
PROTOCOLS FOR LARGE DATA TRANSFERS OVER LOCAL NETWORKS

Willy Zwaenepoel

Department of Computer Science
Rice University

Houston, TX 77251

Abstract

In this paper we analyze protocols for transmitting
large amounts of data over a local are8 network. The
data transfers analyzed in this paper are different from
most other forms of large-scale data transfer protocols for
three reasons: (1) The definition of the protocol requires
the recipient to have sufficient buffers available’ to receive
the data before the transfer takes place; (2) We assume
that the source and the destination machine are more or
less matched in speed; (3) The protocol is implemented at
the network interrupt level and therefore not slowed
down by process scheduling delays.

We consider three classes of protocols: stop-and-
wait, sliding window and blast protocols. We show that
the expected time of blast and sliding window protocols is
significantly lower than the expected time for the stop-
and-wait protocol, with blast outperforming sliding win-
dow by some small amount. Although the network error
rate is sufficiently low for blast with full retransmission
on error to be acceptable, the frequency of errors in the
network interfaces makes it desirable to use a more
sophisticated retransmission protocol. A go-back-n stra-
tegy is shown to be only marginally inferior to selective
retransmission and is, given its simplicity, the retransmis-
sion strategy of choice.

Our results are based on measurements collected
on SUN workstations connected to a 10 megabit Ethernet
network using 3-Corn interfaces. The derivation of the
elapsed time in terms of the network packet error rate is
based on the assumption of statistically independent
errors.

0 1985 ACM O-8979 l- 164-4/85/0009/0022500.75

1. Introduction

Recent studies have shown the importance of using
large page sizes in order to achieve high performance file
access, both locally as well as over a network [10,12,15].
This is due to economies in accessing the disk in large
quantities as well as to economies in accessing the net-
work in large quantities. In this paper we study the
latter phenomenon. In particular, we study the perfor-
mance of protocols for transmitting large amounts of
data across a local network characterized by a low error
rate, low propagation delay and high bandwidth.

By large amounts of data, we denote amounts that
are one or two orders of magnitude bigger than the max-
imum network packet size. We show how our analysis
can be extended to larger sizes such as those involved, for
instance, in remote file system dumps. We study three
classes of protocols: stop-and-wait, sliding window and
blast protocols (See Figure 1). With stop-and-wait proto
cols, the source refrains from sending a packet until it
has received an acknowledgement for the previous
packet. With a blast protocol all data packets are
transmitted in sequence, with only a single acknowledge-
ment for the entire packet sequence. Different protocols
within the category of blast protocols are distinguished
by their retransmission strategies (e.g. all packets can be
retransmitted, or some form of selective retransmission
can be used). With sliding window protocols every packet
is individually acknowledged but the sender continues to
transmit data without waiting for an acknowledgement.
In typical sliding window protocols, the sender is silenced
when the window “closes”. Here we assume that the -win-
dow is large enough so that it never gets closed.

stop-and-wait sliding window blast
Figure 1: Stop-and-Wait,

Sliding Window and Blast Protocols

For error-free transmissions, stop-and-wait proto
cols do not perform as well as sliding window or blast

22

protocols, because of delays in waiting for the ack-
nowledgement for every packet. Given the low latency
and the high bandwidth of local networks, one would
expect the difference in performance to be rather small.
However, experimental evidence shows that the penalty
for using a stop-and-wait protocol on a local network is
substantially higher than expected, because of significant
extra delays in generating and receiving packets. Sliding
window protocols are slightly inferior to blast protocols,
because of the overhead involved in handling the extra
acknowledgements.

We then consider the performance of the protocols
in the presence of transmission errors on the network.
Given typical error rates on a local network, the expected
elapsed time of a given transmission is almost identical to
the error-free transmission time. As a result, under nor-
mal local network operating conditions, blast and sliding
window protocols outperform stop-and-wait protocols. In
fact, network error rates are sufficiently rare to make it
possible to use full retransmission on error in conjunction
with a blast protocol without significant degradation in
the expected elapsed times. However, frequent interface
error8 force a more sophisticated retransmission strategy
in order to maintain a near-optimal expected time and a
small standard deviation.

Our results are based on measurements of error-
free transmission times between SUN workstations con-
nected to a 10 megabit Ethernet network using a 3-COM
Multibus interface, and on a probabilistic analysis of the
performance in the presence of errors, Since our measure-
ments are done in the absence of any substantial network
load, contention delays are all but absent from the
results. Our conclusions are therefore valid only under
low load conditions, Fortunately, such conditions are
typical of most local network based systems. We also use
delay under low load as a measure of performance, rather
than throughput under high load, because low load condi-
tions are so prevatent. In the error analysis, we assume
that packet transmissions are statistically independent
events with a constant failure probability. In practice,
this assumption is a reasonable approximation of reality,
although burst errors occasionally occur.

The outline of the rest of this paper is as follows,
Section 2 describes measurements of error-free transmis-
sions using each of the three protocols considered. In
Section 3, we compare the performance of these three
protocols in function of the error rate of the network. In
Section 4, we study different retransmission strategies
that can be used in conjunction with blast protocols.
Related work is covered in Section 5 and conclusions are
drawn in Section 6.

2. Error Free Data Transmissions

The large data transfers discussed in this paper
occur as part of the interprocess communication functions
provided by the V kernel [4,6]. The V kernel is a distri-
buted operating systems kernel, currently implemented

on SUN workstations (21 connected to a 10 megabit Eth-
ernet [8] by a 3-Corn interface [l]. As part of its interpro-
cess communication facilities, the V kernel provides two
operations - MoveTo and MoveFrom - which allow
one process to move an arbitrary amount of data from its
address space into the address space of another process,
or vice versa. Both operations are network transparent:
the destination process may or may not be on the same
machine as the source process. By definition of the V
interprocess communication primitives (see [4,6]), the reci-
pient has sufficient buffers allocated to receive the data
prior to the transfer. For instance, when a process wants
to read an entire file into its address space, it first allo-
cates a buffer big enough to contain that file. It then
sends a message to the file server indicating the starting
address of the buffer and its length. If necessary, the file
server reads the file from disk, and then uses MoveTo to
move the file from its address space into that of the
client. In the local case, the fact that the client’s buffer
is already allocated allows the kernel to move the data
from the source to the destination address space without
an intermediate copy. In the remote case, it allows the
kernel(s) to move data from the source address into the
network interface of the sending machine, and from the
network interface of the receiving machine into the desti-
nation address space, again without an intermediate
copy.’

The total time necessary to execute a MoveTo or
a MoveFrom is the sum of the cost of network commun-
ication and the cost of kernel overhead. In Section 2.1,
we describe a set of experiments to quantify the cost of
network communication. Measurements with the V ker-
nel implementation of MoveTo and MoveFrom, includ-
ing both network communication and kernel overhead,
are discussed in Section 2.2.

2.1. Network Communication Overhead

On a local network, one would expect a blast or a
sliding window protocol to perform only marginally
better than a stop-and-wait protocol, because of the low
propagation delay and the high bandwidth of the net-
work. For instance, assume that N = 64 kilobytes of
data have to be transferred over a 10 megabit Ethernet.
Assume that we transmit the data in 1 kilobyte packets
and that the acknowledgement packets are 64 bytes in
size. Based on the 10 megabit data rate of the network,
the transmission of a data packet takes T = 820
microseconds and the transmission of an acknowledge-
ment packet takes T, = 51 microseconds. The latency
of the network r can be estimated to be below 10
microseconds. If a stop-and-wait protocol is used, and no
errors occur, the transfer is complete (including the
receipt of the last acknowledgement at the source) after

N x (T + Ta + 2 X r) or 57024 microseconds

For a sliding window protocol, with a window large

‘At least with suitable network interfaces.

enough so that it never closes during transmission, the
elapsed time becomes

N X (T + T,,) + 2 X r or 55764 microeeeonda

If the data is transmitted by a blast protocol, then the
resulting elapsed time is

N X T + T, + 2 X T or 52551 microsecond8

None of these results differ from each other by more than
10 percent. The experiment described below contradicts
the above line of reasoning: the stop-and-wait protocol
takes about twice as much time as either the sliding win-
dow or the blast protocol. We first describe the experi-
ment and its results, and then explain this somewhat
counterintuitive outcome.

2.1.1. Experimental Method and Results

In order to quantify the cost of network communi-
cation, two standalone programs are run on two different
machines connected to the network. One program acts as
the source of data and the other as the destination. Data
is transmitted from the source, and acknowledgements
are returned from the destination as appropriate, accord-
ing to which protocol is used. Data packets are 1024
bytes in length, while acknowledgements are 64 bytes.
For statistical accuracy, the experiment is repeated a
number of times and the results are averaged. In all
measurements, the network is essentially idle, so no
significant contention delay is experienced. The transfers
are implemented at, the data link layer and device level
so that no protocol or process switching overhead appears
in the results. In particular, no header (other than the
Ethernet data link header) is added to the data, and no
provisions are made for demultiplexing packets, or for
retransmission. If a transmission error occurs, the experi-
ment halts and is restarted. Also, each of the two pro-
grams simply busy-waits on the completion of its current
operation, jn order to avoid interrupt handling overhead.
The experiment therefore provides an accurate approxi-
mation of the communication cost involved in the data
transfer. Measurement results for the elapsed time of
multi-packet transfers in stop-and-wait (SAW), sliding
window (SW) and blast (B) mode are reported in Table 1.

~1

Table 1: Standalone Measurements

of Error Free Transmissions

2.1.2. Interpretation

Let us first consider data transfers that fit within a

single network packet, for instance a 1 kilobyte transfer.*
The reliable transfer of 1 kilobyte of data, using a 64
byte acknowledgement, takes 4.1 milliseconds (See Table
1). This is significantly more than the transmission time
of the data and the acknowledgement packet, which
would be 0.87 milliseconds, when computed at the 10
megabit data rate of the network. The difference
between the network time, computed at the network data
rate, and the measured elapsed time is accounted for
almost exclusively by the time necessary for the proces-
sors to copy the packets into and out of the interface (See
Figure 2).

copy in data copy out ack

Ck

I
total time

Figure 2: Network Packet Transmission

Table 2 shows a breakdown of the total elapsed
time over its various components. As can be seen, of the
4.1 milliseconds total elapsed time, only 21 percent is net-
work transmission time, while 75 percent is copying over-
head, the rest (presumably) being network and device
latency.

Operation Time
Copy data into sender’s interface 1.35 ms.
Transmit data 0.82 ms.
Copy data out of receiver’s interface 1.35 ms.
Copy ack into receiver’s interface 0.17 ms.
Transmit ack 0.05 ms.
Copy ack out of sender’s interface 0.17 ms.
Total 3.91 ms.

’ Observed elapsed time 4.08 ms.

Table 2: Breakdown of Transmission Coat
over its Various Components

Let us now consider the case where the data
transfer requires N packets to be sent from the source to
the destination. The reason for the superior performance
of the blast and sliding window protocols is explained in
Figure 3. Figure 3.a corresponds to the transmission in
stop-and-wait mode, Figure 3.b corresponds to the blast
transmission, and Figure 3.c depicts the sliding window
protocol. The time axis runs horizontally from left to
right and the example is for the case of N=3.

*The maximum packet size on the 10 megabit Ethernet is
1536 bytes.

24

Figure 3.a: Stop-and-Wait

total elapsed time

Figure 3.b: Blast Protocol

\ \(3
T C Ca T C Ca T C

total elapsed time

Figure 3.~: Sliding Window Protocol

c C C T . I I 1

b 4 b
T c c C

w
total elapsed time

*

Figure 3.d: Double Buffered Interface with Blast Protocol

25

Consider first the sequence of events in the case of
a stop-and-wait protocol. The sending processor copies a
packet from main memory to its interface and then the
interface puts the packet on the network. After a time
period equal to the network propagation delay the packet
arrives at the receiver’s interface and then it is copied
from the receiver’s interface into the receiver’s memory
by the receiving processor. This process repeats itself in
the reverse direction for the acknowledgement packet,
and then again for the next packet, and so forth. Note
that the two processors are never active in parallel. This
is not the case when the transfer is done in blast mode, as
shown in Figure 3.b. Due to the very low propagation
delay of a local network, the packet is received in the
receiver’s interface almost completely concurrently with
the sender’s interface transferring it over the network.’
Therefore the processor on the sending machine can start
copying the next packet from memory to its interface in
parallel with the processor on the receiving machine
copying the previous packet out of its interface into its
memory. Due to the fact that these copies happen in
parallel, and, as we saw before, the copy times contribute
significantly towards the overall elapsed time, blast
transfer results in elapsed times that are substantially
lower than those obtained for stop-and-wait transfers,
much lower than one would be lead to expect if only
transmission time for acknowledgements were taken into
account.

Finally, consider the operation of the sliding win-
dow protocol (Figure 3.~). Again, the copy operations in
and out of the interface happen in parallel on the sender
and on the receiver. The reason for the slightly inferior
performance of the sliding window protocol vs. a blast
protocol is that for each packet an acknowledgement has
to be copied in and out of the interfaces, while for the
blast protocol, there is only an acknowledgement for the
last packet.

2.1.3. Formulas for Error Free Transmissions

From Figure 3, we can derive the following formu-
las for the elapsed times of multi-packet data transfers in
the absence of errors. First, in the case of a stop-and-
wait protocol, the total elapsed time TsAw for a
transmission requiring N data packets, ignoring device
latency, is (See Figure 3.a)

where C stands for the time necessary to make a copy of
a data packet into interface, C, for the time necessary to
make a copy of an acknowledgement packet into the
interface, T for the network transmission time of a data
packet, and T, for the network transmission time of an

8 In fact, the propagation delay is far exaggerated in Fig-
ures 2 and 3 to make it visible at all: typical propagation de-
lays on a local network are on the order of 10 microseconds
while the copy and transmission times depicted in Figure 2 and
3 are on the order of 1 millisecond.

acknowledgement packet. If a blast protocol is used,
then due to concurrent operation of the two processors,
the elapsed time TB becomes (see Figure 3.b)

T,=Nx(C+T)+C+2C,+T,
For a sliding window protocol, the resulting elapsed time
T,w equals [see Figure 3.~)

T,,=Nx(C+C,+T)+C+T,

Note that the utilization of the network u,,, even when
using a blast protocol, is still significantly below 100 per-
cent

u, =
NxT+T,

NxT+T,+NxC+C+2C,

For instance, for the 64 kilobyte transfer shown in Table
2, the network utilization is only 38 percent. Better
elapsed times and better network utilization can be
obtained if a double buffered interface is used. In that
case, the processor can start copying a packet into the
second buffer in the interface while the interface is
transmitting the previous packet over the network, and
similarly on the receiving machine . Note that having a
third transmission buffer does not provide any further
improvement over double buffering, since we assume that
both C and T are constant. The value of T is constant
as long as there is no significant contention delay. The
value of C is also constant since we assume the network
transfer is the only activity occupying the processor, and
therefore there is no delay in performing the copy opera-
tion. The elapsed time Td,b becomes (See Figure 3.d)

Tqa=Nx C+ T+ C+2 C,+ T, (TIC)

Td/,=NxT+2C+2Ca+T,, (T>C)

ms. ,

Figure 4: Comparison of Different Protocols

26

Figure 4 compares the performance of the different
protocols in terms of N for values of C, C,, T and T,, as
on the SUN workstation with a 10 megabit Ethernet (See
Table 2).

One might wonder whether it is possible to get rid
of the copy into the interface altogether, by simply mov-
ing the data from main memory onto the network. An
interesting design that allows network access without an
intermediate copy appears in the Xerox Alto personal
computer, where network access is incorporated as an
independent task in the processor’s micro-engine [20].
The copy can also be avoided by virtual memory tech-
niques (if the origin and the destination of the data are
aligned on a page boundary). The Apollo Domain archi-
tecture supports this feature [ll]. For more conventional
architectures, one would like a DMA interface to copy the
data from main memory directly onto the network. Most
DMA interfaces do not allow such a direct copy. For
instance, the Excelan DMA interface first copies the data
into on-board buffers before it transmits it on the net-
work [9]. The CMC interface allows the programmer to
define the host-board interface [7]. However, the manual
strongly recommends that data be copied first into on-
board buffers before it is transmitted onto the network,
due to limited bus bandwidth and due to the possibility
of the host processor timing out on memory access over
the bus, while the DMA processor is accessing memory
[7,16]. Both t f m er aces seem to require a copy, albeit that
the copy is performed by the interface processor rather
than by the host processor. The formulas derived above
for the elapsed time therefore remain valid, provided that
c and c, are no longer the time required for the host
processor to make the copies, but rather the time
required for the DMA processor to make the copies. Our
experience with DMA interfaces has been mixed in this
respect. With the Excelan board, the copy performed by
the 8088 interface processor is much slower than the copy
performed by the 68000 host processor into the 3-Corn
interface. We have no experience to date with the perfor-
mance of the CMC interface (which contains a 68000 pro-
cessor).

In summary, it seems that the elapsed time is not
significantly improved by using currently available DMA
interfaces. The amount of host processor utilization for
network access is decreased, since the interface processor
can perform the copy, although bus traffic slows down the
processor somewhat during DMA operation. In general,
the relative importance of the copy operation indicates
that memory and bus bandwidth are the critical factors.
Therefore, it seems likely that a processor with a fast
block move operation, accompanied by very high speed
device memory is more promising than any kind of spe-
cial purpose hardware on the interface.

2.2. Large Data Transfers at the Kernel Level

The protocol used for the set of measurements in
the previous section assumes that the network is error-
free. When an error occurs, the experiment is terminated

and has to be (manually) restarted. A real protocol has
to deal with the possibility of errors on the network by
some form of retransmission strategy. This introduces
overhead, even for error-free transmissions. Additionally,
in the experiment above network access is the only task
that the processor has to perform. There is no multiplex-
ing, no access rights checking, and the processor busy-
waits on the completion of a transmission in order to
start the next one. In a real system, the processor has to
be shared by a number of different tasks, that have to be
protected from each other, and network I/O has to be
performed in an interrupt-driven rather than a busy-wait
fashion.

All of these requirements have been implemented
as part of the V kernel’s network interprocess communi-
cation. Table 3 gives the results of our measurements of
the V kernel’s MoveTo operation.4 The results only
confirm the measurements of Section 2.1. The extra over-
head stems from the transmission of the headers, as well
as from access right checking, demultiplexing and inter-
rupt handling. The formulas derived for the elapsed
times under various combinations of transmission proto-
cols and network interfaces remain valid, if the extra
overhead is added to C, and C,. For instance, for the
blast protocol, the modified values of C and C,, are 1.83
and 0.67 milliseconds, vs. 1.35 and 0.17 milliseconds in
the standalone experiments. The relative increase of C
and ch, compared to T and T,,, makes the blast proto-
col even more advantageous than in the case of a stan-
dalone program. In fact, in the case of the V kernel, the
extra overhead is relatively minimal compared to other
protocol implementations, which suggests that the use of
a blast protocol would be even more advantageous for
other implementations.

pJTg-zJ
Table 3: V Kernel Moveto Measurements

3. Effect of Transmission Errors

So far we have considered the performance of the
various protocols for the MoveTo operation in the case
of error-free transmissions. We now turn our attention to
their performance in the presence of transmission errors
on the network. We first compare stop-and-wait with
retransmission of a single packet after a time interval T,
to blast with retransmission of the full sequence of pack-
ets after T,. We show that, for typical local network
error rates, the expected time of the blast transmission is

’ Measurements for the sliding window protocol are not
available at the time of writing. We would expect the elapsed
times for sliding window to be slightly higher than those for
blast, as suggested by the standalone measurements in Table 1.

27

significantly better than the expected time of the stop-
and-wait transmission. We conclude therefore that under
normal operating conditions, a blast protocol is superior
to a stop-and-wait protocol for use on a local network.
We then consider various retransmission strategies that
can be used in conjunction with a blast protocol. We do
not consider the sliding window protocol in any great
detail in this section. Its error characteristics are similar
to those of the blast protocol with selective retransmis-
sion (See Section 3.2.3).

In this analysis, we assume that packet transmis
sions are statistically independent events which can fail
with probability pn. This is a reasonable first order
approximation of the behavior of the network. Analysis
of the performance under other error distributions is
beyond the scope of this paper.

3.1. Expected Time

3.1.1. Stop-and-Wait

Denoting by T(D) (T(1)) the time necessary for
a D-packet (l-packet) transfer, we obviously have

T(D) = D x T(1)

The probability pc of a l-packet exchange failing is

P, = 1 - (1 - P,)”

and the probabilities s(i+1) of the exchange succeeding
on the (i+l)th transmission attempt form a geometric
distribution with parameter pc

8(i+1) = p: x (1 - PC)

The expected time for a l-packet transfer to complete is
then

*o(l) + (*lJ(l) + *r 1 x (5 1
c

where T,(l) is the time necessary for a l-packet
exchange without any errors.‘For D packets, we get for
the expected time

P = D x [*o(l) + (*c(l) + *A x (+q) I
c

3.1.2. Blast

Let US next consider the performance of a blast
protocol with full retransmission on error (without a
negative acknowledgement). A D-packet transfer
succeeds in this case if all D packets reach the destina-
tion machine and the acknowledgement packet reaches
the source machine. Assuming independent

’ The second occurence of T 1 in this formula should

4 1 strictly speaking be replaced by To 1 , the elapsed of a /ailed
transmission. In practice, the difference is minor and can be
subsumed by slightly adjusting the value of T,.

transmissions, the probability of the D-packet transfer
failing is then

PC = 1 - (1 - pn)D+l

The probabilities s(i+l) that a transmission succeeds on
the (i+l)th transmission attempt form a geometric dis-
tribution with parameter pc

8(&l) = p:: x (1 - PC)

The expected time T(D) for a D-packet transfer becomes

P = *o(D) -t- (*c(D) + *,) x (J$)
c

3.1.3. Comparison

Figure 5 compares the two strategies for different
values of T, (The other parameters in the figure are D -
64, To(l) = 5.9 meet. and T,(D) = 173 msec., from
Table 3). In addition to these curves we need some idea
about the error rate on a 10 megabit Ethernet. Surpris-
ingly enough, very little empirical data is available about
the error rates on local networks. Shoch and Hupp
report an observed error rate of 1 in 200,000 packets on
the experimental Xerox PARC 3 megabit Ethernet [17].
Our measurements on our local 10 megabit Ethernet indi-
cate an error rate of approximately 1 in 100,000 under
normal circumstances. However, when one station
transmits at full speed to another workstation, the error
rates rise an order of magnitude, to approximately 1 in
10,000. We assume that most of the additional errors are
due to failures in the 3-COM Ethernet interface (See also
[5,13] for additional evidence of large packet losses in
interfaces). We therefore operate somewhere in the
region between lo-’ and lOA in Figure 5. In comparing
the results for the stop-and-wait protocol and the blast
protocol, the key observation to make is that T,(D) -
the error-free transmission time for the blast protocol -
is significantly smaller than D X T,(l) - the compar-
able value for the stop-and-wait protocol (See Section 2).
Consequently, for low error rates where this term dom-
inates, the blast strategy performs significantly better.
While the network error rate allows us to operate in the
flat part of the curve, the frequency of errors in the inter-
faces actually forces us partly into the beginning of the
knee of the curve. Nevertheless, the expected time of the
blast protocol is still notably better than that of the
stop-and-wait protocol.

These results also allow us to make a stronger con-
clusion: since the expected time for a blast protocol with
the crudest retransmission strategy - full retransmission
on error and no negative acknowledgement - results in a
nearly optimal expected time (for the appropriate range
of pn values), no significant improvements in expected
time can be achieved by more sophisticated retransmis-
sion strategies. In the next section, we show that such
strategies can significantly improve the standard devia-
tion.

28

At this point, an observation is in order about the
size of the data transfers used in a blast protocol.
Clearly as the size of the data transfer increases, errors
are more likely and retransmission becomes more costly.
For such very large sizes, we suggest the use of multiple
blasts, whereby the transfer is broken up in a number of
different blasts, each of which proceeds according to the
definition of the blast protocol.

P (ms.)

500

SAW T, = 100 X T,(l)
40@

30&

SAW T, = 10 X T,,(l)

blast T, = 10 X T,(D)

/
200-

blast T, = To(D)
I

lO-- 10” 1cP 109 10” Pn

Figure 5: Expected Time for 04 kilobyte Transfers

3.2. Standard Deviation

We now analyze the standard deviation of different
retransmission strategies that can be used in conjunction
with a blast protocol. We assume that we operate under
error conditions such that the expected time of the
transfer is nearly identical to the error-free transmission
time (i.e. we operate in the flat region of the curves in
Figure 6).

Consider a given transmission strategy and denote
by T (D) the error-free transmission time. Furthermore,

s let To(D) be the elapsed time for the k-th transmission
attempt, let T!(D) be th e interval between the k-th and
the (k+l)th transmission attempt, and finally let e(i+l)
be the probability of success on the (i+l>th transmission
attempt. Then, if the transfer succeeds on the (i+l)-th
transmission attempt, the total elapsed time for this
transfer is

2 T;+'(D) + ;$ T;+'(D)
k10

Assuming we are operating under low error conditions
and that thus the expected time is constant and approxi-
mately equal to To(D), we get for the variance

This function is set out against pn for different values of
T, in Figure 6. It is clear from the above formula and
from the figure that the value of T, has a significant
effect on 6, even for low error rates.

u2 = 5 [(6 Tk+'(D) + is T,k"(D))2 x s(i+l) j - T:(D)

(1)

(2)

(3)

Reduce the retransmission intervals T:(D): this
can be accomplished either by choosing a small
timeout value or by providing a negative ack-
nowledgement when the transfer fails.

Reduce the transmission time T!(D) for
retransmissions: this can be done by reducing the
number of packets to be sent on retransmission. A
negative acknowledgement packet can carry infor-
mation as to which packets were successfully
received.

Reduce the probability of failure of the retransmis-
sions: since we are assuming independent failures,
this probability is only dependent on the number of
packets transmitted. Thus, here also reducing the
number of packets sent has a beneficial effect.

Clearly, a combination of these different
approaches is optimal. However, we analyze the different
methods in isolation to assess their relative benefits. In
particular, we consider the following retransmission stra-
tegies:

(1) Full retransmission on error without negative ack-
nowledgement.

(2) Full retransmission on error with a negative ack-
nowledgement after the last packet.

(3) Retransmission from the first packet not received
(indicated in a negative acknowledgement)

(4) Selective retransmission of the packets not received
(indicated in a negative acknowledgement).

Certain of these retransmission strategies lead
themselves to exact analytical evaluation, while others
are more easily evaluated by approximation or simula-
tion. In the following, we only present the results of our
study. Readers interested in the details of the derivation
are referred to (211.

3.2.1. Full Retransmission on Error without Nega-
tive Acknowledgement

In the case of full retransmission on error without
negative acknowledgement, the standard deviation of the
elapsed time is easily shown to be

u=(T,(D)+ T,)x(P:X
(l+PJ”)

l--P,

pc = 1 - (1 - pn y+1

i==o k.4 k4

This formula indicates three potentially fruitful avenues
for reducing the variance:

29

u (ms.

blast T, = To(D)
80

60-

40-

20-

lU-’ 1U” la- 10’ 10” Pn

Figure 8: 84 Kilobyte MoveTo: Standard Deviation

3.2.2. Full Retransmission on Error with Negative
Acknowledgement

In order to achieve a low standard deviation when
using full retransmission, we need to choose T, small
w.r.t. To(D). This can be done as shown in Figure 6 by
choosing a small value of T,. Alternatively, a small
effective value of T, can be achieved by using a negative
acknowledgement, while still maintaining a much larger
physical value of T,. We use the following strategy:

(1) If the destination receives the last packet, it sends
either a positive or a negative acknowledgement
depending on whether or not it received all packets
in the sequence.

(2) If the sender gets a negative acknowledgement, or
if the sender does not receive any acknowledgement
within a time interval T,, it retransmits the whole
sequence of packets.

The characteristics of this strategy can be deriv;d

by an approximative argument (See [21]). If p,,<<o

and D>>l, then it can be shown that the standard devi-
ation is approximately equal to

c= T@)x(P,HX
(1+lG)”)

l--p
c

This formula indicates that the standard deviation when
using full retransmission with a negative acknowledge-
ment is all but independent from the retransmission
interval (for low error rates). The values of Q for
different values of P,, are set out in Figure 6 for com-
parison with full retransmission without negative ack-
nowledgement.

3.2.3. Partial and Selective Retransmission

By either choosing a small retransmission interval
or by using negative acknowledgements, we have

minimized the component of the standard deviation that
is dependent on the retransmission interval. The stan-
dard deviation is also dependent on the amount of data
retransmitted during retransmissions. This component
can be minimized using either partial retransmission
(from the first packet not received) or by selective
retransmission (of the subset of packets not received).

These retransmission strategies are implemented as
follows. In order to execute a D-packet transfer, (D-l)
packets are transmitted without acknowledgement, The
last packet is sent reliably, i.e. it is retransmitted periodi-
cally until an acknowledgement is received. The ack-
nowledgement to the last packet indicates which is the
first of the D-l unreliably transmitted packets that was
not received (in the case of partial retransmission) or
which of the D-l unreliably transmitted packets did not
get to their destination (in the case of selective
retransmission). If D’ did not get there, they need to be
retransmitted using the same method: transmit D’-1
packets unreliably and the last packet reliably. This pro
cedure continues until all packets get to their destina-
tion.

The standard deviations associated with these
retransmission strategies are difficult to derive analyti-
cally. We have simulated the procedures by computer
and determined both the expected time and the variance
from the simulation. Figure 6 shows the standard devia-
tion observed in the simulation.

3.2.4. Standard Deviation: Summary

Figure 6 presents a comparison of the standard
deviation of the four retransmission strategies that we
consider. Full retransmission without a negative ack-
nowledgement produces unacceptable variations in the
elapsed times of the transfers (for realistic retransmission
intervals). Use of a negative acknowledgement reduces
these variations drastically. Given the presence of such a
negative acknowledgement, the extension to partial
retransmission starting from the first packet not success-
fully received is trivial and provides further reduction of
the variance. We have chosen not to use selective
retransmission, given the additional complexity this

. introduces in the protocol software and given that the
improvement in performance is not very significant. If
one were to consider networks with higher error rates or
much larger transmissions, selective retransmission might
become worthwhile.

. 4. Related Work

Protocols to support network interprocess commun-
ication have been the subject of a number of recent
research papers. The protocol supporting the V kernel
interprocess communication has been described in [4,6].
Another interesting example appears in Cedar RPC,
although this design refrains from using blast protocols
for large transmissions [3]. The author first became
aware of the name blast protocol in conjunction with

30

protocols developed at MIT for downloading screen
images from a VAX to an Alto. The idea of blast proto-
cols has been mentioned by various other authors, includ-
ing Spector who calls it a multi-packet transfer and sug-
gests using an overall software checksum on the entire
data segment [18]. Needham mentions the use of a
transmit-and-pray protocol for file transfers on the Cam-
bridge ring: it is essentially a disk-to-disk (rather than
machine-to-machine) blast protocol with full retransmis-
sion on error [141.

A large body of work is concerned with the perfor-
mance of various transmissions strategies such as stop-
and-wait, go-back-n and selective retransmission 1191.
Most of these analyses assume that the network is a
scarce resource, to be shared in an efficient way by a
large number of users, and therefore use throughput
under high offered load as a measure of performance.
The networks studied usually have high error rates (and
frequently high latency, such as satellite networks).
Although some of them consider the use of cumulative
acknowledgements, few consider delaying the ack-
nowledgement altogether until the end of the transmis-
sion. Their analysis needs to be reconsidered in a local
network environment, where network bandwidth is plen-
tiful, errors are rare, and low delay under low load is
more important than high throughput under high load.
In fact, most of this work ignores the software cost of
generating and receiving the packets, which dominates
the transmission cost in a local network environment,

5. Conclusions

The V interkernel protocol has been designed to
aggressively take advantage of local network characteris-
tics such as low error rate, high bandwidth and low
latency. In order to do so, the software overhead
involved in dealing with network interprocess communi-
cation must be minimized. As a result, the protocol has
been implemented at the network interrupt level and
assuming communication partners that are more or less
matched in speed. For large data transfers, client buffers
are made available prior to the transfer, so that no inter-
mediate copies need to be made,

In such a “tight” implementation of the protocol,
we have shown that the overhead of copying data in and
out of the network interfaces is a dominating factor in
the overall elapsed time. Since blast protocols and slid-
ing window protocols allow these copies to occur in paral-
lel on the source and the destination machine, they per-
form substantially better than stop-and-wait protocols.

We have also considered the effect of transmission
errors on the performance of various protocols. Experi-
mental evidence suggests that network errors are rela-
tively rare, but that interface errors occur more fre-
quently, especially if the devices are driven at full speed.
Given the network error rate, it would be acceptable to
use full retransmission on error in conjunction with a
blast protocol. The frequency of errors in the interface

causes such a strategy to have unacceptable variations in
the elapsed times. We have argued for a partial
retransmission strategy starting from the last packet not
received by the destination, since it is simple to imple-
ment and not significantly worse than more complicated
strategies.

Acknowledgements

The original V kernel protocol was developed by
the author at Stanford University under the direction of
David Cheriton. I also wish to thank Guy Almes, David
Cheriton and Allan Porterfield for their comments on an
earlier draft of the paper.

111

121

PI

141

I51

I61

PI

181

191
PO1

1111

[121

References

3-COM Corporation, Multibus Ethernet (ME) Con-
troller Model 3C4000, Reference Manual (May 1982).

A. Bechtolsheim, V.R. Pratt and F. Baskett, The
SUN Workstation Architecture, Technical Report
229, Computer Systems Laboratory, Stanford Univer-
sity (February 1982).

A.D. Birrell and B.J. Nelson, Implementing Remote
Procedure Calls, ACM Transactions on Computer
Systems, Vol. 2, No. 1, pp. 39-59 (February 1984).

D.R. Cheriton, The V Kernel: A Software Base for
Distributed Systems, IEEE Software, Vol. 1, No. 2,
pp. 19-42 (April 1984).

D.R. Cheriton and P.J. Roy, Performance of the V
Storage Server: A Preliminary Report, Proc. of the
1985 ACM Computer Science Conference, pp. 302-
308 (March 1985).

D.R. Cheriton and W. Zwaenepoel, The Distributed
V Kernel and its Performance for Diskless Worksta-
tions, Proc. of the 9th Symposium on Operating Sys-
tem Principles, pp. 129-140 (October 1983).

Communication Machinery Corporation, ENP Fam-
ily Product Brief (February 1984).

Digital Equipment Corporation, Intel Corporation
and Xerox Corporation, The Ethernet: A Local Area
Network - Data Link Layer and Physical Layer,
Specifications, Version 2.0.

Excelan, EXOS 101 Ethernet Front-End Processor.

E.D. Lazowska, J. Zahorjan, D.R. Cheriton and W.
Zwaenepoel, File Access Performance of Diskless
Workstations, accepted for publication in ACM
Transactions on Computer Systems.

P.J. Leach, P.H. Levine, B.P. Douros, J.A. Hamilton,
D.L. Nelson and B.L. Stumpf, The Architecture of an
Integrated Local Network, IEEE Journal on Selected
Areas in Communications, Vol. SAC-l, No. 5, pp.
842-857, November 1983.

M.K. McKusick, W.N. Joy, S. J. Leffler and R.S.
Fabry, A Fast File System for UNIX, ACM

31

Transactions on Computer Systems, Vol. 2, No. 3,
pp. 181-197 (August 1984).

[13] J. Nabielsky, Interfacing to the 10 Mbps Ethernet:
Observations and Conclusions, Proc. ‘84 ACM
SigComm Conference, pp. 124-131 (June 1984).

[14] R.M. Needham, Systems Aspects of the Cambridge
Ring, Proceedings of the Seventh ACM Symposium
on Operating System Principles, pp. 82-85 (December
1979).

(151 J. Ousterhout, H. Da Costa, D. Harrison, J.A. Kunze,
M. Kupfer, J.G. Thompson, A Trace-Driven Analysis
of the Unix 4.2BSD File System, Technical Report,
Computer Science Division, University of California
at Berkeley.

[lS] P.J. Roy, private communication.

(171 J. Shoch and J.A. Hupp, Measured Performance of
an Ethernet Local Network, Communications of the
ACM, Vol. 23, No. 12, pp. 711-721 (December 1980).

[18] AZ. Spector, Multiprocessing Architectures for Local
Computer Networks, Technical Report STAN-CS-
81-874, Department of Computer Science, Stanford
University (August 1981).

[19] AS. Tanenbaum, Computer Networks, Prentice-Hall,
1981.

[20] C.P. Th ac k er, E.M. McCreight, B.W. Lampson, R.F.
Sproull and D.R. Boggs, Alto: A persona1 computer,
Computer Structures: Principles and Examples (Eds.
D.P. Siewiorek, C.G. Bell and A. Newell), McGraw-
Hill, pp. 549-572, 1982.

121) W. Zwaenepoel, Protocols for Large Data Transfers
on Local Networks, Technical Report TR-85-23,
Department of Computer Science, Rice University.

32

