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Abstract

Computing shortest paths is one of the central problems in the theory of distributed com-
puting. For the last few years, substantial progress has been made on the approximate single
source shortest paths problem, culminating in an algorithm of Becker et al. [DISC’17] which

deterministically computes (1 + o(1))-approximate shortest paths in Õ(D +
√
n) time, where D

is the hop-diameter of the graph. Up to logarithmic factors, this time complexity is optimal,
matching the lower bound of Elkin [STOC’04].

The question of exact shortest paths however saw no algorithmic progress for decades, until
the recent breakthrough of Elkin [STOC’17], which established a sublinear-time algorithm for
exact single source shortest paths on undirected graphs. Shortly after, Huang et al. [FOCS’17]
provided improved algorithms for exact all pairs shortest paths problem on directed graphs.

In this paper, we present a new single-source shortest path algorithmwith complexity Õ(n3/4D1/4).

For polylogarithmic D, this improves on Elkin’s Õ(n5/6) bound and gets closer to the Ω̃(n1/2)
lower bound of Elkin [STOC’04]. For larger values of D, we present an improved variant of our

algorithm which achieves complexity Õ
(

n3/4+o(1) +min{n3/4D1/6, n6/7}+D
)

, and thus com-

pares favorably with Elkin’s bound of Õ(n5/6 + n2/3D1/3 + D) in essentially the entire range
of parameters. This algorithm provides also a qualitative improvement, because it works for
the more challenging case of directed graphs (i.e., graphs where the two directions of an edge
can have different weights), constituting the first sublinear-time algorithm for directed graphs.
Our algorithm also extends to the case of exact κ-source shortest paths, giving a complexity
of Õ

(

min
{

κ1/2n3/4+o(1) + κ1/3n3/4D1/6, κ3/7n6/7
}

+D
)

. For moderately small κ and D, this

improves on the Õ(κ1/2n3/4 + n) bound of Huang et al.

http://arxiv.org/abs/1712.09121v4


1 Introduction & Related Work
Computing shortest paths—either from a single node to all or from multiple or even all nodes to
all—are among the most central problems in the theory of distributed computing, with consequential
applications; e.g., they are a center-piece of routing in computer networks. As such, shortest path
problems and distributed algorithms for them have been studied extensively since the 1950’s, starting
with the algorithms of Bellman [Bel58] and Ford [FJ56]. In this paper, we present new algorithms
that improve on the state of the art of this decades-old problem. Next, we first overview the
background of the problem and the known results, and then we outline our contributions.

1.1 Background, Related Work, and State of the Art

Model We work with the standard synchronous message-passing model of distributed computing,
called CONGEST [Pel00], where the network is abstracted as an undirected graph G = (V,E) with
one node (processor) at each vertex in V . Each edge has an integer weight in range [1,Λ]; we
assume that the weights can be described in Θ(log n) bits and thus Λ ≤ poly(n). In general, we
allow the two directions of an edge to have asymmetric weights, i.e., the weight of the link v → u
might be different than that of u→ v. At the beginning, each node v knows only its neighbors and
the weights of the corresponding incident edges. The communication network is independent of the
weights and is thus bi-directional. Per round, each node u ∈ V can send an O(log n)-bit message
to each node v ∈ V iff {u, v} ∈ E. Moreover, each node can perform arbitrary computations given
the information that it has at that point.

The SSSP Problem The single-source shortest path (SSSP) problem is to compute d(s, t) for
each t ∈ V , given a source vertex s ∈ V . In the distributed setting, each node t ∈ V should learn
its distance d(s, t) from the source.

State of the Art For Exact SSSP The classic approach of Bellman-Ford [Bel58, FJ56] gives
an O(n) round algorithm for SSSP. This complexity is optimal in the worst case, in the sense that
in graphs of hop-diameter D = Θ(n)—e.g., think of a cycle—one cannot do better. But this is an
unfortunate and uninformative impossibility. As was argued by Garay, Kutten, and Peleg in their
influential work [GKP93], the case of graphs with small diameter D is far more relevant in the real
world, and far more interesting theoretically, and the above impossibility does not preclude faster
algorithms for those cases. Since then, the case of network graphs with moderately low-diameter
has become the focus point of the area of distributed graph algorithms, e.g., see the progress on
problems such as minimum spanning tree [GKP93, KP95, DSHK+11, Elk04b, PR99,MH16], min-
cut [MK13, NS14], etc. Howeover, despite this change of focus, for a long time, there was no
progress on the algorithmic side of exact SSSP. The only development was an influential work of
Elkin [Elk04b], which proved that computing the SSSP requires Ω(n1/2) rounds, even on graphs
with diameter as low as D = O(log n).

A Turn Towards Approximation Algorithms Due to the lack of progress on the algorithmic
side of the exact SSSP, the area turned focus to the approximate version. It can be argued that
this was sparked by the visionary article of Elkin [Elk04a] that emphasized approximations. Over
the years, this led to a remarkable sequence of work [DSHK+11,LPS13,Nan14,HKN16,BKKL27],
providing better and better distributed SSSP approximation algorithms. By now, we can say that
we have a good understanding of the approximate version of the problem, having the deterministic
algorithm of Becker et al. [BKKL27], which computes a (1 + o(1))-approximation1 of SSSP in
Õ(D +

√
n) rounds, and whose complexity is known to be the best possible up to logarithmic

1Their algorithm computes a (1 + ǫ)-approximate SSSP in Õ(ǫ−O(1)(
√

n + D)) rounds, so we can take, e.g.,
ǫ := 1/ log n.
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factors, due to a lower bound of Elkin [Elk04b]. More precisely, the latter exhibits graphs of diameter
D = O(log n) in which no SSSP approximation algorithm—even for rather coarse approximations—
can run in less than Ω̃(

√
n) rounds.

Return of the Exact Algorithms Despite the numerous steps of progress that brought us to an
almost complete understanding of the approximate case of SSSP, computing exact SSSP remained
open until very recently. But then came the breakthrough of Elkin [Elk17], which provided the first
sublinear-time algorithm for exact SSSP. More precisely, Elkin gave an algorithm that computes
exact SSSP in Õ(n5/6) rounds if D = Õ(

√
n), and in Õ(D1/3n2/3) rounds if D = Ω̃(

√
n).

Shortly after, another significant step of progress was made on the closely related problem of
All-Pairs Shortest Path (APSP), when Huang et al. [HNS17] gave an algorithm with complexity
O(n5/4) rounds for positive integer-weighted graphs2. Similar to SSSP, also for APSP, the (1+o(1))-
approximate version of the problem is well-understood by now, having Θ̃(n) upper and lower bounds
due to Nanongkai [Nan14]. Though, the exact version remained open, with the best previous upper
bounds remaining at the trivial extreme of O(m), where m denotes the number of the edges. We
note that the result of Huang et al. is more general: for k sources, the complexity grows smoothly
as O(n3/4k1/2+n); though unfortunately this bound always remains Ω(n) even for very small values
of k. Moreover, it is important to remark that the result of Huang et al. [HNS17] is more general
in that it can handle asymmetric distances along an edge—i.e., where the length of the (s, t) edge
may differ from that of (t, s)—while Elkin’s SSSP algorithm assumes the symmetry [Elk17].

1.2 Our Contribution

In this paper, we present algorithms that improve on this state of the art both quantitatively
and qualitatively for integer-weighted graphs. We will soon discuss the quantitative aspect, i.e.,
the improvements in the bounds. The qualitative aspect is the fact that our algorithms extend
to networks with asymmetric weights, i.e., when the two directions of an edge can have different
weights. Although this asymmetric case is relevant for practical networks, it has gained a far more
important motivation recently even when working on graphs with symmetric weights, due to the
introduction of the scaling framework [HNS17] to distributed computing. The scaling framework
massages the weights in a way that simplifies the problem considerably, modulo the potential of
making the weights asymmetric. We will discuss this framework in the next section.

We next overview our round complexity improvements. Our basic result gives an SSSP algorithm
with complexity Õ(n3/4), for graphs with polylogarithmic diameterD. This improves on the Õ(n5/6)
bound of Elkin [Elk17], and gets closer to the Ω(n1/2) lower bound of Peleg and Rubinovich [PR99],
which holds for graphs of diameter D = O(log n). More generally, the result is as follows:

Theorem 1.1. There is a randomized distributed algorithm that computes the exact distances from
the source s to all nodes t ∈ V , in Õ(n3/4D1/4) rounds, with high probability.

For graphs of large diameter, we present improved versions of this algorithm which achieve
complexity Õ

(

n3/4+o(1) +min{n3/4D1/6, n6/7}+D
)

. This compares favorably with Elkin’s bound

of Õ(n5/6+n2/3D1/3+D) in essentially the entire range of parameters. Due to the space limitations,
these improvements are deferred to Appendix C.

Theorem 1.2. There is a randomized distributed algorithm that computes the exact distances from
the source s to all nodes t ∈ V , in Õ

(

n3/4+o(1) +min{n3/4D1/6, n6/7}+D
)

rounds, with high
probability.

2Elkin pointed out shortly after the work of Huang et al. [HNS17], but independently from them, that the
techniques in his work [Elk17] immediately lead to an exact APSP algorithm with complexity Õ(n5/3). It is also
worth noting that Elkin’s algorithm works for nonnegative real weights, not just integer weights.
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We also show in Appendix D how to extend our algorithm to the case with κ-sources, providing
some improvements on the results of Huang et al. [HNS17] for small κ and D.

Theorem 1.3. There is a randomized distributed algorithm that computes the exact distances from
κ given source nodes s1, s2, . . . , sκ to all nodes t ∈ V , in

Õ
(

min
{

κ1/2n3/4+o(1) + κ1/3n3/4D1/6, κ3/7n6/7
}

+D
)

rounds, with high probability.

2 Preliminaries

Definitions—Paths, Distances, and Neighborhoods For a path P = (v0, v1, . . . , vh) from
v0 to vh, we define the length of the path P to be the summation of the weights of its edges, i.e.,
w(P ) :=

∑

iw(vi−1, vi). Moreover, we say that P has h hops, where h is the number of edges in P .
A shortest path from node s to t is an s → t path P that minimizes w(P ). Its length is denoted
d(s, t), also called the distance from node s to t. Given a source node s, the source-wise s-radius of
the graph is equal to maxt d(s, t). Similarly, the h-hop distance dh(s, t) is the minimum length of an
s→ t path P , among all paths that have at most h hops. We define the h-hop distance neighborhood
from a source s as the distances to all vertices t ∈ V such that dh(s, t) = d(s, t), i.e., there exists a
shortest s→ t path with at most h hops; for all other t ∈ V with dh(s, t) 6= d(s, t), their distance is
undefined.

2.1 Tool 1: The Scaling Framework

The general case of shortest path problem is hard to tackle directly, while the problem becomes
more manageable if the maximum distance from the source s to any other node t is somewhat small.
To leverage this, we make use of Gabow’s scaling method [Gab83]. We note that this method was
used for the first time in the distributed setting for shortest paths by [HNS17].

What do we get from scaling? The interface of this method is as follows: Given a graph with
integer weights in [0,Λ], the scaling framework reduces the problem to log2Λ iterations of computing
SSSP on a graph with nonnegative integer weights where in each iteration we have d(s, t) ≤ n − 1
for all nodes t ∈ V . That is, in each iteration, the source-wise s-radius is bounded by n − 1.
We emphasize that the weights in each of the iterations can be zero, and asymmetric, even if the
original weights in the graph were all positive and symmetric. This poses a challenge for standard
distributed distance computation methods, which we will discuss in the other tools.

To summarize, the scaling framework implies that, modulo this challenge of having to handle
zero weights and asymmetric weights and an O(log Λ) factor overhead in the running time, it is
sufficient to solve SSSP only on graphs satisfying d(s, t) ≤ n− 1 for all t.

How does scaling work? Represent each weight w(u, v) in base 2 using T := ⌊log2 Λ⌋ + 1
bits, including leading zeroes if necessary. Let wi(u, v) denote the integer representing the i most
significant bits of w(u, v). Let bi(u, v) denote the i’th most significant bit of w(u, v). The scaling
algorithm is as described in ScalingFramework.

We refer to [HNS17] for the following lemma, which is itself derived from earlier incarnations of
the scaling framework in centralized and parallel settings [Gab83].

Lemma 2.1. For each i ∈ [T ], ℓi and wi satisfy the following: (1) For all (u, v), ℓi(u, v) ≥ 0. (2)
For all t, dℓi(s, t) ≤ n − 1. (3) For all t, dwi(s, t) = 2dwi−1(s, t) + dℓi(s, t). Hence, by induction,

δi(v) = dℓi(v) and d̃i(v) = dwi(v), and thus d(v) = d̃⌈log2 Λ⌉(v) is the correct distance.
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Algorithm 1 ScalingFramework(s,G = (V,E,w))

Input: Every node v ∈ V knows the weight and direction of each edge e ∈ E incident to v.
Output: Every node v learns d(v), which equals the exact distance dw(s, v).

1: d̃0(v)← 0 for all nodes v
2: for i = 1, . . . , T increasing do
3: Every node v broadcasts d̃i−1(v) to its neighbors

4: Every node u computes ℓi(u, v)← 2d̃i−1(u) + wi(u, v)− 2d̃i−1(v) for each neighbor v
5: δi(v)← SSSP(s, ℓi) ⊲ For each v ∈ V , SSSP(s, ℓi) informs node v the value of dℓi(s, t)
6: d̃i(v)← 2d̃i−1(v) + δi(v) for all nodes v

7: d← d̃⌈log
2
Λ⌉

Corollary 2.2. After T iterations of SSSP on a graph with nonnegative integer weights such that
d(s, t) ≤ n− 1 for all t ∈ V , ScalingFramework correctly outputs all distances.

2.2 Tool 2: The ShortRange Algorithm

Another ingredient in our algorithm is to compute the h-hop distances from a given source s′ (not
necessarily the actual source s). For this, we use an algorithm of [HNS17], called ShortRange, which
itself is a simple and clever hybrid of the two standard methods, BFS and Bellman-Ford. We next
briefly discuss the shortcomings of these methods and then overview ShortRange.

The shortcomings of the standard methods We can approach the h-hop distances problem
using the standard methods, namely Bellman-Ford and BFS. However, each of these has a short-
coming, as we discuss next. The Bellman-Ford (B-F) algorithm computes h-hop distances in h
rounds: in each round, every vertex updates its best known distances and then broadcasts it to each
neighbor. However, B-F comes with a downside in edge congestion: there may be Ω(h) messages
passed along a single edge, which is the largest possible for an algorithm running in h rounds. This
is problematic, especially because we will need to compute h-hop distances for multiple sources at
the same time, one for each node in a chosen subset V ′ ⊆ V . In that case, the high edge congestion
of this algorithm becomes a bottleneck. Specifically, if we run B-F from each s′ ∈ V ′, then an
edge may need to pass Ω(h|V ′|) messages, immediately giving a lower bound of Ω(h|V ′|) rounds to
compute all h-hop distances in the CONGEST model.

On the other hand, if the graph was unweighted, then breadth-first search (BFS) for h rounds
would compute h-hop distances correctly, while sending at most one message along each edge. Hence,
BFS would be a good candidate in terms of edge congestion. However, our graph is weighted and
also contains zero-weight edges, which BFS alone cannot solve.

The ShortRange algorithm To address both of the above issues, [HNS17] introduced the al-
gorithm ShortRange, which is a hybrid of BFS and B-F. It computes h-hop distances for a source
s′ in few rounds and with low edge congestion, at a cost of limiting itself only to t ∈ V satisfying
dh(s, t) ≤ ℓ for some parameter ℓ. That is, it computes the h-hop distance neighborhood restricted
to only the nodes t satisfying d(s, t) = dh(s, t) ≤ ℓ. For a node t not satisfying this restriction, the
algorithm computes a distance that may overestimate d(s, t), but is never an underestimate. The
pseudo-code is deferred to Appendix A, due to space limitations.

Lemma 2.3. For any parameter q ≥ 1, the ShortRange algorithm runs in O(ℓq + h) rounds,
and sends O(h/q) messages along each edge. The distances that it computes satisfy the following
properties: (1) ∀t, d(t) ≥ dw(s, t). (2) If the shortest s → t path has at most h hops and length at
most ℓ, then d(t) = dw(s, t).
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2.3 Tool 3: Virtual Node Sampling

Following the steps of [UY91] and previous distributed shortest path algorithms [LPS13, Nan14,
Elk17,HNS17], our algorithm samples a set of virtual nodes V ′ ⊆ V as follows: every node inde-
pendently joins the set with probability k/n, for a parameter k. We also add s to V ′, i.e., s joins
V ′ with probability 1 instead. A simple Chernoff bound shows that the size of V ′ is O(k + log n)
w.h.p. Furthermore, V ′ satisfies the following crucial property:

Lemma 2.4. W.h.p., for every t ∈ V , there is a shortest s→ t path that has a virtual node inside
every consecutive Θ(n log n/k) vertices on the path. We call this a good s → t shortest path. In
particular, the last virtual node on this path is within O(n log n/k) hops from node t.

2.4 Tool 4: Distributed Scheduling of Algorithms

At certain points, our main algorithm will be calling a set of distributed subprocedures in parallel.
That is, the computations of any two distinct subprocedures do not depend on each other. We
cannot actually run all of these subprocedures in parallel, since many subprocedures might need
to send a message through the same edge e ∈ E simultaneously, but the CONGEST model only
allows an O(log n)-bit sized message per round through e. On the other hand, we do not want to
run these subprocedures sequentially, one after another. Our solution is to schedule the distributed
algorithms, following [Gha15], based on two parameters called dilation and congestion.

Formally, consider a set of distributed algorithms A1, . . . , Ak that run independently of one
another. We define dilation as the maximum running time of any algorithm Ai, and congestion as
the maximum number of times a single edge is used over all k algorithms. Formally, define be,i as
the number of times the algorithm Ai sends a message along edge e ∈ E, and let congestion :=
maxe

∑k
i=1 be,i. Note that dilation and congestion are both lower bounds on the time it takes to run

all the algorithms. It turns out that the upper bound nearly matches these lower bounds.

Theorem 2.5. [Gha15] Given a set of independent algorithms with parameters dilation and congestion,
we can run them all in time Õ(dilation+ congestion), w.h.p.

2.5 Tool 5: Additive Approximation of SSSP

In our exact SSSP computation, we make use of an approximate SSSP d̃ that is accurate up to some
additive error α; that is, for all nodes t, we have d(s, t) ≤ d̃(s, t) ≤ d(s, t) + α. To our knowledge,
this is the first time a distributed exact shortest path algorithm relies on an approximate algorithm
as a precomputation step. To compute this α-additive approximate SSSP, we use a method very
similar to (a part of) the (1 + ǫ)-multiplicative approximation algorithm of Nanongkai [Nan14]. It
is notable that we do not utilize the hop-set idea of Nanongkai’s algorithm, since hop-sets do not
translate to directed graphs. Since Nanongkai [Nan14] does not explicitly state the dependencies on
the error term ǫ, we present, for completeness, the full algorithm and its analysis in the Appendix.
Finally, since the scaling framework guarantees us that the s-radius is at most n − 1, we can take
ǫ := α/n in the (1 + ǫ)-multiplicative approximation to obtain an α-additive approximation.

Lemma 2.6. Suppose that the network graph has s-radius at most n − 1. Then, we can compute

α-additive approximate SSSP in Õ(
n2

αk
+ kD) time, and with Õ(k) messages sent along each edge.

3 Main Algorithm

3.1 Algorithm Overview

In this section, we present our algorithm that proves Theorem 1.1 and computes distances from
source s to all nodes t ∈ V , in Õ(n3/4D1/4) rounds. We start with a high-level description of the
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algorithm. On the outer level, this algorithm runs the ScalingFramework for O(log Λ) iterations,
solving an SSSP problem in each iteration. Recall that, on every iteration, ScalingFramework
reweights the edges on the graph so that the s-radius, defined to be maxt d(s, t), is at most n − 1.
Once SSSP is solved on this reweighted graph, ScalingFramework proceeds to the next iteration,
reweighting the edges again to have s-radius at most n − 1. This happens for O(log Λ) iterations,
after which each node can locally deduce its correct distance from node s. Fix an iteration of
ScalingFramework, and let G = (V,E) denote the reweighted graph with s-radius at most n − 1.
We next describe our algorithm SmallWeightSSSP, which solves SSSP on this graph.

Virtual Graph Following Lemma 2.4, every node becomes a virtual node with probability k/n,
for a paremeter k ≤ n to be fixed, except for s which becomes virtual with probability 1.

To build intuition for the rest of the algorithm, let us first consider the task of computing
d(s, u′) for only the virtual nodes u′ ∈ V ′. Let h := Θ(n log n/k), and consider the virtual graph
G′ = (V ′, E′) with vertex set V ′ and an edge between each u′, v′ ∈ V ′ of weight d(u′, v′) if the
shortest u′ → v′ path has ≤ h hops. The graph G′ is called virtual because the edges in E′ are
not necessarily edges in the network, making direct communication between edges in E′ impossible.
Observe that, by Lemma 2.4, running SSSP from s ∈ V ′ in the virtual graph G′ will, w.h.p., result
in the same distances to each virtual node as running SSSP from node s in G. Therefore, a natural
next step for an algorithm is to compute all edges in E′; specifically, for every edge (u′, v′), we want
node v′ to know its weight and direction.3

However, our algorithm will not compute all edges in E′, but only a subset of the edges. Define
an edge (u′, v′) ∈ E′ to be light if d(u′, v′) ≤ ℓ for a parameter ℓ, and heavy otherwise. Let
G′

L = (V ′, E′
L) and G′

H = (V ′, E′
H) be G′ with only light edges and heavy edges in E′, respectively.

The algorithm will compute all light edges in E′
L, so that for each directed edge (u′, v′) ∈ E′

L, the
endpoint v′ knows that edge. For the heavy edges in E′

H , computing them can be time-consuming;
thus, the algorithm will take another approach. We next discuss these two cases separately.

Light Edges To compute all light edges, we run ShortRange(u′, G, h, ℓ, q) for each virtual node
u′ ∈ V ′, for some parameter q. For each pair u′, v′ ∈ V ′, let du′(v′) be the value of d(v′) returned by
ShortRange(u′, G, h, ℓ, q). If du′(v′) < ∞, then v′ can now learn a virtual edge (u′, v′) with weight
du′(v′). For each light edge (u′, v′) in E′

L, v
′ learns the virtual edge (u′, v′) with correct weight

d(u′, v′), due to the guarantee of ShortRange. There may be other extraneous virtual edges learned
by virtual nodes that overestimate their distance, but, as we will see, they will not affect the output.

Heavy Edges Note that the only important virtual edges in E′
H are those that belong to the

shortest path tree from node s in G′. Hence, it suffices to limit our attention to the heavy edges
(u′, t′) ∈ E′

H that belong to a shortest s → t′ path in G′, for some node t′. In this case, we
leverage the fact that d(s, t′) > d(s, u′) + ℓ. We partition V into ⌊n/ℓ⌋+1 buckets such that bucket
i ∈ [0, ⌊n/ℓ⌋], denoted Vi, has all nodes v with d(s, v) ∈ [iℓ, (i + 1)ℓ). We will discuss later how
to compute the buckets.4 Observe that the bucket containing u′ has a smaller index than the one
containing t′. The algorithm will compute the correct distances to each bucket in increasing bucket
index i, with the invariant that before processing bucket Vi, all nodes in V0 through Vi−1 know their
correct distance from node s. To process bucket Vi, the algorithm first executes a single B-F to
depth h,5 then runs a virtual SSSP, and then runs another B-F to depth h. We will soon explain

3Since communication on the network is bidirectional, it turns out that we can also allow node u′ to learn edge
(u′, v′). However, this will not be necessary.

4At first glance, this might seem troublesome, since it requires knowing the distances beforehand.
5In the algorithm pseudocode, we run an algorithm Extend instead. The reader is encouraged to replace the

Extend calls with calls of B-F to depth h; see Remark 3.1. We use B-F for this discussion to simplify this overview.
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the virtual SSSP algorithm and the difficulties in it, as it needs to be run on a virtual graph. By a
B-F to depth h, we mean initializing the B-F with distances d(v) for all v ∈ Vi, and then running
B-F, which broadcasts and updates distances for h rounds. Going back to our consideration of a
heavy edge (u′, t′) ∈ E′

H , note that, right before the algorithm processes the bucket containing t′,
the bucket containing u′ has already been processed, and u′ knows its correct distance. Then, when
the algorithm processes the bucket containing t′, in the first B-F to depth h, node u′ will propagate
its distance to node t′, informing t′ of its correct distance from s.

Virtual SSSP We now discuss how we run the virtual SSSP when processing each bucket. Sup-
pose the algorithm is currently processing bucket Vi. By the invariant, all nodes in V1 through Vi−1

already know their correct distance, and the objective is now for those of bucket Vi to learn their
distance. Note that a B-F to depth h alone is not enough. This is because edges can have weight
zero and thus, a virtual node in Vi can be a large number of hops away from any node in V1 through
Vi−1, even if the total weighted distance is small.

Consider some virtual node t′ ∈ Vi and the good s → t′ path Pt′ , guaranteed to exist by
Lemma 2.4. Although there may be many virtual nodes on Pt′ belonging to bucket Vi, the key
observation is that, of the virtual nodes in Pt′ ∩ Vi ordered by Pt′ , the first node knows its correct
distance, and for the remaining nodes, there is an edge in E′

L from each one to the next. For this
first virtual node v′ ∈ Pt′ ∩ Vi, we will show that, after the first B-F in processing bucket Vi—as
mentioned above when discussing heavy edges—node v′ will learn its correct distance. Afterward,
we would like to propagate the distance of v′ along the edges in E′

L by solving a SSSP problem on
G′

L. We define this SSSP instance as follows: we begin with the subgraph G′
L induced by {s} ∪ Vi,

and for each node v′ ∈ Vi that has computed some (possibly incorrect) distance d(v′), we add the
edge (s, v′) with weight d(v′). We can think of each additional edge (s, v′) as shortcutting some path
from s to v′. We now run SSSP on this subgraph, but we cannot communicate along the virtual
edges in G′

L directly, since they may not exist in the network. Hence, we instead run a virtual SSSP
on the subgraph of G′

L induced by V ′∩Vi. This VirtualSSSP is described in Section 3.4. Together,
VirtualSSSP and the B-Fs correctly compute all distances from node s to the virtual nodes.

Computing the Buckets We now discuss how to compute the buckets Vi. We will actually
compute a set of nodes Ṽi that contains Vi, so that the subgraph of G′

L induced by V ′ ∩ Ṽi contains

all vertices and edges in the target subgraph. However, we also need that the Ṽi are, on average,
not much larger than the Vi, in order to maintain a fast algorithm.

First, we use the additive approximate distance algorithm of Section 2.5 to compute ℓ-additive
approximate distances from node s to every other node. Since the buckets have distance intervals
of size ℓ, each node v′ ∈ V ′ can pinpoint down two buckets, one of which contains v′. Then, define
Ṽi to include every v′ ∈ V ′ that guesses Vi as one of its two possible buckets. The total size of all
V ′ ∩ Ṽi is at most twice the total size of all V ′ ∩ Vi, so the asymptotic running time is unaffected.

Extending the Distance Computation to Non-Virtual Nodes By Lemma 2.4, every node
t ∈ V has a shortest s → t path that contains a virtual node v′ ∈ V ′ within its last h vertices,
w.h.p. Consider the iteration when the algorithm processes the bucket containing v′. Node v′ learns
its correct distance dw(s, v

′) right after the virtual SSSP computation. Then, in the second B-F to
depth h, node v′ propagates its distance to node t, and node t learns its correct distance. Thus,
node t learns its correct distance after the algorithm processes the bucket containing v′, which either
equals or appears earlier than the bucket containing t. Hence, once the algorithm finishes bucket
Vi, all nodes in buckets V1 through Vi learn their correct distance, satisfying the invariant.
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3.2 The Algorithm

In this section, we give a detailed description of our main algorithm, which computes exact shortest
paths in Õ(n3/4D1/4) time, proving Theorem 1.1. The main algorithm, called Main, first computes
an ℓ-additive approximate SSSP from source s; recall that this approximate computation allows
each node to guess which bucket it belongs to. Then, it runs ScalingFramework, reducing the
problem to O(log Λ) computations of SSSP, each time on a graph with s-radius at most n− 1. On
each iteration, we call the subprocedure SmallWeightSSSP, which is the SSSP algorithm with the
promised s-radius bound. We will defer the pseudo-code of Main to Appendix B.

Parameters The algorithm will maintain the parameters k, h, ℓ, q, as described below. For an
initial read, we encourage the reader to assume that D = Õ(1) and ignore the D factors.

• k is the desired number of virtual nodes. Every node becomes virtual with probability k/n,
except for s which is virtual. W.h.p., we sample O(k + log n) virtual nodes.

• h is a parameter given to the ShortRange algorithm, a bound on the number of hops. We set
h = Θ(n log n/k) so that, by Lemma 2.4, w.h.p. for every node t, there is an s→ t path with
a virtual node inside every consecutive Θ(n log n/k) vertices on the path.

• ℓ represents four quantities, which we will observe are closely related to one another. First, it is
the parameter into the ShortRange algorithm, a bound on the maximum distance. Second, it
is the parameter in the initial approximate shortest paths computation; that is, the algorithm
initially computes ℓ-additive approximate shortest path distances from source s. Third, it is
the threshold such that an edge in the virtual graph is called light if its weight is at most
ℓ, and heavy otherwise. Lastly, it is the width of each bucket: bucket i represents all nodes
whose distance from s is within [iℓ, (i+ 1)ℓ).

These parameters are summarized below, along with their values in the Õ(n3/4D1/4) algorithm.

Param. Value Description

k n3/4D−3/4 The number of virtual nodes we want to sample.
h Θ(n logn/k) =

Õ(n1/4D3/4)

The parameter for the number of hops in the ShortRange algorithm.

ℓ n1/2D1/2 The parameter for the maximum distance in the ShortRange algorithm. Also,
the error of the initial additive approximation.

q n1/4D−1/4 The optimization parameter for the ShortRange algorithm.

Algorithm Description Below, we present the pseudocodes for SmallWeightSSSP and Extend.
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Algorithm 2 SmallWeightSSSP(s,G = (V,E,w), d̃, k, ℓ, q)

Input: Every node v knows the weight and direction of each edge e ∈ E incident to v and the ℓ-additive
distance estimate d̃(v). We have the promise that dw(s, t) ≤ n− 1, ∀t ∈ V .
Output: Every node v learns d(v), which equals the exact distance dw(s, v).

1: Every node becomes virtual with probability k/n, except for s, which becomes virtual with probability
1. Let V ′ ⊆ V be the set of virtual nodes. // We have s ∈ V ′ and, w.h.p., we sample O(k + logn)
virtual nodes.

2: Set h ← Θ(n logn/k). For each s′ ∈ V ′, let ds′ be the result of ShortRange(s′, G, h, ℓ, q). Each v ∈ V
knows ds′(v) for each s′ ∈ V ′.

3: Build graph G′ = (V ′, E′, w′) with directed edge (u′, v′) ∈ E′ having weight du′(v′), for each pair
(u′, v′) ∈ V ′ × V ′ satisfying du′(v′) < ∞. Every v′ ∈ V ′ knows each directed edge (u′, v′) ∈ E′ and its
weight.

4: Initialize distances d(s)← 0, d(v)←∞ for all v ∈ V \ s.
5: for i = 0, . . . , ⌊n/ℓ⌋ do // Iterate over buckets V0, . . . , V⌊n/ℓ⌋.

6: Run Extend(G, d, h, ℓ, i), and let d be the updated distance that each node knows. // Equivalently,

run a B-F to depth h.
7: Define Ṽ ′

i as {v′ ∈ V ′ : d̃(v′) ∈ [iℓ, (i + 2)ℓ)}. // Ṽ ′
i contains all virtual nodes that guess

bucket i as one of their two guesses. In particular, V ′ ∩ Vi ⊆ Ṽ ′
i .

8: Consider the subgraph of G′ induced by {s} ∪ Ṽ ′
i . For each v′ ∈ Ṽ ′

i with d(v′) < ∞, add an edge

(s, v′) of weight d(v′) to this subgraph. Call the resulting graph G̃′
i. // Note that every node v′ ∈ Ṽ ′

i

still knows every edge (u′, v′) in G̃′
i.

9: Run VirtualSSSP(s, G̃′
i), and let d̃′i be the resulting distance that each node learns.

10: Every v′ ∈ V ′ updates d(v′)← min{d(v′), d̃′i(v′)}.
11: Run Extend(G, d, h, ℓ, i), and let d be the updated distance that each node knows. // Equivalently,

run a B-F to depth h.

Algorithm 3 Extend(G, d, h, ℓ, i)

Input: Every node v knows its current distance estimate d(v).
Output: Every node v updates its distance estimate d(v).

1: for h rounds do // Run a restricted B-F to depth h. See Remark 3.1.

2: Every node u sends d(u) to all neighbors v with d(u) + w(u, v) ∈ [iℓ, (i+ 1)ℓ)
3: Every node v sets d(v) = min{d(v), d(u) + w(u, v)} for each d(u) received from neighbor u

Remark 3.1. On line 6 and line 11, we can replace the algorithm Extend with a B-F to depth h
for the same correctness and running time of SmallWeightSSSP.6 The reader is encouraged to do
so for a simpler algorithm and the same proof of correctness. However, we need Extend for the
multiple sources case in Appendix D.

3.3 Analysis

First, we prove the aforementioned invariant: after the algorithm processes bucket Vi, all nodes in
buckets V1 through Vi know their correct distance.

Lemma 3.2. At the end of each iteration i of the for loop, d(t) = dw(s, t) for all t such that
d(t) ∈ [0, (i + 1)ℓ). Hence, at the end of SmallWeightSSSP, d(t) = dw(s, t) for all t ∈ V . In other
words, every node knows its correct distance from node s.

Proof. First, consider the base case iteration 0 and a node t with d(s, t) ∈ [0, (i + 1)ℓ) = [0, ℓ).
Consider the shortest s → t path Pt′ satisfying the properties in Lemma 2.4, and let t′ be the last

6The algorithm Extend is actually a restricted B-F to depth h, in that only nodes that satisfy a certain property
can broadcast their distance.
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virtual node on Pt, possibly s itself. Since each virtual node v′ on the path satisfies d(s, v′) ∈ [0, ℓ),
its approximate distance satisfies d̃(s, v′) ∈ [0, 2ℓ), so v′ ∈ Ṽ ′

0 . Also, w.h.p., consecutive virtual
nodes in Pt are within h = O(n log n/k) hops away from each other. Since they are also distance
≤ ℓ apart, they are connected by edges in E′, and VirtualSSSP(s, G̃′

i) (line 9) correctly computes

d̃′i(t
′) = d(t′). Here, we use the fact that edges in G̃′

i can only be overestimates of their true distances

in G, so that we can never have d̃′i(t
′) < d(t′). Finally, since t′ and t are ≤ h hops apart on Pt, and

since every node in between t′ and t has distance from node s in the range [0, ℓ), the second Extend

algorithm (line 11) correctly computes d(v) for each v in between t′ and t on Pt. In particular, t
will know its correct distance d(t).

We now apply induction on i. If node t satisfies d(t) ∈ [0, iℓ), then the statement d(t) = dw(s, t)
has already been proved on iteration i − 1, so assume that d(t) ∈ [iℓ, (i + 1)ℓ). Take the shortest
s→ t path Pt, let u be the last node on Pt satisfying d(s, u) < iℓ, let v be the next node after u on
Pt, and let v′ be the next virtual node after u on Pt. Let t

′ be the last virtual node on Pt, possibly
v′ or s itself. Suppose that d(u) ∈ [jℓ, (j + 1)ℓ) for some j < i. By induction, d(u) was correctly
computed at the end of iteration j. Observe that all nodes on Pt from v to v′ have their distance
from node s in the range [iℓ, (i + 1)ℓ), and moreover, v and v′ are ≤ h− 1 hops apart on Pt w.h.p.
Therefore, for the h iterations of the first Extend (line 6) on iteration i, u will first send d(u)+w(u, v)
to v, and then h − 1 rounds later, v′ will update d(v′) to be its correct distance. The rest of the
argument follows similarly to the base case. All virtual nodes in Pt′ from v′ onwards belong to Ṽ ′

i ,
and since they are ≤ h = O(n log n/k) hops away from each other, they are connected by edges in
G̃′

i. Therefore, the path consisting of s, v′, and all virtual nodes after v′ on Pt′ has length exactly
d(t′) in G̃′

i, and the VirtualSSSP (line 9) of iteration i computes d′(t′) correctly. Finally, using the
same argument as in the base case, the second Extend (line 11) correctly computes d(t).

Lemma 3.3. SmallWeightSSSP runs in Õ

(

ℓq +
n

q
+ kD +

n2

ℓk

)

= Õ(n3/4D1/4) time.

Proof. Computing an ℓ-additive approximate SSSP takes Õ(n2/(ℓk)+kD) time by Lemma 2.6. We
use the same value of k for ℓ-AdditiveErrorSSSP as we do for SmallWeightSSSP.

We run ShortRange(·, ·, h, ℓ, q) for k nodes, with h = O(n log n/k), and each node congests a
given edge O(h/q) times, so the total congestion is O(k(n log n/k)/q) = O(n log n/q). The dilation
is O(ℓq+h) = O(ℓq+n logn/k). We can schedule all the ShortRange algorithms in time Õ(dilation+
congestion) by Theorem 2.5, giving time Õ(ℓq + n/k + n/q).

For O(n/ℓ) iterations, we run VirtualSSSP on a graph with |Ṽ ′
i | + 1 vertices, which takes

O((|Ṽ ′
i |+1)D log n) time by Lemma 3.4, and Extend(·, ·, h, ·, ·), which takes time h+1 = O(n log n/k).

Every v′ ∈ V ′ belongs to at most 2 sets Ṽ ′
i , so

∑

i |Ṽ ′
i | ≤ 2k and the total running time for

VirtualSSSP and B-F is Õ(kD + n/ℓ · n/k).
Setting k := n3/4D−3/4, ℓ := n1/2D1/2, q := n1/4D−1/4 gives the desired time.

3.4 SSSP on Virtual Graph

From SmallWeightSSSP, we have the following setting: there is a virtual graph G′ = (V ′, E′, w′)
such that dw′(s, v′) ≤ n − 1 for all v′ ∈ V ′, and for each edge (u′, v′) ∈ E′ directed from u′ to
v′, only v′ knows its weight and direction. Recall that since edges are virtual, they may not exist
in the communication network, so we cannot pass information directly along edges in E′. For
VirtualSSSP, our goal is to inform each virtual node v′ ∈ V ′ of its exact distance dw′(s, v′).

Algorithm VirtualSSSP Let k := |V ′|. The algorithm VirtualSSSP first runs ScalingFramework
on G′, reducing the problem to log n iterations of SSSP with the guarantee d(s, v′) ≤ k − 1. After
each iteration, instead of local broadcasts from each node, we let every node v′ ∈ V ′ broadcast its
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computed d(v′) to all other nodes, which takes O(k+D) time using standard pipelining techniques
on a BFS tree, so that weights on the next iteration can be computed.

The algorithm for each iteration of ScalingFramework is promised that dw′(s, v′) ≤ k− 1,∀v′ ∈
V ′. We now discuss this algorithm, which we name SmallWeightVirtualSSSP; its pseudocode is
deferred to Appendix B. It is instructive to first consider this algorithm in a parallel computation
setting, as follows. For each i ∈ [0, k−1], initialize a queue Qi to be used in the algorithm. To begin,
insert the value (s, 0) to queue Q0. We process the queues in increasing order Q0, Q1, . . . , Qk−1,
continuing onto the next queue whenever the current queue is empty. When processing Qi, we (1)
mark each u′ ∈ Qi as completed, (2) write d(s, u′) for each u′ ∈ Qi in (centralized) memory, and (3)
for each unmarked v′ with an edge (u′, v′) ∈ E′, remove v′ from its current queue (if any) and insert
it to Qj with j := i+ min

(u′,v′)∈E′

w(u′, v′). Note that we may have to process Qi again, since there may

be zero-weight edges. It is straightforward to argue that this algorithm is correct. Furthermore,
since at least one node is marked every iteration, the algorithm runs in O(k) parallel rounds.

Finally, we translate this algorithm to a distributed setting. Instead of writing each completed
u′ ∈ Qi to memory, we broadcast d(s, u′) to all other nodes in time O(|Qi|+D) so that all unmarked
nodes can locally compute min

(u′,v′)∈E′

w(u′, v′). To figure out when to advance to the next queue, we

continue to process the current queue Qi until there is a round with no broadcasts. At that point,
all nodes can advance to queue Qi+1 in a synchronized manner.

Lemma 3.4. SmallWeightVirtualSSSP on a virtual graph G′ = (V ′, E′) takes O(|V ′|D) rounds,
and sends O(|V ′|) along each edge. Hence, VirtualSSSP on a virtual graph G′ = (V ′, E′) takes
O(|V ′|D log n) rounds, and sends O(|V ′| log n) messages along each edge.

Proof. Every node broadcasts once, so the total number of broadcasts is O(|V ′|). The while loop
terminates in O(|V ′|) rounds, since in each round, either some node broadcasts (and then never
again), or i increases. Every broadcast can be executed in O(D) time through an auxiliary BFS
tree, so in total, everything takes O(|V ′|D) time. Similarly, every broadcast congests each edge of
the BFS tree once, so the total congestion is O(k).
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A Missing Details of Section 2

Algorithm 4 ShortRange(s,G = (V,E,w), h, ℓ, q)

Input: Source s, network graph G = (V,E,w), and parameters h, ℓ, q. Every node v knows the weight and
direction of each edge e ∈ E incident to v.
Output: Every node v learns d(v), which satisfies d(v) ≥ d(s, v). If v is within the h-hop distance neighbor-
hood and satisfies d(s, v) ≤ ℓ, then d(v) = d(s, v).

1: d(s)← 0, d(t)←∞ for all t 6= s
2: w′(u, v)← max{w(u, v), 1/q} for each (u, v) ⊲ w′(u, v) = 1/q if w(u, v) = 0 and w(u, v) otherwise
3: for i = 0, . . . , ℓq + h do ⊲ BFS
4: Every node u with d(u) = i/q broadcasts d(u) to its neighbors
5: If node v receives d(u), updates d(v)← min{d(v), d(u) + w′(u, v)}
6: d(v)← ⌊d(v)⌋ for all v
7: for h iterations do ⊲ Bellman-Ford (B-F)
8: Every node u broadcasts d(u) unless (1) d(u) has been broadcast previously, or (2) u has broadcast
⌊h/q⌋ times already

9: If node v receives d(u), updates d(v)← min{d(v), d(u) + w(u, v)}
10: return d

Proof of Lemma 2.3. First, we show that d(t) ≥ dw(s, t) for all t. Let d
′(v) be the value of d(v) right

after line 6 of ShortRange. Since the weights w′ are overestimates of w′, we have d′(t) ≥ dw(s, t).
By the properties of B-F, if a node t has value d(t) at the end of the algorithm, then there is a path
P from some node v ∈ V to t such that d(t) = d′(v) + w(P ). Therefore, d(t) = d′(v) + w(P ) ≥
dw(s, v) + w(P ) ≥ dw(s, t).

Now suppose that the shortest s→ t path P has ≤ h hops and length ≤ ℓ. We have dw′(s, t) ≤
dw(s, t) + h/q ≤ ℓ + h/q, since this path has ≤ h edges of length 0 which add ≤ h/q additional
length according to w′. Moreover, every node v ∈ P satisfies dw′(s, v) ≤ dw(s, v) + h/q ≤ ℓ + h/q.
The BFS (lines 3–5) computes d(v) = dw′(s, v) for all v satisfying dw′(s, v) ≤ (ℓq + h)/q = ℓ+ h/q,
so for all v ∈ P , d(v) = dw′(s, v) by line 5. Observe that if the B-F (lines 7–9) did not have
restriction (2), then all distances within h hops would be correctly computed. However, after line 6,
every node v ∈ P has d(v) = ⌊dw′(s, v)⌋ ≤ dw(s, v) + ⌊h/q⌋, and since every broadcast results from
decreasing the estimated d(v) by ≥ 1, each node v will indeed broadcast its correct d(s, v) within
⌊h/q⌋ broadcasts. In particular, d(t) will be the correct dw(s, t) at the end of the algorithm.

Proof of Lemma 2.4. For each node t ∈ V , fix a shortest s→ t path Pt = (s = v0, . . . , vh = t), and
let C := cn lnn/k for a constant c. If h < C, then the first part of the statement is vacuous, and
the second part is immediate since s is a virtual node within C hops from node t.

If h ≥ C, then for each i ∈ [h− C + 1], the probability that none of the nodes vi, . . . , vi+C−1 is
virtual is exactly

(1− k/n)C = (1− k/n)cn lnn/k < exp(k/n · cn lnn/k) = n−c.

Taking a union bound over all values of i and all n− 1 paths Pt gives the w.h.p. result.
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Approximate SSSP, proving Lemma 2.6 Next, we prove Lemma 2.6, restated below.

Lemma 2.6. Suppose that the network graph has s-radius at most n − 1. Then, we can compute

α-additive approximate SSSP in Õ(
n2

αk
+ kD) time, and with Õ(k) messages sent along each edge.

To compute an α-additive approximation on a graph with s-radius ≤ n−1, it suffices to compute
a (1 + α/n)-multiplicative approximation, i.e., d(s, t) ≤ d̃(s, t) ≤ (1 + α/n)d(s, t). Let ǫ := α/n, so
that we are looking for a (1 + ǫ)-multiplicative approximation (with running time dependent on ǫ).

First, we use the algorithm of [Nan14] to compute h-hop distances. The following is a restatement
of Theorem 3.2 from [Nan14] with the added dependence on ǫ in the running time.

Theorem A.1. BoundedHopSSSP computes (1 + ǫ)-multiplicative approximate h-hop distances in
Õ(ǫ−1h) time, and Õ(1) messages are sent along each edge.

Proof. For proof of correctness, we refer the reader to Theorem 3.2 of [Nan14]. Note that since G
has s-radius ≤ n − 1, the range [⌈log(n − 1)⌉] suffices in line 2 of BoundedHopSSSP, as is explained
in Lemma 3.4 of [Nan14].

For running time and edge congestion, BoundedDistanceSSSP clearly runs in K = (1+ 2/ǫ)h =
O(ǫ−1h) rounds, and every edge (u, v) has at most two messages sent along it, one from u’s broadcast
and one from v’s broadcast. BoundedHopSSSP runs O(log n) iterations of BoundedDistanceSSSP, so
the total running time is O(ǫ−1h log n) and the total edge congestion is O(log n).

Algorithm 5 BoundedHopSSSP(G = (V,E,w), s, h)

Input: Weighted directed graph G, source vertex s, and integer h. G has s-radius ≤ n− 1.
Output: Every node u knows the value of d̃h(s, u) such that dh(s, u) ≤ d̃h(s, u) ≤ (1 + ǫ)dh(s, u).

1: Let t be the time this algorithm starts. We can assume that all nodes know t.

2: For all i ∈ [⌈log(n− 1)⌉] and edge (x, y), let D′
i ← 2i and w′

i(x, y)← ⌈ 2hw(x,y)
ǫD′

i

⌉. Let K ← (1 + 2/ǫ)h.

3: for all i do
4: d′i ← BoundedDistanceSSSP(G,w′

i, s,K)

5: d̃h(s, u)← ǫD′
i

2h
min
i

d′i(s, u)

Algorithm 6 BoundedDistanceSSSP(G,w, s,K)

Input: Weighted directed graph G, source vertex s, and integer K.
Output: Every node u knows d′(s, u) where d′(s, u) = d(s, u) if d(s, u) ≤ K and d′(s, u) =∞ otherwise.

1: Let t be the time this algorithm starts. We can assume that all nodes know t.
2: Initially, every node u sets d′(s, u)←∞.
3: Source node s sends a message (s, 0) to itself.
4: if a node u receives a message (s, ℓ) for some ℓ from node v then
5: if (ℓ+ w(u, v) ≤ K) and (ℓ+ w(u, v) < d′(s, u)) then
6: u sets d′(s, u)← ℓ+ w(u, v).

7: For any x ≤ K, at time t + x, every node u such that d′(s, u) = x broadcasts message (s, x) to all its
neighbors to announce that d′(s, u) = x.

If we sample k virtual nodes (including the source), we can run this algorithm with h :=
O(n log n/k) from each virtual node, which is O(k log n) total congestion. Scheduling these al-
gorithms in O(dilation+ congestion · log n) time, we get O(ǫ−1h log n+ k log2 n) = Õ(ǫ−1n/k + k).
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On the virtual graph, since all edge weights are multiples of
ǫD′

i

2h
, we can scale all weights by

2h

ǫD′
i

so that they are integers, and then run VirtualSSSP from Section 3.4 in O(kD log n) time

and O(k log n) congestion along each edge. Every node then scales its distance by
ǫD′

i

2h
, giving a

(1 + ǫ)-approximate distance from the source. Finally, extend the (1 + ǫ)-approximate h-hop SSSP
algorithm to all nodes in the same Õ(ǫ−1n/k+ k) running time and Õ(1) congestion, obtaining the
following:

Lemma A.2. We can compute (1 + ǫ)-multiplicative approximate SSSP in Õ(ǫ−1n/k + kD) time
and Õ(k) congestion along each edge.

Applying Lemma A.2 with ǫ := α/n proves Lemma 2.6.

B Missing Details of Section 3

Algorithm 7 Main(G, s)

Input: Every node v knows the weight and direction of each edge e ∈ E incident to v.
Output: Every node v learns d(v), which equals the exact distance dw(s, v).

1: k ← n3/4D−3/4, ℓ← n1/2D1/2, q ← n1/4D−1/4.
2: for ⌊log2 Λ⌋+ 1 iterations of ScalingFramework do

3: d̃← ℓ-AdditiveErrorSSSP(s,G, k)

4: Run SmallWeightSSSP(s,G, d̃, k, ℓ, q)

5: Let d be the distances output by ScalingFramework.

Algorithm 8 SmallWeightVirtualSSSP(s,G′ = (V ′, E′, w′))

Input: Every node v′ knows the weight and direction of each virtual edge e′ ∈ E′ incident to v′. It is
promised that dw′(s, t′) ≤ |V ′| − 1 for all nodes t′.
Output: Every node v′ learns d(v′), which equals the exact distance dw′(s, v′).

1: d(s)← 0, d(t′)←∞ for all t′ 6= s.
2: i← 0, k ← |V ′|
3: while i ≤ k − 1 do
4: For each node u′, if d(u′) = i and u′ has not broadcasted yet, broadcast d(u′).
5: If node v′ has edge (u′, v′) and node u′ broadcasted, update d(v′)← min{d(v′), d(u′) + w′(u′, v′)}
6: If no node broadcasted, i← i+ 1

C Improved Virtual SSSP

In this section, we focus on the virtual SSSP problem, with the goal of developing faster virtual
SSSP algorithms for large network diameters D, by reducing the dependency on D.

Let graph G be the network graph with n nodes. Assume that we are in a ScalingFramework

iteration, so the graph G has s-radius at most n − 1. Let G′ = (V ′, E′, w′) be the virtual graph
with nV ′ nodes containing the source s ∈ V ′. Note that D is the diameter of the original graph,
which could be much larger than nV ′ . The running time Õ(nV ′D) of VirtualSSSP, presented in
the previous section, is near-optimal for small D, i.e., D = Õ(1). For larger D, the Õ(D) factor
increases the running time substantially. In this section, we present two alternative algorithms for
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computing SSSP on the virtual graph for larger values of D. Recall that our task is for every virtual
node v′ ∈ V ′ to compute a value d(v′) that equals dw′(s, v′).

C.1 Algorithm 1: Gathering

Algorithm VirtualSSSPGather Note that the virtual graph G′ has size O(n2
V ′), so one strategy is

to broadcast the entire graph to all nodes in O(n2
V ′ +D) time using standard pipelining techniques;

we call this procedure gathering the graph. Then, all virtual nodes can locally compute their
distance from s. We call this algorithm VirtualSSSPGather.

Lemma C.1. The irtual SSSP algorithm VirtualSSSPGather runs in O(n2
V ′ +D) rounds.

C.2 Algorithm 2: Virtualizing

The virtual SSSP algorithm of this section mimics certain procedures in Main, except modified
to work on a virtual graph. To understand the modifications necessary, we first discuss how to
transform generic distributed algorithms to work on a virtual graph.

Distributed Algorithms on Virtual Graph First, we explain how to schedule distributed
algorithms on virtual graphs, following a natural extension to Section 2.4.

For a moment, suppose that a virtual graph G′ is actually a network graph, in that nodes
can communicate directly along edges in G′. Let A1, . . . , Ak be distributed algorithms running
independently on this network graph G′. We place an additional restriction on each algorithm:
on every round, a node can either broadcast the same message to all of its neighbors, or not send
anything. That is, a single node is not allowed to send different messages to different neighbors in a
single round. Following Section 2.4, let dilation denote the maximum running time of any algorithm
Ai, and let broadcasts denote the maximum number of times a single node broadcasts, summed up
over all k algorithms. Formally, define bv,i as the number of times node v broadcasts in algorithm
Ai, and define broadcasts := maxv

∑

i bv,i. Now, revert back to the normal setting, where G′ is a
virtual graph of a network graph G; as usual, we do not assume that edges of G′ belong to the
network. The following claim relates the performances of A1, . . . , Ak on the hypothetical network
graph G′ to their performances on the actual network graph G.

Claim C.2. Let A1, . . . , Ak be independent, distributed algorithms on G′ = (V ′, E′) in which nodes
are only allowed to broadcast. Suppose that G′ is a virtual graph of a network graph G with diameter
D. Then, we can run algorithms A1, . . . , Ak in G in time O(dilation ·D + broadcasts · n).

Proof. Let bv,i,t ∈ {0, 1} denote whether or not node v broadcasts on step t of algorithm Ai. We can
simulate round t of each algorithm Ai in O(D+

∑

v,i bv,i,t) steps by standard pipelining techniques.
Since we need to simulate dilation rounds in total, the total running time is O(dilation·D+

∑

v,i,t bv,t,i).
The latter term is the total number of broadcasts over all nodes and all algorithms, which is at most
n · broadcasts.

Whenever we transform a set of distributed algorithms to run on a virtual graph, we say we
virtualize the algorithms.

C.2.1 Virtualizing Previous Tools

Here, we discuss how to virtualize the scaling framework, (1 + ǫ)-multiplicative approximate SSSP,
and the ShortRange algorithm to work on virtual graphs. The generic process is the same for all
three. First, we modify the algorithm so that, at each round, every node can either broadcast a
message to all other nodes, or remain silent. Then, we replace each round t of the original algorithm
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with a pipelined broadcast, which takes O(bt + D) time, where bt is the number of nodes that
broadcast on round t. When virtualizing multiple algorithms in parallel, we invoke Claim C.2.

Scaling Framework To update edge weights on each iteration of ScalingFramework, it is enough
for every virtual node to broadcast its computed distance, so that all nodes can recompute the
weights of their edges. By standard pipelining techniques, this takes O(nV ′ +D) time per iteration.
Since every virtual node has distance at most n − 1 from source s, the scaling frameworks needs
just O(log n) iterations, resulting in Õ(nV ′ +D) rounds spent reweighting edges.

ShortRange Observe that, on each round of ShortRange, every node always communicates by
sending the same message to its neighbors. Therefore, we can trivially modify the algorithm to
run in O(ℓq + h) rounds with O(h/q) broadcasts per node. If we run k ShortRange algorithms in
parallel, each node broadcasts O(hk/q + k) times, so applying Claim C.2 gives the following.

Lemma C.3. We can simulate k independent runs of the ShortRange algorithm on a virtual graph
with nV ′ nodes in time O((ℓq + h) ·D + (hk/q + k) · nV ′).

(1+ǫ)-Approximate SSSP Consider the problem of computing (1+ǫ)-multiplicative approximate
distances on a virtual graph, for some ǫ ≤ 1. The algorithm of Lemma A.2 first runs k independent
copies of BoundedHopSSSP for some parameter k, each of which can be modified to take Õ(ǫ−1nV ′/k)
rounds with Õ(1) broadcasts per node. The dilation is Õ(ǫ−1nV ′/k) and each node broadcasts
Õ(k) times total, so by Claim C.2, everything can be pipelined to run in Õ(ǫ−1nV ′/k · D + knV ′)
time. Next, the algorithm faces another virtual SSSP instance on k nodes, which it solves using
VirtualSSSPGather in O(k2 + D) time. Finally, the extension part of the algorithm also runs k
independent copies of BoundedHopSSSP, and the analysis is identical. Thus, the total running time
to compute (1 + ǫ)-approximate distances from s is

Õ

(

nV ′D

ǫk
+ knV ′ + k2 +D

)

.

Setting k := ǫ−1/2D1/2 gives the following. We can assume that k ≤ nV ′ , since otherwise, the
knV ′ + D factor makes the running time at least Ω(n2

V ′ + D), and we are better off running
VirtualSSSPGather instead.

Lemma C.4. We can compute (1+ ǫ)-multiplicative approximate distances on a virtual graph with
nV ′ nodes in time Õ(ǫ−1/2nV ′D1/2).

C.2.2 Warm-up: Nonrecursive Virtual SSSP

Here, we describe the virtual SSSP algorithm VirtualSSSPNonrecursive that uses the virtualized
scaling framework and ShortRange algorithm. It runs in Õ(nV ′r1/2D1/2 +D) time on any virtual
graph with s-radius at most r. Recall that, after running ScalingFramework, r can be as large as

nV ′ − 1, giving a running time of Õ(n
3/2
V ′ D1/2 + D). Then, in Appendix C.2.3, we will make this

algorithm recursive and further improve the running time.

Virtualized Scaling Framework The algorithm first applies the virtualized ScalingFramework

to the virtual graph G′ on nV ′ nodes, reducing the task to computing O(log n) iterations of virtual
SSSP on a graph with s-radius at most nV ′−1. As discussed before, the total time spent reweighting
edges in the virtualized ScalingFramework is Õ(nV ′ +D).
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Virtualized ShortRange The algorithm first samples a set of nodes V ′′ ⊆ V ′, where every
virtual node in V ′ is sampled with probability k/nV ′ , for some parameter k, except that s ∈ V ′′

with probability 1. We run the virtualized ShortRange with parameters h := O(nV ′ log nV ′/k) and
ℓ := r from each node in V ′′, taking O((ℓq + h) ·D + (hk/q + k) · nV ′) time with a free parameter
q ≥ 1, by Lemma C.3.

Then, following notation of line 3 of SmallWeightSSSP, we build a graph G′′ = (V ′′, E′′), where
for each pair (u′′, v′′) ∈ V ′′ × V ′′ with du′′(v′′) < ∞, add to E′′ a directed edge (u′′, v′′) of weight
du′′(v′′) that is known to node v′′. We compute distances in G′′ by gathering the graph in O(k2+D)
time, so that each node in V ′′ can locally compute its correct distance. Finally, all nodes in V ′′

broadcast their distances, allowing each remaining node v′ ∈ V ′ to compute its distance d(v′) =
minu′′∈V ′′(d(u′′)+du′′(v′)). We next show that, w.h.p., d(v′) is the correct distance for each v′ ∈ V ′.

Consider one iteration of ScalingFramework, and fix a node t′ ∈ V ′ in the above algorithm. By
Lemma 2.4, there is a shortest s → t′ path P in G′ with a node in V ′′ within every consecutive
h nodes on the path. In other words, consecutive nodes in V ′′ ∩ P are within h hops from each
other on the path. Since G′ has s-radius at most r, we have w′(P ) ≤ r, so these consecutive nodes
are also within distance r = ℓ. Hence, by the guarantees of ShortRange, for every two consecutive
nodes u′′, v′′ ∈ V ′′, du′′(v′′) is the correct distance dw′(u′′, v′′), and there is an edge (u′′, v′′) ∈ E′′

with weight dw′(u′′, v′′). Therefore, after computing SSSP on G′′, all nodes in V ′′ ∩ P know their
correct distance. In particular, let t′′ be the last node on the path that is in V ′′. Since t is within
h hops and distance ℓ from t′′ along P , we also have dt′′(t

′) = dw′(t′′, t′), so

dw′(s, t′) = dw′(s, t′′) + dw′(t′′, t) = d(t′′) + dt′′(t
′).

Since node t′ computes d(t′) = minu′′∈V ′′(d(u′′) + du′′(t′)) and the distances d(v′) can never be a
strict underestimate, we have d(t′) = dw′(s, t′), as desired.

Finally, we analyze the running time. Overall, the total number of rounds is

O

(

(ℓq + h) ·D +
hknV ′

q
+ knV ′ + k2 +D

)

= Õ

(

rqD +
nV ′D

k
+

n2
V ′

q
+ knV ′ +D

)

,

where we recall that ℓ = r, h = Õ(nV ′/k), and knV ′ ≥ k2. Setting k := D1/2 and q :=
nV ′r−1/2D−1/2 gives running time Õ(nV ′r1/2D1/2 + D), as desired. Note that, in the event that
k > nV ′ , we have D > n2

V ′ , so we are better off running VirtualSSSPGather on G′ in the optimal
O(n2

V ′ +D) = O(D) time. Also, if q < 1, the n2
V ′/q factor becomes at least n2

V ′ and again, we are
better off running VirtualSSSPGather. Thus, we can ignore these two corner cases.

Therefore, we have proved the following.

Lemma C.5. The algorithm VirtualSSSPNonrecursive computes exact distances on a virtual
graph with nV ′ nodes and s-radius at most r in time Õ(nV ′r1/2D1/2 +D).
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Algorithm 9 VirtualSSSPNonrecursive(s,G′ = (V ′, E′, w′), k, q)

Input: Every node v′ ∈ V ′ knows the weight and direction of every edge (u′, v′) in E′. We have the promise
that dw′(s, t′) ≤ r, ∀t′ ∈ V ′.
Output: Every node v learns d(v), which equals the exact distance dw(s, v).

1: Sample a set of nodes V ′′ ⊆ V ′. Every node joins the set with probability k/n, except for s, which joins
with probability 1.

2: Set h ← Θ(nV ′ lognV ′/k) and ℓ ← r. For each s′′ ∈ V ′′, let ds′′ be the result of running a virtualized
ShortRange(s′′, G, h, ℓ, q)

3: Build a graph G′′ = (V ′′, E′′), where for each pair (u′′, v′′) ∈ V ′′ × V ′′ with du′′ (v′′) < ∞, add to E′′ a
directed edge (u′′, v′′) of weight du′′(v′′) that is known to node v′′.

4: Run VirtualSSSPGather on the virtual graph G′′, so that each node v′′ ∈ V ′′ knows its distance d(v′′)
in G′′.

5: Every node u′′ ∈ V ′′ broadcasts its distance d(u′′) to all other nodes, and every node v′ ∈ V ′ \ V ′′

computes d(v′)← minu′′∈V ′′(d(u′′) + du′′(v′))

C.2.3 Recursive Virtual SSSP

In this section, we extend VirtualSSSPNonrecursive to work recursively, arriving at our final
algorithm VirtualSSSPRecursive. Our goal is to compute virtual SSSP in Õ(nV ′rǫD1/2+ r1−2ǫD)
time for any constant ǫ ∈ (0, 1/2], on a graph with s-radius at most r. Note that the case ǫ = 1/2
is covered by VirtualSSSPNonrecursive and Lemma C.5.

Recursion For ease of notation, define a virtual SSSP algorithm to be ǫ-good if, for any inte-
gers nV ′ and r, and on any virtual graph with nV ′ nodes and s-radius r, the algorithm runs in
Õ(nV ′rǫD1/2 + r1−2ǫD) time. Our ǫ-good algorithm will make a recursive call to an ǫ′-good algo-
rithm, for some ǫ′ > ǫ. Eventually, the value of ǫ in the recursion goes up to 1/2, at which point
the algorithm of Lemma C.5 serves as the base case and performs the job.

Additive Approximation Let G′ be a virtual graph with nV ′ nodes and s-radius at most r. The
algorithm begins by computing an ℓ-additive approximate SSSP, for some ℓ ≤ r. Note that, since
the s-radius is bounded by r this time, a (1 + ǫ)-multiplicative approximation for ǫ := ℓ/r suffices.
By Lemma C.4, this step has round complexity of

Õ

(

nV ′D1/2

ǫ1/2

)

= Õ

(

nV ′r1/2D1/2

ℓ1/2

)

.

Bucketing Similarly to SmallWeightSSSP, the algorithm defines buckets so that bucket V ′
i con-

tains all virtual nodes whose distance from s is in the range [iℓ, (i+1)ℓ). The key difference is that,
since the s-radius is at most r this time, we only need O(r/ℓ) buckets. Then, use the ℓ-additive
approximation d̃ to group each virtual node v′ ∈ V ′ into at most two buckets, according to the rule
v′ ∈ V ′

i ⇐⇒ d̃(s, v′) ∈ [iℓ, (i + 2)ℓ). From now on, let ni := |V ′
i | be the number of nodes in bucket

ni, so that
∑

i ni ≤ 2nV ′ .

Graph on Each Bucket The algorithm then processes the buckets V ′
i in increasing order of i.

For each bucket V ′
i , we assume the following invariant right before processing bucket V ′

i , which is
satisfied vacuously for the first iteration i = 0:

• (Invariant): Right before we process bucket V ′
i , all virtual nodes whose distance from s is

less than iℓ has broadcast its correct distance to all other virtual nodes.
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Every virtual node v′ ∈ V ′
i first computes its best distance di(v

′) based on distance broadcasts from
its neighbors in G′ on iterations before i. Now build a virtual graph G̃′

i = (Ṽ ′
i , Ẽ

′
i) as follows: take

the subgraph of G′ induced by V ′
i , add s to the graph, and direct an edge from s to each virtual

node v′ ∈ V ′
i with edge weight di(v

′)− (i−1)ℓ. Observe that all edge weights are nonnegative, since

di(v
′) ≥ dG′(s, v′) ≥ d̃G′(s, v′)− ℓ ≥ iℓ− ℓ. We now claim the following:

Corollary C.6. For all virtual nodes t′ ∈ V ′
i , dG̃′

i
(s, t′) ≥ dG′(s, t′)−(i−1)ℓ. If node t′ also satisfies

dG′(s, t′) ∈ [iℓ, (i + 1)ℓ), then we have dG̃′

i
(s, t′) = dG′(s, t′)− (i− 1)ℓ.

Proof. It is easy to see that dG̃′

i
(s, t′) ≥ dG′(s, t′) − (i − 1)ℓ, since edges do not get shorter except

for the added edges from s, so we focus on the other direction.
Fix a virtual node t′ ∈ V ′

i . We know that dG′(s, t′) ≤ d̃(s, t′) < (i + 2)ℓ. Let P be the shortest
s → t′ path in G′, and let u′ be the last virtual node on P satisfying dG′(s, u′) < iℓ. Then, u′ has
already broadcast its correct distance, and its next node v′ on P has computed its correct distance
dG′(s, v′) in G′. In particular, there is an edge from s to v′ with weight dG′(s, v′)−(i−1)ℓ in G̃′

i. Also,
all nodes from v′ to t′ on P are in V ′

i . Therefore, the subpath of P from v′ to t′, with s appended at
the front, has length exactly dG′(s, t′)−(i−1)ℓ in G̃′

i. This proves dG̃′

i
(s, t′) ≤ dG′(s, t′)−(i−1)ℓ.

In particular, all virtual nodes v′ ∈ V satisfying dG′(s, v′) ∈ [iℓ, (i + 1)ℓ) have distance at most
2ℓ from s in G̃′

i. Next, the algorithm computes the correct distance from s to these nodes in G̃′
i

through a recursive call.

Recursive SSSP on Each Bucket The ǫ-good algorithm computes a virtual SSSP on G̃i re-
cursively by calling an ǫ′-good algorithm, for some ǫ′ > ǫ; the relation between ǫ′ and ǫ will be
determined later. G̃i is a graph with ni nodes and s-radius at most 2ℓ, so the recursive call takes

Õ(niℓ
ǫ′D1/2 + ℓ1−2ǫ′D)

time. After the recursive call, each virtual node v′ ∈ V ′
i takes its computed distance d̃i(v

′) and adds
(i− 1)ℓ to it, and broadcasts as its distance estimate for dG′(s, v′) to all other nodes. In particular,
all virtual nodes v′ ∈ V ′ with dG′(s, v′) ∈ [iℓ, (i + 1)ℓ) broadcast their correct distance, satisfying
the Invariant. Note that broadcasting the distances takes ni + D time, which does not affect the
running time asymptotics.

Running Time Summing up the running time of the approximate SSSP and the recursive virtual
SSSP calls in each bucket, we obtain:

Õ

(

nV ′r1/2D1/2

ℓ1/2

)

+

O(r/ℓ)
∑

i=1

Õ
(

niℓ
ǫ′D1/2 + ℓ1−2ǫ′D

)

= Õ

(

nV ′r1/2D1/2

ℓ1/2
+ nV ′ℓǫ

′

D1/2 +
rD

ℓ2ǫ′

)

,

using the fact that
∑

i ni ≤ 2nV ′ . Setting ℓ := r1/(1+2ǫ′) gives running time

Õ(nV ′rǫ
′/(1+2ǫ′)D1/2 + r1−2ǫ′/(1+2ǫ′)D).

In other words, the algorithm is ǫ-good for ǫ := ǫ′/(1 + 2ǫ′).
Moreover, setting ℓ := r(1+δ)/(1+2ǫ′) for δ < 2ǫ′ gives running time

Õ(nV ′r(1−(1+δ)/(1+2ǫ′))/2D1/2 + r1−2ǫ′(1+δ)/(1+2ǫ′)D),

and the exponent of r in the first term satisfies (1− (1+ δ)/(1 + 2ǫ′))/2 ≤ ǫ′(1+ δ)/(1 + 2ǫ′), so the
algorithm is ǫ′(1 + δ)/(1 + 2ǫ′)-good. Therefore, by choosing an appropriate δ, the algorithm can
become ǫ-good for any ǫ satisfying

ǫ′/(1 + 2ǫ′) ≤ ǫ < ǫ′.
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Solving the Recursion Finally, we prove the desired running time of the algorithm.

Lemma C.7. For any constant ǫ ∈ (0, 1/2], there is a virtual SSSP algorithm running in Õ(nV ′rǫD1/2+
r1−2ǫD) rounds on a virtual graph with nV ′ nodes and s-radius at most r.

Proof. We prove by induction on α ∈ N that there is an ǫ-good virtual SSSP algorithm for all
ǫ ∈ [1/(2α), 1/2]. The base case α = 1 follows by Lemma C.5.

Now assume that there is an ǫ′-good virtual SSSP algorithm for all ǫ′ ∈ [1/(2α), 1/2]. In
particular, the statement is true for ǫ′ = 1/(2α). By our previous observation, in one recursive
step, we obtain an ǫ-good algorithm for any ǫ satisfying ǫ′/(1 + 2ǫ′) ≤ ǫ < ǫ′, which comes out to
ǫ ∈ [1/(2α+2), 1/(2α)). Hence, there is an ǫ-good virtual SSSP algorithm for all ǫ ∈ [1/(2α+2), 1/2],
completing the induction.

Observe that the above claim only holds for constant values of ǫ, since the number of virtual
nodes can double upon a recursive call. That is, we need to maintain a constant number of recursion
levels.

Final Running Time Finally, due to the virtualized ScalingFramework, we can assume that
r ≤ nV ′ − 1 initially, giving our main result in this section.

Theorem C.8. For any constant ǫ ∈ (0, 1/2], there is a virtual SSSP algorithm with round com-
plexity of Õ(n1+ǫ

V ′ D1/2 + n1−2ǫ
V ′ D).

Algorithm 10 VirtualSSSPRecursive(s,G′ = (V ′, E′, w′), ǫ)

Input: Every node v′ ∈ V ′ knows the weight and direction of every edge (u′, v′) in E′. We have the promise
that dw′(s, t′) ≤ r, ∀t′ ∈ V ′.
Output: Every node v learns d(v), which equals the exact distance dw(s, v).

1: Let ǫ′ be the solution to ǫ = ǫ′/(1 + 2ǫ′), or ǫ′ ← 1/2 if the solution is greater than 1/2.
2: Let δ be the solution to ǫ = ǫ′(1 + δ)/(1 + 2ǫ′).

3: ℓ← r(1+δ)/(1+2ǫ′), k ← (ℓ/r)−1/2D1/2

4: d̃← ℓ-AdditiveErrorVirtualSSSP(s,G′, k)

5: Define V ′
i as {v′ ∈ V ′ : d̃(s, v′) ∈ [iℓ, (i+ 2)ℓ)}.

6: Initialize distances d(s)← 0, d(v)←∞ for all v ∈ V \ s.
7: for i = 0, . . . , ⌊r/ℓ⌋ do // Iterate over buckets V0, . . . , V⌊r/ℓ⌋.

8: Build the graph G̃′
i = (Ṽ ′

i , Ẽ
′
i) as follows. Start with the graph G′ induced by V ′

i . Then, add node s

to Ṽ ′
i if necessary, and for each v′ ∈ V ′

i , add to Ẽ′
i a directed edge (s, v′) of weight d(v′)− (i− 1)ℓ that is

known to node v′.
9: if ǫ′ = 1/2 then // Base case.

10: k ← D1/2, q ← |Ṽ ′
i |r−1/2D−1/2

11: Run VirtualSSSPNonrecursive(s, G̃′
i, k, q), and let d̃′i be the resulting distance that each node in

Ṽ ′
i learns.

12: else // Recursive step.

13: Run VirtualSSSPRecursive(s, G̃′
i, ǫ

′), and let d̃′i be the resulting distance that each node in Ṽ ′
i

learns.
14: Every node v′ ∈ V ′

i broadcasts d̃′i(v
′) to all other virtual nodes. // These broadcasts are

pipelined along a BFS tree.

15: Every node v′ ∈ V ′ sets d(v′) = min{d(v′), d(u′) + w′(u′, v′)} for each d̃i(u
′) received from neighbor

u′ in G′.
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C.3 Running Time Improvements

From the proof of Lemma 3.3, observe that SmallWeightSSSP runs in

Õ

(

ℓq +
n

q
+

n2

ℓk

)

time, plus the time it takes to solve a virtual SSSP instance on k virtual nodes. If we use
VirtualSSSPGather of Lemma C.1 that runs in O(k2 +D) rounds, we get running time

Õ

(

ℓq +
n

q
+

n2

ℓk
+ k2 +D

)

;

setting k := n3/7, ℓ := n5/7, and q := n1/7 gives total running time Õ(n6/7 +D).
If we use the algorithm of Theorem C.8 that runs in Õ(k1+ǫD1/2 + k1−2ǫD) rounds, we get

running time

Õ

(

ℓq +
n

q
+

n2

ℓk
+ k1+ǫD1/2 + k1−2ǫD

)

,

as long as ǫ ∈ [Ω(1), 1/2]. To optimize this expression, we first set ǫ to be the solution to the
equation k3ǫ = D1/2 so that, for any value of k,

k1+ǫD1/2 + k1−2ǫD = kD2/3.

Then, set k := n3/4D−1/2, ℓ := n1/2D1/3, and q := n1/4D−1/6 to obtain running time Õ(n3/4D1/6),
as long as ǫ ∈ [Ω(1), 1/2].

We first restrict ourselves to the case D = nΩ(1), which implies ǫ = Ω(1). As for the constraint
ǫ ≤ 1/2, that happens precisely when

D1/2 = k3ǫ ≤ k3/2 = (n3/4D−1/2)3/2 ⇐⇒ D ≤ n9/10.

Thus, we have an Õ(n3/4D1/6) algorithm when nΩ(1) ≤ D ≤ n9/10, and an Õ(n6/7+D) algorithm
for any D. Note that when D ≥ n6/7, we are always better off running the Õ(n6/7 +D) algorithm,
so the upper bound of D ≤ n9/10 for the virtualizing SSSP case does not hinder us overall. Hence,
the optimal algorithm of the two has a running time expressible as

Õ
(

min{n3/4D1/6, n6/7}+D
)

.

For the case when D = no(1), the Õ(n3/4D1/4) algorithm of Theorem 1.1 runs in Õ(n3/4+o(1)) time.
Altogether, by choosing the best algorithm of the three, we obtain the running time

Õ
(

n3/4+o(1) +min{n3/4D1/6, n6/7}+D
)

,

proving Theorem 1.2.

D Multiple sources

Consider now the multiple source SSSP problem: given κ sources, we want each node v ∈ V to know
its exact distance from each source. In this section, we modify our single-source SSSP algorithm to
obtain efficient algorithms for the κ-sources problem.

Our high-level ideas are the same: we run the scaling framework O(log Λ) times, and we solve
each iteration for all κ sources in parallel. To elaborate, we first construct κ graphs Gs, one for
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each source s, so that every graph Gs has s-radius at most n−1. In κ rounds, every node can know
its incident edges in each graph Gs. We then run SmallWeightSSSP(s,Gs, k, ℓ, q) from each source
s in parallel, once again using [Gha15] to schedule our algorithms, so that the entire algorithm
runs in Õ((dilation + κ · congestion) · log Λ) time. where dilation and congestion are parameters of
SmallWeightSSSP(s,Gs, k, ℓ, q) for a single source s.

Since we have multiple virtual SSSP algorithms, we will break the running time inside and
outside the virtual SSSP computation.

Outside Virtual SSSP The dilation Õ

(

ℓq +
n

q
+

n2

ℓk

)

of SmallWeightSSSP outside of the vir-

tual SSSP algorithm follows from Lemma 3.3. The following lemma analyzes the congestion.

Lemma D.1. In one execution of SmallWeightSSSP outside of virtual SSSP, Õ(n/q + k + n/k)
messages are passed along each edge.

Proof. By Lemma 2.6, ℓ-AdditiveErrorSSSP has congestion Õ(k). Again, we use the same value
of k for ℓ-AdditiveErrorSSSP. Also, ShortRange from all virtual nodes takes Õ(n/q) congestion,
following the proof of Lemma 3.3.

We now argue about the congestion of Extend. For an edge (u, v), let i be the first iteration when
d(u) is sent from u to v. It follows that the current estimate d(u) satisfies d(u)+w(u, v) ∈ [iℓ, (i+1)ℓ).
Since estimates only become lower over time, we still have d(u) < (i+ 1)ℓ at the end of iteration i.
Therefore, no message is sent from u to v in future iterations of Extend. It follows that u only sends
messages to v in one iteration, which is O(h) messages. We can repeat the same argument to bound
the number of messages from v to u, so the congestion along each edge is O(h) = Õ(n/k).

Hence, by the Õ(dilation+ κ · congestion) formula, the total running time of SmallWeightSSSP
outside virtual SSSP is

Õ

(

ℓq +
n

q
+

n2

ℓk
+ κ

(

n

q
+ k +

n

k

))

.

Inside Virtual SSSP Now we consider the changes to virtual SSSP algorithms. Again, let nV ′

be the number of nodes in each of the κ virtual graphs.
First, consider the original VirtualSSSP algorithm of Lemma 3.4. In VirtualSSSP, the total

number of broadcasts is Õ(κnV ′) over all κ algorithms, so the congestion is Õ(nV ′). Adding this
onto the dilation, we obtain running time

Õ(κnV ′ + nV ′D).

Now consider the two improved algorithms of Appendix C. The gathering algorithm gathers κ
graphs of size O(n2

V ′), so it takes
O(κn2

V ′ +D)

rounds total.
For the virtualizing algorithm, we first modify the virtualized procedures to run κ iterations in

parallel. The only difference in the running time is the value of broadcasts, which increases by a
factor of κ. We again use Claim C.2 and optimize the parameters.

1. Reweighting edges in the scaling framework now takes Õ(κnV ′ +D) rounds.

2. The virtualized (1 + ǫ)-multiplicative approximate SSSP now takes Õ(nV ′D/(ǫk) + κknV ′ +
k2 +D) rounds. Setting k := κ−1/2ǫ−1/2D1/2 gives running time Õ(κ1/2ǫ−1/2nV ′D1/2). Here,
to ensure that k ≥ 1, we impose the restriction κ < D. Also, if k > nV ′ , then the κknV ′ +D
factor makes the running time at least Ω(κn2

V ′+D), and we are better off gathering the graph.
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3. The virtualized ShortRange now takes Õ(rqD+nV ′D/k+κn2
V ′/q+κnV ′k+D) rounds. We can

optimize k := κ−1/2D1/2 and q := κ1/2nV ′r−1/2D−1/2 to get running time Õ(κ1/2nV ′r1/2D1/2+
D). Again, we assume that κ < D. Also, if q < 1, then the κn2

V ′/q + D factor is at least
Ω(κn2

V ′ +D).

That is, both running times increase by a factor of κ1/2. We can work through the recursion in
Lemma C.7 with these updated values in the same manner and obtain the following.

Lemma D.2. For any ǫ ∈ (0, 1/2], there is an algorithm that computes virtual SSSP on κ graphs in
parallel, each with nV ′ nodes and s-radius at most r. It runs in Õ(κ1/2nV ′rǫD1/2+ r1−2ǫD) rounds.

Since r = nV ′ − 1 by the scaling framework, the virtualizing algorithm solves κ virtual SSSPs in

Õ(κ1/2n1+ǫ
V ′ D1/2 + n1−2ǫ

V ′ D)

rounds.
Lastly, we optimize for the parameters in each of the virtual SSSP algorithms. We have three

cases, some of which impose constraints on κ and D.

1. κ ≥ Dn−o(1). In this case, we run the original VirtualSSSP in Õ(κk + kD) = Õ(κk) rounds,
for a total running time of

Õ

(

ℓq +
n

q
+

n2

ℓk
+ κ

(

n

q
+ k +

n

k

)

+ kD

)

.

Setting k := n3/4κ−1/2, ℓ := n1/2, and q := n1/2κ−1/2 gives a final time of

Õ(κ1/2n3/4+o(1)).

2. The gathering virtual SSSP algorithm in Õ(κk2 +D) rounds, for a total running time of

Õ

(

ℓq +
n

q
+

n2

ℓk
+ κ

(

n

q
+ k +

n

k

)

+ κk2 +D

)

.

Setting k := κ−2/7n3/7, ℓ := κ−1/2n5/7, and q := κ4/7n1/7 gives a final time of

Õ(κ3/7n6/7 +D).

3. κ ≤ Dn−Ω(1) andD ≤ κ2/5n9/10. In this case, we use the virtualizing algorithm in Õ(κ1/2k1+ǫD1/2+
k1−2ǫD) rounds. We first set ǫ to satisfy κ1/2k1+ǫD1/2 = k1−2ǫD ⇐⇒ k3ǫ = κ−1/2D1/2, so
that the algorithm runs in Õ(κ1/3nV ′D2/3) rounds. Note that ǫ ∈ [Ω(1), 1/2] in this case. The
total running time becomes

Õ

(

ℓq +
n

q
+

n2

ℓk
+ κ

(

n

q
+ k +

n

k

)

+ κ1/3kD2/3

)

.

Setting k := n3/4D−1/2, ℓ := κ−1/3n1/2D1/3, and q := κ2/3n1/4D−1/6 gives a final time of

Õ(κ1/3n3/4D1/6).

We now verify the constraints on ǫ. Since k3ǫ = κ−1/2D1/2 = nΩ(1) by assumption, we have
ǫ = Ω(1). Also,

ǫ ≤ 1/2 ⇐⇒ κ−1/2D1/2 = k3ǫ ≤ k3/2 = (n3/4D−1/2)3/2 ⇐⇒ D ≤ κ2/5n9/10,

which is precisely our constraint.

Note that when D > κ2/5n9/10, we also have D > κ3/7n6/7, so we are better off running the
gathering virtual SSSP instead, giving an optimal Õ(κ3/7n6/7 + D) = Õ(D) rounds total.
Therefore, the D ≤ κ2/5n9/10 restriction does not affect us overall.
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Altogether, the three cases combined produce an algorithm that runs in time

Õ
(

min
{

κ1/2n3/4+o(1) + κ1/3n3/4D1/6, κ3/7n6/7
}

+D
)

,

proving Theorem 1.3.
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