
Workshop:
Third CLOS Users and Implementors Workshop

Organizer:
Andreas Paepcke
Hewlett-Packard Laboratories

This year’s CLOS workshop served two purposes. The
fust was to bring users and implementors together for
the purpose of exchanging ideas and feedback. The
second was to serve the coordination for an upcoming
publication that will collect papers about CLOS,
covering a broad range of issues connected with the
language.

All participants contributed a position paper
describing concerns or work done on or with CLOS.
These included issues of programming style,
applications of the CLOS Metaobject Protocol and
other facilities special to CLOS, and suggestions on
how the language could be enhanced.

John Collins’ contribution is concerned with
documenting CLOS code. He identifies three consumers
of documentation: maintenance programmers who need
an ‘internal protocol,’ functionality users who need an
‘external protocol’ and programmers who will extend
the system and need a ‘specialization protocol.’

Roman Cunis points out in which parts he feels CLOS
is not reflective and what could be done to change that.

Scott Cyphers and David Moon explain several of the
efficiency mechanisms in the Symbolics CLOS
implementation. This includes issues such as object
representation, slot access, dispatch, instance creation
and the modification of classes and existing instances.

Rick Dinitz, Philip McBride, Hans Muller and John
Rose describe how they used CLOS features in their
work with Lisp View, a Lisp interface to Open Look
and X, which is itself written in CLOS. In particular,
they explain their use of multiple inheritance, multi-
method dispatch of various kinds, protocols with
polymorphism, introspection, class evolution and
method combination.

Jiri Dvorak and Horst Bunke link object-oriented
programming with rule-based work and explain how
CLOS helps with the implementation of the database,
general system design and enhanced flexibility.

Bruce Esrig and James Hook introduce static typing
into CLOS by figuring out the types of expressions
through pattern matching. They show the relationship
of this work to ML and point to some optimizations
that would be necessary in a CLOS implementation for
efficient execution of such a mechanism.

Steve Ford explains that the integration of Common
Lisp and CLOS is not complete enough, citing several
examples, including the need for Common Lisp
functions to be generic. He points to several problems
arising when persistence, distribution, and sharing are
added to CLOS: the partitioning of the name space by
packages is insufficient with persistence increasing the
life tune and volume of names. Transactions are needed,
a sense of location for a computation must be
introduced and consistency maintenance beyond CLOS’
class/instance consistency become necessary. Other
issues pointed to are the need for the concept of
set/collection and a portable representation of objects
(among CLOS implementations and, more generally,
among other object-oriented languages).

Addendum to the Proceedings OOPSLA I ECOOP ‘90 [43 1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319016.319043&domain=pdf&date_stamp=1990-10-01

Alan Gunderson, Mark Adler and Steve Schwartz
describe a CLOS implementation of knowledge
representation that is suitable for computer network
modelling for reasoning and diagnostics. They use the
Metaobject Protocol to introduce relations into the
language.

Benoit Habert has used modifications to the generic
dispatch to reflect ever narrowing constraints during
the parsing of natural language expressions.

Simon M. Kaplan and Alan M. Carroll use CLOS for a
cooperative computing environment. They show how
they use accessor method specialization, inheritance and
dispatch control. They also point out the drawbacks
they found in their use of the language and available
environments, stressing the lack of an ability to cause
only a subset of the :before and after methods to be
run, as well as the need for persistence.

Jonathan A. Pierce and Joshua Lube11 suggest a way of
specifying constraints on slot values, including
constraints between the values of slots in the same or
different instances. They also suggest various
extensions to the language: a new slot allocation
scheme that makes the slot shared for the class, but
which causes each subclass to have its private copy to be
shared only among the instances of that subclass. They
propose a change to allow keyword arguments to ‘setf
methods and would like a protocol for managing
named instances to accommodate knowledgebases.

Ramana Rao argues that the concept of metalevel
architectures is important outside of language
development and illustrates this with Silica, a portable
window system layer that is part of an emerging
standard on Common Lisp user interfacing.

The workshop was kicked off with a talk by Danny
Bobrow on CLOS’ intellectual history and context. He
did this by giving definitions, language comparisons
and speculations about possible extensions for various
aspects of language design and implementation.

Danny began with a tradeoff analysis of polymorphic
operators, pointing out the design dimensions, such as
who may influence how polymorphism chooses among
alternative behaviors, when selection occurs and
whether this selection is based on single or multiple
arguments.

He followed the history of factoring code (reusable
code segments) from subroutines through the idea of
modules to the principle of factoring by object-
oriented techniques. He pointed out aspects of
reflection in languages, distinguishing between
reflection on structure, program and process.
Reflection on structure refers to class descriptions and
hierarchies. Reflection on program refers to the

building blocks of the language, such as methods, and
reflection on process addresses issues of how the
program works, its flow of control, stack
manipulation, etc.

Support for development was another language aspect
he addressed. This includes program analysis, the
dynamic addition of elements, such as methods, the
tracking of changes and ‘reconstructability,’ such as the
saving and restoring of a run-time object collection.

The next major block of the workshop program was
chaired by Gregor Kiczales and was dedicated to the
Metaobject Protocol (MOP). It consisted of an update
on the status of the MOP definition and its
documentation, a technical summary of its details and a
‘design review and muscle display’ which involved all
participants of the workshop. Gregor and Jim des
Rivieres invited participants to produce language
modification suggestions and then showed in real time
how they could be implemented using the MOP. One
example that was worked on in detail was an
additional attribute of slots that would allow a class
designer to specify on a per-slot basis which parts of a
class should be displayed by a class browser. The
solution involved getting the language to accept the
new slot option as a natural part of defining a class.
Other parts of the solution provided space to store the
value of the attribute and ways to access it.

Gregor and Jim handed out two documents that are to
be made into a book. The first is the current draft (11)
of the MOP. The second is called “The Art of the
Metaobject Protocol.” It takes a subset of CLOS and
develops a pseudo MOP for it. This process is used to
make the reader understand the ideas behind a metaleve
architecture in a very easy-to-read style.

The first part of the afternoon was taken up by a panel
session of CLOS vendors which was chaired by Rick
Dinitz. In preparation, a questionnaire had been
distributed to both, participating vendors and
workshop attendees. Here are some of the results from
the questionnaire and the Workshop itself: What
people wanted in terms of libraries and frameworks is
support for knowledge bases, standard inferencing
libraries, user interfaces, communications, database
access, a way of sharing libraries and hypercard-like UI
building facilities.

In terms of support environment people expressed a
need for CLOS browsers capable, for instance, of
showing large class hierarchies graphically. This
implies multiple windows, scrolling, zooming,
filtering, sorting, etc. Browsers should also be
conscious of CLOS specifics, such as method
specializers to help find the methods one really wants.
There was also a desire for query-like capabilities over
the class/method structures. Other wishes were for

[44 1 21-25 October 1990 Ottawa, Canada

tracing facilities that are aware of the CLOS dispatch
mechanisms, an object-oriented ‘defsys’ facility, ways
to traverse data structures at run time and good
delivery facilities.

Vendors represented were Lucid, Franz, and Symbolics.
They explained some of their own findings of what
users want and outlined their emphasis. The importance
of the MOP was recognized by several vendors and the
lack of a complete definition was recognized as a
problem, but people agreed that the specification was
not yet ready for freezing.

There was close to unanimous agreement on the
importance of performance, particularly in generic
function dispatch, instance creation and slot access. The
need for easy interaction with other languages was
stressed as well. The MOP, it was observed, should
consider optimizations more explicitly.
Representatives of both Lucid and Allegro said they
were working on a kind of ‘instance finalization’

protocol, which is to be initiated just before an instance
is garbage collected.

The final session was moderated by Andreas Paepcke
and consisted of three presentations by Alan
Gunderson, Jonathan Pierce and John Collins on their
position papers.

The Workshop closed with a set of hungry and tired
CLOS users and implementors staggering from the
room.

Contact information

Andreas Paepcke
Hewlett-Packard Laboratories
1501 Page Mill Rd.
Palo Alto, Ca. 94025
paepcke@hplabs.hp.com

Addendum to the Proceedings OOPSLA I ECOOP ‘90 145 I

