
Panel: 
Foundations of Object-Based Concurrent 
Programming 

Chair: 
Gul Agha, University of Illinois at Urbana- 

Champaign 

Panelists: 
Akinori Yonezawa, University of Tokyo 
Peter Wegner, Brown University 
Samson Abramsky, Imperial College, 

London University 

Professor Gul Agha: 

I am at the University of Illinois at Urbana- 
Champaign. Professor Aki Yonezawa from the 
University of Tokyo is a leader in the field of Object- 
Oriented Concurrent Programming. He has pioneered 
ABCL/l and a number of other object-based 
concurrent systems, and is the Program Chair for 
this year’s OOPSLA conference. Professor Peter 
Wegner from Brown University was the first 
chairman of SIGPLAN, was responsible in the early 
1970s for the idea of ACM specialized conferences 
including the POPL conferences, and was last year’s 
OOPSLA keynote speaker. Professor Samson 
Abramsky from London University (Imperial 
College) has contributed to the foundations of 
concurrent languages and will discuss the relation 
between foundational work on concurrency and 
functional programming and object-based concurrent 
programming. All the speakers, including myself, 
attended a two-day workshop on object-based 
concurrent programming held immediately prior to 
this conference and will give you their personal 
perspective on the workshop. Below is a summary of 
their remarks. 

Akinori Yonezawa 

I will describe four areas for further work which 
emerged from the two-day workshop on object-based 
concurrent programming held before the main 
OOPSLA conference. 

l Type theory for concurrent objects. A type is a 
constraint on the behavior of an object and a 
subtype is a finer or stronger constraint. The 
ideas of type and subtype have been very useful 
for structuring programs, detecting compiling 
errors, and optimizing the run-time code. In the 
sequential world, ideas such as abstract data 
types, parameterized types, and polymorphic 
types have been implemented and are well- 
understood. Deep mathematical theories for 
types and subtypes have been developed. In 
Object-Oriented Programming, class and 
subclass are being used for code sharing and code 
reusing. The distinction between types and 
classes is useful as a means of classifying and 
characterizing objects. The notion of types in the 
Concurrent or in the Parallel world is 
ambiguous since the generalization of types to 
the richer constraints associated with 
concurrency is not well understood. We still do 
not have a good notion of type that captures 
synchronization constraints, interrupt behavior, 
and multi-party interaction. 

l Extension of delegation and inheritance to 
Concurrency. Inheritance and delegation may be 
viewed as two ways of code sharing. Kafura and, 

Addendum to the Proceedings OOPSLA I ECOOP ‘90 191 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319016.319031&domain=pdf&date_stamp=1990-10-01


subsequently, Tomlison and Singh have 
examined concurrent delegation and inheritance. 
We cannot simply extend the sequential idea to 
the concurrent world since sharing is much more 
complex. I am pessimistic about finding an easy 
solution. The object world is moving toward 
finer grain concurrency. Do we really need 
inheritance and delegation in concurrent 
sys terns? 

l Grouping mechanisms. Grouping is useful in 
identifying and naming the objects, in resource 
management, and in computation and debugging. 
What are the language mechanisms or 
constraints to capture grouping of concurrent 
objects? Connected with the issue of grouping is 
compositionality of the concurrent objects-in 
the sense of being able to compose concurrent 
objects to get a composite object. In most 
computation models for concurrent objects 
compositionality has not been achieved. 

l Concurrent computational reflection. 
Computational reflection was introduced in a 
sequential context by Brian Smith. In the 
sequential world, the CLOS group has been 
working with metaobject protocols. Pierre 
Cointe has been working with reflective objects 
in LISP. Mary Shaw, in 1987, gave us an object 
oriented version of computational reflection. 
Computational reflection means representing an 
execution scheme so that it is manipulable at a 
higher level. That implies making the execution 
scheme dynamic, changeable, adaptable, and 
extensible. So there have been several proposals 
for using this mechanism but we have to be very 
careful what we are talking about since 
concurrency is more subtle and complex than 
sequential programming. 

Peter Wegner 

Object based concurrent programming combines the 
object based and concurrent paradigms: it combines 
encapsulation with communication and 
synchronization. We combine the modeling power of 
sequential object-oriented programming with the 
computational and expressive power of concurrency. 
The essence of object-based programming is 
encapsulation of local data. Object-based 
programming is a form of component-based software 
technology. One research area I would like to talk 
about is the extension of component-based software 
technology to new kinds of software components 
with more powerful encapsulation mechanisms. 

Let me introduce the term programming in the very 
large (PIVL) to denote software development of 
programs that are not only textually large but also 
temporally extensive (persistent), large in the 

number of people that create and use them, and large 
in the educational and equipment infrastructure 
needed to support them. 

One approach to programming in the very large is 
megaprogramming, a new term introduced by 
DARPA for an as yet undefined component-based 
technology for very large programs. The term 
expresses a wish rather than a reality: the wish for a 
technology to manage systems an order of magnitude 
larger than those we can handle today. One approach, 
proposed by me and Gio Wiederhold, is to view 
encapsulation as the key notion and to supplement 
data abstraction that encapsulates data at tbe level of 
objects with more powerful encapsulation 
mechanisms that encapsulate behavior and 
knowledge. We call such large abstractions with 
powerful encapsulation facilities megamodules. 
Megamodules can model large abstractions like 
banks and city transportation systems rather than 
merely bank accounts and vehicles. Megamodules 
may have many internal concurrent activities and 
their interfaces are determined by the megamodule 
software community rather than by global interface 
policing. 

How does megaprogramming differ from object 
oriented programming? One difference is that they 
have heterogeneous interfaces that cannot always 
directly understand each other (megamodules have 
their own type systems and local terminology). In 
contrast, components in object-oriented systems 
generally have homogeneous interfaces. Classes 
(which determine object interfaces) are generally 
global since data abstractions generally encapsulate 
data but not other classes. 

Open questions in the design of megamodules 
include: what should megamodules encapsulate?, 
how should they communicate?, what data 
conversion facilities are needed for communication 
between megamodules?, how should megamodule 
libraries be organized? We have addressed these and 
other issues in a joint paper by me, Gio Wiederhold at 
Stanford, and Stefano Ceri of the University of 
Milano. It is available from the computer science 
departments of Stanford or Brown. 

Let me switch to another subject: the question of 
what determines module boundaries. Module 
boundaries are determined in part by data abstraction, 
in part by notions of distribution and in part by 
notions of synchronizations. An abstraction 
boundary is the information hiding boundary when 
you try to look in to a module. A distribution 
boundary is determined by how far out you cm see 
from within a module. In block structure languages, 
the distribution boundary is coarser than the 
abstraction boundary, since block and procedure 

ilO1 21-25 October 1990 Ottawa, Canada 



boundaries permit looking outward but not inward. them more or less cover the main elements of the 
The abstraction boundary is coarser than the object oriented paradigm. The first is the concurrent 
distribution boundary for megamodules whose paradigm as formulated by Robin Milner in terms of 
abstract interface hides many internal distributed communicating processes. Unfortunately he is not 
modules. The synchronization boundary is the here so I’ll say a bit about his work on the calculus 
boundary at which incoming threads are held up for of communicating systems (CCS) which you can find 
purposes of synchronization. It can coincide with the described in his recent book on communication and 
abstraction boundary, as in Ada tasks, or can be more concurrency. This gives a notation for describing 
finely grained, allowing threads to synchronize concurrent systems built up by uniform operators, 
within a module as in the case of monitors. It is combinators of communicating processes, and 
interesting to explore the interplay of these three encapsulation, and a mathematical theory which 
factors in determining module boundaries, both to allows you to reason about these things to show that 
examine trade-offs in module design and to one description of a system is equivalent to another 
determine more precisely what we mean by or that a description of a system satisfies certain 
modularity. properties. 

My personal research agenda in the area of object- 
oriented programming focuses on the study of 
software components. What is the glue for 
composing components? Is the glue specifiable as 
components or in some other way? If the glue is 
components we have second order components. A 
second part of my research agenda, related to one of 
Aki’s topics, is concerned with methods of 
incremental modification and reusability of types 
and classes. Inheritance is a form of incremental 
modification that supports both subtype and 
subclass modification. Inheritance is a form of glue 
for composing classes by composing subclass 
components (it supports both behavior modification 
and system evolution). But is it the right kind of 
glue? Is inheritance the right kind of notion for 
composing software components or is it something 
that is just proved useful in a special context and 
maybe isn’t extendable to say concurrency and 
distributed systems. 

I certainly believe this work is very relevant to more 
practical considerations as well and indeed Robin’s 
book contains many examples and how it can be used 
for modeling realistic situations. It covers the most 
of the computational aspects of the object oriented 
paradigm. Objects can be viewed as processes, the 
interaction with objects by invoking methods can be 
seen as a particular case of communication with an 
environment, and the idea of encapsulation can be 
modeled by restricting the visibility of operators. 

The second paradigm is that of typed functional 
programming languages. Functional programming 
languages are declarative languages based on 
theoretical foundations from the lambda calculus 
and logic. They embody work on the foundations of 
type theory, type inference systems, and subtyping. 
One of the motivations has been that subtyping 
should provide a model for one aspect of inheritance 
in object oriented languages. 

Samson Abramsky 

Theoreticians pick things apart and try and find the 
elementary particles, the fundamental theories, to 
petit their formal analysis. Things are analyzed by 
considering their simplest and purest forms. In 
contrast, object-oriented programming is a rather 
rich stew of things with many ingredients bubbling 
merrily on the pot. It combines things that have been 
studied separately under various guises, for example, 
abstract data types, subtyping, message passing, etc. 
It is the combination that makes the Object Oriented 
paradigms attractive. Theoreticians have been 
understanding things at a fundamental level often in 
separation and not in this particular combination. 

Over the last couple of years some rather 
encouraging progress has been made in this area. Let 
me mention two developments here, one by Robin 
Milner and his colleagues. This is work on the pi 
calculus or the calculus of mobile processes. There is 
a long paper by Robin and some of his colleagues and 
also a more recent paper on functions as processes 
which appeared in this year’s ICALP conference.The 
basic step is to extend the CCS paradigm to be able 
to pass the names of ports or channels in 
communications. This gives you a way of 
formalizing systems or networks of processes which 
can dynamically reconfigure themselves. One process 
can pass the access to another process to a third party. 

To bridge the gap between theory and object-oriented 
programming, we must combine the ingredients that 
have been separately studied in a way that is relevant 
to practitioners. There are two distinct paradigms 
which have received a lot of attention that between 

Another development in this area I would like to 
mention is Ben Thompson who has just written his 
Ph.D. with me. He’s taken a somewhat different 
approach, unifying the Lambda Calculus and CCS in a 
more direct way in his calculus of higher order 
communicating systems. CHOCS, which allows 
sending processes as messages. One of his examples is 

Addendum to the Proceedings OOPSLA / ECOOP ‘90 [Ill 



an object oriented language and he translates the 
problem in a rather nice way into his CHOCS 
formalism. 

This recent work gives encouragement for progress. 
However, it addresses the computational aspect of 
functional programs without really talking about 
types. The type aspect of functional programming is 
a key ingredient in properly understanding 
inheritance. In my contribution to the workshop, I 
addressed the question of finding a synthesis of type 
theory and concurrent process theory. I will mention 
some of the ideas. The particular work I described is 
written up in a paper on computation and 
interpretation of linear logic based on a recent 
system called linear logic developed by the French 
logician, Jean Girard. 

What’s exciting about linear logic is that it carries 
the scope of logic right into the heart of some of the 
key engineering issues which deal with efficient 
structuring of computations. It takes resources and 
the way that these are used in the processes of logical 
inference seriously, making them visible and part of 
the logic. Computationally significant operations 
should be made visible and not just taken for granted. 
For example, the lambda calculus bought has an 
underlying theory of substitution which is appealed 
to for free. But anyone who has implemented a 
functional language will know that substitution is 
anything but free from a computational point of 
view. Making things like substitution part of the 
logic is one of the main thrusts of linear logic. 

To conclude, I’ll mention some things that came up 
in the course of the workshop. I came away with a 
desire to understand better the relation between 
actor formalisms and the communicating processes. 
We now have tools developed both by the people in 
the actor community and on the communicating 
process side to get a much better understanding of 
what those relationships are. This will help to build 
a bridge between some of that work and the object- 
oriented concurrent work. There are some interesting 
questions do with identity. Identities of objects are a 
main topic and a known issue in object oriented 
languages and they are much harder to make visible in 
the communicating process world where the things 
that have identities are in fact the ports or channels 
of the system. In actor formalism ports are uniquely 
correlated with actors, so that actors have unique 
identities. 

Another point is to do with inheritance and 
concurrency. This can be formulated in terms of 
meshing subtyping with the idea of attaching 
computational interpretation to logic in a way that I 
mentioned. Another point concerns what theory and 
practice might have to say to each other. 

Practitioners want to have formalisms which are 
very expressive. While that is at one level desirable, 
it is also undesirable because it lets you do things 
that you don’t really want to do. On the other hand, 
there’s a tendency in formalisms to prescribe how 
you express things, this is particularly so for typed 
formalism: they winnow out the wheat from the 
chaff, keeping typed things and throwing away the 
things that you can’t type. Locating the right point 
for that trade off so you have sufficient expressive 
power but also sufficient structure and discipline is a 
rather interesting issue. 

Another example of the mileage one can get from a 
good semantic understanding of formalism is static 
program analysis: the kinds of analyses that can be 
done at compile time and fed into the efficient 
compilation of programs. We’ve seen this in the 
functional programming community where the 
semantics of functional programming has been put to 
use in analysis, such as strict analysis, which has been 
used in optimizing compiled code and execution. It 
would be interesting to see how well those ideas 
could be applied to actor formalisms and more 
generally within the object oriented world. 

Professor GUI Agha 

Agha discussed the trade-off between structure and 
flexibility and the problems it raised for formal 
models of object-based concurrency. Here is a 
summary of his remarks: 

I will coin the new buzzword COOP to denote 
Concurrent Object-Oriented Programming. Let me 
proceed to give a flavor of some of the fundamental 
issues in modeling COOP systems. I will distinguish 
three kinds of concurrency: divide and conquer 
concurrency (involving unrelated subcomputations), 
pipeline concurrency, and cooperative networks. 
Divide and conquer concurrency has a functional 
form, and furthermore, if the components may not 
have side effects, it allows unrestricted concurrent 
execution. Pipelined concurrency can be expressed in 
terms of streams which feed one process or object to 
another through a pipeline. Cooperative networks of 
processes can have arbitrary connections and 
constraints on the concurrent execution between 
objects. 

Now let us consider a very simple example of divide 
and conquer concurrency, namely, the problem is 
multiplying a list of numbers represented as a tree. 
The leaves of the tree are numbers. The product of all 
the numbers in the tree may be found by multiplying 
the products of the left and the right subtrees. If a 
subtree is a number, we can just return it. Evaluation 
of the left and right tree products can be concurrent 

1121 21-25 October 1990 Ottawa, Canada 



because of the so-called Church Rosser property. The 
actor formalism can express this concurrency, but 
the concurrency cannot be explicitly expressed by 
functional programming because the needed 
continuation is history sensitive. Let us see why this 
is so. 

To compute the tree product, two computations for 
the left and right parts are created. The answer to the 
one of these computation, which happens to be 
completed first, is sent to the join continuation. It 
must ‘wait’ there till the second answer arrives. 
When the second answer arrives the two answers are 
multiplied and the result is sent on its way. Thus the 
join continuation is a history sensitive object. The 
need for history sensitivity creates the necessity of 
state: a merge essentially amounts to having state. 
Once you see this operational structure you may 
modify it to return a zero if the first result obtained 
happens to be zero. Now suppose that the list is 
supposed to consist entirely of positive numbers. 
While multiplying the list you see a negative 
number which represents an error. You may wish to 
send an error message or perform an exception 
procedure. Now the join continuation may be 
programmed to wait until the datum has been 
cleaned up, or it may check the other numbers it 
receives. Things are no longer referentially 
transparent because the form of the action depends on 
the value (say seeing a zero or seeing a negative 
number). The referential transparency is lost to gain 
flexibility and efficiency. Representing the behavior 
of such a system requires a lower-level framework in 
terms of arrival order of messages, a behavior for 
processing the current message, a replacement 
behavior, and the creation of other Actors. This is 
described in my Actors book (MIT Press) or in the 
September 1990 CACM article. 

Now the primitive actors provide flexibility and 
efficiency because we can explicitly talk about join 
continuations, communications, state, etc. However, 
representing even a simple recursive functions like 
factorial in terms of pure actors is messy-it 
involves many low level actors and continuations. 
Although the actor formalism is modular and does 
not require tracking the state, it is still too low 
level for practical programming in general. One 
response is to say that this is simply a price you have 
to pay for being able to optimize things like 
multiplication by zero. A more reasonable position 
is that you should not pay the price of having to 
specify low level programming details unless you 
really need it. Thus we should be able to use 
abstractions, in this case functional ones, in other 
cases, constraints, multi-party interactions, etc. for 
ease of high-level programming. 

Thus, we can use abstractions to permit us to hide the 
details of a system but if we need to, we can reify the 
underlying implementation in terms of primitive 
actors, expose and manipulate its structure. For 
example, we can make the control structure explicit 
by bringing the join continuation up to the level of 
the programmer, and allowing her to manipulate it. 
Conversely we can reflect the manipulated structure, 
installing it in the underlying implementation in 
order to dynamically ‘subvert’ the meaning of the 
original program so that it means something 
different. Now, as you can observe, this creates some 
interesting problem for statically determining types 
for the system types. 

Let me go back to a comment made by Abramsky 
about having enough structure so that flexibility 
doesn’t drive you insane from the chaos that it 
creates. My response to that is that we need a 
flexible structure combined with structuring tools. 
We do not want a language to impose a discipline 
because there are many possible disciplines, each 
appropriate in a different context. A low level 
language provides flexibility to build different 
kinds of structures, while preserving freedom of 
action to conform to the discipline of any world that 
may be chosen. Furthermore, a reflective semantics 
allows a language to represent and manipulate its 
own semantics-thus adding greater flexibility. 
This is in contrast to the point of view which 
suggests that programming language designers 
should find the single right balance between 
structure and expressiveness? So let me begin by 
asking Samson what his reaction to this is? 

Discussion 

The discussion focused on a number of issues 
including: rigidity versus flexibility in language 
design, inheritance and synchronization, 
megamodules, methods for combining components, 
implementation mechanisms, the use of graph theory, 
and the implications of fine grained concurrency. An 
edited transcript of the discussion can be found in the 
Proceedings of the Workshop being published 
separately. Finally, Professor Kristen Nygaard of 
the University of Oslo was invited to make some 
closing remarks. 

Professor Kristen Nygaard 

I found this panel confusing-because of the way 
people talk about object oriented programming. I’m 
all for theory, it’s extremely useful, but 
Abramsky’s comments are a little like the tail 
wagging the dog. Object-oriented programming 
started as a phenomenon of computing processes. It 

Addendum to the Proceedings I OOPSLA / ECOOP ‘90 [I31 



started with what happened in the computers. How 
could we could use it to model, simulate, and realize 
a vision of computing processes? How could we 
understand the phenomenon, including what people 
do and the processes of interaction between 
computers and people? We have a rich field of 
phenomena to understand and relate to. When people 
talk about what comes after. the object oriented 
programming, for me it’s similar to saying what 
comes after multiplication. 

Our goal is to have a way of understanding 
concurrency and components. Components have 
properties that determine actions, There are no single 
actions, they are part of objects. Inheritance was 
introduced to model generalization and 
specialization. To blame inheritance because it deals 
with generalization/specialization is strange because 
it is generalization specialization. Of course there is 
a tree structure because generaIization/specialization 
is a tree structure. It can be used for other things, and 
in the US it has been used extensively in order to 
achieve standard things such as code reuse. This has 
blurred the essential use of it. The problems of using 
inheritance in concurrency are not because 
generalization/specialization is inappropriate, but 
perhaps because we are trying to use it for additional 
kinds of composition for which it was not intended. 

Another thing which also makes me a little uneasy is 
the talk about reflection, with systems changing 
structure as they go along. I think this is dangerous 
because we must make certain that we comprehend 
what we are talking about. Structure is something 
we impose on reality in order to grasp it and to deal 
with it. 

In the last act of Hamlet, you have the play within 
the play. If you really look into that, you can see that 
you have two levels. To have the murder in the play 
within the play for directly the murder of the stage, 
namely the King. This is what we call absurd theater 
because it is meaningless. 

Basic phenomena of information processing have 
structure, we have the process of making the 
structure, and of restructuring by composition. But 
we have certain limits on our ability and should be 
careful in going beyond this. The wrong thing about 
megaprogramming is not that we have large things 
and that we have to work because we have large 
things. It is the way many things are mixed together 
and dealt with as a large stew that suggests the 
wrong kind of largeness. Programming is 
programming and other things are other things and 
they all have to go together in order to make big 
things. 

[I41 21-25 October 1990 Ottawa, Canada 


