we break the discrepancy contribution into two parts: a determin-

istic part due to the bad times, and a random contribution due to

the other time steps. Again by considering the dynamics of how

v⊥ (t ) evolves during a phase, one can show that the cumulative

discrepancy due to all the bad times can be at most O (∥θ ∥2
2
).

3.4 Phases and Dynamics of Pivots
To analyze the process, we need to set up some more notation. Let

T be the first time at the end of which all the elements are colored.

Recall that at the beginning of each time step t ∈ [T ], there is some

pivot element n(t ) and some set of alive elements At . Recall that
Vt = span {vi : i ∈ At , i , n(t )}. After the update at time t , some

element is frozen. By convention, we defineV0 := span {v1, . . . ,vn }.
Note that for any time t ∈ [T ], we have Vt ⊆ Vt−1.

We divide the time steps t ∈ [T ] into κ ∈ [T ] disjoint phases,

where a phase is a maximal sequence of time steps with the same

pivot element (note that κ is a random variable). Let tbk be the time

when phase k ∈ [κ] begins and tek be the time when this phase ends.

Note that n(t ) = n(tbk ) for all t ∈ [tbk , t
e
k ] and the pivot element

n(tbk ) gets frozen after the update at time step tek . Thus, the first

phase, withn(1) as pivot, begins at the beginning of time step tb
1
= 1

and ends at the end of time step te
1
= tb

2
−1. Given a time t ∈ [T ], we

define ft = min

{
t ′ ∈ [t] : n(t ′) = n(t )

}
to be the beginning time of

the phase that t belongs to. Note that if t ∈ [tbk , t
e
k ] then ft = tbk .

We will now give a useful characterization of the discrepancy

vector v⊥ (t ) at any time step t ∈ [T ]. For any subspaceW ⊆ Rm ,

letW ⊥ denote the subspace orthogonal toW and let ΠW (·) denote
the projection operator onW . For two linear subspacesW1 ⊇W2,

we use the notationW1/W2 :=W1 ∩W
⊥
2
.

Lemma 3.4. At each time step t ∈ [T ] of the algorithm the follow-
ing holds:

v⊥ (t ) =
t∑

i=ft

ΠVi−1/Vi (vn (ft ) ), (3)

where the subspaces Vi−1/Vi are mutually orthogonal.

Lemma 3.4 follows directly from the following useful fact.

Lemma 3.5. Let Rm ⊇ W0 ⊇ W1 ⊇ · · · ⊇ Wt , t ≥ 1, denote a
non-increasing sequence of linear subspaces and let y ∈W0. Then

ΠW ⊥
t
(y) =

t∑
i=1

ΠWi−1/Wi (y), (4)

where the subspacesWi−1/Wi for i ∈ [t] are mutually orthogonal
and are also orthogonal toWt .

Proof. We first prove orthogonality. LetWt+1 = ∅ denote the

empty subspace. ThenWt =Wt /Wt+1. Now for 1 ≤ i < j ≤ t + 1,

we need to show thatWi−1/Wi andWj−1/Wj are orthogonal. This

follows directly sinceWi−1/Wi is orthogonal to the subspaceWi
andWj−1/Wj ⊆Wj−1 ⊆Wi since j − 1 ≥ i .

To prove (4), notice that span{Wi ∪ (Wi−1/Wi )} =Wi−1 and thus

by induction,

W0 = span{∪t+1

i=1
(Wi−1/Wi )}

where each of the subspaces Wi−1/Wi are mutually orthogonal.

This implies that for y ∈W0,

y = ΠW0
(y) =

t+1∑
i=1

ΠWi−1/Wi (y)

=

t∑
i=1

ΠWi−1/Wi (y) + ΠWt (y).

The lemma follows now by observing that ΠW ⊥
t
(ΠWt ) = 0 and

ΠW ⊥
t
(ΠWi−1/Wi ) = ΠWi−1/Wi asWi−1/Wi ⊆W

⊥
t . □

Proof of Lemma 3.4. First, by definition of ft , note that n(t ) =
n( ft ) and hence

v⊥ (t ) = ΠV ⊥t
(vn (t ) ) = ΠV ⊥t

(vn (ft ) ).

We now check that vn (ft ) ∈ Vft−1
. If ft = 1, this is immediate

sinceV0 = span {v1, . . . ,vn } by convention. Otherwise, since n( ft )
is both alive and not the pivot at time ft − 1 ≥ 1, we have that

n( ft ) ∈ Aft−1
⇒ vn (ft ) ∈ Vft−1

. The main statement now follows

directly by applying Lemma 3.5 on the subspaces Vft−1
⊇ Vft ⊇

· · · ⊇ Vt and the vector vn (ft ) . □

3.5 Discrepancy in a Phase
We now bound the discrepancy incurred during any subinterval of

a phase. We first need the following simple but very useful fact.

Lemma 3.6. Let p ≤ q be any two time steps in [tbk , t
e
k ] during a

phase k ∈ [κ]. Then ���
∑q
t=p δt

��� ≤ 2.

Proof. At any time t ∈ [p,q], note that n(t ) = n(p), i.e. the
pivot remains unchanged. The color of the pivot element n(p) at
time t ∈ [p,q] is updated by δtut (n(p)) = δt and hence

xq (n(p)) − xp−1 (n(p)) =

q∑
t=p

δt .

As |xt (n(p)) | ≤ 1 for all t ∈ [T ], we have that |xq (n(p))−xp−1 (n(p)) | ≤
2 as needed. □

Lemma 3.7. Let p ≤ q be any two time steps in [tbk , t
e
k ] during a

phase k ∈ [κ]. The discrepancy |discq − discp−1 | incurred during the
time interval [p,q] is at most 2∥θ (k ) ∥2, where θ (k ) := ΠVtbk −1

/Vtek
(θ ).

Furthermore, the subspaces Vtbk −1
/Vt ek

for k ∈ [κ] are mutually or-

thogonal.

Proof. We first prove orthogonality. Take k1,k2 ∈ [κ], where

k1 < k2.Wemust show that the subspacesVtbk
1

−1
/Vt ek

1

andVtbk
2

−1
/Vt ek

2

are orthogonal. This follows since the first subspace is orthogonal

toVt ek
1

and the second subspace is contained inVtbk
2

−1
⊆ Vt ek

1

since

tbk2

− 1 ≥ tek1

. We now prove the main statement. First, note that

discq − discp−1 =

q∑
t=p

δt ⟨θ ,v
⊥ (t )⟩. (5)
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By Lemma 3.4, for t ∈ [p,q] ⊆ [tbk , t
e
k ], letting h := n(tbk ) = n(t )

denote the pivot index, we have that

v⊥ (t ) := ΠV ⊥t
(vh ) =

t∑
i=tbk

ΠVi−1/Vi (vh ). (6)

Combining (5), (6) we get that

���discq − discp−1

��� =
��������

q∑
t=p

δt ·
t∑

i=tbk

⟨ΠVi−1/Vi (vh ),θ⟩

��������

=

��������

q∑
i=tbk

⟨ΠVi−1/Vi (vh ),θ⟩ ·

q∑
t=max{i,p}

δt

��������

≤

q∑
i=tbk

���⟨ΠVi−1/Vi (vh ),θ⟩
��� ·
��������

q∑
t=max{i,p}

δt

��������

≤ 2

q∑
i=tbk

���⟨ΠVi−1/Vi (vh ),θ⟩
��� ( by Lemma 3.6 )

= 2

q∑
i=tbk

���⟨ΠVi−1/Vi (vh ),ΠVi−1/Vi (θ )⟩
��� . (7)

Now applying Cauchy-Schwarz inequality twice, we get

q∑
i=tbk

���⟨ΠVi−1/Vi (vh ),ΠVi−1/Vi (θ )⟩
���

≤

q∑
i=tbk

∥ΠVi−1/Vi (vh )∥2∥ΠVi−1/Vi (θ )∥2

≤

√√√√√ q∑
i=tbk

∥ΠVi−1/Vi (vh )∥
2

2
·

q∑
i=tbk

∥ΠVi−1/Vi (θ )∥
2

2

≤ ∥ΠVtbk −1

/Vq (vh )∥2 · ∥ΠVtbk −1

/Vq (θ )∥2

≤ ∥ΠVtbk −1

/Vq (θ )∥2 ( since ∥vh ∥2 ≤ 1 )

≤ ∥ΠVtbk −1

/Vtek
(θ )∥2

(
since Vq ⊇ Vt ek

)
. (8)

where the third inequality follows by orthogonality of the subspaces

Vi−1/Vi for all i ∈ [tbk , t
e
k ], and their containment inside Vtbk −1

/Vq .

The lemma now follows by combining (7), (8). □

Notice that discrepancy {disct : t ≥ 0} is a martingale. For the

rest of the analysis, wewill define another closely relatedmartingale

{Yt } and show that the subgaussianity of {disct } follows from the

subgaussianity of {Yt }. Then, we will show the subgaussianity of

{Yt }. Define the random process {Yt : t ≥ 0} as

Yt :=




0 if t = 0

Yt−1 if ∥ΠVft −1
/Vt (θ )∥2 > 1/8

Yt−1 + ∆tdisc otherwise

.

Note that E[Yt |Y1, . . . ,Yt−1] = Yt−1 and thus {Yt } is a martingale.

To prove Theorem 1.3, we will bound the exponential moment of

discn .

Theorem 3.8. E[ediscn ] ≤ e20∥θ ∥2
2 .

Note that this directly gives that the walk is

√
40 ≈ 6.32 subgaus-

sian.

To control this exponential moment, wewill splitdiscn = discT =
(discT −YT )+YT , where (discT −YT ) will correspond to the discrep-
ancy incurred during “bad” times and YT corresponds to the “good”

times. More precisely, call a time step t good if ∥ΠVft −1
/Vt (θ )∥2 ≤

1/8 and bad otherwise. Let

B :=
{
t ∈ [T ] : ∥ΠVft −1

/Vt (θ )∥2 > 1/8
}

denote the set of bad times. Note that

discT = YT +
∑
t ∈B

∆tdisc .

The following lemma now shows that the discrepancy incurred

during the bad times can be upper bounded deterministically.

Lemma 3.9.
��
∑
t ∈B ∆tdisc �� < 16∥θ ∥2

2
.

Proof. For each k ∈ [κ], let Bk denote the set of bad time steps

in phase k . Notice that in a phase, once a time step becomes bad,

all subsequent time steps in that phase are bad as the length of

ΠVft −1
/Vt (θ ) is a non-decreasing function of t during a phase (as

Vt+1 ⊆ Vt for every t ). Thus, the set Bk , if non-empty, forms a

consecutive interval (ending at the end of phase k), and hence

Lemma 3.7 can be applied to it.

Recall that we denoted θ (k ) := ΠVtbk −1

/Vtek
(θ ) for k ∈ [κ]. Note

that the vectors θ (1) , . . . ,θ (κ ) are mutually orthogonal. Further-

more, by the argument above, for any k ∈ [κ] with Bk , ∅ we have

that ∥θ (k ) ∥ ≥ 1/8.

The discrepancy incurred during bad times can now be bounded

as follows

������

∑
t ∈B

∆tdisc
������
≤
∑
k ∈[κ]

�������

∑
t ∈Bk

∆tdisc

�������
≤

∑
k ∈[κ],Bk,∅

2∥θ (k ) ∥2 ( by Lemma 3.7 )

≤
∑

k ∈[κ],Bk,∅

16∥θ (k ) ∥2
2

≤ 16∥θ ∥2
2

where the second last inequality uses ∥θ (k ) ∥ ≥ 1/8 if Bk , ∅ and

the last inequality follows from the orthogonality of θ (1) , . . . ,θ (κ ) .
□

3.6 Bounding Discrepancy
We now prove Theorem 3.8. To this end, we will define potential

functions that capture how the variance of Yt increases over time.

For t ∈ [T ], define the subspace Rt := span{vi : i ∈ At }, i.e. the
span of the active vectors. Note that at any timestep t ∈ [T ], the
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discrepancy direction v⊥ (t ) ∈ Rt /Vt . We define two potentials Φbt
and Φet now. If t is good,

Φbt := ∥ΠVt (θ )∥
2 + (1 − xt−1 (n(t ))

2)∥ΠRt /Vt (θ )∥
2

2

and

Φet := ∥ΠVt (θ )∥
2 + (1 − xt (n(t ))

2)∥ΠRt /Vt (θ )∥
2

2
.

If t is bad,

Φbt := ∥ΠVt (θ )∥
2

and

Φet := ∥ΠVt (θ )∥
2.

Here we think of Φbt as the potential at the beginning of time step

t and Φet as the potential at the end of time step t . By convention,

we define Φe
0
= Φb

0
= ∥θ ∥2

2
.

As by Lemma 3.9 we have deterministic control over the discrep-

ancy incurred during the bad times, our goal is now to control the

discrepancy during the good times. Namely, we need to bound the

process Y0,Y1, . . . ,YT . Here, the main idea is to charge the drop in

potential to the increase in discrepancy. To this end, we define the

potential weighted discrepancy process {Zt } for t ≥ 0 as

Zt := Yt + 4Φet .

Note that Y0 = 0, Z0 = 4Φe
0
= 4∥θ ∥2

2
and Zt ≥ Yt for all t ≥ 0. For

t ∈ [T + 1,n] we define Zt := ZT . Our goal is to now show that the

process Z0, . . . ,ZT has a strong “negative” drift.

The increments of Zt − Zt−1 for t ∈ [T ] can be expressed as

follows:

Zt − Zt−1

= Yt − Yt−1 + 4(Φet − Φ
e
t−1

)

= (Yt − Yt−1 + 4(Φet − Φ
b
t )) + 4(Φbt − Φ

e
t−1

). (9)

We decompose this increment into a “predictable” part over which

we will be able to get stochastic control and a “free" part which we

show is always non-positive. The “predictable" part is given by

Xt := Yt − Yt−1 + 4(Φet − Φ
b
t )

which equals

δt ⟨v
⊥ (t ),θ⟩ − 4(xt (n(t ))

2 − xt−1 (n(t ))
2)∥ΠRt /Vt (θ )∥

2

2

for t good and is equal to 0 for t bad. The “free" part is given by

4(Φbt − Φ
e
t−1

).

The following crucial lemma shows that 4(Φbt −Φ
e
t−1

) indeed gives
us a “free drop” in potential.

Lemma 3.10. For all t ∈ [T ], Φbt ≤ Φet−1
. Hence, the increments

satisfy Zt − Zt−1 ≤ Xt for all t ∈ [T ].

Proof. For t = 1, the statement is trivial since Φe
0
= ∥θ ∥2

2
and

clearly Φbt ≤ ∥θ ∥
2

2
for all t . Thus, we may assume t ≥ 2. If t is bad,

then using Vt ⊆ Vt−1 we get Φbt = ∥ΠVt (θ )∥
2

2
≤ ∥ΠVt−1

(θ )∥2
2
≤

Φet−1
. So, we may assume from now on that t is good.

If the time step t is the beginning of a new phase, then

Φbt = ∥ΠVt (θ )∥
2

2
+ (1 − xt−1 (n(t ))

2)∥ΠRt /Vt (θ )∥
2

2

≤ ∥ΠVt (θ )∥
2

2
+ ∥ΠRt /Vt (θ )∥

2

2

= ∥ΠRt (θ )∥
2

2
≤ ∥ΠVt−1

(θ )∥2
2
≤ Φet−1

.

Here the inequality ∥ΠRt (θ )∥2 ≤ ∥ΠVt−1
(θ )∥2 follows by our as-

sumption that t is the beginning of a new phase and hence At ⊆
At−1 \ {n(t − 1)} i.e. Rt ⊆ Vt−1.

Lastly, if t is good and not the beginning of a new phase, then

note that t − 1 is also good and that n(t ) = n(t − 1). Thus

Φbt = ∥ΠVt (θ )∥
2

2
+ (1 − xt−1 (n(t ))

2)∥ΠRt /Vt (θ )∥
2

2

≤ ∥ΠVt (θ )∥
2

2
+ (1 − xt−1 (n(t ))

2)∥ΠRt−1/Vt (θ )∥
2

2

= ∥ΠVt (θ )∥
2

2
+ (1 − xt−1 (n(t ))

2)·(
∥ΠVt−1/Vt (θ )∥

2

2
+ ∥ΠRt−1/Vt−1

(θ )∥2
2

)
≤
(
∥ΠVt (θ )∥

2

2
+ ∥ΠVt−1/Vt (θ )∥

2

2

)
+ (1 − xt−1 (n(t ))

2)∥ΠRt−1/Vt−1
(θ )∥2

2

= ∥ΠVt−1
(θ )∥2

2
+ (1 − xt−1 (n(t ))

2)∥ΠRt−1/Vt−1
(θ )∥2

2

= Φet−1

where the second inequality usesRt ⊆ Rt−1. □

We now show the increment boundsXt satisfy the negative drift
requirements of Lemma 3.2.

Lemma 3.11. For t ∈ [T ], |Xt | ≤ 1 and

E[Xt + X
2

t |Z1, . . . ,Zt−1] ≤ 0.

Proof. Clearly, we may assume that t is good, since otherwise
Xt = 0 and the statement is trivial. For simplicity of notation,

let Ωt−1 denote all the random choices made by the algorithm in

the first t − 1 time steps. Note that Ωt−1 determines in particular

Z1, . . . ,Zt−1. We shorthand Et−1[·] := E[·|Ωt−1]. Let us further

denote θt := ⟨v⊥ (t ),θ⟩, ¯θt = ∥ΠRt /Vt (θ )∥2, and x := xt−1 (n(t )).
With this notation, we have that

Xt = δtθt − 4δt (δt + 2x ) ¯θ2

t .

Since v⊥ (t ) ∈ Rt /Vt , note that |θt | ≤ ∥v
⊥ (t )∥2 ¯θt ≤ ¯θt . By defini-

tion of t being good, we have that ¯θt ≤ 1/8. Since x ∈ [−1, 1] and

x + δt ∈ [−1, 1], we deduce the following simple bounds

|δt | ≤ 2,

|δt (δt + 2x ) | = |(δt + x )
2 − x2 | ≤ 1, (10)

|δt + 2x | = |(δt + x ) + x | ≤ 2.

Using the bounds in (10), we see that

|Xt | ≤ |δt | |θt | + 4|δt (δt + 2x ) | ¯θ2

t ≤ 2(1/8) + 4(1) (1/82) ≤ 1.

Next, we have that Et−1[Xt ] = −4Et−1[δ2

t ]
¯θ2

t since Et−1[δt ] = 0.

Lastly, using the inequality (a + b)2 ≤ 2a2 + 2b2
, we get that

X 2

t ≤ 2δ2

t θ
2

t + 2(16)δ2

t (δt + 2x )2 ¯θ4

t

≤ 2δ2

t
¯θ2

t + 2(16)δ2

t (4) (1/8)
2 ¯θ2

t = 4δ2

t
¯θ2

t .

Thus Et−1[X 2

t ] ≤ 4Et−1[δ2

t ]
¯θ2

t and hence Et−1[Xt + X 2

t ] ≤ 0.

As Z1, . . . ,Zt−1 are determined by Ωt−1, this implies that E[Xt +
X 2

t |Z1, . . . ,Zt−1] ≤ 0, as needed. □

We now prove the main moment bound.

594



The Gram-Schmidt Walk STOC’18, June 25–29, 2018, Los Angeles, CA, USA

Proof of Theorem 3.8. To begin we see that

E
[
ediscn

]
≤ E

[
eYT + |

∑
t∈B ∆tdisc |

]

≤ E
[
eYT +16∥θ ∥2

2

]
( by Lemma 3.9 )

≤ E
[
eZn

]
e16∥θ ∥2

2 ( as YT ≤ ZT = Zn ) .

Recall that Z0 = 4∥θ ∥2
2
. Furthermore, by Lemma 3.10 we have

Zt − Zt−1 ≤ Xt , by Lemma 3.11 we have |Xt | ≤ 1 and

E
[
Xt + X

2

t |Z1, . . . ,Zt−1

]
≤ 0 for all t ∈ [T ], and for t ∈ [T + 1,n]

we haveZt −Zt−1 = 0 by definition. Therefore, applying Lemma 3.2

gives that

E
[
eZn

]
≤ eZ0 = e4∥θ ∥2

2 .

Thus, combining everything together, we get

E
[
ediscn

]
≤ E

[
eZn

]
e16∥θ ∥2

2 ≤ e20∥θ ∥2
2 as needed. □

4 APPLICATIONS
In this section, we list some applications of our main result.

4.1 ℓp Variant of Komlós Problem
Corollary 1.4 (restated). There is an efficient randomized algorithm
which given an m × n matrix A having all columns of ℓ2 norm at
most one and p ∈ [1,∞), finds a coloring x ∈ {−1, 1}n with expected
ℓp discrepancy O (

√
p).

Proof. Let Y = Ax . By Theorem 1.3, we get that Y is a σ -
subgaussian random vector and hence each component of Y is

a σ -subgaussian random variable. Letting Yi denote the i
th

compo-

nent of Y , we get

E[∥Y ∥
p
p ] =

m∑
i=1

E[|Yi |
p

] ≤ mCppp/2

for a constantC = C (σ ) depending only on σ . The inequality above

follows from the standard fact that the pth moment of an O (1)-

subgaussian random variable is at most Cppp/2
(see e.g. [Ver10]).

□

4.2 Discrepancy Relative to γ2-norm
Corollary 1.5 (restated). There exists an efficient randomized algo-
rithm that, given anym × n matrix A and J ⊆ [n], returns a coloring
x : J → {−1, 1} such that with constant probability,

∥A | J x ∥∞ = O (γ2 (A)
√

logm).

Proof. It was shown in [MNT14] that for any matrix A, there
exists an efficiently computable quantity γ2 (A) such that

Ω(γ2 (A)/ logm) ≤ herdisc (A) ≤ O (γ2 (A)
√

logm).

The upper bound above was proved using Theorem 1.1 (roughly) as

follows: given any set J ⊆ [n], factorize the matrixA | J asA | J = BC
where every row of B has ℓ2 norm at most γ2 (A) and every column

of C has ℓ2 norm at most one. Such a factorization exists and can

be computed by solving an appropriate semidefinite program. We

refer the reader to [MNT14] for more details.

Then using the matrix B, a convex body K is defined as follows:

K = {y ∈ Rm : ∥By∥∞ ≤ cγ2 (A)
√

logm}.

For c a large enough constant, γm (K ) ≥ 1/2. This follows by stan-

dard Gaussian tail bounds and union bound. Now finding a col-

oring x ∈ {−1, 1}n of the columns of A|J such that the ℓ∞ norm

of A|J x = BCx is O (γ2 (A)
√

logm) is equivalent to finding a color-
ing x of the column vectors of C such that Cx lies in K . As C has

all columns of length at most one, by Theorem 1.1 there exists a

coloring x such that the discrepancy of A|J is O (γ2 (A)
√

logm).
Now Theorem 1.3 (with Theorem 1.2) directly gives an efficient

algorithm to find such a coloring. □

4.3 A Generalization of Banaszczyk’s Result
In this subsection we prove the following generalization of Ba-

naszczyk’s result. The proof follows along similar lines as the proof

of [LSV86] showing that linear discrepancy is at most twice the

hereditary discrepancy.

Theorem 1.6 (restated). Let S1, S2, . . . , Sn be sets such that for each
i ∈ [n], Si ⊆ Bm

2
and 0 lies in the convex hull of Si . Then for any

convex body K with γm (K ) ≥ 1/2, there exist vectors vi ∈ Si such
that
∑n
i=1

vi ∈ cK , where c > 0 is an absolute constant. Moreover,
there is an efficient algorithm to find these vectors.

Proof. For technical reasons, we give the proof for the case

when γm (K ) ≥ 1/2 + ϵ for some ϵ > 0. The running time of the

algorithm will be proportional to log(1/ϵ ). The general case, for
instance whenγm (K ) = 1/2, is slightly more complicated but can be

handled by combining our proof with the techniques in [DGLN16].

We provide a sketch of how to do this towards the end of the proof.

For each i ∈ [n], as 0 lies in the convex hull of Si , there exist at
mostm + 1 vectors in Si and a convex combination of them that

equals 0. That is, there existm+1 vectorsvi, j ∈ Si and real numbers

xi, j ≥ 0 such that

∀i ∈ [n] :

m+1∑
j=1

xi, j = 1 and

m+1∑
j=1

xi, jvi, j = 0. (11)

Our goal will be to round each collection {xi, j : j ∈ [m + 1]} such

that exactly one of them is 1 and the rest are 0, without incurring

too much discrepancy.

Assume for now that each of xi, j can be expressed using at most

k digits in binary, for some finite k ; that is, xi, j ∈ 2
−kZ for all i, j.

We will see later how to get rid of this assumption. The main step

will to be to reduce k to k − 1 by rounding the k-th bits in each xi, j
either up or down, in such a way that discrepancy stays bounded.

Then, we will repeat this operation until we obtain k = 0, which

means that xi, j ∈ {0, 1}. We will maintain the property that xi, j ≥ 0

and that

∑
j xi, j = 1 for all i , which then implies that there exists

ji ∈ [m + 1] for each i such that xi, ji = 1 and xi, j = 0 if j , ji . The
claim will follow by choosing vi, ji ∈ Si .

Setting notation, let x
(k )
i, j = xi, j . Assume that we already com-

puted for ℓ ∈ [k] a choice of x
(ℓ)
i, j ∈ 2

−ℓZ that satisfies
∑
j x

(ℓ)
i, j = 1

for all i ∈ [n]. If x
(ℓ)
i, j ∈ {0, 1} for all j then there is nothing more
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to do. Otherwise, let x
(ℓ)
i, j = 0.b

(ℓ)
i, j,1b

(ℓ)
i, j,2 . . .b

(ℓ)
i, j, ℓ be the binary ex-

pansion of x
(ℓ)
i, j < 1. Let A(ℓ) = {(i, j ) ∈ [n] × [m + 1] : b

(ℓ)
i, j, ℓ = 1}

be the indices where the ℓ-th bit of xi, j is 1. We will construct a

coloring χ (ℓ) : A(ℓ) → {−1, 1} which satisfies∑
(i, j )∈A(ℓ)

χ (ℓ) (i, j )vi, j ∈ cK , and

∀i ∈ [n],
∑

j :(i, j )∈A(ℓ)

χ (ℓ) (i, j ) = 0 (12)

for some absolute constant c > 0. Given such a coloring χ (ℓ) , we

compute the value of x
(ℓ−1)
i, j as follows:

x
(ℓ−1)
i, j =




x
(ℓ)
i, j if b

(ℓ)
i, j, ℓ = 0

x
(ℓ)
i, j + 2

−ℓ
if b

(ℓ)
i, j, ℓ = 1 and χ (ℓ) (i, j ) = 1

x
(ℓ)
i, j − 2

−ℓ
if b

(ℓ)
i, j, ℓ = 1 and χ (ℓ) (i, j ) = −1

.

Observe that this operation zeros the ℓ-th bit of all x
(ℓ)
i, j , namely

x
(ℓ−1)
i, j ∈ 2

−(ℓ−1)Z; it maintains the property that for all i ∈ [n],∑
j x

(ℓ−1)
i, j = 1 and x

(ℓ−1)
i, j ≥ 0; and it satisfies that∑

i, j

(
x
(ℓ−1)
i, j − x

(ℓ)
i, j

)
vi, j ∈ 2

−ℓcK .

Thus, repeating this rounding operation for ℓ = k,k − 1, . . . , 1 will

result in a choice of xi, j ∈ {0, 1} that satisfy
∑
j xi, j = 1 and∑

i, j
xi, jvi, j ∈ cK .

That is, there is a choice of ji ∈ [m + 1] for all i ∈ [n] such that∑
i, j vi, ji ∈ cK , as claimed.

It remains to show how to find a coloring satisfying (12). Let

A
(ℓ)
i = {j : (i, j ) ∈ A(ℓ) } be the elements being colored in the set

Si when we round the ℓ-th bits. We claim that |A
(ℓ)
i | must be even.

This is since for every i ∈ [n], the number of elements x
(ℓ)
i, j for

which b
(ℓ)
i, j, ℓ = 1 must be even, as

∑
x
(ℓ)
i, j = 1. We will pair up the

elements of A
(ℓ)
i in an arbitrary way, and only consider colorings

χ (ℓ) which give opposite colors to elements in each pair. In such a

way, such a coloring automatically satisfies that

∑
j χ

(ℓ) (i, j ) = 0

for all i ∈ [n].

For simplicity of notation, denote the vectors {vi, j : j ∈ A
(ℓ)
i } by

{ui,1, . . . ,ui,2qi } for some integer qi = |A
(ℓ)
i |/2. Define new vectors

wi, j =
(
ui,2j−1 − ui,2j

)
/2 for j ∈ [qi ]. Observe that ∥wi, j ∥2 ≤ 1.

Apply Theorem 1.1 to the vectorswi, j and the convex body K . This
gives a coloring χ ′(i, j ) for each vectorwi, j such that∑

i, j
χ ′(i, j )wi, j ∈ cK .

We now define the coloring χ (ℓ) to give the color χ ′(i, j ) to ui,2j−1

and the color −χ ′(i, j ) to ui,2j . Clearly this satisfies both the condi-

tions in (12) with constant 2c .
We will now show that we can assume the binary expansion

to be finite. Concretely, we will show that a preliminary rounding

procedure can allow us to assume that k ≤ log(2mn/ϵ ). This is since

by truncating each xi, j after log(2mn/ϵ ) bits, the sum
∑
i, j xi, jvi, j

changes by at most∑
i, j

1

2
log(2mn/ϵ )

vi, j ∈ ϵB
m
2
⊆ K

and thus increases the final value of c by at most 1. The last con-

tainment follows by our assumption that γm (K ) ≥ 1/2 + ϵ , and
thus K must contain a Euclidean ball of radius r which satisfies

γ1 ([0, r ]) ≤ ϵ . Clearly this is true for r = ϵ .
Wemention briefly now on how to tackle the case whenγm (K ) <

1/2 + ϵ . This proceeds along similar lines as Theorem 40 from

[DGLN16]. The main idea is that we can find a point p such that

p ∈ K ∩ *
,

∑
i
conv (Si )+

-
where Si denotes the convex hull of Si and the summation operator

used is Minkowski addition. We then instead solve a new problem

on the instance given by convex body K ′ := α (K − p) and sets S ′i
such that

∑
i conv (S

′
i ) = α (

∑
i conv (Si ) −p) for some constant scal-

ing factor α > 0. A solution of our original problem is recoverable

from a solution of this. p and α moreover satisfy the property that

γm (K ′) ≥ 1/2+ ϵ , and we already know how to solve this case. □

5 CONCLUSION AND OPEN QUESTIONS
We gave efficient algorithms for several problems to find color-

ings with discrepancy bounds similar to those achievable using

Banaszczyk’s result, Theorem 1.1. However there are still some

problems that use Banaszczyk’s techniques in a non-trivial iterative

way, for which we are unable to obtain an efficient algorithm.

One such problem is the Tusnady’s problem about the discrep-

ancy of axis-parallel boxes in Rd . [Nik17] used Banaszczyk’s tech-

nique to prove that the discrepancy isOd (log
d−1/2 n), whereOd (.)

hides factors depending only on d . Our techniques do not seem to

apply here and the best known algorithmic bound is Od (log
d n)

[BG17].

Another such problem is the Steinitz problem in the ℓ2 norm.

Here we are given n vectors v1, . . . ,vn ∈ B
m
2

such that

∑
i vi = 0,

and the goal is to find a rearrangement of these vectors such that the

ℓ2 norm of the sum of vectors in any prefix along the rearrangement

is small. That is, we want to find a permutation π : [n] → [n] to

minimize

max

k=1, ...,n



k∑
i=1

vπ (i )

2

.

Banaszczyk in [Ban12], using techniques from [Ban98], showed

that there exists a permutation for which the above expression is at

most O (
√
m +
√

logn), whereas the best known algorithmic bound

is O (
√
m logn) [BG17].
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