
ar
X

iv
:1

70
9.

10
45

5v
1

 [
cs

.D
S]

 2
9

Se
p

20
17

Online Load Balancing for Related Machines

Sungjin Im∗

UC Merced

Nathaniel Kell†

Duke University

Debmalya Panigrahi‡

Duke University

Maryam Shadloo§

UC Merced

Abstract

In the load balancing (or job scheduling) problem, introduced by Graham in the 1960s (SIAM J.

of Appl. Math. 1966, 1969), jobs arriving online have to be assigned to machines so to minimize

an objective defined on machine loads. A long line of work has addressed this problem for both the

makespan norm and arbitrary ℓq-norms of machine loads. Recent literature (e.g., Azar et al., STOC

2013; Im et al., FOCS 2015) has further expanded the scope of this problem to vector loads, to capture

jobs with multi-dimensional resource requirements in applications such as data centers. In this paper, we

completely resolve the job scheduling problem for both scalar and vector jobs on related machines, i.e.,

where each machine has a given speed and the time taken to process a job is inversely proportional to

the speed of the machine it is assigned on. We show the following results:

• Scalar scheduling. We give a constant competitive algorithm for optimizing any ℓq-norm for

(scalar) scheduling on related machines. The only previously known result was for the makespan

norm.

• Vector scheduling. There are two natural variants for vector scheduling, depending on whether the

speed of a machine is dimension-dependent or not. We show a sharp contrast between these two

variants, proving that they are respectively equivalent to unrelated machines and identical machines

for the makespan norm. We also extend these results to arbitrary ℓq-norms of the machine loads.

No previous results were known for vector scheduling of related machines.

A key component of our algorithms is a new tool that we call machine smoothing, where we replace

an arbitrary instance with a smoothed instance of the problem. The structural properties of the smoothed

instance make it much simpler to argue about various norms of machine loads. We hope that this generic

technique will find more applications in other scheduling problems as well.

∗Email: sim3@ucmerced.edu. Supported in part by NSF grants CCF-1409130 and CCF-1617653.
†Email: kell@cs.duke.edu. Supported in part by NSF awards CCF-1527084 and CCF-1535972.
‡Email: debmalya@cs.duke.edu. Supported in part by NSF awards CCF-1527084 and CCF-1535972.
§Email: mshadloo@ucmerced.edu. Supported in part by NSF grant CCF-1409130 and CCF-1617653.

http://arxiv.org/abs/1709.10455v1

1 Introduction

The load balancing (or job scheduling) problem, introduced in the seminal work of Graham in the 1960s [19,

20], asks for an online assignment of jobs to machines so as to minimize some objective defined on machine

loads. A long line of work has addressed this problem for both the makespan norm (maximum load) and

for other ℓq-norms of machine loads (e.g., [9, 26, 2, 16, 2, 15, 10, 18, 22, 3, 8, 11, ?, 4, 12]). In this

paper, we study this problem in the related machines setting, where the processing time of a job on a

machine is inversely proportional to the speed of the machine. The only previous result for this problem on

related machines was a constant-competitive algorithm for the makespan (maximum load) objective [11].

However, in many situations, other ℓq-norms of machine loads are more relevant: e.g., the 2-norm is suitable

for disk storage [?, ?], whereas q between 2 and 3 is used for modeling energy consumption [?, ?, ?].

This led to constant-competitive algorithms for arbitrary ℓq-norms of machine loads for the special case

of identical machines (all machine speeds are equal) [?], and to O(q)-competitive algorithms for the more

general unrelated machines setting (processing times are arbitrary) [4, 12]. But, this problem has remained

open for related machines.

Moreover, recent literature has further expanded the scope of the job scheduling problem to vector

jobs that have multiple dimensions, the resulting problem being called vector scheduling [13, 7, 28, 25].

This problem is very relevant to scheduling on data centers where jobs with multiple resource requirements

have to be allocated to machine clusters to make efficient use of limited resources such as CPU, memory,

network bandwidth, and storage [17, 29, 27, 14, 24, 25]. Recently, Im et al. [23] showed that for vector

scheduling with the makespan norm, competitive ratios of O(logd/ log logd) and O(log d+ logm) are tight

for identical and unrelated machines respectively, where d is the number of dimensions and m is the number

of machines. They also extended these results to arbitrary ℓq-norms. In many data center applications,

the situation is between these two extremes of identical and unrelated machines, and resembles the related

machines scenario. In other words, machines have non-uniform speeds and the load created a vector job

on any dimension of a machine is inversely proportional to the machine speed. But, vector scheduling for

related machines had not been addressed previously, either for the makespan norm or for arbitrary ℓq norms.

We completely resolve these two sets of problems for scalar and vector scheduling on related machines in

this paper. Our first result is for the scalar setting, and gives a constant-competitive algorithm for optimizing

any ℓq-norm of machine loads on related machines. In previous work, the constant competitive ratio for

makespan on related machines was obtained by the so-called slowest-fit algorithm [11]. The main idea in

this algorithm is to guess the optimal makespan, and assign a job arriving online to the slowest machine that

can accommodate it without exceeding the optimal makespan by a constant factor. But, this strategy fails

for other ℓq-norms. Even if we were to guess the optimal value of the norm, this does not tell us the relative

contributions of the different machines to the optimal objective. Therefore, guessing the optimal value is not

sufficient to fix bounds on the loads of individual machines (unlike makespan, where the guessed optimum

gives a bound for the load on each machine). This rules out an assignment strategy like slowest-fit. Instead,

we develop a new tool that we call machine smoothing, and use it in all our algorithms. Before describing

this idea, let us turn to vector scheduling and describe our results for this problem.

Our next contribution in this paper is to resolve the online vector scheduling problem for related ma-

chines. We show that if machine speeds are dimension-independent (we call this the homogeneous case),

then the competitive ratio asymptotically matches that of identical machines for the makespan norm. We also

extend this result to arbitrary ℓq-norms. On the other hand, we show that if machine speeds are dimension-

dependent (we call this the heterogeneous case), then the competitive ratio asymptotically matches that of

unrelated machines. Both homogeneous and heterogeneous speeds are relevant to the practical context and

1

respectively represent situations where clusters only differ in the number of machines or in machine types

as well.1 Unfortunately, the slowest-fit algorithm does not work for vector scheduling on homogeneous

machines, even for the makespan norm (see Appendix A for a counterexample). As with scalar scheduling,

we again resort to the machine smoothing idea that we describe next.

From a technical perspective, a key tool in our algorithms is what we call machine smoothing. Imagine

grouping together machines with similar speeds. Then, one can employ a two-stage algorithm that assigns

each job to a machine group, and then employs an identical machines algorithm within each machine group.

But, how do we figure out an assignment of jobs to machine groups? The number of machines in each

group might be completely arbitrary, making such assignment a challenging problem. It turns out that the

assignment of jobs to groups is facilitated if we can ensure that the cumulative processing power in a group

exponentially increases as we move to slower groups. (The cumulative processing power for the makespan

objective is simply the sum of speeds of machines in the group; for other ℓq-norms, this definition is suitably

generalized.) So, now we have two objectives: group machines with similar speeds, but also ensure expo-

nentially increasing processing powers of the groups in decreasing speed order. To simultaneously satisfy

these goals, we define a machine smoothing procedure that initially groups machines to satisfy the second

condition, but then replaces the machines of non-uniform speeds in a group by a suitably defined equivalent

set of identical machines. We show that this generic transformation can be performed for any given instance,

and for any ℓq-norm, while only sacrificing a constant factor in the competitive ratio of the algorithm. We

call this transformed instance a smoothed instance of the problem.

It turns out that the machine smoothing technique is essentially sufficient for solving the makespan

minimization problem in vector scheduling, since the assignment of jobs to machine groups in a smoothed

instance can be done by simulating the slowest-fit strategy used for scalar scheduling. However, for other

ℓq-norms, even for scalar scheduling, we need to work harder in designing the algorithm to assign jobs

to machine groups in a smoothed instance. In particular, we use a two-step approach. First, we use a

gradient descent algorithm on a suitably chosen fractional relaxation of the norm to produce a competitive

fractional solution. Next, we use an online rounding algorithm to produce an integer assignment from the

fractional solution. In the case of vector scheduling for arbitrary ℓq-norms, an additional complication is

caused by the fact that the gradient descent algorithm can produce unbalanced loads on different dimensions

since it follows the gradient for a single objective, thereby leading to a large competitive ratio. To avoid

this difficulty, we use the assignment produced by the gradient descent algorithm only as an advice on the

approximate speed of the machine group that a fractional job should be assigned to. We then use a different

algorithm to make the actual assignment of the fractional job to a machine group similar to the advice,

but not necessarily to the exact same group. Interestingly, while identical machines admit algorithms that

optimize all norms simultaneously [23], we rule this out for homogeneous related machines (Appendix B).

Therefore, our algorithms for vector scheduling for arbitrary ℓq-norms use the value of q in the algorithm

itself, and this is necessary given our lower bound on optimizing all norms simultaneously.

For the heterogeneous setting, a simple adaptation of the unrelated machines lower bound of Ω(logm)
gives an instance with d = Ω(m). This is not interesting because a dependence on logd is required even for

identical machines. Instead, we design an encoding scheme that uses only d = O(logm) but still manages to

show a lower bound of Ω(logm). The makespan lower bound for heterogeneous related machines extends

to other norms as well, thereby matching known bounds for unrelated machines for all ℓq-norms.

Preliminaries and Results: First, we set up some standard notation. In online scheduling, a set of n

jobs arrive online and each job must be irrevocably assigned to one of m machines immediately on ar-

1Note that by scaling, it is sufficient in the homogeneous case for the speeds on different resources to be proportional – they do

not need to be exactly equal.

2

rival. Each job j has a non-negative size p j. In vector scheduling, p j is a vector of d dimensions, p j =
〈p j(1), p j(2), . . . , p j(d)〉. Each machine i has a non-negative speed si that is given offline. In vector schedul-

ing, si is a vector 〈si(1),si(2), . . . ,si(d)〉, where si(1) = si(2) = . . .= si(d) (denoted si) in the homogeneous

setting. When job j is assigned to machine i, it produces a load of p j/si. In vector scheduling, the load

is p j(k)/si(k) = pi j(k) in dimension k. The load produced by a set of jobs is the sum of their individual

loads. The load vector is denoted Λ = 〈Λ1,Λ2, . . . ,Λm〉, where Λi is the total load on machine i. For vector

scheduling, every dimension k has its own load vector, denoted Λ(k) = 〈Λ1(k),Λ2(k), . . . ,Λm(k)〉, where

Λi(k) is the total load on machine i in dimension k.

In vector scheduling, the makespan objective is given by:

d
max
k=1

||Λ(k)||∞ =
d

max
k=1

m
max
i=1

Λi(k).

For the problem of minimizing makespan in vector scheduling, we show the following result.

Theorem 1. For online vector scheduling on related machines for minimizing makespan:

1. (Section 3) For homogeneous speeds, we give a deterministic algorithm with a competitive ratio of

O(logd/ log log d). This is asymptotically tight since it matches a known lower bound for identical

machines [23].

2. (Section 8) For heterogeneous speeds, we give a lower bound of Ω(logd + logm) on the competitive

ratio. This is asymptotically tight since it matches a known upper bound for unrelated machines [28,

7, 23].

Now we state our results for optimizing arbitrary ℓq-norms. First, we consider the scalar scheduling

problem. The ℓq-norm objective is given by (we often call this just the q-norm, for brevity):

||Λ||q =
(

m

∑
i=1

(Λi)
q

)1/q

We obtain the following result.

Theorem 2. For online (scalar) scheduling on related machine for minimizing ℓq-norms:

1. (Section 4 and Section 5) We give a deterministic algorithm with a constant competitive ratio. This

is asymptotically tight because online scheduling has a constant lower bound even for identical ma-

chines [2, 15, 10, 18, 22].

Next, we consider optimizing ℓq-norms in vector scheduling. our objective is given by:

d
max
k=1

||Λ(k)||q =
d

max
k=1

(
m

∑
i=1

(Λi(k))
q

)1/q

We obtain the following result.

Theorem 3. For online vector scheduling on related machines for minimizing ℓq-norms:

1. (Section 6 and Section 7) For homogeneous speeds, we give a deterministic algorithm with a compet-

itive ratio of O(logc d) for some constant c. This is tight up to the value of the constant c, by a known

lower bound for identical machines [23].

2. (Section 8) For heterogeneous speeds, we give a lower bound of Ω(log d+q) on the competitive ratio.

This is asymptotically tight since it matches a known upper bound for unrelated machines [23].

3

Note that Theorem 2 follows as a corollary of Theorem 3. However, our vector scheduling algorithm

uses our scalar scheduling algorithm as a subroutine; consequently, the proof of Theorem 3 relies on an

independent proof of Theorem 2. Therefore, we present our scalar scheduling results before presenting our

vector scheduling results for arbitrary q-norms.

Related Work. In the interest of space, we will only state a small subset of related results and refer the

reader to more detailed surveys [5, 31, 30] for other results.

The online job scheduling problem was introduced by Graham [19], who showed that list scheduling

has a competitive ratio of (2− 1/m) for the makespan objective on identical machines. Currently, the best

known upper bound is 1.9201 [9, 26, 2, 16], while the best lowerbound is 1.880 [2, 15, 10, 18, 22]. For

the related machines setting, the slowest-fit algorithm is 2-competitive [11], but for unrelated machines, the

optimal competitive ratio is Θ(log m) [8, 3]. This problem was generalized to arbitrary q-norms by [?] for

identical machines and [4, 12] for unrelated machines. The only previous result for related machines was

the competitive ratio of 2 achieved by the slowest-fit algorithm for the makespan norm [11].

The multidimensional version of this problem was introduced by Chekuri and Khanna in the offline

model [13], who gave a PTAS for constant d. For unrelated machines, they showed a constant lower bound,

and the best known approximation factor is O(logd/ log log d) due to Harris and Srinivasan [21]. In the

online setting, Azar et al. [6] and Meyerson et al. [28] gave O(logd)-competitive algorithms for identical

machines. Recently, Im et al. [23] improved these results by giving tight bounds of O(log d/ log logd) for

identical machines and O(logd+ log m) for unrelated machines. They also extended these results to arbitrary

q-norms, giving tight bounds of O((logd
log logd

)
q−1

q) and O(logd +q) for identical and unrelated machines.

Roadmap. In the next section, we present the idea of machine smoothing that is a generic tool we use in all

the algorithms. This is essentially sufficient for minimizing makespan in vector scheduling on homogeneous

machines (Section 3), but we need more ideas for minimizing arbitrary q-norms. Most of these new ideas

are for the fractional algorithms, which we present in Sections 4 and 6 for scalar and vector scheduling

respectively. The corresponding rounding algorithms are presented in Sections 5 and 7, respectively. Finally,

in Section 8, we present our lower bounds for vector scheduling on heterogeneous machines.

2 Machine Smoothing

One of the main ideas that we use throughout our algorithms is that of machine smoothing. There are two

properties that we wish to derive from machine smoothing: that machines in a single group have the same

speed and that a slower group has processing power at least as much the sum over all its faster groups.

To ensure both properties simultaneously, simply grouping the given machines is not sufficient – instead,

we need to modify machine speeds in the given instance. The goal of this section is to show that such

modification is valid, i.e., it does not significantly change the optimal objective.

We will describe the machine smoothing procedure for an arbitrary q-norm objective. First, we articulate

the properties that we demand at the end of the transformation.

Definition 1. We say that machines in an instance are smoothed if they can be partitioned into groups,

G0,G1,G2,G3, · · · such that:

• Property 1: All machines in each group have equal speed.

• Property 2: S(Gl) := ∑i∈Gl
s

γ
i ≥ S(G0)+S(G1)+ ...+S(Gl−1), where γ = q/(q−1).

• Property 3: For any two groups Gl and Gl′ where l < l′, any machine in group Gl has a higher speed

than any machine in Gl′ – if two machines have different speeds, their speed differ by at least a factor

of 2.

4

The next lemma claims that any instance can be transformed into a smoothed instance without signifi-

cantly changing the optimal objective.

Lemma 4. For any set M of machines (with homogeneous speeds in the case of vector scheduling), we can

construct a smoothed set M′ of machines such that for any set J of jobs, the respective optimal solutions are

related as opt(J,M′)≤ O(1) ·opt(J,M). Furthermore, there exists a mapping g : M′ → M such that if a job

scheduled on a machine i′ ∈M′ is scheduled on machine g(i′)∈M, then the resulting q-norm for the original

set M of machines is at most a constant factor larger than the q-norm for the new set M′ of machines.

Proof. We assume (wlog, by scaling) that the fastest machine in M has speed exactly 1. We also round

all machine speeds to (negative) powers of Γ := 21/γ . We order machines in non-increasing order of their

speeds, breaking ties arbitrarily. The first group G0 is the singleton set that has only one machine with speed

1. We now create the remaining groups inductively until every machine is assigned to a group. For l ≥ 1,

exclude machines in G0∪G1∪ ...∪Gl−1 and define Gl to be the minimal set of the fastest machines i, whose

sum of s
γ
i is exactly 2l . This is always possible to do since we rounded the machine speeds to (negative)

powers of Γ, hence s
γ
i are (negative) powers of 2. (The last group GL+1 may not satisfy this property.)

Define S(G) := ∑i∈G s
γ
i for any group G. For each group Gl , note that S(Gl) = 2l . Let smin(Gl) denote

the lowest speed of all machines in Gl . We replace Gl with a new set G′
l of machines whose speeds are all

equal to smin(Gl), such that S(G′
l) = 2l . Let M′ denote the machines that we have constructed.

We now prove the first claim that the optimal q-norm increases by at most a constant factor for the new

machines M′. Fix an optimal schedule. Since the first group doesn’t change, i.e., G0 = G′
0, any job assigned

to the machine in G0 stays there. If the optimal schedule assigns a job j to a machine in Gl+1, 1 ≤ l ≤ L,

we move the job to a machine in G′
l. We let each machine i′ ∈ G′

l process jobs assigned to T := 2 · s′γ
sγ

machines i ∈ Gl+1, where s := si and s′ := si′ . Note that this is possible since S(G′
l) = |G′

l| · s′γ = 2l and

S(Gl+1) = |Gl+1| · sγ = 2l+1, which implies that |G′
l|/|Gl+1|= 2 · s′γ

sγ . To see that the q-norm increases by a

constant factor, consider a fixed dimension and let u1,u2, ...,uT be the volume of jobs assigned to T machines

on the fixed dimension. Then, we have

T

∑
t=1

(ut

s

)q

≥ T ·
(

∑T
t=1 ut

sT

)q

=

(
1

T

)q−1

·
(

s′

s

)q

·
(

∑T
t=1 ut

s′

)q

≥ 1

2q

(
∑T

t=1 ut

s′

)q

. (1)

This implies that the qq-norm increases by a factor of at most 2q. The first group G′
0 processes jobs relocated

not only from G1 but also from G0. Hence the qq-norm increases by a factor of at most 4q, meaning that the

optimal q-norm increases by a constant factor.

It now remains to prove the second claim. Consider any online algorithm A. If A assigns a job to a

machine i′ ∈ G′
l, we assign it to a machine i in Gl; we do not use any machine in GL+1. Fix a group G′

l.

We associate each machine with speed s in Gl with T ′ := sγ

s′γ unique machines in Gl′ (all these machines

have speed s′). This is possible since S(Gl) = S(G′
l). Now, using a calculation identical to Eq. (1), we can

conclude that the q-norm increases by at most a constant factor in this reassignment.

Also, note that the initial rounding of speeds is only by a constant factor, and hence this also changes the

q-norm only by a constant factor. As a consequence, we can now claim that the two properties of the lemma

are satisfied by the transformed set of machines M′.
Finally, we are left to prove that the set of machines M′ comprise a smoothed instance. It is straightfor-

ward to see that these machines, grouped in G′
0,G

′
1,G

′
2, · · · ,G′

L, satisfy the first two properties of smoothed

instances. For the third property, we first merge all groups with the same speed. This does not affect the

first two properties, and satisfies a weaker version of Property 3 where machine speeds differ by at least

a factor of 21/γ . To improve this separation to a factor of 2, we merge groups with speeds s′ satisfying

5

2l ≤ s′ < 2l+1 for each (non-positive) value of i. We now satisfy Property 2 and 3, but not Property 1.

To satisfy Property 1 as well, we replace the machines of a group G′
l with speeds 2l ≤ s′ < 2l+1 by a new

group G′′
l containing machines of speed 2l such that ∑i′∈G′

l
s

γ
i′ = |G′′

l | · (2l)γ . By mapping machines exactly

as above (we omit details for brevity), we can bound the change in the q-norm for both the algorithm and an

optimal solution by a constant factor. It is easy to verify that the set of machine groups defined by G′′ satisfy

all the properties of a smoothed instance.

We say that a group is lower than the other group if machines in the group have a lower speed. Note that

the set of machines is given to the algorithm a priori. Hence we can find M′ and the mapping g offline, and

using the mapping g from M′ to M, we can convert an online algorithm for the smoothed instance into an

online algorithm for the original instance. For this reason, we can assume wlog that machines are smoothed.

Also, note that for the makespan norm, the above grouping works exactly as described by setting γ = 1.

3 Vector Scheduling: Minimizing Makespan

In this section, we give our O
(

logd
log logd

)
-competitive algorithm for makespan minimization on homogeneous

related machines (the first part of Theorem 1). Recall that in this setting, machine i has a uniform speed

vector 〈si,si, · · · ,si〉, where we refer to si as machine i’s speed. By scaling, we assume w.l.o.g that the highest

speed of any machine is exactly 1. We assume throughout that we have a smoothed instance, which is wlog

by Lemma 4.

Algorithm. Since all machines in the same group have equal speed, we use sl to denote the speed of any

machine in group Gl. For simplicity, we say that group Gl’s speed is sl . We assume wlog that we know the

value of the optimal makepsan, opt within a constant factor by using a standard doubling technique. We say

that a group Gl is permissible for job j if maxk
p j(k)

sl
≤ opt. The algorithm has two components:

• Assigning jobs to groups of machines: Assign job j to a permissible group Gl with the largest index l;

note that Gl has the lowest speed among all permissible groups for job j. Let Jl denote jobs assigned

to group Gl.

• Assigning jobs to machines within each group: For each group Gl , run the deterministic O(logd/ log logd)-
competitive algorithm for identical machines in [23] for minimizing makespan to schedule jobs in Jl

on machines in Gl .

We formally state the lower bound used in the analysis of the algorithm in [23] used above.

Theorem 5 ([23]). Suppose that jobs arrive to be scheduled on m identical machines. For any T such that

maxk, j p j(k) ≤ T and maxk ∑ j p j(k)/m ≤ T , then there is a deterministic algorithm that yields a schedule

with makespan O
(

logd
log logd

)
·T .

The competitive ratio of the algorithm is derived based on two obvious lower bounds, the maximum

job size over all dimensions and the average load vectors over m machines. We note that the theorem is

stated under the assumption that T is known to the algorithm a priori, but we can again easily remove this

assumption by using a standard doubling technique.

We are now ready to complete the proof. Consider any fixed l. Since we schedule jobs Jl on identical

machines in Gl , it suffices to show that maxk, j∈Jl

p j(k)
sl

≤ O(1) ·opt and maxk
∑ j∈Jl

p j(k)

S(Gl)
≤O(1) ·opt. Note that

group Gl is permissible for any job in Jl . Hence we have maxk, j∈Jl

p j(k)
sl

≤ opt. Since the optimal scheduler

6

can schedule jobs in Jl only on machines in G1 ∪G2 ∪ ...∪Gl (i.e., Gl is the slowest permissible group for

jobs in Jl), we have for any dimension k,

∑
j∈Jl

p j(k)≤
l

∑
l′=0

S(Gl′) ·opt=(S(Gl)+
l−1

∑
l′=0

S(Gl′)) ·opt≤ S(Gl) ·(2·opt) (by Property 2 of smoothed instances).

Thus, by Theorem 5, the makespan of machines Gl is O
(

log d
log log d

)
·opt.

4 Scalar Scheduling: Minimizing q-norms

As discussed earlier, our algorithm has two parts: a fractional algorithm that assigns jobs fractionally to

machines, and a rounding algorithm that converts the fractional solution to an integer solution. We present

the fractional algorithm here, and defer the rounding algorithm to Section 5. We will assume throughout

that we are working on a smoothed instance, which is wlog by Lemma 4.

To define the fractional algorithm, we first define a fractional relaxation of the q-norm objective. Let us

use G to index machine groups; let |G| be the number of machines in group G, pG j be the processing time of

job j on any machine of group G, and xG j be the fraction of job j assigned to group G. Also, let sG denote

the speed of machines in group G. The (fractional) load of a machine group G is the ratio of the total time

for processing the fractional jobs assigned to the group and the number of machines in the group:

ΛG =
n

∑
j=1

1

|G| · xG j pG j, where pG j =
p j

sG

.

Then, the fractional objective is:

h(x) := ∑
G

|G| · (ΛG)
q +∑

G
∑

j

(pG j)
q · xG j. (2)

The first term in h(x) is simply the qq-norm defined on the fractional loads, and the second term ensures

that large jobs do not create a large integrality gap. We call these f (x) := ∑G |G|(ΛG)
q

the load-dependent

objective, g(x) := ∑G ∑ j(pG j)
q · xG j the job-dependent objective, and their sum h(x) the total objective of

solution x.

The goal of the fractional algorithm is to obtain a fractional solution x that is cq-competitive, for some

constant c, for the total objective h(x).

Algorithm. We use a (slightly modified) gradient descent algorithm defined for the objective h(x). To define

the algorithm, we denote the two terms in the derivative
dh(x)
dxG j

by:

αG j :=
d f (x)

dxG j

= |G| ·q · (ΛG)
q−1 · 1

|G| · pG j = q · (ΛG)
q−1 · p j

sG

βG j :=
dg(x)

dxG j

= (pG j)
q =

(
p j

sG

)q

The algorithm assigns an infinitesimal fraction of the current job j to the machine group G that has the

minimum value of ηG j := max(αG j,βG j). In case of a tie, the following rule is used:

• If there is a tied machine group with αG j < βG j, then this machine group is used for the assignment.

Note that there can only be at most one machine group with this property, by Property 3 of smoothed

instances.

7

• If αG j ≥ βG j for all tied machine groups, then we divide the infinitesimal job among the tied groups

in proportion to |G| · sγ
G, where γ = q/(q−1). These proportions are chosen to preserve the condition

that the values of αG j remain tied. This is formally stated in Claim 6, which can be verified by a

simple calculation that we defer to the appendix for brevity.

Claim 6. If a job j is assigned in proportion to |G| ·sγ
G among machine groups G with identical values

of αG j, where γ = q/(q−1), then the value of αG j remains equal for these machine groups after the

assignment.

Analysis. Our first lemma shows that at any point of time, the values of αG j for any job j varies monotoni-

cally with the speed of the machine groups.

Lemma 7. At any point of time, if sG > sG′ , then αG j ≥ αG′ j for any job j.

Proof. First, note that the lemma holds for all jobs if it does for any single job. We now prove the lemma

by showing that it inductively holds for the current job j at any time. For the property to be violated by

the current fractional assignment, this assignment must be on group G′ with αG j = αG′ j. Now, note that

βG′ j > βG j by Property 3 of smoothed instances. Therefore, the algorithm can make an assignment on G′

only if G and G′ are tied with

ηG j = αG j = αG′ j = ηG′ j.

In this case, the algorithm assigns job j to groups G and G′ in proportion to |G| · s
γ
G and |G′| · s

γ
G′ , where

γ = q/(q−1). This assignment preserves αG j = αG′ j by Claim 6, hence the lemma continues to hold.

We fix an optimal solution opt, and denote the fractional algorithm’s solution by algo; let the corre-

sponding fractional assignments be xopt and xalgo. Let opt(j) (resp., algo(j)) be the machine group on

which a job j is assigned by opt (resp., algo). We call the assignment of a fractional job a red assignment if

opt assigns j on a slower machine group, i.e., if sopt(j) < salgo(j); we call it a blue assignment if opt assigns

j on a faster machine group, i.e., sopt(j) > salgo(j). If opt(j) = algo(j) = G, we call it a red assignment if

βG j ≥ αG j when the assignment was made; else, we call it a blue assignment.

We will analyze the total increase in the objective h(xalgo) caused by red and blue assignments separately.

Note that there was a special case in the algorithm when machine groups were tied, where we assigned a

fractional job to multiple machine groups. However, in this case, by Property 2 of smoothed instances,

at least half the job is assigned to the slowest tied machine group. Since ηG j = αG j for all tied groups in

this case, the increase in h(x) overall is at most a constant factor times the increase of h(x) on the slowest

machine group. Therefore, in this analysis, we will only consider the slowest machine group in this scenario.

We first bound the contribution from red assignments.

Lemma 8. The total increase in h(xalgo) due to red assignments of algo is at most twice the job-dependent

objective g(xopt) of opt.

Proof. Consider a red assignment of job j. We have two cases. First, suppose sopt(j) < salgo(j). Given that

we only consider the assignment on the slowest group in case of a tie, we can conclude that:

ηopt(j) j > ηalgo(j) j = max(αalgo(j) j,βalgo(j) j)≥ αalgo(j) j ≥ αopt(j) j (by Lemma 7).

Therefore, βopt(j) j > αalgo(j) j. But, since βopt(j) j > βalgo(j) j as well, it follows that

αalgo(j) j +βalgo(j) j < 2βopt(j) j.

8

Next, suppose opt(j) = algo(j). In this case,

αalgo(j) j +βalgo(j) j ≤ 2max(αalgo(j) j,βalgo(j) j) = 2βalgo(j) j = 2βopt(j) j,

where the second to last equality follows from the definition of red assignments. To complete the proof of

the lemma, we note that the increases in g(xopt) are additive across all jobs.

We are left to bound the total increase in h(xalgo) due to blue assignments. For blue assignments, opt

assigns the fractional jobs to faster machine groups. To understand the intuition behind our analysis of blue

assignments, let us imagine an idealized scenario where algo equalized the values of αG j across all machine

groups G for all jobs j. In this case, algo produced an optimal assignment for the load-dependent objective.

Therefore, f (xalgo) ≤ f (xopt). The same argument works even if αG j is not equal for all groups, provided

all jobs are blue, by replacing uniformity of αG j by the monotonicity property from Lemma 7. However,

there are two main difficulties with generalizing this argument further. First, for a blue assignment of job j

to machine group algo(j), it may be the case that βalgo(j) j > αalgo(j) j. In this case, bounding the the load-

dependent objective of algo is not sufficient. Second, we need to account for the fact that not all assignments

are blue, and the monotonicity guaranteed by Lemma 7 might be contingent on red assignments.

To address the first issue, we specifically consider the blue assignments with βalgo(j) j > αalgo(j) j; let us

call them special assignments. For all such special assignments, we modify algo to algo′ by additionally

assigning the fractional job to the machine group (denoted algo(j)+) that is immediately faster than algo(j).
The idea behind this addition is that αalgo(j)+ j ≥ηalgo(j) j irrespective of which of βalgo(j) j or αalgo(j) j defines

ηalgo(j) j. Therefore, we can bound the increase in total objective due to special assignments by the increase

in the load-dependent objective due to the dummy assignments that we added. Correspondingly, we modify

opt to opt′ by adding a second copy of each such fractional job to opt(j). Note that for special blue

assignments, we have the strict inequality sopt(j) > salgo(j); else, we would call it a red assignment. Hence,

these additional dummy assignments are also blue assignments.

We now show that these modifications do not significantly change the objectives of the respective so-

lutions, while allowing us to only focus on the load-dependent objectives f (xopt′) and f (xalgo′). The first

lemma is immediate.

Lemma 9. The load-dependent objective f (xopt′) in opt′ is at most 2q times the corresponding objective

f (xopt) in opt.

Lemma 10. The total objective h(xalgo) due to blue assignments in algo is at most twice the load-dependent

objective f (xalgo′) due to blue assignments in algo′ .

Proof. We consider two cases. First, suppose αalgo(j) j ≥ βalgo(j) j. This is not a special blue assignment. In

this case,

αalgo(j) j +βalgo(j) j ≤ 2αalgo(j) j.

Since algo′ has at least as much load on every machine group as algo, it follows that the total increase of

objective in algo due to assignments in this case is at most twice the load-dependent objective of algo′.
Next, suppose αalgo(j) j < βalgo(j) j in a blue assignment. This is a special blue assignment, and we have

sopt(j) > salgo(j), as noted earlier. In this case, βalgo(j)+ j < βalgo(j) j, but ηalgo(j)+ j ≥ ηalgo(j) j. Therefore,

αalgo(j)+ j ≥ βalgo(j) j and αalgo(j)+ j ≥ αalgo(j) j. Therefore, we have

αalgo(j) j +βalgo(j) j ≤ 2αalgo(j)+ j.

But, for every special assignment to machine group algo(j) in algo, there is a corresponding assignment to

machine algo(j)+ in algo′. Therefore, the total increase of objective in algo due to special assignments is at

most twice the load-dependent objective of algo′.

9

Next, to handle our second issue, we modify opt′ to opt′′ by adding the load due to red assignments in

algo on each machine. This allows us to view the red assignments as blue assignments for the purposes of

this analysis, since opt′′ now has a copy of every red job on the same machine as algo. Again, we establish

that this transformation does not significantly change the load-dependent objective of opt′.

Lemma 11. The load-dependent objective f (xopt′′) in opt′′ is at most 2q times the load-dependent objective

f (xopt′) in opt′ plus 2q+1 times the job-dependent objective g(xopt) in opt.

Proof. We classify machine groups into two groups. The first type of group is one where the load in opt′

is at least its load from red assignments in algo. The load in opt′′ for such groups is at most twice the

load in opt′. Therefore for these machine groups, the load-dependent objective in opt′′ is at most 2q times

load-dependent objective in opt′.
The second type of machine group is one where the red load in algo is more than the load in opt′. The

load in opt′′ for such machine groups is at most twice the red load in algo. Therefore by Lemma 8, the

load-dependent objective in opt′′ is at most 2 ·2q times the job-dependent objective g(xopt) in opt.

We will now be able to apply our high level approach and show that the load-dependent objective of

algo′ is bounded by that of opt′′. We first show the following theorem on load profiles, which formalizes

our earlier intuition.

Lemma 12. Consider two load profiles ψ and ξ over the machine groups with the following properties:

1. (First condition) For any prefix G of machine groups in decreasing order of speeds, the total job

volumes satisfy: ∑G∈G ψG · |G| · sG ≥ ∑G∈G ξG · |G| · sG.

2. (Second condition) There exists a µ ≤ 1 such that for any two machine groups G and G′, we have:

ξ q−1
G

sG

≥ µ · ξ
q−1
G′

sG′
.

Then, the load-dependent objective of load profile ψ is at least µ
q

q−1 times the load-dependent objective of

load profile ξ .

Proof. First, we transform the load profile ξ to χ so as to change the value of µ to 1 in the second condition.

For any group G, We set χG so that it satisfies

χq−1
G

sG

= min
G′:sG′≥sG

ξ q−1
G′

sG′
.

Since χG ≤ ξG for any machine group G, the first condition holds for ψ and χ as well. Furthermore, by

definition of χ , it satisfies the second condition with µ = 1. Finally, note that by the second condition on ξ ,

χq−1
G

sG

= min
G′:sG′≥sG

ξ
q−1
G′

sG′
≥ µ · ξ q−1

G

sG

. (3)

Now, we use an exchange argument to transform ψ without increasing its load-dependent objective until

for every machine group G, we have ψG ≥ χG. In each step of the exchange, we identify the slowest machine

group G where ψG < χG. By the first condition, there must be a machine group G′ with sG′ > sG such that

10

ψG′ > χG′ and for every prefix G of machine groups in decreasing order of speeds containing G′ but not

containing G, the following strict inequality holds:

∑
G∈G

ψG · |G| · sG > ∑
G∈G

χG · |G| · sG. (4)

Furthermore, using the second condition (with now µ = 1), we have that

ψq−1
G′

sG′
>

χq−1
G′

sG′
≥ χq−1

G

sG

>
ψq−1

G

sG

. (5)

Now, we move an infinitesimal job volume from group G′ to group G in ψ . Inequality (5) implies that

the load-dependent objective of ψ decreases due to this move. Furthermore, both conditions of the lemma

continue to remain valid by Eqs. (4) and (5). Such moves are repeatedly performed to obtain a load profile

ψ ′
G with at most the load-dependent objective of ψ , but additionally satisfying ψ ′

G ≥ χG for all machine

groups G.

At this point, the lemma holds for the transformed load profile χ with µ = 1. To translate this back to

the original load profile ξ , note that Eq. (3) implies that χG ≥ µ1/(q−1) ·ξG for every machine group G.

We now apply Lemma 12 to algo′ and opt′′ to get our desired bound.

Lemma 13. The load-dependent objective of algo′ is at most 2q times the load-dependent objective of opt′′.

Proof. In Lemma 12, we set ψ to the load profile of opt′′ and ξ to the load profile of algo′.
The first condition of Lemma 12 follows from the following observations: (a) for blue assignments in

algo, sopt(j) ≥ salgo(j); (b) for red assignments in algo, the same fractional job j is assigned to algo(j) in

transforming opt′ to opt′′; (c) finally, for special assignments added in transforming algo to algo′, we have

sopt(j) > salgo(j), i.e., sopt(j) ≥ salgo(j)+ .

We now check the second condition of Lemma 12. From Lemma 7, the condition holds with µ = 1 for

algo. In algo′, the load ΛG+ on a machine group G increases by the total load due to special assignments

on machine group G, i.e., by at most ΛG · sG

sG+
≤ ΛG. But, by Lemma 7, ΛG ≤ ΛG+ . Therefore, the load on

machine group G+ increases by at most a factor of 2. It follows that the second condition of Lemma 12

holds with µ = 1/2q−1.

Now, the lemma follows by applying Lemma 12.

Combining Lemmas 9, 10, 11, and 13, we obtain the desired bound for blue assignments:

Lemma 14. The total increase in objective due to blue assignments in algo is at most aq times the load-

dependent objective of opt, for some constant a.

Lemmas 14 and 8 imply that the algorithm is cq-competitive on objective h(x) for some constant c, as

desired.

5 Scalar Scheduling: Minimizing q-norms (Rounding)

We presented the fractional algorithm for scalar scheduling for q-norms in Section 4. In this section we

give a rounding procedure that converts a fractional assignment to an integral assignment with a loss of

cq for some constant c. This result in conjunction with the fractional algorithm from Section 4 implies a

(c ·b)q-competitive algorithm for optimizing the following objective.

h(x) := ∑
i

(

∑
j

xi j pi j

)q

+∑
i, j

(pi j)
qxi j. (6)

11

Rounding Algorithm. Recall we can assume that machines have been smoothed wlog. It is straightforward

to see that we can assume wlog that all machines in each group have identical fractional assignments of

jobs. Since all machines in the same group are identical, we can focus on assignments at the granule of

groups. In this spirit, we denote the fractional assignment of jobs to groups by xGl j := ∑i∈Gl
xi j. Let m(j),

which we call j’s middle point, be the slowest group Gl (as before, a group’s speed is defined as that of any

machine in the group) such that j is processed by more than half on machines in groups G0,G1, ...,Gl , i.e.

∑l≤m(j) xGl j ≥ 1/2; note that ∑l≥m(j) xGl j ≥ 1/2.Then, we ‘commit’ job j to group Gl. Jobs committed to

group Gl are then scheduled greedily within the group (assigned to the machine with the smallest load).

Analysis. We show that committing job j to its middle point group Gm(j) and then using greedy algorithm

to schedule the job within group Gm(j), we only lose O(1)q factor w.r.t the objective.

Consider any fractional solution xo. Let Gm(j) be the middle point group of job j in xo. Let’s say that

a solution/assignment is restricted if each job j must be assigned to groups G0, G1, . . . , Gm(j). At a high-

level, we first show that this restriction can increase the objective by O(1)q factor. We then show that the

further restriction that job j can only go to machines in Gm(j) can increase the objective by O(1)q factor.

Let x′ denote a fractional assignment that is obtained from xo by doubling each job j’s assignment to groups

G0,G1, ...,Gm(j) (and discarding some assignments so that ∑i x
′
i j = 1), and x′′ be a fractional assignment

where each job j is equally assigned to machines in Gm(j).

Lemma 15. h(x′′)≤ O(1)qh(xo)

For a formal proof, we decompose the objective.

h1(x) := ∑
i

(

∑
j

xi j pi j

)q

h2(x) := ∑
i, j

p
q
i jxi j

Lemma 16. h1(x
′′)≤ 2qh1(x

′)≤ 4qh1(x
o).

Proof. Let Jm denote the set of jobs with the same middle point m. If we only need to schedule jobs Jm,

due to the optimality condition (see Claim 6), we can see that ∑i(∑ j∈Jm
pi jxi j)

q is minimized when for each

j ∈ Jm, xi j is in proportional to s
γ
i for all machines i in groups G0,G1, ...,Gm. Thus, when xG0 j/S(G0) =

xG1 j/S(G1) = ...= xGm j/S(Gm), where xGt j := ∑i∈Gt
xi j, as before. Knowing that S(Gm)≥ S(G0)+S(G1)+

S(G2) + ...+ S(Gm−1) by (at most) doubling the assignments to Gm, we can fully assign jobs in Jm to

(machines in) Gm. This will only increase the objective by a factor of 2q. Further, no two jobs with different

middle points are assigned to the same group. This proves the first inequality. The second inequality follows

since each machine’s load at most doubles when we convert xo into x′.

Lemma 17. h2(x
′′)≤ 2h2(x

o).

Proof. Fix a job j. Any machine i ∈ G j(m) is faster than any machine i′ in G j(m) ∪G j(m)+1 ∪ ·· · . Thus,

pi j ≤ pi′ j, hence we can charge j’s contribution to the second term in x′′ to j’s contribution to the second

term in xo on machines in G j(m) ∪G j(m)+1 ∪ ·· · . The factor 2 follows since j is assigned to machines in

G j(m)∪G j(m)+1∪ ·· · by at least half.

To complete the analysis, it suffices to show that the integral solution x produced by the greedy algorithm

is cq-competitive against h(x′′) for some constant c.

Lemma 18. h(x)≤ (2q +1)h(x′′)

12

Proof. Fix a group Gl , and let hl(x) be the objective for just group l. Let p̂i be the load of the last job that

was assigned to machine i, and let Λ′
i be the load on machine without this last job (i.e., Λ′

i = Λi − p̂i). Let

algo(j) be the machine to which j is assigned by the greedy algorithm. Observe that

hl(x) = ∑
i∈Gl

(

∑
j

pi jxi j

)q

+ ∑
i∈Gl

∑
j

xi j p
q
i j

= ∑
i∈Gl

(
Λ′

i + p̂i

)q
+∑

j

p
q

algo(j) j

≤ ∑
i∈Gl

(
2max(Λ′

i, p̂i)
)q

+∑
j

p
q

algo(j) j

≤ 2q ∑
i∈Gl

(
(Λ′

i)
q + p̂i

q
)
+∑

j

p
q

algo(j) j

≤ (2q +1)

(

∑
i∈Gl

(Λ′
i)

q +∑
j

p
q

algo(j) j

)
≤ (2q +1)hl(x

′′).

The last inequality follows since x′′ assigns all jobs within a group evenly (i.e. x′′i j = 1/|Gl | for all i in

the group); therefore, since the algorithm assigns greedily, ∑i∈Gl
(Λ′

i)
q is bounded by ∑i∈Gl

(
∑ j x′′i j pi j

)q

.

Similarly, ∑ j p
q

algo(j) j
is is equal to ∑i∈Gl

∑ j x′′i j p
q
i j since all machines have identical speeds within the group.

Summing the bound over all groups l, we obtain that h(x′′)≤ (2q +1)h(x).

6 Vector Scheduling: Minimizing q-norms

As in the previous section on scalar scheduling, we present our fractional algorithm for vector scheduling

here, and defer the rounding algorithm to Section 7. In this section we will obtain a fractional solution that

is O(log2 d)-competitive. Then, using the rounding algorithm in Section 7, we will round it with a loss of

O(logd/ log logd) factor in the competitive ratio, thus proving the first part of Theorem 3. We assume that

q ≥ log d since otherwise we can use the any-norm-minimization algorithm for unrelated machines in [23]

to find a O(logd + q)-competitive solution. We further assume that q > 1 since if q = 1, assigning all jobs

to the fastest machines yields an optimal solution.

6.1 Overview of Algorithm and Analysis

In this section, our goal will be to find a fractional solution that is O(log2 d)q competitive against the follow-

ing objective:

∑
i

∑
k

(
∑

j

pi j(k)xi j

)q

+ ∑
i, j,k

(
pi j(k)xi j

)q

, (7)

where pi j(k) denotes p j(k)/si. We first argue that this objective is valid, i.e., if the algorithm is competitive

on this relaxation then the algorithm is competitive for our original objective of minimizing the maximum

q-norm across all dimensions.

Lemma 19. An algorithm that is O(γ)q-competitive with respect to objective (7) (which sums over all

dimensions) implies the algorithm is O(γ)-competitive for our desired objective stated in the introduction

(optimizing for the maximum q-norm across all dimensions; call this the original objective).

13

Proof. Recall our definitions of load-dependent, job-dependent, and total objective from Section 4. Let

‖Λ∗(k)‖q denote the q-norm of the kth dimension in the optimal solution. Clearly the optimal total objective

in a fixed dimension k is within a O(1)q factor of ‖Λ∗(k)‖q
q (since the job-dependent objective is a lower

bound on ‖Λ∗(k)‖q
q). We also have that the optimal solution to objective (7) is at most d times ‖Λ∗(k′)‖q

q,

where k′ is the dimension with the maximum q-norm. However, since we assume that q ≥ logd, we have

that d ≤ 2q. Thus, putting these observations together, we have that optimal solution to (7) is at most O(1)q

times the optimal solution to the original objective, implying the a O(γ)q competitive algorithm for this

relaxation is O(γ)-competitive on the original objective.

As before, we also preprocess machines to create a smoothed instance, which is wlog by Lemma 4.

Thus our the objective we will use is the following:

∑
k

∑
G

|G|
(

1

|G| ∑j

pG j(k)xG j

)q

+∑
G

∑
j

(

∑
k

(pG j(k))
q

)
xG j, (8)

where xG j denotes that fraction of job j assigned to group G. Recall that within a given group G, we can

assume that all jobs assigned to G are spread evenly among the machines in G.

To simplify our presentation, we will assume that each job only has an infinitesimal fraction that needs

assigned; namely, we will assume that job j is fully assigned when ∑i xi j = δ for an infinitesimally small

value δ > 0. This modification can be done by replacing each job j by a set of jobs j1, j2, ..., j1/δ with vector

entries δ p j(k) for each dimension k and requiring that ∑i xi jr = δ for these newly created jobs. Note that

this alternate view does not change the objective considered by the algorithm or how the algorithm works

since the algorithm is already making a fractional assignment.

We are now ready to present our algorithm. At a high level, the algorithm assigns each job in two phases.

In the first phase, we define a single scalar load derived from the job’s maximum load entry and assign it

using the scalar algorithm for q norms given in Section 4. This produces a fractional assignment which we

will call the scalar solution. Using the scalar solution, we then determine a set of candidate groups G j to

which job j can go to in the second phase, i.e.,we only consider assignments where each job j can only go

to a group in G j; call such assignments restricted assignments. A key Lemma, which we prove in Section

6.2, is the following:

Lemma 20. The optimal fractional restricted assignment is at most O(1)q times the optimal assignment

with respect to objective (8).

Thus, in the second phase, we produce an fractional (vector) assignment that is O(log2 d)q-competitive

against the optimal restricted assignment, which by Lemma 20 gives us an assignment with the desired

competitive ratio. We now describe these two phases in more detail.

Phase 1: Producing the scalar assignment. Let p j,max := maxk p j(k). To define our scalar instance, we

set scalar size of job j to be p j,max/d2. Thus to schedule jobs in this phase, we simply use the algorithm for

scalar loads from Section 4.

Let G f (j) be the slowest group where j is assigned in the scalar solution, and let M be the number of

groups. Define:

G j := {Gmax{0, f (j)−4log d},Gmax{0, f (j)−4log d}+1, ...,Gmin{M, f (j)+4log d}},

which we call the candidate groups of job j. In other words, G j is a collection of O(logd) consecutive

groups containing G f (j) along with (potentially) some slower and some faster groups. Later in Lemma 20,

14

we will show that there is a O(1)q-approximate assignment w.r.t. (8) where each job j is only assigned to

groups in G j.

Phase 2: Producing the restricted assignment. In this phase, we produce a restricted assignment as-

signment that is O(log2 d)q-competitive against the optimal restricted assignment optr, which by Lemma

20 implies a O(log2 d)q-competitive solution against the actual optimal solution. To do this, we maintain

O(logd) separate sub-instances, each one corresponding to a set of disjoint candidate groups. Namely, let

GG denote the set of jobs j such that f (j) = G (i.e., the set of jobs whose candidate groups are centered

around G). There will 8 logd + 1 instances 0, . . . ,8log d, where in the tth instance, we schedule jobs with

candidate groups {Gt ,Gt+8log d+1,Gt+16log d+2, . . .}. It is not hard to verify that each set of candidate groups

belongs to a unique instance, and the set of candidate groups within an instance are disjoint.

Within each sub-instance, we will schedule jobs with the same candidate groups separately. Namely, fix

a set of candidate groups G and let optG be the optimal solution (and value of the optimal solution) with

respect to objective (8) for scheduling just jobs with candidate groups G . Our goal will be to find a solution

that satisfies the following set of constraints:

max
k

max
G∈G

∑
j

1

|G| pG j(k)xG j ≤ opt
1/q

G
and (9)

max
G∈G

∑
j

(

∑
k

(pG j(k))
q

)
xG j ≤ optG

Note that optG satisfies these conditions. Also note that we will assume that optG is known from the outset of

the instance (this assumption can be removed by using a standard doubling technique where the algorithm

maintains a guess for optG and updates the guess by a factor of 2q every time it is wrong; however for

simplicity, we will assume optG is known for each set of candidate groups G).

We interpret this online problem as the makespan minimization for unrelated machines, i.e., we think of

each group G as a meta machine and of each job j as having an averaged load
δ pG j(k)

|G| on a meta-machine G

on dimension k. We also create a special dimension 0 to encode the second set of constraints, where job j

has load ∑k(δ pG j(k))
q on meta-machine G on dimension 0. Then, the problem is now reduced to finding

an assignment where the makespan on dimension 0 is upper bounded by optG , and the makespan on other

dimensions from 1 to d is upper bounded by opt
1/q

G
. In [23], this problem was studied under the name of

any norm minimization for unrelated machines (VSANY-U). Using the algorithm in [23], one can find a

solution minimizing the log(O(|G |)-norm on each dimension with the target values opt
1/q

G
on dimensions

1,2,3, ...d, and optG on dimension 0, which is equivalent to the makespan optimization problem defined by

(9) up to a constant factor.

This completes the description of the algorithm for Phase 2. We now show that the Phase 2 assignment

is O(log2 d)q-competitive ainst the optimal restricted assignment optr. First we argue that the solution

produced in each sub-instance is O(logd)q-competitive against optr.

Lemma 21. Fix a sub-instance S from Phase 2. The objective of the solution produced by the algorithm for

S is at most O(logd)q times that of the optimal restricted assignment optr.

Proof. First, fix a set of candidate groups G in S, and consider the solution produced by the VSANY-U

algorithm given in [23] for S. This algorithm is O(log d + log m)-competitive, where m is the number of

machines. In our setting, the number of meta machines is m = |G |= O(logd), and thus this algorithm will

15

produce a solution such that the constraints in (9) are violated up to a O(logd+ loglog d) = O(logd) factor.

Thus is follows that this solution (denote it algoG) with respect to objective (8) is at most:

algoG = |G | ·d · (O(logd) ·opt1/q

G
)q + |G | ·O(logd) ·optG = O(logd)q ·optG ,

since q ≥ logd.

Next, observe that since the candidate groups within a sub-instance are disjoint, we have that the al-

gorithm’s overall objective in the sub-instance (denote this algoS) equals ∑G∈S algoG . Also, again since

candidate groups are disjoint, we have ∑G∈S optG ≤ optr. Thus is follows that

algoS = ∑
G∈S

algoG = ∑
G∈S

O(logd)q ·optG ≤ O(logd)qoptr.

Finally, we argue that the overall solution algo (i.e., combining the solutions produced over all sub-

instances) is at most O(log2 d)q ·optr.
Lemma 22. The solution produced by Phase 2 is at most O(log2 d)q times the optimal restricted assignment.

Proof. Let T = O(logd) denote the number of sub-instances. The overall objective that sums over all sub-

instances S can be bounded as follows:

algo= ∑
k

∑
G

|G|
(

∑
S

1

|G| ∑
j∈S

pG j(k)xG j

)q

+∑
S

∑
G, j∈S

(

∑
k

(pG j(k))
q

)
xG j

≤ ∑
k

∑
G

|G|
(

T ·max
S

(
1

|G| ∑
j∈S

pG j(k)xG j

))q

+∑
S

∑
G, j∈S

(

∑
k

(pG j(k))
q

)
xG j

≤ T q ∑
S

∑
k

∑
G

|G|
(

1

|G| ∑
j∈S

pG j(k)xG j

)q

+∑
S

∑
G, j∈S

(

∑
k

(pG j(k))
q

)
xG j.

≤ T q ∑
S

algoS ≤ T q ∑
S

O(logd)qoptr = O(log2 d)q ·optr,

as desired. Note that the the last inequality follows by Lemma 21, and the last equality follows since the are

O(logd) = O(1)q sub-instances.

6.2 Proof of Lemma 20

This section is devoted to showing Lemma 20. Recall that p j,max := maxk p j(k). We first observe that we

can assume w.l.o.g. that each job j has size at least 1
d2 p j,max on all dimensions.

Lemma 23. If we increase each job j’s load so that j has load on dimension max{p j(k),
1
d2 p j,max},objective

(8) increases by a factor of at most 2q.

Proof. Consider any aggregate load vector on a fixed machine i, 〈L1,L2,,Ld〉. Consider an arbitrary

dimension, say dimension 1. After the change, L1 can increase up to L1 +
1
d2 (L2 + L3 + ...+ Ld). Thus,

(L1 +
1
d2 (L2 + L3 + ...+ Ld))

q ≤ 2q(L1)
q + 2q

dq ((L2)
q + ...+ (Ld)

q). So one dimension can increase other

dimension k’s contribution to the objective by only 2q/d times k’s contribution before the change. Hence

the lemma follows.

16

Thus we can assume w.l.o.g. that we run our algorithm after making this change to each job upon arrival.

We note that this change is not necessary for the analysis, but it will help simplify our presentation.

Consider an optimal schedule opt and the optimal restricted assignment optr. Again to simplify the

notation, we let opt and optr also denote their objective values, depending on context. We say that a job j is

red if it is assigned to a group not in G j that is slower than groups in G j; similarly, the job is said to be blue if

it is assigned to a group not in G j that is faster than groups in G j; otherwise, the job is grey. We decompose

the objective to analyze the contribution of jobs of each type, separately. In particular, let BLUE, RED, GREY

denote set of blue, red, and grey jobs, respectively. Also denote optr
BLUE, optr

RED , and optr
GREY denote the

optimal restricted assignments (and values) that just schedule blue, red, and grey jobs, respectively.

Observe that since grey jobs are scheduled on the same set of machines in both opt and optr
GREY, we

have that optr
GREY ≤ opt. Thus, the following decomposition is immediate.

Lemma 24. optr ≤ 3q(optr
BLUE +optr

RED +opt).

Henceforth, we will focus on bounding optr for red and blue jobs. The key idea is to reduce the problem

to a single dimensional case. But this reduction is not free – optr will have to deal with red and blue jobs of

factor d larger sizes than opt. We will still be able to show that opt is considerably large compared to optr
since opt processes jobs in groups that are so ‘out of range.’ From now on, we only consider red or blue

jobs.

We say that an input is uniform if every job has an equal size over all dimensions. We will consider two

uniform inputs derived from the original input. Let Junimax denote the set of jobs where each job j’s size

vector is replaced with p j,max · 〈1,1, ...,1〉. Similarly, let Junimin denote the set of jobs where each job j’s

size vector is replaced with
p j,max

d2 · 〈1,1, ...,1〉. Note that Junimax is as hard as the original input, and Junimin

is as easy as the original input. Since our goal is to upper bound optr by opt, we can safely assume that

optr has to process Junimax while opt does Junimin. Since all jobs have uniform sizes, all dimensions have

an equal contribution to the objective. Hence, we can focus on an arbitrary dimension, and ignore all other

dimensions. Accordingly, we can now assume that jobs have scalar sizes.

To recap, there are only red or blue jobs. And each job j’s size is p j/d2 for opt but p j for optr; to

simplify the notation we use p j in place of p j,max. Note that for each job j, optr assigns it to groups in

G j, but opt does to other groups. To compare optr to opt, we assume that optr assigns each job j to group

G f (j). Since this is a further restriction to optr, we can safely assume. Recall that G f (j) is the group where

the single dimensional case algorithm assigns job j with scalar size p j/d2. To make our analysis more

transparent, for each job j we only keep job j’s assignment to G f (j). This is justified since j is assigned to

G f (j) by at least half (of its portion δ) as we observed in Section 4. To factor in this, we will lose factor 2q.

Our remaining goal is to upper bound optr
BLUE and optr

RED by opt. We let J f denote the set of jobs

assigned to G f in optr.

Lemma 25. optr
RED ≤ opt.

Proof. Fix a group f . Consider any job j ∈ J f . The job was assigned to G f , but not to any slower groups

since αG f j < βG f+1 j. Hence the contribution of red jobs to optr’s total objective is at most

optr(RED, f) := δ ∑
j∈G f ∩RED

(
p j

sG f+1

)q

.

Knowing the fastest group opt can use to process j is G f+4logd+1, and its speed is at most 1/d4 times

that of G f+1, opt’s job-dependent objective for jobs in G f ∩ RED is at least

δ ∑ j∈G f ∩RED(
p j/d2

sG f+4 logd+1

)q ≥ optr(RED, f). Summing over all f , we have the lemma.

17

Lemma 26. optr
BLUE ≤ opt.

Proof. Fix a group f . Consider blue jobs assigned to G f in optr. As we observed in Section 4, if G f is

the slowest group to which the single dimensional case algorithm assigns j, then we know that αG f−1 j ≥
max{αG f j,βG f j}. Hence we can upper bound optr’s total objective for jobs J f ∩BLUE by optr(BLUE, f) :=

|G f−1|(V
|G f−1|sG f−1

)q = V q

(S(G f−1))q−1 where V := ∑ j∈J f ∩BLUE p j. We know that opt can only use groups G0, G1,

G2, . . . , G f−4logd−1 to process jobs in G f ∩ BLUE. Let T := f − 4log d − 1. Now we would like to lower

bound opt by only considering its load-dependent objective. Thus, we would like to minimize the load-

dependent objective when we’re asked to process jobs of total size V/d2 only using groups G0,G1,G2, ...,GT .

In other words, we would like to minimize ∑1≤t≤T |Gt |(Vt

|Gt |sGt
)q = ∑1≤t≤T (

V
q
t

(S(Gt))q−1) subject to ∑1≤t≤T Vt =

V/d2. By an easy algebra, we can see that the minimum is V
d2 ηq−1 where η := V/d2

∑1≤t≤T S(Gt)
≥ d2 · V

S(Gm−1)
.

Thus, V
d2 ηq−1 ≥ optr(BLUE,m) due to Properties 2 and 3; recall that q is an integer greater than 1. By

summing over all f , we have the lemma.

Thus we have proven Lemma 20.

7 Vector Scheduling: Minimizing q-norms (Rounding)

In this section we give a rounding procedure that converts a fractional assignment to an integral assignment

with a loss of O(log d
log log d

) factor in the competitive ratio for minimizing the q norm when machines have

homogeneous speeds. We will use the following objective, which is equivalent to our original objective up

to a constant factor; see Lemma 19.

h(x) := max
k

∑
i

(

∑
i

pi j(k)xi j

)q

+∑
i, j

(pi j(k))
qxi j (10)

Rounding Algorithm. Like scalar scheduling, since all machines in the same group are identical we focus

on assignment of jobs to groups. We define xGl j and m(j) as before. We ‘commit’ job j to the middle point

group Gm(j). Then, we schedule job j Jobs on one of machines of this group by following the O(log d
log logd

)-
competitive algorithm for vector identical machines.

Analysis. We first show that we can commit each job j to its middle point group, Gm(j) without losing

more than O(1)q factor w.r.t .(10). We define xo, x′ and x′′ the same as previous section.

Lemma 27. h(x′′)≤ O(1)qh(xo).

To prove this lemma let’s decompose the objective. Note that h(x) and h1(x)+h2(x) are within factor 2.

h1(x) := max
k

h1,k(x) where h1,k(x) := ∑
i

(∑
j

xi j pi j(k))
q

h2(x) := max
k

h2,k(x) where h2,k(x) := ∑
i, j

(pi j(k))
qxi j

Lemma 28. For any x, h(x) ≤ h1(x)+h2(x).

Proof. Immediate from the definition of h, h1 and h2.

18

Lemma 29. h1(x
′′)≤ 2qh1(x

′)≤ 4qh1(x
o).

Proof. Fix a dimension k. Consider scalar scheduling in this dimension. From the lemma 16, we can say

h1,k(x
′′)≤ 2qh1,k(x

′)≤ 4qh1,k(x
o) for each k. Definition of h1(x) follows the lemma.

Lemma 30. h2(x
′′)≤ 2h2(x

o).

Proof. For each k, with the same argument as lemma 17, we have h2,k(x
′′)≤ 2h2,k(x

o). The lemma follows

from definition of h2.

From the above lemmas, the desired Lemma 27 follows.

It now remains to show that given a fractional assignment where each job is assigned to only one group

consisting of identical machines, we can convert it into an integral assignment online using a O(log d
log logd

)-
competitive algorithm for d-dimensional identical machines. Our goal is to establish a competitive ratio of

O((log d
log log d

)q) against h(x) when all machines are identical. Let m denote the number of machines.

Although [23] gives a O((log d
log log d

)
q−1

q)-competitive algorithm for the q norm, here we only present an

online rounding algorithm that loses a competitive ratio of O(logd
log logd

). The reason we present a slightly

worse competitive ratio is because we need to argue against the objective h(x), hence we can’t do some part

of the preprocessing done in [23]. Also since we already lose an additional O(log2 d) factor in other places,

we choose not to further optimize this ratio.

The rounding algorithm we use here is essentially the O(logd/ log logd)-competitive makespan min-

imization algorithm for identical machines [23]. Let’s use the objective (8). As discussed before, this is

equivalent to h(x) up to a constant factor for minimizing the q norm. By a standard doubling trick, we can

assume w.l.o.g. that we know the final maximum average load on any dimension, i.e., A :=maxk ∑ j p j(k)/m.

Note that the first term in the objective is lower bounded by mAq; since all machines are identical, we assume

w.l.o.g. that the speed is 1. We say that a job j is big on dimensions k if pi j(k)≥ A. Our rounding algorithm

ensures that every machine gets at most η big jobs on any dimension, and its total load of small jobs is

at most ηA where η = O(logd/ log logd) where an appropriate constant is hidden. This can be done by a

independent rounding, followed by a postprocessing that takes are of ‘overloaded’ jobs. The idea is, using

standard concentration inequalities, to show that only a very small fraction of jobs need to be ‘reassigned’

in the postprocessing. This randomized rounding can be derandomzied using a potential function argument.

To see that this guarantee is sufficient to establish the desired competitiveness w.r.t. the objective (8),

consider any fixed machine i. Let Js and Jb denote small and big jobs assigned to i, respectively. Let Xi j

denote a binary variable such that Xi j = 1 if and only if j is assigned to machine i after the rounding. Then,

machine i’s contribution to the first term in the objective is,

∑
k

(∑
j

p j(k)Xi j)
q

≤2q ∑
k

(∑
j∈Js

p j(k)Xi j)
q +2q ∑

k

(∑
j∈Jb

p j(k)Xi j)
q

≤2q ∑
k

(ηA)q +2q ∑
k

ηq ∑
j∈Jb

(p j(k))
qXi j,

where the last inequality follows since each machine contains at most η big jobs and each machine has at

19

most ηA load of small jobs on any dimension k. Summing over all machines, we have

∑
i
∑
k

(∑
j

p j(k)Xi j)
q

≤(2η)qdmAq +(2η)q ∑
j∈Jb

(p j(k))
q

Since all machines are identical, the second term of the objective (8) is the same for all feasible assignments.

Hence we have shown that our final solution is (4η)qd-competitive against the optimal fractional solution

w.r.t. objective (8). Since q ≥ logd, (4η)qd = O(logd/ log log d)q, as desired.

8 Heterogeneous Machines

In this section we give our Ω(log m) lower bound for related machines with heterogeneous speeds (the

second part of Theorem 1) , i.e., the speed vector for a fixed machine need not be uniform. This result also

extends to a Ω(logd+q) lower bound for generic q-norms, thereby showing a Ω(logm+ logd) lower bound

for the makespan case when q = logm.

We (the adversary) construct our online lower bound instance as follows. Let d = 2h+1 be the number

of dimensions; there will be 2h machines in total. All speeds will be either be 1 or arbitrarily slow; for

simplicity, we will just say these machines have speed 0. To define each speed si(k), we first pair off 2h of

the total 2h+1 dimensions into h pairs, and order these pairs 1, . . . ,h arbitrarily; we will call the remaining

dimension that is not paired the aggregate dimension; we will call the other dimensions that are paired

pattern dimensions.

For each pair of pattern dimensions (k,k′) and a fixed machine i, we will define machine speeds so that

either si(k) = 1 and si(k
′) = 0 or vice versa. We say that (k,k′) has speed pattern A in the former case and

speed pattern B in the latter. To define speeds over all machines in pattern dimensions, we can think of

taking the set of all 2h strings As and Bs of length h, mapping each one to a unique machine, and then using

the string to define the corresponding speed pattern. For example, if we map string t to machine i and the

ℓth character of t is B, then for the ℓth dimension pair (k,k′) we set si(k) = 0 and si(k
′) = 1. Finally, we will

simply fix the speed of all machines in the aggregate dimension to be 1. This completes the definition of

machine speeds in the instance.

Now we describe the job sequence for the instance. Jobs will be issued in h rounds 1, . . . ,h, one for each

dimension pair. Throughout the instance, we maintain a set of active machines in which the algorithm can

still use; in other words, jobs will be defined so that they cannot be assigned to inactive machines. Denote

the set of active machines at the beginning of round ℓ as Tℓ. At the start of the instance all machines are

active, and then each round, the number of active machines is halved, where the goal is to limit the algorithm

to machines that have already been heavily loaded in the aggregated dimension.

The adversary maintains active machines as follows: Suppose we are in the ℓth round of the instance.

For this round, we will call a machine an A machine if it has speed pattern A in the ℓth dimension pair; B

machines are defined similarly, and inductively assume there are an equal amount of A and B machines in

Tℓ. We will issue a set of jobs Jℓ such that |Jℓ| = |Tℓ| = m/2ℓ−1, i.e., we issue as many jobs as there are

active machines. After the algorithm assigns the jobs in Jℓ, we then observe which set, the A machines or B

machines, has received the majority of the load among machines in Tℓ in the aggregate dimension up until

this point in the instance. We will then define future jobs so that they are limited to this more heavily loaded

set of machines. For example, letting (k,k′) denote the ℓth dimension pair, if machines in Tℓ with pattern A

have received a majority of the jobs up until this point, then for all future jobs j after this round we define

20

p j(k) = 1 and p j(k
′) = 0 so that the algorithm is forced to continue to use these machines. We will call this

the majority speed pattern for round ℓ. We will also define each job so that it has load 1 in the aggregate

dimension, and the loads for dimension pairs ℓ+1, . . . ,h are defined to be 0. This completes the description

of the construction, and one can verify that this induction is well defined.

The resulting instance will force a makespan of h = Ω(logm) on some machine in the aggregate dimen-

sion. This claim is implied by the following lemma:

Lemma 31. The average load on active machines in the aggregate dimension at the start of round ℓ+1 is

at least ℓ.

Proof. Consider the start of round ℓ, and inductively assume the average load on active machines Tℓ is at

least ℓ− 1. Recall that the number of active machines |Tℓ| = m/2ℓ−1 at the beginning of this round. Since

we issue m/2ℓ−1 jobs and they can only go to active machines, the average load for Tℓ machines increases

by 1, i.e., it is now at least ℓ. Furthermore, since we pick the majority speed pattern based on which pattern

currently has more load in the aggregate dimension, it is not hard to verify that the average for these m/2ℓ

machines must also be at least ℓ. Since these machines with the majority speed pattern will be the new active

machines for round ℓ+1, the proof of the lemma now follows by induction.

To complete the argument, observe that it is possible to “reverse” the decisions of the algorithm to get a

makespan of at most 2 on all machines and dimensions. In particular, the optimal solution assigns all jobs

in the ℓth round to the machines that do not correspond to the majority speed pattern in the ℓth dimension

pair (i.e., if the majority speed pattern was A for a round, then all jobs are assigned to B machines, and vice

versa). Since in each round half the machines are A and B machines, respectively, and we issue as many

jobs as there are active machines, this will produce a load of 2 on the machines that do not correspond to the

majority speed pattern. This completes our proof for the second part of Theorem 1.

We now extend the above lower bound to show a lower bound of Ω(log d + q) for case when each

dimension can be evaluated with arbitrary q-norm for 1 ≤ q ≤ logm. In the above construction, the load

vector in the aggregate dimension at the end of the instance has load vector identical of that in the Ω(q) lower

bound for the single-dimensional unrelated machines lower bound (see [4]), and thus the above construction

also gives a lower bound of Ω(q). To obtain a lower bound of Ω(log d), we add m additional dimensions

1, . . . ,m to the above construction. Note that now d = Θ(m). The speed in additional dimension i is 1

on machine i and arbitrarily fast on all other machines. These additional dimensions receive the same

load that the aggregate does. Based on the construction, there will some additional dimension i′ with load

Ω(logm) on machine i′ at the end of the instance (the machine that produces a load of Ω(logm) in the

aggregate dimension). Note that the optimal solutions obtains a q-norm of (2q)(1/q) = O(1) on all additional

dimensions, whereas the algorithm’s solution has produced a q-norm of ((c log m)q)(1/q) = Ω(logd) for

additional dimension i′. This completes the extension.

Acknowledgement

We thank Janardhan Kulkarni for many enlightening discussions in the early stages of this work.

21

References

[1] Faraz Ahmad, Srimat T Chakradhar, Anand Raghunathan, and T. N. Vijaykumar. Tarazu: optimizing

mapreduce on heterogeneous clusters. In ACM SIGARCH Computer Architecture News, volume 40,

pages 61–74, 2012.

[2] Susanne Albers. Better bounds for online scheduling. SIAM J. Comput., 29(2):459–473, 1999.

[3] James Aspnes, Yossi Azar, Amos Fiat, Serge A. Plotkin, and Orli Waarts. On-line routing of virtual

circuits with applications to load balancing and machine scheduling. J. ACM, 44(3):486–504, 1997.

[4] Baruch Awerbuch, Yossi Azar, Edward F. Grove, Ming-Yang Kao, P. Krishnan, and Jeffrey Scott Vitter.

Load balancing in the lp norm. In FOCS, pages 383–391, 1995.

[5] Yossi Azar. On-line load balancing. In Online Algorithms, The State of the Art (the book grow out of

a Dagstuhl Seminar, June 1996), pages 178–195, 1996.

[6] Yossi Azar, Ilan Reuven Cohen, Amos Fiat, and Alan Roytman. Packing small vectors. In Proceedings

of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington,

VA, USA, January 10-12, 2016, pages 1511–1525, 2016.

[7] Yossi Azar, Ilan Reuven Cohen, Seny Kamara, and F. Bruce Shepherd. Tight bounds for online vector

bin packing. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June

1-4, 2013, pages 961–970, 2013.

[8] Yossi Azar, Joseph Naor, and Raphael Rom. The competitiveness of on-line assignments. J. Algo-

rithms, 18(2):221–237, 1995.

[9] Yair Bartal, Amos Fiat, Howard J. Karloff, and Rakesh Vohra. New algorithms for an ancient schedul-

ing problem. J. Comput. Syst. Sci., 51(3):359–366, 1995.

[10] Yair Bartal, Howard J. Karloff, and Yuval Rabani. A better lower bound for on-line scheduling. Inf.

Process. Lett., 50(3):113–116, 1994.

[11] Piotr Berman, Moses Charikar, and Marek Karpinski. On-line load balancing for related machines. J.

Algorithms, 35(1):108–121, 2000.

[12] Ioannis Caragiannis. Better bounds for online load balancing on unrelated machines. In SODA, pages

972–981, 2008.

[13] Chandra Chekuri and Sanjeev Khanna. On multidimensional packing problems. SIAM J. Comput.,

33(4):837–851, 2004.

[14] Richard Cole, Vasilis Gkatzelis, and Gagan Goel. Mechanism design for fair division: allocating

divisible items without payments. In Proc. 14th ACM conference on Electronic commerce, pages

251–268, 2013.

[15] Ulrich Faigle, Walter Kern, and György Turán. On the performance of on-line algorithms for partition

problems. Acta Cybern., 9(2):107–119, 1989.

22

[16] Rudolf Fleischer and Michaela Wahl. Online scheduling revisited. In Algorithms - ESA 2000, 8th

Annual European Symposium, Saarbrücken, Germany, September 5-8, 2000, Proceedings, pages 202–

210, 2000.

[17] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, and Ion Stoica. Dom-

inant resource fairness: Fair allocation of multiple resource types. In Proc. 8th USENIX Symposium

on Networked Systems Design and Implementation (NSDI), 2011.

[18] Todd Gormley, Nick Reingold, Eric Torng, and Jeffery Westbrook. Generating adversaries for request-

answer games. In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,

January 9-11, 2000, San Francisco, CA, USA., pages 564–565, 2000.

[19] R. L. Graham. Bounds for certain multiprocessing anomalies. Siam Journal on Applied Mathematics,

1966.

[20] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathematics,

17:416–429, 1969.

[21] David G. Harris and Aravind Srinivasan. The moser-tardos framework with partial resampling. In

54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,

2013, Berkeley, CA, USA, pages 469–478, 2013.

[22] J. F. Rudin III. Improved bound for the on-line scheduling problem. PhD thesis, The University of

Texas at Dallas, 2001.

[23] Sungjin Im, Nathaniel Kell, Janardhan Kulkarni, and Debmalya Panigrahi. Tight bounds for online

vector scheduling. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS

2015, Berkeley, CA, USA, 17-20 October, 2015, pages 525–544, 2015.

[24] Sungjin Im, Janardhan Kulkarni, and Kamesh Munagala. Competitive algorithms from competitive

equilibria: Non-clairvoyant scheduling under polyhedral constraints. In Proc. 46th ACM Symposium.

on Theory of Computing (STOC), pages 313–322, 2014.

[25] Sungjin Im, Janardhan Kulkarni, and Kamesh Munagala. Competitive flow time algorithms for poly-

hedral scheduling. In IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS),

pages 506–524, 2015.

[26] David R. Karger, Steven J. Phillips, and Eric Torng. A better algorithm for an ancient scheduling

problem. J. Algorithms, 20(2):400–430, 1996.

[27] Gunho Lee, Byung-Gon Chun, and Randy H Katz. Heterogeneity-aware resource allocation and

scheduling in the cloud. In Proceedings of the 3rd USENIX Workshop on Hot Topics in Cloud Com-

puting, HotCloud, volume 11, 2011.

[28] Adam Meyerson, Alan Roytman, and Brian Tagiku. Online multidimensional load balancing. In

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques - 16th

International Workshop, APPROX 2013, and 17th International Workshop, RANDOM 2013, Berkeley,

CA, USA, August 21-23, 2013. Proceedings, pages 287–302, 2013.

23

[29] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy, Sylvia Ratnasamy, and

Ion Stoica. Faircloud: sharing the network in cloud computing. In ACM SIGCOMM, pages 187–198.

ACM, 2012.

[30] Kirk Pruhs, Jiri Sgall, and Eric Torng. Online scheduling. Handbook of scheduling: algorithms,

models, and performance analysis, pages 15–1, 2004.

[31] Jiri Sgall. On-line scheduling. In Online Algorithms, pages 196–231, 1996.

[32] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion Stoica. Improving mapre-

duce performance in heterogeneous environments. In Proc. 8th USENIX Symposium on Operating

Systems Design and Implementation (OSDI), pages 29–42, 2008.

A Counterexample for Slowest-Fit in Vector Scheduling

The previously known scalar scheduling algorithm [11] for related machines with the makespan norm only

loses a constant factor by using slowest-fit: assign a job to the slowest machine that can accommodate it

without exceeding the desired competitive ratio. What if we use the same rule for assigning jobs in vector

scheduling for the makespan norm? Unfortunately, this strategy fails.

Example: Consider a set of homogeneous related machines where there are 2g machines of speed 1/2g,

g ∈ {1,2, · · · ,d} – let’s index this group by g. Let c be the desired competitive ratio or equivalently the

maximum average load we allow for each group. Note that all groups have an equal ‘processing power,’

2g ·1/2g = 1. Any job released is sufficiently small so that it can be assigned to any group, i.e., 2d · ||p j||∞ ≤ 1

for all j. We release jobs in d phases. In the gth phase, every job has size 1/2d on dimension g, and extremely

tiny sizes on the other dimensions. There will arrive c ·2d such jobs in this phase. In the spirit of slowest-fit,

these jobs will be assigned to group g, eventually making the group hit the threshold c on the average load on

dimension g. Note that other dimensions are barely used. After all the d phases, from d to 1, we now release

tiny jobs with size 1/2d on all dimensions. However, every group has hit the predetermined threshold on a

distinct dimension, thus can’t accept any more jobs. In contrast, it is easy to see an optimal schedule with

makespan c/d (ignoring the extremely tiny sizes).

The problem with slowest-fit is that it excessively preserves fast machines for big jobs that may arrive

in the future. In particular, it fails to realize in the above instance that all the groups have exactly the same

processing power. This suggests that the slowest-fit strategy would work better if we can ensure that the

slower groups have larger processing power, and therefore should receive most of the jobs. We artificially

ensure this by grouping machines not by speed, but in a way such that the total processing power of the

groups increases exponentially as we move to slower machines. While this creates the desired distribution

of processing power, we no longer have the property that the machines in the same group have similar

speeds. However, we manage to show that we can replace the (actual) machines in each group by a set of

(simulated) identical machines with the same cumulative processing power, but with speed equal to that of

the slowest machine in the group, without increasing the optimal makespan by more than a constant factor.

This constitutes our machine smoothing technique that is given in Section 2.

B Impossibility for All Norms Minimization in Vector Scheduling

In this section, we provide an instance that rules out all norms minimization even for related machines

with homogeneous speeds. This will distinguish related machines from identical machines, for which a

24

logarithmic competitive algorithm was shown for all norms minimization [23].

Instance. There are two type of machines, fast and slow. There are t fast machines with speed 1 and t2 slow

machines with speed 1/
√

t. The number of dimensions d = t2 +1. There are t2 jobs, and each job has size

1 on a distinct dimension and size 1/t on a dimension that is shared by all jobs – we call this dimension the

common dimension; we call the the other dimensions dummy dimensions.

If we place an arbitrary set of t jobs on each fast machine, the makespan is 1, and the L4 norm of the

loads is 1 on any dummy dimension and t1/4 on the common dimension. Now let’s see how the makespan

norm and L4 norm change when we assign each job to a distinct slow machine. Note that the makespan is

now
√

t. The L4 norm also increases to
√

t on any dummy dimension, but decreases to ((1/
√

t)4t2)1/4 = 1 on

the common dimension. Thus one can improve some norm on a specific dimension by a factor polynomial

in d while sacrificing others.

C Proof of Claim 6

We recall the claim: If a job j is assigned in proportion to |G| · sγ
G among machine groups G with identical

values of αG j, where γ = q/(q−1), then the value of αG j remains equal for these machine groups after the

assignment.

Proof. Recall that

αG j := q · (ΛG)
q−1 · p j

sG

(11)

Therefore its derivative with respect to an assignment xi j is:

dαG j

dxi j

= q(q−1) · (ΛG)
q−2 ·

p2
j

s2
G

Substituting for Λi using (11) we have:

dαG j

dxi j

= q(q−1) ·
(

sGαG j

p j ·q

) q−2
q−1

·
p2

j

s2
G

(12)

To keep αG j values equal while dividing xi j infinitesimally among the groups, we should assign mass in-

versely proportional to
dαG j

dxi j
times |G| to each group G. However, since all G already have equal αG j upon

the assignment, all terms in
dαG j

dxi j
except for SG are common across these groups. Thus, each group should

receive mass in proportion to S
2−(q−2)/(q−1)
G |G|= S

γ
G|G|.

25

	1 Introduction
	2 Machine Smoothing
	3 Vector Scheduling: Minimizing Makespan
	4 Scalar Scheduling: Minimizing q-norms
	5 Scalar Scheduling: Minimizing q-norms (Rounding)
	6 Vector Scheduling: Minimizing q-norms
	6.1 Overview of Algorithm and Analysis
	6.2 Proof of Lemma ??

	7 Vector Scheduling: Minimizing q-norms (Rounding)
	8 Heterogeneous Machines
	A Counterexample for Slowest-Fit in Vector Scheduling
	B Impossibility for All Norms Minimization in Vector Scheduling
	C Proof of Claim ??

