
ar
X

iv
:1

80
2.

09
70

9v
1

 [
cs

.D
S]

 2
7

Fe
b

20
18

Fully Dynamic Maximal Independent Set

with Sublinear Update Time

Sepehr Assadi∗

University of Pennsylvania
Krzysztof Onak†

IBM Research
Baruch Schieber‡

IBM Research
Shay Solomon§

IBM Research

Abstract

A maximal independent set (MIS) can be maintained in an evolving m-edge graph by simply
recomputing it from scratch in O(m) time after each update. But can it be maintained in time
sublinear in m in fully dynamic graphs?

We answer this fundamental open question in the affirmative. We present a deterministic
algorithm with amortized update time O(min{∆,m3/4}), where ∆ is a fixed bound on the
maximum degree in the graph and m is the (dynamically changing) number of edges.

We further present a distributed implementation of our algorithm with O(min{∆,m3/4})
amortized message complexity, and O(1) amortized round complexity and adjustment complex-
ity (the number of vertices that change their output after each update). This strengthens a
similar result by Censor-Hillel, Haramaty, and Karnin (PODC’16) that required an assumption
of a non-adaptive oblivious adversary.

∗sassadi@cis.upenn.com Supported in part by NSF grant CCF-1617851.
†konak@us.ibm.com
‡sbar@us.ibm.com
§solo.shay@gmail.com

http://arxiv.org/abs/1802.09709v1

1 Introduction

Dynamic graph algorithms constitute an active area of research in theoretical computer science.
Their objective is to maintain a solution to a combinatorial problem in an input graph—for exam-
ple, a minimum spanning tree or maximal matching—under insertion and deletion of edges. The
research on dynamic graph algorithms addresses the natural question of whether one essentially
needs to recompute the solution from scratch after every update.

This question has been asked over the years for a wide range of problems such as connectivity [30,
32], minimum spanning tree [20,22,29,32,45], maximal matching [7,31,37,43], approximate matching
and vertex cover [10–12,14–16,25,31,37,38], shortest paths [1,8,9,19,21,26–28,34,42,44], and graph
coloring [3, 6, 13] (this is by no means a comprehensive summary of previous results).

Surprisingly however, almost no work has been done for the prominent problem of maintaining a
maximal independent set (MIS) in dynamic graphs. Indeed, the only previous result for this problem
that we are aware of is due to Censor-Hillel et al. [17], who developed a randomized algorithm for
this problem in distributed dynamic networks and left the sequential case (the main focus of this
paper) as a major open question. We note that implementing their distributed algorithm in the
sequential setting requires Ω(∆)1 update time in expectation, where ∆ is a fixed upper bound on
the degree of vertices in the graph and can be as large as Θ(m) in sparse graphs.

The maximal independent set problem is of fundamental importance in graph theory with
natural connections to a plethora of other basic problems, such as vertex cover, matching, vertex
coloring, and edge coloring (in fact, all these problems can be solved approximately by finding an
MIS, see, e.g., the paper of Linial [35]). As a result, this problem has been studied extensively in
different settings, in particular in parallel and distributed algorithms [2, 4, 5, 18, 23, 33, 35, 36, 39].
(We refer the interested reader to the papers of Barenboim et al. [5] and Ghaffari [23] for the story
of this problem in these settings and a comprehensive summary of previous work.)

In this paper, we concentrate on sequential algorithms for maintaining a maximal independent
set in a dynamic graph. Our results are also applicable to the dynamic distributed setting and
improve upon the previous work of Censor-Hillel et al. [17].

1.1 Problem Statement and Our Results

Recall that a maximal independent set (MIS) of an undirected graph, is a maximal collection of
vertices subject to the restriction that no pair of vertices in the collection are adjacent. In the
maximal independent set problem, the goal is to compute an MIS of the input graph.

We study the fully dynamic variant of the maximal independent set problem in which the goal
is to maintain an MIS of a dynamic graph G, denoted by M := M(G), subject to a sequence of
edge insertions and deletions. When an edge change occurs, the goal is to maintain M in time
significantly faster than simply recomputing it from scratch. Our main result is the following:

Theorem 1. Starting from an empty graph on n fixed vertices, a maximal independent set can
be maintained deterministically over any sequence of edge insertions and deletions in O(m3/4)
amortized update time, where m denotes the dynamic number of edges.

As a warm-up to our main result in Theorem 1, we also present an extremely simple deterministic
algorithm for maintaining an MIS with O(∆) amortized update time, where ∆ is a fixed upper
bound on the maximum degree of the graph. Our algorithms can be combined together to achieve
a deterministic O(min

{

∆,m3/4
}

) amortized update time algorithm for maintaining an MIS in
dynamic graphs. This constitutes the first improvement on the update time required for this

1 It is not clear whether O(∆) time is also sufficient for this algorithm or not; see Section 6 of their paper.

1

problem in fully dynamic graphs over the näıve O(m) bound for all possible values of m. We now
elaborate more on the details of our algorithm in Theorem 1.

Deterministic Algorithm. An important feature of our algorithm in Theorem 1 is that it is
deterministic. The distinction between deterministic and randomized algorithms is particularly im-
portant in the dynamic setting as almost all existing randomized algorithms require the assumption
of a non-adaptive oblivious adversary who is not allowed to learn anything about the algorithm’s
random bits. Alternately, this setting can be viewed as the requirement that the entire sequence of
updates be fixed in advance, in which case the adversary cannot use the solution maintained by the
algorithm in order to break its guarantees. While these assumptions can be naturally justified in
many settings, they can render randomized algorithms entirely unusable in certain scenarios (see,
e.g., [8, 10,15] for more details).

As a result of this assumption, obtaining a deterministic algorithm for most dynamic problems
is considered a distinctively harder task compared to finding a randomized one. This is evident by
the polynomial gap between the update time of best known deterministic algorithms compared to
randomized ones for many dynamic problems. For example, a maximal matching can be maintained
in a fully dynamic graph with O(1) update time via a randomized algorithm [43], assuming a non-
adaptive oblivious adversary, while the best known deterministic algorithm for this problem requires
Θ(

√
m) update time [37] (see [13] for a similar situation for (∆+1)-coloring of vertices of a graph).

O(1)-Amortized Adjustment Complexity. An important performance measure of a dynamic
algorithm is its adjustment complexity (sometimes called recourse) that counts the number of
vertices (or edges) that need to be inserted to or deleted from the maintained solution after each
update (see, e.g. [3, 13, 17, 24]). For many natural graph problems such as maintaining a maximal
matching, constant worst-case adjustment complexity can be trivially achieved since one edge
update cannot ever necessitate more than a constant number of changes in the maintained solution.
This is, however, not the case for the MIS problem: by inserting an edge between two vertices
already in M, the adversary can force the algorithm to delete at least one end point of this edge
from M, which in turn forces the algorithm to pick all neighbors of this deleted vertex to ensure
maximality (this phenomena also highlights a major challenge in the treatment of this problem
compared to the maximal matching problem which we discuss further below).

Nevertheless, we prove that the adjustment complexity of our algorithm in Theorem 1 is O(1) on
average which is clearly optimal. Can we further improve our results to achieve an O(1) worst-case
adjustment complexity? We claim that this is indeed not possible by showing that the worst-case
adjustment complexity of any algorithm for maintaining an MIS is Ω(n), using a simple adaption
of an example proposed originally by [17] for proving a similar result in distributed settings when
vertex deletions are also allowed by the adversary (this follows seamlessly from the result in [17]
and is provided in Appendix A only for completeness).

Distributed Implementation. Finding a maximal independent set is one of the most studied
problems in distributed computing. In the distributed computing model, there is a processor
on each vertex of the graph. Computation proceeds in synchronous rounds during which every
processor can communicate messages of size O(log n) with its neighbors (this corresponds to the
CONGEST model of distributed computation; see Section 5 for further details). In the dynamic
setting, both edges and vertices can be inserted to or deleted from the graph and the goal is to
update the solution in a small number of rounds of communication, with small communication cost
and adjustment complexity.

Our results in the sequential setting also imply a deterministic distributed algorithm for main-
taining an MIS in a dynamic network with O(1) amortized round complexity, O(1) amortized ad-
justment complexity, and O(min

{

∆,m3/4
}

) amortized message complexity per each update. This

2

result achieves an improved message complexity compared to the distributed algorithm of [17] with
asymptotically the same round and adjustment complexity (albeit in amortized sense as opposed
to in expectation; see Section 5). More importantly, our result is achieved via a deterministic
algorithm and does not require the assumption of a non-adaptive oblivious adversary. Similar
to [17], our algorithm can also be implemented in the asynchronous model, where there is no global
synchronization of communication between nodes. We elaborate more on this result in Section 5.

Maximal Independent Set vs. Maximal Matching. We conclude this section by comparing
the maximal independent set problem to the closely related problem of maintaining a maximal
matching2 in dynamic graphs. We discuss additional challenges that one encounters for the maximal
independent set problem.

In sharp contrast to the maximal independent set problem, maintaining maximal matchings in
dynamic graphs has been studied extensively, culminating in an O(

√
m) worst-case update time

deterministic algorithms [37] and O(1) expected update time randomized algorithm [43] (assuming
a non-adaptive oblivious adversary).

Maintaining an MIS in a dynamic graph seems inherently more complicated than maintaining
a maximal matching. One simple reason is that as argued before, a single update can only change
the status of O(1) edges/vertices in the maximal matching, while any algorithm can be forced to
make Ω(n) changes to the MIS for a single edge update in the worst case. As a result, a maximal
matching can be maintained with an O(∆) worst-case update time via a straightforward algorithm
(see, e.g. [31, 38]), while the analogous approach for MIS only results in O(m) update time.

Another, perhaps more fundamental difference between the two problems lies in their different
level of “locality.” To adjust a maximal matching after an update, we only need to consider the
neighbors of the recently unmatched vertices (to find another unmatched vertex to match with),
while to fix an MIS, we need to consider the two-hop neighborhood of a recently removed vertex
from the MIS (to add to the MIS the neighbors of this vertex which themselves do not have another
neighbor in the MIS). We note that this difficulty is similar-in-spirit to the barrier for maintaining
a better than 2 approximate matching via excluding length-3 augmenting paths in dynamic graphs.
Currently, the best known algorithm for achieving a better than 2-approximation to matching in
dynamic graphs requires O(m1/4) update time [10, 11]. Achieving sub-polynomial in m update
time—even using randomness and assuming a non-adaptive oblivious adversary—remains a major
open problem in this area (we refer the interested reader to [15] for more details).

We emphasize that even for the seemingly easier problem of maximal matching, the best upper
bound on update time using a deterministic algorithm (the focus of our paper) is only O(

√
m) [37].

1.2 Overview of Our Techniques

O(∆)-Amortized Update Time. Consider the following simple algorithm for maintaining an
MIS M of a dynamic graph: for each vertex, maintain the number of its neighbors in M in a
counter, and for each update in the graph or M, spend O(∆) time to update this counter for
the neighbors of the updated vertex. What is the complexity of this algorithm? Unfortunately,
as argued before, an update to the graph may inevitably result in an update of size Ω(n) to M.
Processing it may take Ω(n ·∆) time as we have to update all neighbors of every updated vertex.
However, all we need to handle this case is the following basic observation: while a single update can
force the algorithm to insert up to Ω(n) vertices to M, it can never force the algorithm to remove
more than one vertex from M. We therefore charge the O(∆) time needed to insert a vertex into
M (and there can be many such vertices per one update) to the time spent in a previous update
in which the same vertex was (the only one) removed from M. This allows us to argue that on

2A maximal matching in a graph G can be obtained by computing an MIS of the line graph of G.

3

average, we only spend O(∆) time per update.

O(m3/4)-Amortized Update Time. Achieving an o(∆) amortized update time however is dis-
tinctly more challenging. On the one hand, we cannot afford to update all neighbors of a vertex
after every change in the graph. On the other hand, we do not have enough time to iterate over all
neighbors of an updated vertex to even check whether or not they should be added to M and hence
need to maintain this information, which is a function of vertices in the two-hop neighborhood of
a vertex, explicitly for every vertex.

To bypass these challenges, we relax our requirement for knowing the status of all vertices in
the neighborhood of a vertex, and instead maintain the status of some vertices that are in the
two-hop neighborhood of a vertex. More concretely, we allow “high” degree vertices to not update
their “low” degree neighbors about their status (as the number of low degree neighbors can be very
large), while making every “low” degree vertex update not only all its neighbors but even some of
its neighbor’s neighbors, using the extra time available to this vertex (as its degree is small). This
approach allows us to maintain a “noisy” version of the information described above. Note that this
information is not completely accurate as the status of some vertices in M would be unknown to
their neighbors and their neighbor’s neighbors (in the actual algorithm, we use a more fine-grained
partition of vertices based on their degree into more than two classes, not only “high” and “low”).

We now need to address a new challenge introduced by working with this “noisy” information:
we may decide that a vertex is ready to join M based on the information stored in the algorithm
and insert this vertex to M, only to find out that there are already some vertices in M adjacent
to this vertex. To handle this, we also relax the property of the basic algorithm above that only
allowed for deleting one vertex from M per each update. This allows us to insert multiple vertices
to M as long as a large portion (but not all) of their neighbors are known to be not in M. Then
we go back and delete a small number of “violating” vertices from M to make sure it is indeed an
independent set. Note that deleting those vertices may now require inserting a new set vertices in
their neighborhood to M to ensure maximality.

In order to be able to perform all those operations and recursively treat the newly deleted
vertices in a timely manner, we maintain the invariant that whenever we need to remove more
than one vertex from M, the number of inserted vertices leading to this case is much larger than
the number of removed vertices. This allows us to extend the simple charging scheme used in the
analysis of the basic algorithm above to this new algorithm and prove our upper bound on the
amortized update time of the algorithm.

We point out that despite the multiple challenges along the way that are described above, our
algorithm turned to be quite simple in hindsight. The main delicate matters are in the choice of
parameters and in the analysis. This in turn makes the implementation of our results in sequential
and distributed settings quite practical.

Organization. We introduce our notation and preliminaries in Section 2. We then present a
simple proof of the O(∆)-amortized update time algorithm in Section 3 as a warm-up to our
main result. Section 4 contains the proof of our main result in Theorem 1. The distributed
implementation of our result and a detailed comparison of our results with that of Censor-Hillel et
al. [17] appear in Section 5.

2 Preliminaries

Notation. We denote the static vertex set of the input graph by V . Let G = 〈G0, G1, . . .〉 be the
sequence of graphs that are given to the algorithm: initial graph G0 is empty and each graph Gt

is obtained from the previous graph Gt−1 by either inserting or deleting a single edge et = (ut, vt).
We use Gt(V,Et) to denote the graph at step t and define mt := |Et|. Finally, throughout the

4

paper, M denotes the maximal independent set maintained by the algorithm at every time step.

Greedy MIS Algorithm. Consider the following algorithm for computing an MIS of a given
graph: Fix an arbitrary ordering of the vertices in the graph, add the first vertex to the MIS,
remove all its neighbors from the list, and continue. This algorithm clearly computes an MIS of
the input graph. In the rest of the paper, we refer to this algorithm as the greedy MIS algorithm.

Fact 2.1. For an n-vertex graph G with maximum degree ∆, the greedy MIS algorithm computes
an MIS of size at least n/(∆ + 1).

3 Warm-Up: A Simple O(∆)-Update-Time Dynamic Algorithm

As a warm-up to our main result, we describe a straightforward algorithm for maintaining an MIS
M in a dynamic graph with O(∆) amortized update time, where ∆ is a fixed upper bound on
the maximum degree in the graph. For every vertex v in the graph, we simply maintain a counter
MISCounter[v], counting number of its neighbors in M. In the following, we consider updating M
and this counter after each edge update.

Let et = (ut, vt) be the updated edge. Suppose first that we delete this edge. In this case, ut
and vt cannot both be in M by definition of an independent set. Also, if none of them belong to
M, there is nothing to do. The interesting case is thus when exactly one of ut or vt belongs to M;
without loss of generality, we assume this vertex is ut. We first subtract one from MISCounter[vt]
(as it is no longer adjacent to ut). If MISCounter[vt] > 0 still, it means that vt is adjacent to some
vertex in M and hence we are done. Otherwise, we add vt to M and update the counter of all
its neighbors in O(∆) time. Clearly, this step takes O(∆) time in the worst case, after that M is
indeed an MIS.

Now suppose et was inserted to the graph. The only interesting case here is when both ut
and vt belong to M (we do not need to do anything in the remaining cases, other than perhaps
updating the neighbor list of ut and vt in O(1) time). To ensure that M remains an independent
set, we need to remove one of these vertices, say ut, from M. After this, to ensure the maximality,
we have to insert to M any neighbor of ut that can now join M. To do this, we first update the
MISCounter[·] of all neighbors of ut in O(∆) time. Next (using the updated counter), we iterate
over all neighbors of ut and for each one check if they can be inserted to M now or not. If so, we
add this new vertex to M and inform all its neighbors in O(∆) time to update their MISCounter[·].
It is easy to see that in this case, we spend O(k ·∆) time in the worst case, where k is the number
of vertices added to M.

The correctness of this algorithm is straightforward to verify. We now prove that the amortized
running time of the algorithm is O(∆). The crucial observation is that whenever we change M, we
may increase its size without any restriction, but we never decrease its size by more than one. We
use the following straightforward charging scheme.

Initially, we start with all vertices being in M as the original graph is empty. Whenever we
delete one vertex from M, we spend O(∆) time to handle this vertex (including updating its
neighbors and checking which ones can join M), and place O(∆) “extra budget” on this vertex
to be spent later. We use this budget when this vertex is being inserted to M again. Whenever
we want to bring this vertex back to M, we only need to spend this extra budget and hence the
O(∆) time spent for inserting this vertex back to M can be charged to the time spent for this
vertex when we removed it from M. This implies that the update time is O(∆) in average. We
can therefore conclude the following lemma.

Lemma 3.1. Starting from an empty graph on n vertices, a maximal independent set can be
maintained deterministically over any sequence of K edge insertions and deletions in O(K · ∆)
time where ∆ is a fixed bound on the maximum degree in the graph.

5

4 An O(m3/4)-Update-Time Dynamic Algorithm

We present our fully dynamic algorithm for maintaining a maximal independent set in this section
and prove Theorem 1. The following lemma is a somewhat weaker looking version of Theorem 1.
However, we prove next that this lemma is all we need to prove Theorem 1.

Lemma 4.1. Starting with any arbitrary graph on n vertices and m edges, a maximal independent
set M can be maintained deterministically over any sequence of K = Ω(m) edge insertions and
deletions in O(K ·m3/4) time, as long as the number of edges remains within a factor 2 of m.

We first show that this lemma implies Theorem 1.

Proof of Theorem 1. For simplicity, we define m = 1 in case of empty graphs. We start from the
empty graph and run the algorithm in Lemma 4.1 until the number of edges mt in the graph differs
from m by a factor more than 2. This crucially implies that the total number of updates before
terminating the algorithm (the parameter K in Lemma 4.1), is Ω(m). As such, we can invoke
Lemma 4.1 to obtain an upper bound of O(m3/4) on the amortized update time of the algorithm
throughout these updates. We then update m = mt and start running the algorithm in Lemma 4.1
on the current graph using the new choice of m. Clearly, this results in an amortized update time
of O(m3/4) where m now denotes the number of dynamic edges in the graph. As the algorithm in
Lemma 4.1 always maintain an MIS of the underlying graph, we obtain the final result.

The rest of this section is devoted to the proof of Lemma 4.1. In the following, we first describe
the data structure maintained in the algorithm for storing the required information and its main
properties and then present our update algorithm.

4.1 The Data Structure

For every vertex v, we maintain the following information:

• neighbors[v]: a list of current neighbors of v in the graph.

• degree[v]: an estimate of the degree of v to within a factor of two.

• neighbors-degree[v]: a list containing degree[u] for every vertex u in neighbors[v].

• MIS-flag[v]: a boolean entry indicating whether or not v belongs to M.

• MIS-neighbors[v]: a counter denoting the size of a suitable subset of current neighbors of
v in M. Any vertex counted in MIS-neighbors[v] belongs to M but not all neighbors of v
in M are (necessarily) counted in MIS-neighbors[v] (see Invariant 1 for more detail).

• MIS-2hop-neighbors[v]: a list, containing for every vertex w in neighbors[v], a counter
that counts the size of a suitable subset of current neighbors of w in M. Any vertex counted
in MIS-2hop-neighbors[v][w] is also counted in MIS-neighbors[w] but not vice versa (see
Invariant 2 below for more detail).

Additionally, we maintain a partition (VHigh, VMed-High, VMed-Low, VLow) of the vertices into four
sets based on their current approximate degree, namely, degree[v]. In particular, v belongs to VHigh

iff degree[v] ≥ m3/4, to VMed-High iff m3/4 > degree[v] ≥ m1/2, to VMed-Low iff m1/2 > degree[v] ≥
m1/4, and to VLow iff degree[v] < m1/4. We refer to the vertices of VLow as the low-degree vertices.
Throughout, we assume that in any of the lists maintained for a vertex by the algorithm, we can
directly iterate over vertices of a particular subset in (VHigh, VMed-High, VMed-Low, VLow). (This can be
done, for example, by storing these lists as four separate linked lists, one per each such subset.)

6

The following invariant is concerned with the information we need from MIS-neighbors[v].

Invariant 1. For any vertex v ∈ V \VLow, MIS-neighbors[v] counts the number of all neighbors
of v in M. For any vertex v ∈ VLow, MIS-neighbors[v] counts the number of neighbors of v
that are in M but not in VHigh, i.e., are in M\ VHigh.

By Invariant 1, any vertex either knows the number of all its neighbors in M or is a low-degree
vertex and can iterate over all its neighbors in O(m1/4) time to count this number. Moreover, even
a low-degree vertex knows the number of its neighbors in M\VHigh. This is crucial for our algorithm
as in some cases, we need to iterate over many vertices that belong to VLow and decide if they can
join M and hence cannot spend O(m1/4) time per each vertex to determine this information. Note
that the information we obtain in this way is “noisy”, as we ignore some neighbors of vertices in
VLow that are potentially in M. We shall address this problem using a post-processing step that
exploits the fact that the total number of ignored vertices, i.e., vertices in VHigh, is small.

The following invariant is concerned with the information we need from MIS-2hop-neighbors[v].

Invariant 2. For any v ∈ V and and every u ∈ neighbors[v]∩VLow, MIS-2hop-neighbors[v][u]
counts the number of vertices in VMed-Low ∪ VLow that belong to M and are neighbors of u (the
entry in MIS-2hop-neighbors[v][u] for any vertex u /∈ VLow is ⊥).

Invariant 2 allows us to infer some nontrivial information about the two-hop neighborhood of
any vertex. We use Invariant 2 to quickly determine which neighbors of a vertex v can be added to
M in case v is deleted from it. Similar to the one-hop information we obtain through maintaining
Invariant 1, the information we obtain in this way is also “noisy”.

We show how to update the information per each vertex after a change in the topology or M.
Maintaining neighbors[v] under edge updates is straightforward. To maintain degree[v], each
vertex simply keeps a 2-approximation of its degree in degree[v]. Whenever the current actual
degree of v differs from degree[v] by more than a factor of two, v updates degree[v] to its actual
degree and informs all its neighbors u ∈ neighbors[v] to update neighbors-degree[u]. This
requires only O(1) amortized time.

The above information is a function of the underlying graph and not M. We also need to
update the information per each vertex that are functions of M whenever M changes. Maintaining
MIS-flag[v] is trivial for any vertex v, hence in the following we focus on the remaining two parts.

Once a vertex u changes its status in M, we apply the following algorithm to update the value
of MIS-neighbors[v] for every vertex v (we only need to update this for v ∈ neighbors[u]).

Algorithm UpdateNeighbors(u). An algorithm called whenever a vertex u enters or exists M
to update MIS-neighbors[v] for neighbors of u.

1. If u ∈ VHigh, update MIS-neighbors[v] for any vertex v ∈ neighbors[u] not in VLow accord-
ingly (i.e., add or subtract one depending on whether u joined or left M).

2. If u /∈ VHigh, update MIS-neighbors[v] for every vertex v ∈ neighbors[u].

It is immediate to see that by running UpdateNeighbors(u) in our main algorithm whenever
a vertex u is updated in M, we can maintain Invariant 1. Also each call to UpdateNeighbors(u)
takes O(m3/4) time in worst-case since in both cases of the algorithm, we only need to update
O(m3/4) vertices: (i) if u ∈ VHigh, the algorithm only updates the vertices in V \ VLow whose size

7

is O(m3/4), and (ii) if u /∈ VHigh, u only has O(m3/4) neighbors to update. We also point out that
MIS-neighbors[v] can be updated easily whenever an edge incident on (u, v) is inserted or deleted
in O(1) time by simply visiting MIS-flag[u] and updating MIS-neighbors[v] accordingly.

Now consider updating MIS-2hop-neighbors[·]. We use the following algorithm on a vertex u
that has changed its status in M to update MIS-2hop-neighbors[v] for every vertex v in the graph
(we only need to update this information for the two-hop neighborhood of u).

Algorithm UpdateTwoHopNeighbors(u). An algorithm called when a vertex u enters or exists
M to update MIS-2hop-neighbors[v] for the two-hop neighborhood of u.

1. If u ∈ VMed-Low ∪ VLow, for any vertex w ∈ neighbors[u]:

(a) If w belongs to VLow, iterate over all vertices v ∈ neighbors[w].

(b) For any such v, update MIS-2hop-neighbors[v][w] accordingly (i.e., add or subtract
one depending on whether u joined or left M).

Each call to UpdateTwoHopNeighbors(u) takes O(m3/4) time in the worst case. This is because
u only updates its neighbors if it has O(m1/2) neighbors as u should be in VMed-Low∪VLow and when
it updates its neighbors, it changes the counter of O(m1/4) vertices (as w should be in VLow). This
ensures that the running time of the algorithm is O(m1/2 · m1/4) = O(m3/4). Whenever an edge
(u, v) is updated in the graph, we can run a similar algorithm to update the two-hop neighborhood
of u and v in the same way in O(m3/4) time; we omit the details. It is also straightforward to verify
that by running UpdateTwoHopNeighbors(u) in our main algorithm whenever a vertex u is updated
in M, we preserve Invariant 2.

Finally, recall that we also need a preprocessing step that given a graph G initializes this
data structure. We can implement this step by first initializing all non-MIS-related information
in this data structure in O(m) time (we do not need to handle isolated vertices at this point).
Next, we run the greedy MIS algorithm to compute an MIS M of this graph in O(m) time (again
only on non-isolated vertices). Finally, we update the information for every vertex in M using
the two procedures above which takes O(m · m3/4) time in total. (We note that a more efficient
implementation for this initial stage is possible.) As K = Ω(m) in Lemma 4.1, this (one time only)
initialization cost is within the bounds stated in the lemma statement.

We summarize the results in this section in the following two lemmas.

Lemma 4.2. After updating any single edge, the data structure stored in the algorithm can be
updated in O(m3/4) amortized time. Moreover, Invariants 1 and 2 hold after this update.

Lemma 4.3. After updating any single vertex in M, the data structure stored in the algorithm can
be updated in O(m3/4) worst case time. Moreover, Invariants 1 and 2 hold after this update.

4.2 The Update Algorithm

The update algorithm is applied following edge insertions and deletions to and from the graph.
After any edge update, the algorithm updates the data structure and M. In order to do the
latter task, the algorithm may need to remove and/or insert multiple vertices from and to M.
Since we already argued that maintaining the data structure requires O(m3/4) amortized time (by
Lemma 4.2), from now on, without loss of generality, we only measure the time needed to fix M
after any edge update and ignore the additive term needed to update the data structure. The
following is the core invariant that we aim to maintain in our algorithm.

8

Invariant 3 (Core Invariant). Following every edge update, the set M maintained by the
algorithm is an MIS of the input graph. Moreover,

(i) if only a single vertex leaves M, then there is no restriction on the number of vertices
joining M (which could be zero).

(ii) if at least two vertices leave M, then at least twice as many vertices join M.

In either case, the total time spent by the algorithm to fix M for an edge update is at most an
O(m3/4) factor larger than the total number of vertices leaving and joining M.

Before showing how to maintain Invariant 3, we present the proof of Lemma 4.1 using this invariant.

Proof. The main idea behind the proof is as follows. By Invariant 3, after each step, the size of M
either decreases by at most one, or it will increase. At the same time, M cannot grow more than
n, the number of vertices in the graph. It then follows that the average number of changes to M
per each update is O(1). As we only spend O(m3/4) per each update, we obtain the final result.
We now present the formal proof using the following charging scheme.

Recall that we compute an MIS M of the initial graph in the preprocessing step and that the
initialization phase takes O(m ·m3/4) time in total. We place O(m3/4) “extra budget” on vertices
in the initial graph that do not belong to M to be spent later when these vertices are inserted to
M. As the number of such vertices is O(m), this extra budget can be charged to the time spent in
the initialization phase. Note that at this point, an extra budget is allocated to any vertex not in
M and we maintain this throughout the algorithm.

Whenever an update results in only a single vertex leaving M (corresponding to Part (i) of
Invariant 3), we spend O(m3/4) time to handle this vertex and additionally place O(m3/4) budget
on this vertex and then for the vertices inserted to M, we simply use the extra budget allocated
to these vertices before to charge for the O(m3/4) time needed to handle each. If an update results
in removing k > 1 vertices from M, we know that at least 2 · k vertices would be added to M
after this update (corresponding to Part (ii) of Invariant 3). In this case, we use the O(m3/4) extra
budget on these (at least) 2 · k vertices that are joining M to charge for the time needed to insert
these vertices to M, remove the k initial vertices from M, and place O(m3/4) extra budget on
every removed vertex. As a result, this type of updates can be handled free of charge. Finally, if
an update only involves inserting some vertices to M, we simply use the budgets on these vertices
to handle them free of charge. This finalizes the proof of Lemma 4.1.

We point out that using the above charging scheme, we can also argue that the average number
of changes to M is O(1) in each update.

Fix a time step t and suppose the invariant holds up until this time step. Let et = (ut, vt) be
the edge updated at this time step. In the remainder of this section, we describe one round of the
update algorithm to handle this single edge update and preserve Invariant 3.

4.2.1 Edge Deletions

We start with the easier case of deleting an edge et = (ut, vt).

Case 1: Neither ut nor vt belong to M. In this case, there is nothing to do.

Case 2: ut belongs to M but not vt (or vice versa). After deleting the edge et, it is possible that vt
may need to join M as well. We first check whether MIS-neighbors[vt] = 0. If not, there is nothing
else to do as vt is still adjacent to some vertex in M. Otherwise, we need to ensure that vt does not
have any neighbor in M (outside those vertices counted in MIS-neighbors[vt]). If vt ∈ V \ VLow,

9

by Invariant 1, MIS-neighbors[vt] counts all neighbors of vt and hence there is nothing more to
check. If vt ∈ VLow, we can go over all the O(m1/4) vertices in the neighborhood of vt and check
whether vt has a neighbor in M or not. This only takes O(m1/4) time in the worst case. Again, if
we find a neighbor in M there is nothing else to do. Otherwise, we add vt to M and update the
data structure which takes O(m3/4) time in the worst case by Lemma 4.3. After this step, M is
again a valid MIS and hence Invariant 3 is preserved as we only spent O(m3/4) time and inserted
at most one vertex to M without deleting any vertex from it.

Case 3: Both ut and vt belong to M. This case is not possible in the first place by Invariant 3 as
otherwise M maintained by the algorithm before this edge update was not an MIS.

4.2.2 Edge Insertions

We now consider the by far more challenging case of edge insertions where we concentrate bulk of
our efforts. It is immediate to see that the only time we need to handle an edge insertion is when
the inserted edge et = (ut, vt) connects two vertices already in M (there is nothing to do in the
remaining cases). Hence, in the following, we assume both ut and vt belong M.

To ensure that M is an independent set, we first need to remove one of ut or vt from it and
then potentially insert some of the neighbors of the deleted vertex to M to ensure its maximality.
Let ut be the deleted vertex (the choice of which vertex to delete is arbitrary). After deleting ut,
we update the algorithm’s data structure in O(m3/4) time by Lemma 4.3.

Let L := neighbors[ut]∩ VLow denote the set of low degree neighbors of ut. We first show that
one can easily handle all neighbors of ut which are not in L. To do so, we can iterate over these
vertices as there are O(m3/4) of them and for any vertex w, by Invariant 1, we know whether w
can be added M or not by simply checking MIS-neighbors[w]. Hence, we can add the necessary
vertices to M and spend O(m3/4) time for each inserted one using Lemma 4.3. As such, we spend
O(m3/4) time for iterating the vertices which did not join M and k ·O(m3/4) time for the k vertices
that joined M. Hence, Invariant 3 is preserved after this step.

We now consider the challenging case of updating the neighbors of ut that belong to L. As
the number of such vertices is potentially very large, we cannot iterate over all of them anymore.
Define the following subsets of L:

• LMIS ⊆ L: the set of vertices in L that do not have any neighbor in M.

• L1-hop ⊇ LMIS: all vertices w ∈ L where MIS-neighbors[w] = 0 i.e., our algorithm did not count
any neighbor for them in M. Recall that MIS-neighbors[w] does not count all neighbors of w
in M; it is missing the vertices in VHigh by Invariant 1.

• L2-hop ⊇ L1-hop ⊇ LMIS: all vertices w ∈ L, where MIS-2hop-neighbors[ut][w] = 0. Again, recall
that MIS-2hop-neighbors[ut][wt] does not count all neighbors of w ∈ MIS-neighbors[w] (and
consequently in M); it misses the vertices in VMed-High in MIS-neighbors[w] (and additionally
VHigh in M) by Invariant 2.

Let ℓMIS := |LMIS|, ℓ1-hop := |L1-hop| and ℓ2-hop := |L2-hop|, where ℓMIS ≤ ℓ1-hop ≤ ℓ2-hop.
Our algorithm does not know the sets LMIS and L1-hop or even their sizes. However, the up-
date algorithm knows the value of ℓ2-hop and has access to vertices in L2-hop through the list
MIS-2hop-neighbors[ut] and can iterate over them in O(1) time per each vertex in L2-hop (notice
that even this can be potentially too time consuming as size of this list can be too large). We
consider different cases based on the value of these parameters.

Case 1: when ℓ2-hop is small, i.e., ℓ2-hop ≤ 4 ·m3/4. In this case, we iterate over vertices w ∈ L2-hop

in O(ℓ2-hop) = O(m3/4) time and check whether MIS-neighbors[w] = 0 or not. This allows us to
compute the set L1-hop and ℓ1-hop as well. We further distinguish between two cases.

10

Case 1-a: when ℓ1-hop is very small, i.e., ℓ1-hop ≤ 4 · m1/2. We iterate over vertices w ∈ L1-hop

and for each vertex, spend O(m1/4) time to go over all its neighbors and decide whether w has any
neighbor in M or not (degree of w is O(m1/4) since it belongs to VLow). Hence, in this case, we
can obtain the set LMIS fully in O(m3/4) time in total.

We then iterate over vertices in LMIS, insert each one greedily to M, and update the data
structure in O(m3/4) time using Lemma 4.3. It is possible that some vertices in LMIS are adjacent
to each other and hence before inserting any vertex w, we first need to check MIS-neighbors[w] to
make sure it is zero still (by Invariant 1 and since all vertices in LMIS belong to VLow, any vertex
added to M here would update MIS-neighbors[w] for any neighbor w). Hence, in this case, we
spend O(m3/4) time for each vertex inserted to M and did not delete any vertex from it. Therefore,
Invariant 3 is preserved after the edge update in this case.

Case 1-b: when ℓ1-hop is not very small, i.e., ℓ1-hop > 4 · m1/2. In this case, we cannot afford
to compute LMIS explicitly. Rather, we simply add the vertices in L1-hop to M directly, without
considering whether they are adjacent to vertices already in M or not at all (although we check
that they are not adjacent to the previously inserted vertices from L1-hop). As a result, it is possible
that after this process, M is not an independent set of the graph anymore. To fix this, we perform a
post processing step in which we delete some vertices from M to ensure that the remaining vertices
indeed form an MIS of the original graph.

Concretely, we go over vertices in L1-hop and insert each to M if none of its neighbors have been
added to M in this step, and then invoke Lemma 4.3 to update the algorithm’s data structure.
Since in this step, we are only adding vertices that are in VLow, we can check in O(1) time whether
a vertex has a neighbor in M (that has been added in this step) or not by Invariant 1. This step
clearly takes O(m3/4) time per each vertex inserted to the MIS.

At this point, it is possible that there are some vertices in M which are adjacent to the newly
inserted vertices. By Invariant 1, we know that these vertices can only belong to VHigh and hence
there are at most m1/4 of them. We iterate over all vertices in VHigh and check whether they
have a neighbor in M (by Invariant 1, we stored this information for these vertices) and mark all
such vertices. Next, we remove all these marked vertices from M simultaneously and update the
algorithm’s state by Lemma 4.3. We are not done yet though because after removing these vertices,
it is possible that we may need to bring some of their neighbors back to M. We solve this problem
recursively using the same update algorithm by treating these marked vertices the same as ut.

We argue that Invariant 3 is preserved. As the degree of vertices in L1-hop is bounded by m1/4,

the number of vertices added to M in this part is at least
ℓ1-hop

(m1/4+1)
≥ 2 · m1/4 (by Fact 2.1 and

the assumption on ℓ1-hop in this case). On the other hand, the number of vertices removed from
M is at most equal to size of VHigh which is m1/4. As a result, in this specific step, the number of
vertices inserted to M is at least twice as many as the vertices removed from it. For any vertex
inserted or deleted from M also, we spent O(m3/4) time. As we are performing the recursive step
using the same algorithm, we can argue inductively that for any vertex deleted in those recursive
calls, at least twice as many vertices would be added to M and that the total running time would
be proportional to the number of vertices added or removed from M times O(m3/4). We point out
that any recursive call that leads to another one in this algorithm necessarily increase the number
of vertices in M and hence the algorithm does indeed terminate (see also case 2).

Case 2: when ℓ2-hop is not small, i.e., ℓ2-hop > 4 ·m3/4. We use a similar strategy as case 1-b here
as well. We iterate over all vertices in L2-hop, greedily add each vertex to M as long as this vertex is
not adjacent to any of the newly added vertices (which can be checked in O(1) time by Invariant 1),
and update the data structure using Lemma 4.3. As the maximum degree of vertices in L2-hop is at

most m1/4, we add at least
ℓ2-hop

m1/4+1
> 2 ·m1/2 vertices to M by Fact 2.1. By Invariant 2, if a vertex

11

belongs to L2-hop, the only neighbors of this vertex in M belong to VHigh or VMed-High and hence has
degree at least m1/2. We go over these vertices next and mark them. Then, we remove all of them
from M simultaneously and update the algorithm by Lemma 4.3. Similar to case 1-b, we now also
have to consider bringing some of the neighbors of these vertices to M which is handled recursively
exactly the same way as in case 1-b.

We first analyze the time complexity of this step. Iterating over L2-hop takes O(|ℓ2-hop|) = O(m)
time and since we are inserting at least m1/2 vertices from L2-hop to M, we can charge the time
needed for this step to the time allowed for inserting these vertices to M. Moreover, we inserted
at least 2 ·m1/2 vertices to M and would remove at most m1/2 vertices after considering violating
vertices in VHigh and VMed-High. Hence, number of inserted vertices is at least twice the number of
removed ones at this step. We can also argue inductively that this property hold for each recursive
call similar to the case 1-b. This finalizes the proof of this case.

To conclude, we proved that Invariant 3 is preserved after any edge insertion or deletion in the
algorithm, which finalizes the proof of Lemma 4.1.

5 Maximal Independent Set in Dynamic Distributed Networks

We consider the CONGEST model of distributed computation (cf. [41]) which captures the essence
of both spatial locality and congestion. The network is modeled by an undirected graph G(V,E)
where the vertex-set is V , and E corresponds to both the edge-set in the current graph and also
the vertex pairs that can directly communicate with each other. We assume a synchronous com-
munication model, where time is divided into rounds and in each round, each vertex can send a
message of size O(log n) bits to any of its neighbors, where n = |V |. The goal is to maintain an
MIS M in G in a way that each vertex is able to output whether or not it belongs to M.

We focus on dynamically changing networks where both edges and vertices can be inserted
to or deleted from the network. For deletions, we consider graceful deletions where the deleted
vertex/edge may be used for passing messages between its neighbors (endpoints), and is only
deleted completely once the network is stable again. After each change, the vertices communicate
with each other to adjust their outputs, namely make the network stable again. We make the
standard assumption that the changes occur in large enough time gaps, and hence the network
is always stable before the next change occurs (see, e.g., [17, 40]). We further assume that each
change in the network is indexed and vertices affected by this change know how many updates have
happened before3.

There are three complexity measures for the algorithms in this model. The first is the so-called
adjustment complexity, which measures the number of vertices that change their output as a result
of a recent topology change. The second is the round complexity, the number of rounds required
for the network to become stable again after each update. The third is the message complexity,
measuring the total number of O(log n)-length messages communicated by the algorithm.

Our main result in this section is an implementation of Theorem 1 in this distributed setting
for maintaining an MIS in a dynamically changing network.

Theorem 2. Starting from an empty distributed network on n vertices, a maximal independent set
can be maintained deterministically in a distributed fashion (under the CONGEST communication
model) over any sequence of vertex/edge insertions and (graceful) deletions with (i) O(1) amor-
tized adjustment complexity, (ii) O(1) amortized round complexity, and (iii) O(m3/4) amortized
message complexity. Here, m denotes the number of dynamic edges.

3This is only needed by our algorithm in Theorem 2 to have an approximation of the number of edges in the
graph, which is a global quantity and cannot be maintained by each vertex locally

12

The algorithm in Lemma 3.1 can also be trivially implemented in this distributed setting,
resulting in an extremely simple deterministic distributed algorithm for maintaining an MIS of a
dynamically changing graph in O(1) amortized adjustment complexity and round complexity, and
O(∆) amortized message complexity. As argued before, this simple algorithm already strengthens
the previous randomized algorithm of Censor-Hillel et al. [17] by virtue of being deterministic and
not requiring an assumption of a non-adaptive oblivious adversary. In the following, we compare
our results in the distributed setting with those of [17].

Amortized vs in Expectation Guarantee. The guarantees on the complexity measures pro-
vided by our deterministic algorithms in this setting are amortized, while the randomized algorithm
in [17] achieves its bound in expectation which may be considered somewhat stronger than our guar-
antee. To achieve this guarantee however, the algorithm in [17], besides using randomization, also
assumes a non-adaptive oblivious adversary. An adaptive adversary (the assumption supported by
all our algorithms in this paper) can force the algorithm in [17] to adjust the MIS by Ω(n) vertices
in every round, which in turn blows up all the complexity measures in [17] by a factor of Ω(n).
It is also worth mentioning that the guarantee achieved by [17] only holds in expectation and not
with high probability and for a fundamental reason: It was shown in [17] that for every value of
k, there exists an instance for which at least Ω(k) adjustments are needed for any algorithm with
probability at least 1/k (see Section 1.1 of their paper).

Broadcast vs Unicast. The communication in algorithm of [17] in each round is O(1) broadcast
messages in expectation that requires only O(1) bits on every edge (i.e., each vertex communicates
the same O(1) bits to every one of its neighbors). As such, the total communication at every round
of this algorithm is O(∆) bits in expectation. Our amortized O(∆)-message complexity algorithm
(distributed implementation of Lemma 3.1) also works with the same guarantee: indeed, every
vertex simply needs to send O(1) bits to all its neighbors in a broadcast manner so that their
neighbors know whether to add or subtract the contribution of this vertex to or from their counter.
This is however not the case for our main algorithm in Theorem 2 which requires a processor to
communicate differently to its neighbor over each edge (in general, one cannot hope to achieve
o(∆) communication with only broadcast messages). Additionally, this algorithm now requires to
communicate O(log n) bits (as opposed to O(1) in the previous two algorithms) over every edge.
This is mainly due to the fact that in this new algorithm we need to communicate with vertices
which are at distance 2 of the current vertex and hence we need to carry the ID of original senders
in the messages also.

Graceful vs Abrupt Deletions. A stronger notion of deletion in the dynamic setting is abrupt
deletion in which the neighbors of the deleted vertex/edge simply discover that this vertex/edge is
being deleted and the deleted vertex/edge cannot be used for communication anymore right after
the deletion happens. Censor-Hillel et al. [17] also extend their result to this more general setting
and achieved the same guarantees except for message complexity of abrupt deletion of a node which
is now O(min {log n,∆}) broadcasts as opposed to O(1). We do not consider this model explicitly.
However, it is straightforward to verify that our amortized O(∆)-message complexity algorithm
(distributed implementation of Lemma 3.1) works in this more general setting with virtually no
change and even still achieves amortized O(1) broadcast per abrupt deletion of a vertex as well.
We believe that our main algorithm in Theorem 2 should also work in this more general setting
with proper modifications but we did not prove this formally.

Synchronous vs Asynchronous Communication. We focused only on the synchronous com-
munication in this paper. Censor-Hillel [17] also considered the asynchronous model of communi-
cation and showed that their algorithm holds in this model as well, albeit with a weaker guarantee

13

on its message complexity. Our algorithms can be modified to work in an asynchronous model as
well, as at each stage of the algorithm we can identify a (different) local “coordinator” that can be
used to synchronize the operations with an added overhead that is within a constant multiplicative
of the synchronous complexity (as per each update only vertices within two-hop neighborhood of
a vertex need to communicate with each other in our algorithm); we omit the details but refer the
reader to Section 5.2.2 for more information on the use of a local coordinator in our algorithms.

We now turn to proving Theorem 2, using the following lemma the same way we used Lemma 4.1
in the proof of Theorem 1.

Lemma 5.1. Starting with any arbitrary graph on n vertices and m edges, a maximal independent
set M can be maintained deterministically in a distributed fashion (under the CONGEST commu-
nication model) over any sequence of K = Ω(m) vertex/edge insertions and (graceful) deletions as
long as the number of edges in the graph remains within a factor 2 of m. The algorithm:

(i) makes O(K) adjustment to M in total, i.e., has O(1) amortized adjustment complexity,

(ii) requires O(K) rounds in total, i.e., has O(1) amortized round complexity, and

(iii) communicates O(K ·m3/4) messages in total, i.e., has O(m3/4) amortized message complexity.

The algorithm in Lemma 5.1 is a simple implementation of our sequential dynamic algorithm
in Lemma 4.1. In the following, we first adapt the data structures introduced in Section 4.1 to the
distributed setting. We then show that with proper adjustments, the (sequential) update algorithm
in Section 4.2 can also be used in the CONGEST model and prove Theorem 2.

5.1 The Data Structure

We store the same exact information in Section 4.1 per each vertex here as well and maintain Invari-
ants 1 and 2. We first prove that the two procedures UpdateNeighbors and UpdateTwoHopNeighbors

can both be implemented in constant rounds and O(m3/4) messages in total. In particular,

Lemma 5.2. For any vertex u ∈ V ,

(i) UpdateNeighbors(u) operation requires spending 1 round and m3/4 messages in total, and

(ii) UpdateTwoHopNeighbors(u) operation requires 2 rounds and 2 ·m3/4 messages in total.

Proof. Part (i). If u ∈ VHigh, it only needs to send a message to its neighbors in V \ VLow and
inform them on the status of u (whether it is inserted to or deleted from M), which requires only
1 round (as they are all neighbors to u) and m3/4 messages as |V \ VLow| ≤ m/m1/4 = m3/4. If
u /∈ VHigh, it would update all its neighbors again in 1 round and m3/4 messages as the latter is an
upper bound on number of its neighbors.

Part (ii). If u /∈ VLow ∪ VMed-Low there is nothing to do. Otherwise, u needs to send a message
to all its (at most m1/2) neighbors that belong to VLow and ask them to relay this information to
their neighbors. These vertices can then spend another round to inform all their (at most m1/4)
neighbors about the status of u. This takes 2 rounds and m1/2 +m1/2 ·m1/4 < 2 ·m3/4 messages
in total.

Lemma 5.2 ensures that Invariants 1 and 2 (the only MIS-related information stored for u beside
MIS-flag[u] that can be trivially updated) are preserved after any change in M within a constant
number of rounds and O(m3/4) messages.

In the following, we briefly describe how to update the information stored for vertices per each
topology change in the graph.

14

Vertex Updates. Let u be the updated vertex. In case of vertex insertion, we simply initial-
ize the data structures at u and we are almost done as the neighbors of u are already informed
about u being inserted to the graph and hence can update their information locally. We only need
to send degree[u] to all the neighbors (the time needed for this can be charged to the initializa-
tion cost of this algorithm). Now suppose u is being deleted. We can update neighbors[v] and
neighbors-degree[v] for any neighbor v of u without any communication as they are informed
that u is deleted. We can also run UpdateNeighbors(u) (virtually) with no communication as this
procedure only informs the neighbors of u that this vertex is being deleted from M and by knowing
that u has left the graph, any vertex v in the neighborhood of u can update MIS-neighbors[v]
accordingly. Finally, we can also run UpdateTwoHopNeighbors(u) with only 1 round of communi-
cation and m3/4 messages (see Lemma 5.2) by relaying the information from the neighbors of u
(which are informed about u leaving the graph) to their neighbors.

Edge Updates. These updates are handled exactly the same as in our sequential algorithm.
Let (u, v) be the updated edge. Nertices u and v can update all information except for updat-
ing MIS-2hop-neighbors[·] (in particular neighbors-degree[·] can be updated by the procedure
described in Section 4.1 with O(1) worst-case round complexity and O(1) amortized message com-
plexity). To do the latter task, vertex u (resp. v) can simulate UpdateTwoHopNeighbors(v) (resp.
UpdateTwoHopNeighbors(u)) as described above, which takes m3/4 messages and 1 round.

We hence showed that after each change in the topology, all the information stored for vertices
can be updated in O(1) rounds and O(m3/4) amortized messages.

5.2 The Distributed Algorithm

We design a distributed algorithm for updating M in the network in the spirit of our update
algorithm in Section 4.2. The algorithm is a simple adaption of our sequential algorithm to this
dynamic model. For every update, we first perform the steps in the previous section to update the
information on every vertex in the graph and then make the network stable again by adjusting M.

Throughout, we aim to maintain the following invariant which is the direct analogue of Invari-
ant 3 in the dynamic setting.

Invariant 4. Following every vertex/edge update, the set M maintained by the algorithm is
an MIS of the input graph. Moreover,

(i) if only a single vertex leaves M then there is no restriction on the number of vertices
joining M (which could be zero).

(ii) if at least two vertices leave M, then at least twice as many vertices are added to M.

In either case, the worst case number of rounds and messages spent by the algorithm for any
update is within, respectively, an O(1) and an O(m3/4) factor of the total number of vertices
leaving and joining M.

Using the same exact argument as in the proof of Lemma 4.1, maintaining Invariant 4 ensures
that the amortized adjustment complexity and amortized round complexity of the algorithm is O(1)
and its amortized message complexity is O(m3/4). Hence, to prove Lemma 5.1, it suffices to prove
that Invariant 4 is preserved after every update. We consider different cases based on insertion and
deletion of edges and vertices.

5.2.1 Edge Deletions

Suppose we delete the edge (u, v). We only consider the case that u belongs to M and v is not; the
remaining cases are either symmetric to this one or need no update in M (see Section 4.2.1). If v

15

is not in VLow, by Invariant 1, it knows all its neighbors in M and can decide whether to join M or
not to locally; if it enters M, it can update the network in O(1) rounds and O(m3/4) messages by
Lemma 5.2. If v is in VLow, it first sends a message to all its O(m1/4) neighbors and ask for their
status to which its neighbors reply whether they belong to M or not. This only takes 2 rounds
and O(m1/4) communication and then v can decide again whether to join M or not to. Note that
this part of the result holds even with abrupt deletions.

5.2.2 Edge Insertions

Suppose we insert the edge (u, v). We only consider the case when both u and v belong to M;
the remaining cases need no update in M (see Section 4.2.2). Remember that in Section 4.2.2, we
needed to handle these updates in three separate cases. While the algorithm and analysis in each
case is different, the procedures needed to carry the information around the network are essentially
the same among these cases and hence in the following, for simplicity, we only consider one of the
main cases, namely case 1-b (see Section 4.2.2 for definition of this case). The algorithm in the
remaining cases can be adapted to this setting in the same exact way.

Recall that in this case, the vertex u is deleted from M and moreover u knows the set L1-hop

entirely, which is of size O(m3/4). The general approach is to make u a “coordinator” for running
the update algorithm in Section 4.2.2 by communicating with its two-hop neighborhood and gather
the necessary information to run the sequential update algorithm.

Vertex u first sends a message to all its neighbors in L1-hop and asks for their status to which
they respond whether or not they belong to M. This takes 2 rounds and O(m3/4) messages. Next,
u informs one of its neighbors that it can join M and this new vertex updates its status and the
information in the graph which takes O(1) rounds and O(m3/4) messages by Lemma 5.2. After
this, u again sends a message to all its neighbors in L1-hop and asks for their status in M to which
they respond whether they belong to M or whether one of their neighbors in L1-hop has been added
to M in this step. Then, again, u informs one of its neighbors (if such exists) that it can join
M, and continues. This way, we only spend O(1) rounds and O(m3/4) communication per each
vertex entering M in addition to O(1) rounds and O(m3/4) communication for communicating with
neighbors of u that would not join M eventually.

After processing the list L1-hop, we also need to delete fromM, the set of vertices in VHigh that are
now incident to vertices in L1-hop that just joined M. Note that such vertices are necessarily in the
two-hop neighborhood of u and hence u can communicate with them (which are only O(m1/4) many)
in O(1) rounds and use the above idea to implement the same update algorithm in Section 4.2.2 in
this model. This allows us to preserve Invariant 4 by the same exact analysis in Section 4.2.2.

5.2.3 Vertex Deletions

This case is essentially equivalent to the edge insertion case discussed above. Since we have a
graceful deletion, we can treat the deleted vertex the same way as in Section 5.2.2 by deleting it
from M (if it belonged to it) and using it as the “coordinator” to implement the process described
in Section 5.2.2.

5.2.4 Vertex Insertions

The only thing we need to do in this case is to check whether we need to add this new vertex to
M or not. If this vertex is not in VLow, it already knows this information and hence can decide
whether or not to join M; after that we are done. Otherwise, if the vertex belongs to VLow, it sends
a message to all its O(m1/4) neighbors and ask for their status in M, and use that to decide about
joining M. In either case, we only need O(1) rounds and O(m1/4) total communication. After
this, we update the neighbors using first part of Lemma 5.2 in O(m3/4) communication and O(1)

16

rounds.

To conclude, we showed that Invariant 4 is preserved after any edge or vertex insertion or
deletion by the distributed algorithm, hence proving Lemma 5.1. We are now ready to prove
Theorem 2.

Proof of Theorem 2. The proof is identical to the proof of Theorem 1. The only difference is that
in this distributed setting, we are not able to maintain the exact number of edges in the graph
in a distributed fashion across all vertices. However, recall that we assumed vertices affected by
an update in the topology know the index of this update, i.e., how many updates have happened
before this one. Hence, whenever the number of updates reaches Ω(m), any vertex that knows
this information sends a message to all its neighbors to terminate the process which would then be
broadcast across the whole graph. This takes O(m) rounds and O(m) communication and can be
charged to the total number of updates, i.e., Ω(m) in this step. Hence, the vertices can initialize
their data structure using the new choice ofm and continue the distributed algorithm in Lemma 5.1.

References

[1] I. Abraham, S. Chechik, and S. Krinninger. Fully dynamic all-pairs shortest paths with worst-
case update-time revisited. In Proceedings of the 28th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2017, Barcelona, Spain, January 16-19, 2017, pages 440–452,
2017.

[2] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the
maximal independent set problem. J. Algorithms, 7(4):567–583, 1986.

[3] L. Barba, J. Cardinal, M. Korman, S. Langerman, A. van Renssen, M. Roeloffzen, and S. Ver-
donschot. Dynamic graph coloring. In Proceedings of the 15th International Symposium on
Algorithms and Data Structures, WADS 2017, St. John’s, NL, Canada, July 31 - August 2,
2017, pages 97–108, 2017.

[4] L. Barenboim, M. Elkin, and F. Kuhn. Distributed (∆ + 1)-coloring in linear (in ∆) time.
SIAM J. Comput., 43(1):72–95, 2014.

[5] L. Barenboim, M. Elkin, S. Pettie, and J. Schneider. The locality of distributed symmetry
breaking. J. ACM, 63(3):20:1–20:45, 2016.

[6] L. Barenboim and T. Maimon. Fully-dynamic graph algorithms with sublinear time inspired
by distributed computing. In Proceedings of the International Conference on Computational
Science, ICCS 2017, Zurich, Switzerland, June 12-14, 2017, pages 89–98, 2017.

[7] S. Baswana, M. Gupta, and S. Sen. Fully dynamic maximal matching in O(log n) update
time. In Proceedings of the 52nd IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, October 23-25, 2011, pages 383–392, 2011 (see also
SICOMP’15 version, and subsequent erratum).

[8] A. Bernstein and S. Chechik. Deterministic decremental single source shortest paths: beyond
the O(mn) bound. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 389–397, 2016.

17

[9] A. Bernstein and L. Roditty. Improved dynamic algorithms for maintaining approximate
shortest paths under deletions. In Proceedings of the 22nd Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2011, San Francisco, CA, USA, January 23-25, 2011, pages
1355–1365, 2011.

[10] A. Bernstein and C. Stein. Fully dynamic matching in bipartite graphs. In Proc. 42nd ICALP,
pages 167–179, 2015.

[11] A. Bernstein and C. Stein. Faster fully dynamic matchings with small approximation ratios. In
Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, pages 692–711, 2016.

[12] S. Bhattacharya, D. Chakrabarty, and M. Henzinger. Deterministic fully dynamic approximate
vertex cover and fractional matching in O(1) amortized update time. In Proceedings of the 19th
International Conference on Integer Programming and Combinatorial Optimization, IPCO
2017, Waterloo, ON, Canada, June 26-28, 2017, pages 86–98, 2017.

[13] S. Bhattacharya, D. Chakrabarty, M. Henzinger, and D. Nanongkai. Dynamic algorithms
for graph coloring. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1–20, 2018.

[14] S. Bhattacharya, M. Henzinger, and G. F. Italiano. Deterministic fully dynamic data structures
for vertex cover and matching. In Proceedings of the 26th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 785–804,
2015.

[15] S. Bhattacharya, M. Henzinger, and D. Nanongkai. New deterministic approximation algo-
rithms for fully dynamic matching. In Proceedings of the 48th Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages
398–411, 2016.

[16] S. Bhattacharya, M. Henzinger, and D. Nanongkai. Fully dynamic maximum matching and
vertex cover in O(log3 n) worst case update time. In Proceedings of the 28th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, January 16-19,
2017, pages 470–489, 2017.

[17] K. Censor-Hillel, E. Haramaty, and Z. S. Karnin. Optimal dynamic distributed MIS. In
Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC
2016, Chicago, IL, USA, July 25-28, 2016, pages 217–226, 2016.

[18] S. A. Cook. An overview of computational complexity. Commun. ACM, 26(6):400–408, 1983.

[19] C. Demetrescu and G. F. Italiano. A new approach to dynamic all pairs shortest paths. J.
ACM, 51(6):968–992, 2004.

[20] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification - a technique for
speeding up dynamic graph algorithms. J. ACM, 44(5):669–696, 1997.

[21] S. Even and Y. Shiloach. An on-line edge-deletion problem. J. ACM, 28(1):1–4, 1981.

[22] G. N. Frederickson. Data structures for on-line updating of minimum spanning trees, with
applications. SIAM J. Comput., 14(4):781–798, 1985.

18

[23] M. Ghaffari. An improved distributed algorithm for maximal independent set. In Proceedings
of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington,
VA, USA, January 10-12, 2016, pages 270–277, 2016.

[24] A. Gupta, R. Krishnaswamy, A. Kumar, and D. Panigrahi. Online and dynamic algorithms
for set cover. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 537–550, 2017.

[25] M. Gupta and R. Peng. Fully dynamic (1 + ǫ)-approximate matchings. In Proceedings of the
54th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2013, Berkeley,
CA, USA, October 26-29, 2013, pages 548–557, 2013.

[26] M. Henzinger, S. Krinninger, and D. Nanongkai. Decremental single-source shortest paths
on undirected graphs in near-linear total update time. In Proceedings of the 55th IEEE An-
nual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA,
October 18-21, 2014, pages 146–155, 2014.

[27] M. Henzinger, S. Krinninger, and D. Nanongkai. Sublinear-time decremental algorithms for
single-source reachability and shortest paths on directed graphs. In Proceedings of the 46th
Annual ACM on Symposium on Theory of Computing, STOC 2014, New York, NY, USA,
May 31 - June 03, 2014, pages 674–683, 2014.

[28] M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak. Unifying and strengthening
hardness for dynamic problems via the online matrix-vector multiplication conjecture. In
Proceedings of the 47th Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pages 21–30, 2015.

[29] M. R. Henzinger and V. King. Maintaining minimum spanning trees in dynamic graphs. In
Proceedings of the 24th International Colloquium on Automata, Languages, and Programming,
ICALP 1997, Bologna, Italy, July 7-11, 1997, pages 594–604, 1997.

[30] M. R. Henzinger and V. King. Randomized fully dynamic graph algorithms with polylogarith-
mic time per operation. J. ACM, 46(4):502–516, 1999.

[31] Z. Ivković and E. L. Lloyd. Fully dynamic maintenance of vertex cover. In Proceedings of the
19th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 1993,
Utrecht, The Netherlands, June 16-18, 1993, pages 99–111, 1993.

[32] M. T. J. Holm, K. de. Lichtenberg. Poly-logarithmic deterministic fully-dynamic algorithms
for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM, 48(4):723–760,
2001.

[33] R. M. Karp and A. Wigderson. A fast parallel algorithm for the maximal independent set
problem. J. ACM, 32(4):762–773, 1985.

[34] V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive
closure in digraphs. In Proceedings of the 40th Annual Symposium on Foundations of Computer
Science, FOCS 1999, New York, NY, USA, October 17-18, 1999, pages 81–91, 1999.

[35] N. Linial. Distributive graph algorithms-global solutions from local data. In Proceedings of
the 28th IEEE Annual Symposium on Foundations of Computer Science, FOCS 1987, Los
Angeles, CA, USA, October 27-29, 1987, pages 331–335, 1987.

19

[36] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J.
Comput., 15(4):1036–1053, 1986.

[37] O. Neiman and S. Solomon. Simple deterministic algorithms for fully dynamic maximal match-
ing. In Proceedings of the 45th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2013, Palo Alto, CA, USA, June 1-4, 2013, pages 745–754, 2013.

[38] K. Onak and R. Rubinfeld. Maintaining a large matching and a small vertex cover. In
Proceedings of the 42nd Annual ACM SIGACT Symposium on Theory of Computing, STOC
2010, Cambridge, MA, USA, June 6-8, 2010, pages 457–464, 2010.

[39] A. Panconesi and A. Srinivasan. On the complexity of distributed network decomposition. J.
Algorithms, 20(2):356–374, 1996.

[40] M. Parter, D. Peleg, and S. Solomon. Local-on-average distributed tasks. In Proceedings of
the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA,
USA, January 10-12, 2016, pages 220–239, 2016.

[41] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.

[42] L. Roditty and U. Zwick. On dynamic shortest paths problems. Algorithmica, 61(2):389–401,
2011.

[43] S. Solomon. Fully dynamic maximal matching in constant update time. In Proceedings of
the 57th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2016, New
Brunswick, NJ, USA, October 9-11, 2016, pages 325–334, 2016.

[44] M. Thorup. Worst-case update times for fully-dynamic all-pairs shortest paths. In Proceed-
ings of the 37th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2005,
Baltimore, MD, USA, May 21-24, 2005, pages 112–119, 2005.

[45] C. Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved worst-case update
time. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 1130–1143, 2017.

20

A An Ω(n) Lower Bound on Worst-Case Adjustment Complexity

By a straightforward modification of the lower bound example in [17], we can show that adjustment-
complexity of any deterministic algorithm is Ω(n) in the worst-case.

Consider the following example: Let G1 be a complete bipartite graph between two sets of
vertices L1 and R1, each of size n/4. We create an identical copy of G1 named G2 with bipartition
L2, R2 on the remaining vertices and let G be the union of these graphs. Consider any deterministic
algorithm A for maintaining an MIS on G. Without loss of generality, assume L1 ∪ L2 is the MIS
chosen by A (in any MIS of G either L1 is entirely in the MIS or R1 and similarly for L2 and
R2). Let u1 and u2 be two arbitrary vertices in L1 and L2. The adversary starts deleting all edges
incident to all vertices in L1 \ {u1} and L2 \ {u2}. Finally, it adds an edge between u1 and u2. We
argue that at some point during these updates, A adjusted Ω(n) vertices in the maintained MIS.
There are two cases to consider. For simplicity of exposition, we assume that at each time step, all
edges incident to a vertex are deleted at once.

Suppose at some point before inserting the last edge, A decides to add a vertex in R1 to the
MIS for the first time (the argument is symmetric for R2 as well). Since u1 is incident to all
vertices in R1, this means that u1 needs to leave the MIS. Also, since a vertex in R1 has joined
the MIS, we know that there cannot be any edge from vertices in the MIS to any vertex in R1

(as we start with a complete bipartite graph and assumed that all edges incident to a vertex are
deleted simultaneously). This means that after this step, all vertices in R1 should join the MIS to
ensure maximality. Therefore, at this step, Ω(n) vertices are inserted to the MIS at once, proving
the claim in this case.

Now suppose that before inserting the last edge, no vertex in R1 and R2 belong to the MIS and
hence both u1 and u2 should be inside it. By adding an edge between u1 and u2, A is forced to
remove at least one of them, say u1, from the MIS, which in turn forces all R1 to join MIS to keep
the maximality. Hence, again, Ω(n) vertices are inserted to the MIS at once, finalizing the proof.

Remark A.1. We remark that this simple example explains why we obtain our results in amortized
bounds rather than worst-case bounds.

21

	1 Introduction
	1.1 Problem Statement and Our Results
	1.2 Overview of Our Techniques

	2 Preliminaries
	3 Warm-Up: A Simple O()-Update-Time Dynamic Algorithm
	4 An O(m3/4)-Update-Time Dynamic Algorithm
	4.1 The Data Structure
	4.2 The Update Algorithm
	4.2.1 Edge Deletions
	4.2.2 Edge Insertions

	5 Maximal Independent Set in Dynamic Distributed Networks
	5.1 The Data Structure
	5.2 The Distributed Algorithm
	5.2.1 Edge Deletions
	5.2.2 Edge Insertions
	5.2.3 Vertex Deletions
	5.2.4 Vertex Insertions

	A An (n) Lower Bound on Worst-Case Adjustment Complexity

