

Edinburgh Research Explorer

Bulk-Synchronous Parallel Simultaneous BVH Traversal for
Collision Detection on GPUs
Citation for published version:
Chitalu, F, Dubach, C & Komura, T 2018, Bulk-Synchronous Parallel Simultaneous BVH Traversal for
Collision Detection on GPUs. in I3D '18 Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games., 4, ACM, Montreal, Quebec, Canada, pp. 4:1-4:9, ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games
, Montreal, Canada, 15/05/18. https://doi.org/10.1145/3190834.3190848

Digital Object Identifier (DOI):
10.1145/3190834.3190848

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
I3D '18 Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. Apr. 2024

https://doi.org/10.1145/3190834.3190848
https://doi.org/10.1145/3190834.3190848
https://www.research.ed.ac.uk/en/publications/bbdbc694-fd07-41fc-a92d-db9124ada0e7

Bulk-Synchronous Parallel Simultaneous BVH Traversal for
Collision Detection on GPUs

Floyd M. Chitalu
University of Edinburgh
floyd.m.chitalu@ed.ac.uk

Christophe Dubach
University of Edinburgh

c.dubach@ed.ac.uk

Taku Komura
University of Edinburgh

tkomura@ed.ac.uk

ABSTRACT
Simultaneous BVH traversal, as a dynamic task of pair-wise proxim-
ity tests, poses several challenges in terms of parallelization using
GPUs. It is a highly dynamic and data-dependent problemwhich can
induce control-flow divergence and inefficient data-access patterns.
We present a simple solution using the bulk-synchronous parallel
model to ensure a uniform mode of execution, and balanced work-
loads across GPU threads. The method is easy to implement, fast
and operates entirely on the GPU by relying on a topology-centred
work expansion scheme to ensure large concurrent workloads. We
demonstrate speedups of upto 7.1× over the widely used “streams”
model for GPU based parallel collision detection.

CCS CONCEPTS
•Computingmethodologies→Collision detection;Massively
parallel algorithms; Shared memory algorithms;

KEYWORDS
collision detection, parallel computing, GPU, BVH, BSP

ACM Reference Format:
FloydM. Chitalu, ChristopheDubach, and TakuKomura. 2018. Bulk-Synchronous Par-
allel Simultaneous BVH Traversal for Collision Detection on GPUs. In I3D
’18: I3D ’18: Symposium on Interactive 3D Graphics and Games, May 4–6,
2018, Montreal, QC, Canada. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3190834.3190848

1 INTRODUCTION
Collision detection (CD) has a wide-spectrum of practical applica-
tions including physics based simulations, robotic motion planning,
virtual disassembly, haptic rendering and ray-tracing. It is a well
known and long studied problem of finding a number of interac-
tions at low computational cost. As a result, collision detection is at
the core of many applications in computer science and engineering
today.

However, CD can be computationally expensive due to it po-
tential for having vast workloads. A simple approach exhaustively
testing for pair-wise intersection between geometry will not scale
optimally due to the inherent O (N 2) complexity. This particular
constraint has lead to the common solution of using acceleration
data structures such as bounding volume hierarchies (BVHs) [Eric-
son 2005]. BVHs attempt to reach an optimal case of O (loдN) by
quickly culling the search-space of potential collisions.

I3D ’18, May 4–6, 2018, Montreal, QC, Canada
© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in I3D ’18: I3D ’18:
Symposium on Interactive 3D Graphics and Games, May 4–6, 2018, Montreal, QC, Canada,
https://doi.org/10.1145/3190834.3190848.

In spite of this potential benefit, geometry may reach scales of
tens- to hundreds-of-thousands of triangles or more which makes
the prospect of employing BVHs alone insufficient. Furthermore,
BVHs can also degenerate if the enclosed geometry is relatively
small, such that traversing entire BVHs becomes a layer of overhead.

Previous methods tackling the problem of optimizing BVH based
CD on the GPU [Du et al. 2015; Lauterbach et al. 2010; Tang et al.
2011, 2016] offer in-part successful but also complex solutionswhich
can suffer from GPU under-utilisation. They emulate the logic of
conventional single-threaded CPU traversal by relying on thread-
level private work-stacks and temporal coherence [Li and Chen
1998]. Such heuristics-based optimisations can serve to complicate
traversal logic and thus may constrain GPU performance. Work-
stacks serve to reduce memory access and synchronisation costs.
However, they are a source of control-flow divergence, and load-
imbalance which is managed by a separate GPU task in the exe-
cution pipeline. Moreover, pre-existing solutions have used work-
stacks to effectively mimic recursion on the GPU because threads
perform traversal in-place: Evaluation of pair-wise tests in BVH
sub-trees is computed independently as threads push and pop inter-
mediate BVH node-pairs to-and-from work-stack memory which
creates the divergence in control-flow as a side-effect. Temporal
coherence on the other hand, has a high memory footprint since it
is based on explicitly storing the BVH node-pairs where traversal
terminates. It is also a potential source of work-flow divergence
because simply checking when and how to store such node-pairs
contributes to the overhead of branching on GPUs.

We present a simple approach to simultaneously traverse a large
number of BVHs for CD in parallel and entirely on the GPU. The
method is based on the Bulk-Synchronous Parallel (BSP) model
[Valiant 1990] were traversal is reformulated as an iterative “fork
and join” scheme to: (1) mitigate explicit load-balancing that re-
quires using separate work-rebalancing tasks on the GPU, (2) min-
imise control-flow divergence by reducing the amount of work
mapped to each thread and performing full-restarts from a user-
specified entry level such as the root-level, and (3) allow for efficient
memory access patterns that may be coalesced while seamlessly
unifying synchronisation, communication and storage by relying
on the BSP model. Our tests, which are performed on three UNC
dynamic scene benchmarks (see Figure 6), also reveal up to 7.1×
speedup over the “streams” model for GPU based CD from Tang
et al. [2011], which is currently the standard model employed by
others [Du et al. 2017, 2015; Tang et al. 2013, 2016].

Contributions. The contributions form a simple solution, from
using the topological structure of BVHs and simplified thread-level
operations for reducing control-flow divergence, to efficiently tra-
verse multiple BVHs in parallel on the GPU:

https://doi.org/10.1145/3190834.3190848
https://doi.org/10.1145/3190834.3190848
https://doi.org/10.1145/3190834.3190848

I3D ’18, May 4–6, 2018, Montreal, QC, Canada Chitalu, Dubach and Komura

• We present a novel algorithm (section 5) as alternative refor-
mulation of simultaneous and parallel traversal of multiple
BVHs for pair-wise CD on the GPU.
• Parametric workload expansion (subsection 5.2): Adaptive
depth-stepping and static workload expansion are introduced
as key features for ensuring large concurrent workloads
and controlling the rate of traversal, using the topological
structure inherent in the traversed BVHs.
• A lock-free scheme to write intermediate BVH node-pairs
to global memory using iterative buffered-writes (subsec-
tion 5.3), which can be controlled based on the topological
properties of BVHs and available hardware resources.

2 RELATEDWORK
Collision Detection in Physics-based Animation. Collision detec-

tion lends itself well to physics-based simulation problems for real-
time and off-line use-cases [Ericson 2005]. It has been particularly
useful for large scale problems involving complex non-rigid objects
such as cloth [Bridson et al. 2002; Brochu et al. 2012] were the com-
plexity of interactions (including self-collisions) places emphasis
on the need for efficient culling of triangle intersection tests which
have a high computational cost. BVHs are a common data structure
in many such works with their ability to quickly cull of the search
space of potential interactions [Teschner et al. 2005]. Numerous
approaches including axis-aligned bounding boxes (AABB) [Bergen
1997], oriented bounding boxes (OBB) [Gottschalk et al. 1996], dis-
crete oriented polytopes (k-DOP) [Klosowski et al. 1998] have been
introduced for this purpose, which function as approximations to
the underlying geometric primitives that they enclose in the form
of coarse bounding volumes.

Parallel Collision Detection. Methods to accelerate CD through
parallelism on GPUs have been investigated for over a decade now.
Early pioneering works such as that of Knott and Pai [2003] made
use of the parallel rasterization capabilities of GPUs. Recent meth-
ods including Tang et al. [2016] and others [Tang et al. 2011, 2013;
Weller et al. 2017; Wong et al. 2014] utilize the general purpose
computational capabilities of modern GPUs to accelerate compu-
tation following the advent of parallel programming frameworks
such as CUDA and OpenCL. Wong et al. [2014] present a parallel
adaptive scheme combining octrees and hierarchical grid structures
for broad-phase CD with deformable objects. Weller et al. [2017]
recently introduce a CUDA based scheme, kDet, which is based on
a hierarchical grid structures to find the set of potentially colliding
pairs using polygon sizes.

In general, mapping BVH traversal to GPUs is recognised as a
challenging task as demonstrated by prior efforts that have advo-
cated for the use of more parallelism through many-core GPUs
and multi-core CPUs [Lauterbach et al. 2010; Tang et al. 2010,
2016]. Since naïve approaches can easily result in hardware under-
utilisation due to low workloads, the most influential methods such
as Lauterbach et al. [2010] and other variants [Du et al. 2015; Tang
et al. 2011, 2013, 2016] have relied on front tracking [Tang et al.
2010] for sustaining high workloads which is ideal for GPUs. In
this approach, the bounding volume test tree (BVTT) [Gottschalk
2000] of BVH node-pairs where traversal terminates is explicitly
cached and then used as input for next time. In addition, thread-level

private work-stacks are another common feature in these meth-
ods, to improve memory access costs and minimise inter-thread
synchronisation. However, work-stacks can lead to work-flow di-
vergence and load-imbalances that require a separate GPU task to
perform work redistribution between threads (see Lauterbach et
al. [2009] and [2010] for details). Similar approaches have also been
used in robotic motion planning [Pan et al. 2010; Pan and Manocha
2011]. The related work of Hermann et al. [2013] performs CD
for motion planning using voxel maps maintained in GPU global
memory.

Our method shares some similarities with these approaches but
does not rely on work-stacks nor front-tracking. We adopt the
BVTT as the primary input but distinctively express traversal as
an iterative one-to-one mapping between threads and evaluated
node-pairs. Further, we focus on the specific problem of pair-wise
CD between BVH-nodes, whereas many of these approaches are
focused on parallelizing the entire CD pipeline. Another distinc-
tion is that these previous methods have not considered a case for
the ability to use the topological information of BVHs to increase
workloads at faster rates, since the maximum number of BVH-node
pairs created when two nodes intersect is constrained by the num-
ber of children per-node. In order to increase workloads at faster
rates, these methods are required to change their BVH construction
scheme and thus, traversal logic, in order to incorporate having a
larger set of children per-node to speed up traversal rates.

Stackless Traversal. We also note that the presented method is
not the first to adopt stack-less traversal since we share a similar
design premise to Hapala et al. [2013]. In contrast, Hapala et al.
have presented an iterative method for ray-tracing on CPUs and
GPUs with backtracing and a state-machine to infer which nodes
to process next. Barringer and Akenine-Möller [2013] present a
similar stack-less approach with full restarts, while Laine [2010]
encodes the traversal trial using bit information. In this paper, we
instead propose an approach that is entirely GPU based and strictly
forward stepping with no notion of backtracing nor state-machines
that are used during traversal. We use the topological information
of our BVHs, which is encoded as memory locations and offsets,
to infer the BVH nodes to traverse next and additionally use this
information to increase workloads at faster rates.

Data Parallel Models for Graph Processing. Parallel traversal shares
many challenges with large scale graph problems on GPUs, where
issues of load-imbalance (irregularity), control-flow divergence,
non-coalescedmemory access patterns are most common [Lenharth
et al. 2016; Merrill et al. 2012]. Harish et al. [2007] present one of the
earliest solutions to solve breadth first search (BFS), single source
shortest path, and all-pairs shortest path, while later works such as
Cederman et al. [2008] and Tzeng et al. [2010] also address issues of
load imbalance at the thread-level. Aila et al. [2010] investigated the
related difficulties of divergence on GPUs in context in ray-tracing.

Recent work focuses on the design of general frameworks for
different kinds of large graph structures on GPUs such as the sched-
uling model for irregular inhomogeneous workloads proposed by
Steinberger et al. [2014]. Khorasani et al. [2014] present a CUDA
based model focusing on minimising warp divergence by coarsen-
ing parallelism to CUDA warps. Other works have also investigated

BSP Simultaneous BVH Traversal on GPUs I3D ’18, May 4–6, 2018, Montreal, QC, Canada

languages and frameworks for expressing such large-scale computa-
tions. Hou et al. [Hou et al. 2008] previously present a programming
language for expressing the BSP model [Valiant 1990] on GPUs by
addressing the challenge of producing efficient stream code and
barrier synchronization. The recent Enterprise [Liu et al. 2016] and
Gunrock [Wang et al. 2016] frameworks define an iterative BFS tra-
versal of large graphs using the BSP model similar to the influential
work of Merrill et al. [2012]. In contrast, our inspired work focuses
on the specific problem domain of simultaneous BVH traversal for
pair-wise CD but also borrows key ideas such as GPU based paral-
lel BFS as a building block. Further, these methods are optimised
in large part for massive load imbalance across vertices (as seen
in scale-free graphs), but BVHs/BVTTs do not have that kind of
imbalance. So different optimisation decisions may be appropriate.

3 METHOD OUTLINE
In what follows, we refer to a pair of BVH-nodes tested for intersec-
tion as a BVTT-node and additionally refer to each such BVH-node
as an entry-node: During traversal, a BVTT-node is discarded after
a bounding volume (BV) intersection test, such that if the result is
true, the BVTT-node is expanded by replacing it with a new sub-
set of BVTT-nodes. This new subset is constructed by pairing the
descendants of one respective entry-node with those of the other.
Alternatively, pairings may be produced between either entry-node
and the descendants of the other if the entry-node is a leaf. If the
tested entry-nodes do not intersect, no further intersection tests are
performed with their descendants. The partial search for geometry
that is in close proximity is complete if the BVTT-node is a leaf-pair.
In general, this process is recursively repeated until completion, i.e.
the state of reaching BVTT-nodes where no further intersection
tests can be performed.

In practice, we accelerate simultaneous BVH traversal by ex-
panding the BVTT in a bulk-synchronous parallel manner (see
subsection 5.1), where the threads evaluate the BVTT at the same
level simultaneously. The BVHs and BVTT are stored in global mem-
ory. The BVTT is maintained in an array that we call srcFrontier
in a format that aides the parallel access (see section 4). At every
iteration of expanding a BVTT, threads fetch BVTT nodes from
srcFrontier and test for intersection between respective entry-
nodes. If there is an intersection, the descendant nodes are paired
and cached as the BVTT nodes for the next iteration in local shared
memory (see subsection 5.1). In order to increase the parallelism
of this process, we start the expansion at a level deeper from the
BVTT root, and pair decendants deeper in the BVH if there is an
intersection between paired BVs (see subsection 5.2). Once the lo-
cal memory cache is full, newly paired descendents are flushed
to another global memory array that we call dstFrontier in a
lock-free manner (see subsection 5.3). Finally, dstFrontier and
srcFrontier are swapped and the iteration for the next BVTT level
is repeated until there are no more BVTT nodes in srcFrontier.

4 DATA STORAGE AND REPRESENTATION
This section describes the employed BVTT and BVH node repre-
sentations which enable efficient storage and runtime access for
our topologically driven workload expansion scheme described in
subsection 5.2.

Figure 1: BVH nodes are stored compactly in one memory
buffer (BVH storage array) with addition set of of small ar-
rays holding metadata about each BVH which we use to in-
fer node descendants at runtime.

BVTT Storage and Representation. A BVTT-node is represented
as a simple index-pair where each index is a location of a BVH-
node in the global memory. We refer to each index as an entry. The
BVTT is stored as a large contiguous array in order for threads
to access GPU global memory in contiguous and aligned memory
blocks [Fauzia et al. 2015] (see Figure 3). The availability of vector
load/store instructions on certain GPU architectures allows for effi-
cient bandwidth utilisation which can be beneficial since address
accesses of each thread can be combined with single memory trans-
action issued due to the one-to-one sequential and aligned access
to memory [Cook 2013; Luitjens 2013].

BVH Storage and Representation. We propose a novel represen-
tation and indexing scheme for BVH nodes that enables instant
computation of the BVH that a node belongs to, and the descen-
dants of this node. All BVHs are assumed to be stored compactly
in a contiguous array at known offsets with the first at the zeroth
offset, whereby the employed hierarchy representation is an im-
plicit binary-tree that is full and complete with nodes stored in a
Pre-order Traversal manner as shown in Figure 1. We pad each BVH
by rounding the number of leaf-nodes to the nearest power-of-two
to enable implicit indexing of the descendants of any node. Though
padding can potentially result in a higher memory footprint, the
additional storage cost is relatively low compared to, for example,
the BVTT memory itself, since only bounding volume information
is stored per-node (its “payload”). Information referencing geome-
try that is associated with each leaf-node can be stored separately.
Given an arbitrary entry-node i , its j-th descendant that is δ levels
(δ ≥ 0) deeper than i can be inferred by

c j =
(
2δni + 2δ − 1

)
+ j, j ∈

(
0 . . 2δ

]
(1)

whereni , 0 ≤ ni ≤ N −1 is the position of node i relative to the root
node of a BVH with N nodes, and c j is the relative positions of the
descendants with respect to node i . This representation is strictly
forward-stepping and infers the descendants of a node using stati-
cally known formulae and index information (see subsection 5.2).

I3D ’18, May 4–6, 2018, Montreal, QC, Canada Chitalu, Dubach and Komura

Figure 2: Computing the layout ID of an entry-node’s BVH
given an entry’s value e.g. 21 or 47: We search for the low-
est insertion index of an entry in the layout array of BVH
offsets using a lower-bound binary search and subtract one
from this insertion index.

Layout Arrays. An additional set of small arrays, termed layout-
arrays, is also maintained which hold BVH metadata used for com-
puting positional offsets of nodes relative to the root of their BVH,
and their descendants at runtime. Layout arrays have the same ca-
pacity as the number of BVHs being evaluated, and store low-cost
information such as offsets and depths (see Figure 1). Layout arrays
can be pre-computed once on the host, during initialization, and
then uploaded to the GPU since all information about each BVH
may be known at this time.

Inferring BVH Information at Runtime. Since an entry of a BVTT-
node does not encode information about the BVH containing its
respective entry-node, a unique ID corresponding to each BVH is
required to compute the descendants of the entry-node. We refer to
this ID of each BVH as the layout ID. The layout ID is used to access
layout arrays for the information belonging to the BVH containing
a given entry-node.We compute the layout ID of a given entry-node
by performing a modified lower-bound binary search [Cormen et al.
2009] over the layout array of BVH offsets, using the entry’s value
(memory index) as the search target (see Figure 2). The layout ID
gotten from this binary search is then used to read layout arrays for
information (e.g. the depth) corresponding to the BVH containing
the respective entry-node. Note that the overhead of performing
this search operation is negligible since it is done in fast GPU
local memory with O (log2 N) complexity. Further, our method can
handle both cases of static and dynamically changing BVHs since
we only require that BVHs follow our storage representation. In
addition, the implicit representation of BVHs greatly simplifies the
construction process which is ideal and would lend itself well to
parallel construction methods on GPUs [Lauterbach et al. 2009].

5 ALGORITHM
This section provides the details on how simultaneous BVH traver-
sal is implemented on the GPU using the BSP model. We first de-
scribe the general steps to perform GPU traversal in subsection 5.1
and then describe our topologically-driven workload expansion
scheme in subsection 5.2. Finally, we describe how intermediate
BVTT-nodes are written to global memory at the end of each itera-
tion on the GPU in subsection 5.3.

Algorithm 1: Iterative Bulk-Synchronous Traversal
// @arguments

1 // [input] srcFrontierDef: 1st iteration

2 // [input] srcFrontier

3 // [output] dstFrontier

4 HOST traverse (srcFrontierDef, srcFrontier, dstFrontier, . . .)
5 converged← False
6 src← srcFrontierDef // stores initial BVTT nodes

7
8 dst← dstFrontier
9 do

10 gpu_traversal(src, dst,. . .)
11 if src == srcFrontierDef then
12 src← srcFrontier

13 synchronise()
14 count← dstFrontierSzRequest()
15 if count == 0 then
16 converged← True
17 else
18 dstFrontierSzReset()
19 swap(src, dst)

20 while converged , True
21 return

1 GPU gpu_traversal (srcFrontier, dstFrontier, . . .)
2 ▷ Phase 1: read

3 data← read(global_id, srcFrontier, . . .)
4 ▷ Phase 2: traverse

5 if intersection(. . .) then
6 expandBVTT (. . .)

7 ▷ Phase 3: write

8 write(dstFrontier, . . .)
9 return

5.1 Parallel Traversal
The presented method evaluates the intersection of BVHs by iter-
atively expanding the BVTT using the breadth-first search (BFS)
as a the core parallel primitive for traversal. The steps of algo-
rithm 1 outline the pseudo-code of our method. The host (e.g.
CPU thread) will invoke the GPU by calling gpu_traversal()
in an iterative loop that will terminate when the traversal opera-
tion is complete. After invoking the GPU, the host must wait for
the current iteration to complete which is represented by a call
to synchronise(). Once the GPU has finished, the host will then
read the new number of BVTT-nodes from the GPU using the func-
tion dstFrontierSzRequest() which is a GPU-to-Host memory
copy command for a single integer value. The value read by the
host determines the workload size for the next iteration and will
be used to check if the traversal operation has completed.

The contents of srcFrontier and dstFrontier in algorithm 1
are distinguished to be read- and write-only, respectively, in order
to implement double buffering, which is used to alias the output
of one iteration as input for the next (see Figure 3). Swapping will
occur at the end of each iteration on the host with all data remaining
on the GPU.

GPU Thread Operations. To start traversal on the GPU, the host
will launch approximately as many GPU threads as there are BVTT-
nodes in srcFrontier (see Figure 3). This will be either the starting
amount of default BVTT nodes if it is the first iteration, or resulting
amount of the last iteration returned by dstFrontierSzRequest().
In phase 1 of algorithm 1, each thread will read a BVTT-node from
srcFrontier into private register memory and then subsequently
read the bounding volume information of each entry-node to per-
form intersection tests. Phase 2 defines the main body of compu-
tation performed by a thread since it is where the intersection
test function is applied followed by BVTT expansion. Using the

BSP Simultaneous BVH Traversal on GPUs I3D ’18, May 4–6, 2018, Montreal, QC, Canada

Figure 3: We use two buffers as the main storage for BVTT
nodes, the first buffer srcFrontier holds the input nodes
that are evaluated for intersection while the second buffer
dstFrontier stores the output nodes from BVTT expansion.
The output of one iteration becomes the input of the next as
we maintain all traversal data on the GPU.

Figure 4: An example of static workload expansion excluding
self-collisions where we defer the de-facto entry-level (e.g.
root level) to descendants at deeper levels in the BVHs to
create larger input size for the first iteration(s).

BVTT-node information that is now in private register memory, a
thread will then proceed to evaluate it for intersection followed by
expansion of the BVTT with new BVTT-nodes if the entry-nodes
are found to intersect. Finally, in phase 3, threads collectively copy
the new BVTT-nodes to dstFrontier for the next iteration.

5.2 Work Expansion
In this section, we describe our topologically driven workload ex-
pansion scheme. We introduce the concepts of static workload ex-
pansion and adaptive depth-stepping which are used to overcome
GPU under-utilisation resulting from the small workloads of testing
higher levels of BVHs, and to control the rate of traversal.

Static Workload Expansion. Evaluating the levels closest to the
root nodes can yield small workloads compared to what is expected
by GPUs to reach high throughputs. Therefore, in order to increase
workloads for the initial iteration(s), evaluation of BVTT-nodes
that are constructed from the root nodes is deferred to those con-
structed from their descendants at lower levels. Figure 4 provides
an illustrative example of deferring the entry-level of three implicit
heirarchies.

Given an entry-level le , 0 ≤ le ≤ d − 1 of a BVH with depth
d , we compute its nodes using Equation 1 with δ = le and ni = 0
and account for the actual memory locations of each such node
(i.e. c j) by adding the storage offset of the BVH. Once the entry-
level of each BVH is computed, the set of BVTT-nodes evaluated
in the first iteration of traversal is then obtained by pairing every

Figure 5: Updating dstFrontier using lock-free asynchro-
nous writes that are iteratively buffered to- and copied from
local to global memory.

node in the entry-level of one BVH to those of another. Deferring
the entry-level yields approximately 22le E BVTT-nodes, where
E =

N (N−1)
2 +S is the number of collision checks between N BVHs,

with S representing the number of self-collision checks. Such an
increment can average-out the workloads over multiple iterations
while also reducing total number of iterations since entry-level
BVTT-nodes can be pre-computed on the host and uploaded once
to the GPU as srcFrontierDef in algorithm 1.

Adaptive Depth-Stepping. Recall that expanding the BVTT is the
process of creating new BVTT-nodes from the descendants of every
pair of entry-nodes that are found to intersect; We introduce the
concept of adaptive depth-stepping to infer the by-level distance
to such descendants while accounting for any differences between
the depths of tested BVHs. In what follows, the term depth-step is
used to denote the by-level (jumping) distance that is computed at
runtime, from an entry-node to its descendants: This allows us to
(1) continue sprouting the descendants in one BVH while reaching
the leaves of another, (2) further increase workloads at faster rates
while reducing the number of iterations to complete traversal, and
(3) tune for performance when writing to global memory.

We compute the depth-step by:

∆d =min(µ,∆l), 0 ≤ ∆d ≤ d − 1 (2)

where ∆l = (d − 1) − ⌊loд2 (ni + 1)⌋ is the by-level distance to the
leaf-level of the BVH containing an entry-node ni , and d assumes
the depth of the same BVH. The variable µ, 1 ≤ µ ≤ d − 1 is the
user-specified parameter of expansion, which is used to control the
maximum possible depth-step threads are permitted to use. (Note
that ∆d is zero if an entry-node is a leaf). Once ∆d is known, the de-
scendants of an entry-node are then determined by using Equation 1
with δ = ∆d , which is then followed by BVTT-expansion.

5.3 Writing Traversal Output
We now describe our lock-free scheme for writing BVTT-nodes to
dstFrontier, which is designed upon the BSP philosophy for fully
utilizing the massive parallelism of modern GPUs.

All new BVTT nodes written to dstFrontier will be first ac-
cumulated in local shared memory and then flushed in coarse-
grained chunks to global memory to prevent individual thread
access to global memory as shown in Figure 5. Traversal can po-
tentially induce non-coalesced access to dstFrontier as a result
of control-flow divergence which may be an additional source la-
tency overhead. Thread-groups are used to achieve this by using
an iterative write-wait-flush memory update scheme. algorithm 2
outlines the steps of how the threads T that performed expansion
as part of a group G copy their collective subset of BVTT-nodes to

I3D ’18, May 4–6, 2018, Montreal, QC, Canada Chitalu, Dubach and Komura

Algorithm 2: Lock-free synchronised write-access
global dst_offset // size of dstFrontier

1 local base_offset
2 i ← 0
3 do
4 if num_data > 0 then
5 c ← atomic_add(C, num_data) - checkpoint
6 if c < κ then
7 r ← κ − c // remaining space

8 w ← min(num_data, r) // amount written

9 write(Q, c , data,w)
10 num_data← num_data -w

11 synchronise_group()
12 s ← min(C - checkpoint, κ) // queue size

13 if s > 0 then
14 checkpoint← C // Q ≡ ∅

15 if local_id == 0 then
16 base_offset← atomic_add(dst_offset, s)

17 synchronise_group()
18 async_copy(dstFrontier, base_offset, Q, s)
19 else
20 break

21 i ← i + 1
22 while (i × κ) < M

dstFrontier. During this process, a fixed-size region Q, in local
memory, is filled and then flushed iteratively until G has copied all
collective BVTT-nodes to dstFrontier. At each iteration, G write
to Q with flushing done to asynchronously copy the accumulated
BVTT-nodes from local to global memory. (we used the OpenCL
async_work_group_copy built-in).

The chosen thread group size and allocated size of Q have a
direct effect on the number of iterations taken to copy all BVTT-
nodes to global memory, which is also dependent on the maximum
possible output. For a given traversal iteration, the total number of
iterations I to copy all BVTT-nodes of a group G to dstFrontier
is determined by:

I =

{
1 : if M ≤ κ

⌈ Mκ ⌉ : if M > κ
(3)

where κ , 1 ≤ κ, is the user-specified capacity of Q and M = 22µ × |G|
is the maximum possible output size of a group assuming all threads
in the group performed expansion, where |G| is the user-specified
thread group size.

Lock-free Synchronisation During SharedWrite-Access. Writing to
the local memory region Q can have serious impact on performance
since it is a shared resource. For this reason, a shared variable C is
used, which is a counter allocated per thread-group and is used to
atomically compute a writing offset to the shared fixed-size region
Q for each thread. At each iteration, group threads T compete for
write-access to Q by atomically adding to the counter C (line 5).
Each successful thread reserves a region to write its BVTT nodes
such that those obtaining a valid offset that is within the bounds
of κ will then asynchronously write to Q (lines 6-10). In essence,
the threads that have data to write in the current iteration simulta-
neously contribute toward computing the offset of their collective
output relative to a common base address in dstFrontier. This
base address is computed by the first thread of the group as a final
step before flushing, which is done by using a single global atomic
add after Q is filled (lines 12-20). Since Q is the sole interface to global
memory, lone-thread accesses to global memory is reduced signifi-
cantly, which can be more expensive to synchronise as workloads
increase. We note that this scheme is in fact similar to Garanzha at

(a) NBody (146K Tris) (b) Funnel (18.5K Tris) (c) Cloth-Ball (92K
Tris)

Figure 6: UNC Dynamic Scene Benchmarks used for evalu-
ation purposes[Curtis et al. 2017].

el. [2011], however they use the first thread in a batch (CUDA warp)
to compute the base offset into a global memory region whereas
we use the first thread in a group.

Heuristic for Choosing the Parameter of Expansion. It may at times
prove difficult to choose the parameter of expansion µ given the
other parameters and hardware constraints that must be considered.
The parameter has a direct effect on a number of features in the
presented method by effectively providing a fine level of control
over the rate of traversal. To facilitate the choice of µ, a simple
formula is proposed in order to estimate a maximum value µ subject
to size constraints on κ. The purpose is to at-least guarantee a
minimum number of threads that will write all their BVTT-nodes
in a single iteration to Q. Assuming the worst-case, where every
group thread writes β = 22µ BVTT-nodes, µ can be computed by

µ =
⌊
log4
(κ
α

)⌋
, 4 ≤ κ (4)

where α , 1 ≤ α ≤
⌊

4√κ
⌋
is a user-specified value for the mini-

mum number of group threads ∈ T guaranteed to write all their
BVTT-nodes in single iteration. Thus, the guaranteed threads will
collectively write α × β BVTT-nodes to Q in the current iteration,
such that the nth thread to atomically offset C, where n = ⌈κ+1β ⌉,
will write at-most κ (mod β) BVTT-nodes to Q and the rest will be
written in the next iteration.

6 RESULTS
We evaluate our method using OpenCL 1.2 on the AMD Radeon R9
280X (3GB VRAM, 32KB Local memory) and Nvidia Geforce GTX
960 (4GB VRAM, 49KB Local memory) GPUs. Three benchmarks
(Figure 6) from the UNCDynamic Scene Benchmarks dataset [Curtis
et al. 2017] are used for evaluation purposes: NBody (6a) has the
largest number of objects at 305 with a total of 146K triangles, it is a
rigid-body simulation involving many interacting objects without
self collisions. Funnel (6b) is a soft+rigid body simulation and is the
smallest benchmarkmade up of four low-resolutionmeshes (total of
18.5K triangles). In this benchmark, the primary interactions occur
between the cloth and funnel. Cloth-Ball (6c) is another soft+rigid
simulation with two objects that have 92K triangles in total. We use
simple axis-aligned bounding boxes (AABB) storing one triangle
per leaf-node and our BVHs constructed in bottom-up fashion.

BSP Simultaneous BVH Traversal on GPUs I3D ’18, May 4–6, 2018, Montreal, QC, Canada

Table 1: Our performance results for simultaneous parallel
BVH traversal involving inter- and intra-object collisions.

Benchmark
Query time (ms)

Geforce GTX 960 Radeon R9 280

Cloth-Ball 6.43 3.08
Funnel 0.99 0.57
NBody 2.42 1.16

6.1 Performance
Table 1 summarises the performance of our algorithm when we con-
sider both inter- and intra-object tests for the case of Cloth-Ball and
Funnel. The presented results are based on the heaviest workloads
(colliding leaf-nodes pair) experienced at the most demanding time-
step in each benchmark (Cloth-Ball 3.1mil, Funnel 314K, Nbody
117.6K). During experiments, our GPU kernels are executed at-least
eight times to reduce potential noise in time measurements because
of system warm-up overhead. However, no significant differences
were observed between test runs.

The presented method is able to perform parallel simultaneous
queries in real-time. Execution time is fastest on Funnel with query
time under 1ms. Cloth-Ball takes the longest time (6.43ms on the
GTX 960). This benchmark has the largest workloads with over
3.1million overlapping leaf-node pairs due to the self-collisions
induced by the cloth’s motion. For this benchmark, our method
is able to complete traversal within 6.5ms . NBody has the lowest
number of leaf-node overlaps because is a rigid body simulation.
Its BVHs are approximately twice as much slower to evaluate than
Funnel due to the larger number of objects (305), and hence, the
resulting BVTT. The results reveal our method’s strong ability to
exploit large scale parallelism on GPUs to quickly evaluate a large
number of BVTT nodes for pair-wise CD.

Speedup. We compared the performance against our implemen-
tation of the “streams” model by Tang et al. [2011]. Comparisons
are made using the time-step/frame with the heaviest workloads
on each benchmark. We did not include intra-object collisions for
Cloth-Ball and Funnel to ensure that workloads fit in our global
memory buffers for the streams model. A reduced implementa-
tion was used with only pair-wise collision queries to ensure a fair
comparison. The implementation also used explicit (not deferred)
front-tracking with stream registration based on segmented locking
mechanism (see Tang et al. for details). According to Tang et al., de-
ferred front tracking simply trades memory overhead for additional
runtime computations.

To emulate the BVTT-node cache (moving front) used by the
streamsmodel, we setup the benchmarks as follows: For each bench-
mark, we extract a pair of keyframes (kt ,kt+∆t) which are con-
secutive in time, with each keyframe k representing the geometry
of a particular time-step t . Next, we then build the BVH of each
mesh in the benchmark for kt and kt+∆t . The BVTT-node cache is
created by traversing the BVHs of the meshes of kt until comple-
tion and saving the BVTT nodes at which traversal terminates as
described by Tang et al. [2011]. Our traversal tests and comparisons

1

2

3

4

5

6

7

8

Cloth-Ball Funnel NBody
Benchmark

Sp
ee

du
p

ov
er

 "S
tre

am
s"

 M
od

el
 [T

M
LT

11
]

GPU
Geforce GTX 960
Radeon R9 280

Figure 7: Speedup over the “streams” model

are performed using BVHs constructed from kt+∆t since we can
use the BVTT-node cache built from kt as input for traversal at
t + ∆t , thereby allowing the streams model to have a valid cached
input set from a “previous” time-step. We have not included the
cost of work redistribution for the streams model in our evaluation.

Figure 7 shows speedup were comparisons are based on BVH
traversal times to find the set of potentially colliding triangles pairs.
Performance of our method on all benchmarks is faster with an
average speedup of 4.4× on the R9 280X and 4.3× on the GTX 960.
The highest speedup is on NBody at 7.1× for R9 280X (6.2× on
the GTX 960) which has the largest workloads in our comparison
setup. In general, we found that adapting the streams model on
arbitrary GPU architectures is non-trivial due to its dependence
on the available amount of local memory for the work-stacks and
exploiting L1 caches. Our method is an efficient and a more simpler
option for mapping traversal to GPUs

6.2 Parameter Effects and Trade-Offs
The explorable nature of our exposed parameters can make finding
correlations between their configurations and the resulting perfor-
mance unintuitive with no obvious settings. Figure 8 shows the
results illustrating the effects of the entry level le and the parameter
of expansion µ on execution time for each benchmark (with intra-
object collision tests for Cloth-Ball and Funnel). We have found
that although increasing µ reduces the number of iterations in our
method, care must be taken when making the choice of value. For
our evaluated range (1 − 4), making further increments beyond
µ = 3 produces a drastic slow-down where the execution-time is on
average 3 to 5 times slower than choosing a value between 1 and 3.
The observed spikes in the data of Figure 8 , which are observed
for µ = 3 and µ = 4, are due to our BVH padding scheme. Some
levels in our hierarchies contain more inactive BVH nodes than
others, hence the periodic spikes subject to le . (Note that in our
implementation, we filtered out the any BVTT-nodes containing
padded BVH-nodes during entry-level construction). Generally, a
choice of smaller values of µ e.g. 2, is a suitable for the case of
reducing execution time, even though this choice is at the behest
of more iterations to complete traversal. We found le to serve our
method well for statically reducing the number of iterations to com-
plete traversal while providing the large workloads that we need to

I3D ’18, May 4–6, 2018, Montreal, QC, Canada Chitalu, Dubach and Komura

0
10
20
30
40

0 1 2 3 4 5 6 7 8 9 10
Entry Level

Ex
ec

' t
im

e
(m

s) µ
4
3
2
1

Cloth-Ball : Geforce GTX 960

0
1
2
3
4
5

0 1 2 3 4 5 6 7 8 9 10
Entry Level

Ex
ec

' t
im

e
(m

s) µ
4
3
2
1

Funnel : Geforce GTX 960

0
4
8

12
16
20
24

0 1 2 3 4 5 6 7 8 9 10
Entry Level

Ex
ec

' t
im

e
(m

s) µ
4
3
2
1

NBody : Geforce GTX 960

0
10
20
30
40
50

0 1 2 3 4 5 6 7 8 9 10
Entry Level

Ex
ec

' t
im

e
(m

s) µ
4
3
2
1

Cloth-Ball : Radeon R9 280

0
2
4
6
8

10

0 1 2 3 4 5 6 7 8 9 10
Entry Level

Ex
ec

' t
im

e
(m

s) µ
4
3
2
1

Funnel : Radeon R9 280

0
4
8

12
16
20
24

0 1 2 3 4 5 6 7 8 9 10
Entry Level

Ex
ec

' t
im

e
(m

s) µ
4
3
2
1

NBody : Radeon R9 280

Figure 8: The effects of the entry level le and the parameter
of expansion µ on the execution time.

utilise the GPU. There are some limitations on the exploitation of
le however, since its chosen value must correlate with the number
of BVHs tested to control the resulting input size. On the Nbody
simulation, we see a more rapid (exponential) performance drop
with le compared to the other benchmarks due to the faster rate
of increase in the initial input size. For example, we observe that
setting µ = 2 and making increments on le from 1 to 5 results in a
sharp change in execution time from 3ms to 16ms respectively on
the GTX 960.

Local memory and thread-group sizes. The allocated local mem-
ory size κ of the fixed-size region Q and thread group size |G| also
have an effect on performance and its scaling properties due to their
influence on scheduling. Figure 9 provides our findings regarding
the change of execution time relative to κ and |G|, respectively. Set-
ting either parameter to the highest tested value (e.g. κ = 29 and
|G| = 28 on the R9 280X) while maintaining the other at a mini-
mum (e.g. 21) showed slower performance in most cases with the
exception of the NBody simulation on the R9 280X. More generally,
we observe similar behavioural patterns on both GPUs with the
GTX 960 appearing a little more constrained in terms of the optimal
choices ofκ and |G|. In our results we have found that configurations
that use mid-range values are sufficient to obtain good performance
relative to the worst case for each benchmark. We observe that our
method favours medium-to-large thread groups (|G| ≥ 25) and
allocated local memory size (κ ≥ 26) for good performance. The
results of Figure 9 are a demonstration of the importance of the
trade-offs to be made through our parameters which is crucial for
portability.

7 CONCLUSION
We have presented a simple alternative solution for simultaneously
traversing a large number of BVHs for CD onGPUs. Ourmethod uti-
lizes the BSP model to overcome the irregular and data-dependent
nature traversal. The simplicity of our approach stems from the

2122232425262728

21 22 23 24 25 26 27 28 29

Local Memory Size(κ)

G
ro

up
 S

iz
e

(|G
|)

60
50
40
30
20
10
0

Time (ms)

Cloth-Ball : Radeon R9 280

2122232425262728

21 22 23 24 25 26 27 28 29

Local Memory Size(κ)

G
ro

up
 S

iz
e

(|G
|)

10

8

6

4

2

0

Time (ms)

Funnel : Radeon R9 280

2122232425262728

21 22 23 24 25 26 27 28 29

Local Memory Size(κ)

G
ro

up
 S

iz
e

(|G
|)

70
60
50
40
30
20
10
0

Time (ms)

NBody : Radeon R9 280

212223242526272829210

21 22 23 24 25 26 27 28 29 210

Local Memory Size(κ)

G
ro

up
 S

iz
e

(|G
|)

100

80

60

40

20

0

Time (ms)

Cloth-Ball : Geforce GTX 960

212223242526272829210

21 22 23 24 25 26 27 28 29 210

Local Memory Size(κ)

G
ro

up
 S

iz
e

(|G
|)

12
10
8
6
4
2
0

Time (ms)

Funnel : Geforce GTX 960

212223242526272829210

21 22 23 24 25 26 27 28 29 210

Local Memory Size(κ)

G
ro

up
 S

iz
e

(|G
|)

80

60

40

20

0

Time (ms)

NBody : Geforce GTX 960

Figure 9: The effects of the allocated local memory size κ
and the chosen thread group size |G| on the execution time.

use of topological properties inherent within an implicit hierarchi-
cal representation to harness the parallelism of GPUs. From this,
we have presented our topologically-driven workload expansion
scheme which provides fine control over the rate of traversal while
also increasing workloads for the first iteration(s). In addition, we
have described a simple lock-free global memory updating method
that can be controlled to adapt algorithm performance based on the
available hardware resources. This can likewise be extended with
more complex lock-free synchronisation mechanisms using scan
primitives such as prefix-sum [Sengupta et al. 2007]. Our method
can evaluate complex hierarchies in real-time, and with a speedup
of upto 7.1× over the widely used “streams” model.

Limitations and Future Work. The presented algorithm faces a
number of limitations which affect performance. Our solution mini-
mizes the compute workload per thread while increasing the DRAM
traffic as a side-effect. This is because threads perform just one in-
tersection test, such that in order to perform it, they need to stream
data from global memory. Also, our BVH node array is sparsely
populated due to padding, which can easily cause excessive L2 and
global memory traffic. Such padding can, in the worst-case, also
double the storage requirements per BVH subject to the number of
leaf nodes. We also note that is it a possibility that our approach
of using a one-to-one mapping between threads and BVTT-nodes
may not utilise the benefits of GPU caches because there is no
opportunity for the reusing BVTT-nodes from srcFrontier: The
initial read operation of phase 1 (see algorithm 1) is effectively a
cold start with no opportunity for explicit data reuse since little
temporal locality exists when reading BVTT-nodes and BVH node
data.

In future work, we plan to extend support for BVH compression
by eliminating inactive BVH nodes. This would serve as a solution
to the highlighted limitation that the currently employed padding
scheme is likely to have limited exploitation of GPU caches leading
to excessive global memory traffic alongside the higher memory
footprint. Support for moving fronts without complex memory

BSP Simultaneous BVH Traversal on GPUs I3D ’18, May 4–6, 2018, Montreal, QC, Canada

management would also benefit our method well since it is strictly
forward stepping with no notion of “node-collapse” to backtrack
up heirarchies.

ACKNOWLEDGMENTS
This work was supported by grant for the University of Edinburgh
School of Informatics Centre for Doctoral Training in Pervasive
Parallelism (http://pervasiveparallelism.inf.ed.ac.uk/) from the UK
Engineering and Physical Sciences Research Council (EPSRC). We
also thank the reviewers for their useful feedback.

REFERENCES
Timo Aila and Tero Karras. 2010. Architecture Considerations for Tracing Incoherent

Rays. In Proc. of the Conf. on High Performance Graphics (HPG ’10). Aire-la-Ville,
Switzerland, Switzerland, 113–122.

Rasmus Barringer and Tomas Akenine-MÃűller. 2013. Dynamic stackless binary tree
traversal. 2, 1 (2013), 38–49.

Gino van den Bergen. 1997. Efficient collision detection of complex deformable models
using AABB trees. Journal of Graphics Tools 2, 4 (1997), 1–13.

Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust Treatment of
Collisions, Contact and Friction for Cloth Animation. In Proc. of the 29th Annual
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’02). New
York, NY, USA, 594–603.

Tyson Brochu, Essex Edwards, and Robert Bridson. 2012. Efficient Geometrically Exact
Continuous Collision Detection. ACM Trans. Graph. 31, 4, Article 96 (July 2012),
7 pages. https://doi.org/10.1145/2185520.2185592

Daniel Cederman and Philippas Tsigas. 2008. On Dynamic Load Balancing on Graphics
Processors. In Proc. of the 23rd ACM SIGGRAPH/EUROGRAPHICS Symposium on
Graphics Hardware (GH ’08). Aire-la-Ville, Switzerland, Switzerland, 57–64.

Shane Cook. 2013. CUDA Programming: A Developer’s Guide to Parallel Computing
with GPUs (1st ed.). San Francisco, CA, USA.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009.
Introduction to Algorithms, Third Edition (3rd ed.).

Sean Curtis, Stephane Redon, and Simon Pabst. 2017. UNCDynamic Scene Benchmarks.
(2017).

Peng Du, Elvis S. Liu, and Toyotaro Suzumura. 2017. Parallel Continuous Collision
Detection for High-performance GPU Cluster. In Proc. of the 21st ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games (2017) (I3D ’17). 4:1–4:7.

Peng Du, Jie-Yi Zhao, Wan-Bin Pan, and Yi-Gang Wang. 2015. GPU Accelerated Real-
Time Collision Handling in Virtual Disassembly. Journal of Computer Science and
Technology 30, 3 (2015), 511–518.

Christer Ericson. 2005. Real-time collision detection. Amsterdam ; Boston.
Naznin Fauzia, Louis-Noël Pouchet, and P. Sadayappan. 2015. Characterizing and

Enhancing Global Memory Data Coalescing on GPUs. In Proc. of the 13th Annual
IEEE/ACM International Symposium on Code Generation and Optimization. 12–22.

Kirill Garanzha, Jacopo Pantaleoni, and David McAllister. 2011. Simpler and Faster
HLBVH with Work Queues. In Eurographics/ ACM SIGGRAPH Symposium on High
Performance Graphics, Carsten Dachsbacher, William Mark, and Jacopo Pantaleoni
(Eds.). ACM.

Stefan Gottschalk, Ming C Lin, and Dinesh Manocha. 1996. OBBTree: A hierarchi-
cal structure for rapid interference detection. In Proc. of the 23rd annual conf. on
Computer graphics and interactive techniques. 171–180.

Stefan Aric Gottschalk. 2000. Collision Queries Using Oriented Bounding Boxes. Ph.D.
Dissertation. AAI9993311.

Michal Hapala, Tomáš Davidovič, Ingo Wald, Vlastimil Havran, and Philipp Slusallek.
2013. Efficient Stack-less BVH Traversal for Ray Tracing. In Proc. of the 27th Spring
Conf. on Computer Graphics. 7–12.

Pawan Harish and P. J. Narayanan. 2007. Accelerating Large Graph Algorithms on
the GPU Using CUDA. In Proc. of the 14th International Conf. on High Performance
Computing (HiPC’07). Berlin, Heidelberg, 197–208.

Andreas Hermann, Sebastian Klemm, Zhixing Xue, Arne Roennau, and RÃĳdiger
Dillmann. 2013. GPU-based Real-Time Collision Detection for Motion Execution
in Mobile Manipulation Planning. (11 2013).

Qiming Hou, Kun Zhou, and Baining Guo. 2008. BSGP: Bulk-synchronous GPU
Programming. In ACM SIGGRAPH 2008 Papers (SIGGRAPH ’08). ACM, New York,
NY, USA, Article 19, 12 pages.

Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan. 2014. CuSha: Vertex-
centric Graph Processing on GPUs. In Proc. of the 23rd International Symposium on
High-performance Parallel and Distributed Computing. 239–252.

James T Klosowski, Martin Held, Joseph SB Mitchell, Henry Sowizral, and Karel Zikan.
1998. Efficient collision detection using bounding volume hierarchies of k-DOPs.
IEEE transactions on Visualization and Computer Graphics 4, 1 (1998), 21–36.

Dave Knott and Dinesh K. Pai. 2003. CInDeR: Collision and Interference Detection in
Real-time Using graphics hardware. In Proc. of the Graphics Interface 2003 Conference,
June 11-13, 2003, Halifax, Nova Scotia, Canada. CIPS, Canadian Human-Computer
Communication Society, 73–80.

Samuli Laine. 2010. Restart Trail for Stackless BVH Traversal. In Proc. of the Conf. on
High Performance Graphics (HPG ’10). 107–111.

C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha. 2009. Fast BVH
Construction on GPUs. Computer Graphics Forum 28, 2 (2009), 375–384.

C. Lauterbach, Q. Mo, and D. Manocha. 2010. gProximity: Hierarchical GPU-based
Operations for Collision and Distance Queries. Computer Graphics Forum 29, 2
(2010), 419–428.

Christian Lauterback, Qi Mo, and Dinesh Manocha. 2009. Work distribution
methods on GPUs. (2009). https://www.researchgate.net/profile/Dinesh_
Manocha/publication/267257965_Work_distribution_methods_on_GPUs/links/
54ecdbfa0cf27fbfd771af9c.pdf

Andrew Lenharth, Donald Nguyen, and Keshav Pingali. 2016. Parallel Graph Analytics.
Commun. ACM 59, 5 (April 2016), 78–87.

Tsai-Yen Li and Jin-Shin Chen. 1998. Incremental 3D Collision Detection with Hierar-
chical Data Structures. In Proc. of the ACM Symposium on Virtual Reality Software
and Technology (VRST ’98). New York, NY, USA, 139–144.

Hang Liu, H. Howie Huang, and Yang Hu. 2016. iBFS: Concurrent Breadth-First Search
on GPUs. In Proc. of the 2016 International Conf. on Management of Data. 403–416.

Justin Luitjens. 2013. CUDA Pro Tip: Increase Performance with Vector-
ized Memory Access. (2013). https://devblogs.nvidia.com/parallelforall/
cuda-pro-tip-increase-performance-with-vectorized-memory-access/

Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scalable GPU Graph
Traversal. In Proc. of the 17th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (2012) (PPoPP ’12). 117–128.

Jia Pan, Christian Lauterbach, and Dinesh Manocha. 2010. g-Planner: Real-time Motion
Planning and Global Navigation Using GPUs. In Proc. of the Twenty-Fourth AAAI
Conf. on Artificial Intelligence (AAAI’10). 1245–1251.

Jia Pan and Dinesh Manocha. 2011. GPU-Based Parallel Collision Detection for Real-Time
Motion Planning. Springer Berlin Heidelberg, Berlin, Heidelberg, 211–228.

Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. 2007.
Scan Primitives for GPU Computing. In Proceedings of the 22Nd ACM SIG-
GRAPH/EUROGRAPHICS Symposium on Graphics Hardware (GH ’07). Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland, 97–106.

Markus Steinberger, Michael Kenzel, Pedro Boechat, Bernhard Kerbl, Mark Dokter,
and Dieter Schmalstieg. 2014. Whippletree: Task-based Scheduling of Dynamic
Workloads on the GPU. ACM Trans. Graph. 33, 6, Article 228 (Nov. 2014), 11 pages.

Min Tang, Dinesh Manocha, Jiang Lin, and Ruofeng Tong. 2011. Collision-Streams:
Fast GPU-based collision detection for deformable models. In I3D ’11: Proceedings of
the 2011 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games. 63–70.

Min Tang, Dinesh Manocha, and Ruofeng Tong. 2010. MCCD: Multi-Core collision
detection between deformable models using front-based decomposition. Graphical
Models 72, 2 (2010), 7–23.

Min Tang, Ruofeng Tong, Rahul Narain, Chang Meng, and Dinesh Manocha. 2013. A
GPU-based Streaming Algorithm for High-Resolution Cloth Simulation. In Com-
puter Graphics Forum, Vol. 32. 21–30.

Min Tang, Huamin Wang, Le Tang, Ruofeng Tong, and Dinesh Manocha. 2016. CAMA:
Contact-Aware Matrix Assembly with Unified Collision Handling for GPU-based
Cloth Simulation. Computer Graphics Forum (Proceedings of Eurographics 2016) 35,
2 (2016), 511–521.

M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi, A. Fuhrmann,
M.-P. Cani, F. Faure, N. Magnenat-Thalmann, W. Strasser, and P. Volino. 2005.
Collision Detection for Deformable Objects. Computer Graphics Forum 24, 1 (2005),
61–81.

Stanley Tzeng, Anjul Patney, and John D. Owens. 2010. Task Management for Irregular-
parallel Workloads on the GPU. In Proc. of the Conf. on High Performance Graphics
(HPG ’10). Aire-la-Ville, Switzerland, Switzerland, 29–37.

Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. 33, 8 (1990),
103–111.

Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and John D.
Owens. 2016. Gunrock: A High-performance Graph Processing Library on the GPU.
In Proc. of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’16). 11:1–11:12.

RenÃľ Weller, Nicole Debowski, and Gabriel Zachmann. 2017. kDet: Parallel Constant
Time Collision Detection for Polygonal Objects. Computer Graphics Forum 36, 2
(2017), 131–141. https://doi.org/10.1111/cgf.13113

Tsz Ho Wong, Geoff Leach, and Fabio Zambetta. 2014. An Adaptive Octree Grid for
GPU-based Collision Detection of Deformable Objects. Vis. Comput. 30, 6-8 (June
2014), 729–738. https://doi.org/10.1007/s00371-014-0954-1

https://doi.org/10.1145/2185520.2185592
https://www.researchgate.net/profile/Dinesh_Manocha/publication/267257965_Work_distribution_methods_on_GPUs/links/54ecdbfa0cf27fbfd771af9c.pdf
https://www.researchgate.net/profile/Dinesh_Manocha/publication/267257965_Work_distribution_methods_on_GPUs/links/54ecdbfa0cf27fbfd771af9c.pdf
https://www.researchgate.net/profile/Dinesh_Manocha/publication/267257965_Work_distribution_methods_on_GPUs/links/54ecdbfa0cf27fbfd771af9c.pdf
https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-increase-performance-with-vectorized-memory-access/
https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-increase-performance-with-vectorized-memory-access/
https://doi.org/10.1111/cgf.13113
https://doi.org/10.1007/s00371-014-0954-1

	Abstract
	1 Introduction
	2 Related Work
	3 Method Outline
	4 Data Storage and Representation
	5 Algorithm
	5.1 Parallel Traversal
	5.2 Work Expansion
	5.3 Writing Traversal Output

	6 RESULTS
	6.1 Performance
	6.2 Parameter Effects and Trade-Offs

	7 CONCLUSION
	Acknowledgments
	References

