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Abstract
Computing the Fréchet distance between two polygonal curves takes roughly quadratic time. In
this paper, we show that for a special class of curves the Fréchet distance computations become
easier. Let P and Q be two polygonal curves in Rd with n and m vertices, respectively. We
prove four results for the case when all edges of both curves are long compared to the Fréchet
distance between them: (1) a linear-time algorithm for deciding the Fréchet distance between two
curves, (2) an algorithm that computes the Fréchet distance in O((n+m) log(n+m)) time, (3)
a linear-time

√
d-approximation algorithm, and (4) a data structure that supports O(m log2 n)-

time decision queries, where m is the number of vertices of the query curve and n the number of
vertices of the preprocessed curve.
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1 Introduction

Measuring the similarity between two curves is an important problem that has applications
in many areas, e.g., in morphing [12], movement analysis [13], handwriting recognition [21]
and protein structure alignment [19]. Fréchet distance is one of the most popular similarity
measures which has received considerable attentions in recent years. It is intuitively the
minimum length of the leash that connects a man and dog walking across the curves without
going backward. The classical algorithm for computing the Fréchet distance between curves
with total complexity n runs in O(n2 logn) time [2]. The major goal of this paper is to focus
on computing the Fréchet distance for a reasonable special class of curves in significantly
faster than quadratic time.

1.1 Related Work
Buchin et al. [7] gave an Ω(n logn) lower bound for computing the Fréchet distance. Then
Bringmann [5] showed that, assuming the Strong Exponential Time Hypothesis, the Fréchet
distance cannot be computed in strongly subquadratic time, i.e., in time O(n2−ε) for any
ε > 0. For the discrete Fréchet distance, which considers only distances between the
vertices, Agarwal et al. [1] gave an algorithm with a (mildly) subquadratic running time
of O(n2 log logn

logn ). Buchin et al. [8] showed that the continuous Fréchet distance can be
computed in O(n2√logn(log logn)3/2) expected time. Bringmann and Mulzer [6] gave an
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23:2 Fast Fréchet Distance Between Curves with Long Edges

O(n2/φ+n logn)-time algorithm to compute a φ-approximation of the discrete Fréchet dis-
tance for any integer 1 ≤ φ ≤ n. Therefore, an nε-approximation, for any ε > 0, can be
computed in (strongly) subquadratic time. For the continuous Fréchet distance, there are
also a few subquadratic algorithms known for restricted classes of curves such as κ-bounded,
backbone and c-packed curves. Alt et al. [3] considered κ-bounded curves and they gave
an O(n logn) time algorithm to (κ+ 1)-approximate the Fréchet distance. A curve P is κ-
bounded if for any two points x, y ∈ P , the union of the balls with radii r centered at x and y
contains the whole P [x, y] where r is equal to (κ/2) times the Euclidean distance between x
and y. For any ε > 0, Aronov et al. [4] provided a near-linear time (1 + ε)-approximation al-
gorithm for the discrete Fréchet distance for so-called backbone curves that have essentially
constant edge length and require a minimum distance between non-consecutive vertices. For
c-packed curves a (1 + ε)-approximation can be computed in O(cn/ε+ cn logn) time [11]. A
curve is c-packed if for any ball B, the length of the portion of P contained in B is at most
c times the diameter of B.

1.2 Our Contribution
In this paper, we study a new class of curves, namely curves with long edges, and we
show that for these curves the Fréchet distance can be computed significantly faster than
quadratic time. In a particular application, one might be interested in detecting groups of
different movement patterns in migratory birds that fly very long distances. As shown in
Fig. 1, different flyways are comparatively straight and the trajectory data of individual
birds usually consists of only one GPS sample per day in order to conserve battery power.
Infrequent sampling and the straight flyways therefore result in curves with long edges, and
it is desirable to compare the routes of different animals in order to identify common flyways.

Figure 1 There are four typical flyways across the US. Clustering the trajectories by similarity
between them allows us to detect the most common movement pattern [20].

We consider the decision, optimization, approximation and data structure problems for
the Fréchet distance between two polygonal curves P and Q in Rd with n and m vertices,
respectively, all for the case where all edges of both curves are long compared to the Fréchet
distance between them. In Section 3 we present a greedy linear-time algorithm for deciding
whether the Fréchet distance is at most ε, as long as all edges in P are longer than 2ε and
edges in Q are longer than (1 +

√
d)ε. In Section 4 we give an algorithm for computing the

Fréchet distance in O((n+m) log(n+m)) time and a linear-time algorithm for approximating
the Fréchet distance up to a factor of

√
d. In Section 5 we present a data structure that

decides whether the Fréchet distance between a preprocessed curve P and a query curve
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Q is at most ε or not, in O(m log2 n) query time using O(n logn) space and preprocessing
time.

2 Preliminaries

In this section we provide notations and definitions that will be required in the next sections.
Let P : [1, n] → Rd and Q : [1,m] → Rd be two polygonal curves with vertices p1, . . . , pn
and q1, . . . , qm, respectively. We treat a polygonal curve as a continuous map P : [1, n]→ Rd
where P (i) = pi for an integer i, and the i-th edge is linearly parametrized as P (i + λ) =
(1 − λ)pi + λpi+1, for integer i and 0 < λ < 1. A re-parametrization σ : [0, 1] → [1, n]
of P is any continuous, non-decreasing function such that σ(0) = 1 and σ(1) = n. We
denote a re-parametrization of Q by θ : [0, 1]→ [1,m]. We denote the length of the shortest
edge in P and the length of the shortest edge in Q by lP and lQ, respectively. For two
points x, y ∈ Rd, let ‖x − y‖ denote the Euclidean distance between the points and xy the
straight line segment connecting x to y. The Euclidean distance between x ∈ Rd and an
edge e : [1, 2] → Rd is denoted as ‖x, e‖ = min1≤t≤2 ‖x − e(t)‖. For 1 ≤ a ≤ b ≤ n, P [a, b]
denotes the subcurve of P starting in P (a) and ending in P (b). Let ε > 0 be a real number.
Consider an edge e : [1, 2] → Rd of length ‖e‖ > 2ε whose endpoints are e1 and e2. The
direction vector of e is the vector from e1 to e2. Now let B(p, ε) = {x ∈ Rd | ‖p−x‖ ≤ ε} be
the ball with radius ε that is centered at a point p. The cylinder C(e, ε) is the set of points
in Rd within distance ε from e, i.e., C(e, ε) = ∪x∈eB(x, ε). We say P is (e, ε)-monotone if
(1) p1 ∈ B(e1, ε) and pn ∈ B(e2, ε), (2) P ⊆ C(e, ε), and (3) P is monotone with respect
to the line supporting e. A curve is monotone with respect to a line l if it intersects any
hyperplane perpendicular to l in at most one component.
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Figure 2 Two curves P,Q and ε > 0 on the left, and the free space diagram FSD≤ε(P,Q) on
the right showing free space in white and blocked space in gray. A reachable path is shown in green.
The point (s, t) lies in free space. There is a quadratic number of cells containing free space as well
as a quadratic number of cells containing blocked space in FSD≤ε(P,Q) and all of them may need
to be checked to decide reachability for (n,m). Note that both P and Q contain short edges as well
as long edges compared to ε.
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2.1 Fréchet Distance and Free-Space Diagram
To compute the Fréchet distance between P and Q, Alt and Godau [2] introduced the notion
of free-space diagram. For any ε > 0, we denote the free-space diagram between P and Q by
FSD≤ε(P,Q). This diagram has the domain [1, n]× [1,m] and it consists of (n−1)×(m−1)
cells, where each point (s, t) in the diagram corresponds to two points P (s) and Q(t). A
point (s, t) in FSD≤ε(P,Q) is called free if ‖P (s)−Q(t)‖ ≤ ε and blocked, otherwise. The
union of all free points is referred to as the free space. A monotone matching between P and
Q is a pair of re-parameterizations (σ, θ) corresponding to an xy-monotone path from (1, 1)
to (n,m) within the free space in FSD≤ε(P,Q). The Fréchet distance between two curves
is defined as δF (P,Q) = inf(σ,θ) max0≤t≤1 ‖P (σ(t)) − Q(θ(t))‖, where (σ, θ) is a monotone
matching and max0≤t≤1 ‖P (σ(t))−Q(θ(t))‖ is called the width of the matching. A monotone
matching realizing δF (P,Q) is called a Fréchet matching. A point (s, t) is reachable if there
exists a Fréchet matching from (1, 1) to (s, t) in FSD≤ε(P,Q). A Fréchet matching in
FSD≤ε(P,Q) from (1, 1) to (s, t) is also called a reachable path for (s, t) (see Fig. 2). Alt
and Godau [2] compute a reachable path by propagating reachable points across free space
cell boundaries in a dynamic programming manner, which requires the exploration of the
entire FSD≤ε(P,Q) and takes O(mn) time.

2.2 The Main Idea
We set out to provide faster algorithms for the Fréchet distance using implicit structural
properties of the free-space diagram of curves with long edges. These properties allow us
to develop greedy algorithms that construct valid re-parameterizations by repeatedly com-
puting a maximally reachable subcurve on one of the curves. Like the greedy algorithm
proposed by Bringmann and Mulzer [6], we compute prefix subcurves that have a valid
Fréchet distance. However, while the approximation ratio of their greedy algorithm is ex-
ponential, the approximation ratio of the algorithm we present in Section 4.2 is constant,
because we can take advantage of the curves having long edges. Our assumption on edge
lengths is more general than backbone curves, since we do not require that non-consecutive
vertices be far away from each other and we do not require any upper bound on the length
of the edges.

The free space diagram for curves with long edges is simpler, and intuitively seems to
have fewer reachable paths (see Fig. 3). In the remainder of this paper we show that indeed
we can exploit this simpler structure to compute reachable paths in a simple greedy manner
which results in runtimes that are significantly faster than quadratic.

3 A Greedy Decision Algorithm

In this section we give a linear time algorithm for deciding whether the Fréchet distance
between two polygonal curves P and Q in Rd with relatively long edges is at most ε. In Sec-
tion 3.1, we first prove a structural property for the case that each edge in P is longer than
2ε and Q is a single segment. Afterwards in Section 3.2, we consider the extension to the
case that P and Q are two polygonal curves and we show some extended structural property
of free space induced by two curves with long edges. In Section 3.3, we present our greedy
algorithm, which is based on computing longest reachable prefixes in P with respect to each
segment in Q. We consider three different variants of edge lengths assumption when lP > 2ε
and lQ > (1 +

√
d)ε (Section 3.3.1), lP ≥ 2ε and lQ ≥ (1 +

√
d)ε (Section 3.3.2), and lP > 0

and lQ > 4ε (Section 3.3.3). In Section 3.4, we provide a critical example for which our
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Figure 3 FSD≤ε(P,Q) for curves with long edges results in fewer reachable paths for (n,m).
Consider the vertical free intervals (shown in purple) in the first row of the free space diagram.
Since lP > 2ε, no consecutive purple intervals intersect which is a property we exploit. One can use
such a property to find a reachable path without needing to check the entire free space diagram.

greedy algorithm fails when the assumption on the edge lengths does not hold.

3.1 A Simple Fréchet Matching for a Single Segment
In this section we start by introducing the crucial notion of orthogonal matching between a
polygonal curve P and a single line segment e. An orthogonal matching projects each point
from P to its closest point on e. In particular, it maps vertices of P either orthogonally to
the segment e or directly to the endpoints of e.

I Definition 1 (Orthogonal Matching). Let ε > 0, P : [1, n]→ Rd be a polygonal curve, and
e : [1, 2] → Rd be a line segment. A Fréchet matching (σ, θ) realizing δF (P, e) ≤ ε is called
an orthogonal matching of width at most ε if σ(t) = 1 for t ∈ [0, a], ‖P (σ(t)) − e(θ(t))‖ =
‖P (σ(t)), e‖ ≤ ε for t ∈ (a, b), and σ(t) = n for t ∈ [b, 1] for some 0 ≤ a ≤ b ≤ 1; see
Fig. 4(a).

Now we state a key lemma that demonstrates that if P has long edges, then the orthogo-
nal matching of width at most ε between P and a segment e exists if and only if δF (P, e) ≤ ε,
and this is equivalent to P being (e, ε)-monotone.

I Lemma 2 (Orthogonal Matching and Monotonicity). Let ε > 0, P : [1, n] → Rd be a
polygonal curve and e : [1, 2]→ Rd be a line segment. Consider the following statements:

1. δF (P, e) ≤ ε,
2. P is (e, ε)-monotone,
3. P and e admit an orthogonal matching of width at most ε.

In general, (2) ⇔ (3) and (3) ⇒ (1). In addition, if lP > 2ε then (1) ⇒ (2), i.e., all three
statements are equivalent.

Proof. We immediately have (3) ⇒ (1) by Definition 1. To prove (2) ⇒ (3), assume P is
(e, ε)-monotone. We can construct an orthogonal matching by mapping each pi to its nearest
neighbor e(1 + ti) on e, with 0 ≤ ti−1 ≤ ti ≤ 1. We set σ(ti) = i and θ(ti) = 1 + ti for all

CVIT 2016
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Figure 4 (a) In this example P is (e, ε)-monotone and the green arrows indicate an orthogonal
matching between P and e. (b) An illustration of the case H ∩ e 6= ∅ in the proof of (1) ⇒ (2) in
Lemma 2. Note that the consecutive purple intervals Ii and Ii+1 do not intersect because lP > 2ε.

i = 1, . . . , n, and we set a = t1, b = tn, σ(t) = 1 for t ∈ [0, a], σ(t) = n for t ∈ [b, 1], and
θ(0) = 1 and θ(1) = 2. The matching (σ, θ) is obtained by linearly interpolating between
these values. The function σ(t) is monotone by construction, and θ(t) is monotone because P
is monotone with respect to the line supporting e. And all distances ‖P (σ(t))− e(θ(t))‖ ≤ ε
because P is (e, ε)-monotone. Thus (σ, θ) is an orthogonal matching of width at most ε.
To prove (3) ⇒ (2), let (σ, θ) be an orthogonal matching of width at most ε. Then clearly
p1 ∈ B(e1, ε), pn ∈ B(e2, ε), and P ⊆ C(e, ε). Let t1, . . . , tn be such that P (σ(ti)) = pi for
i = 1, . . . , n. Since (σ, θ) is a (monotone) Fréchet matching, θ(t1), . . . , θ(tn) is a monotone
increasing sequence. And since (σ, θ) is orthogonal, the line segments piθ(ti) are all monotone
to the line ` supporting e. Therefore, P is monotone with respect to ` and thus P is (e, ε)-
monotone.

Now assume lP > 2ε. In order to prove (1) ⇒ (2), if δF (P, e) ≤ ε then clearly p1 ∈
B(e1, ε), pn ∈ B(e2, ε), and P ⊆ C(e, ε). It remains to show that P is monotone with
respect to the line ` supporting e. For all i = 1, . . . , n, define Ii = B(pi, ε) ∩ e = e[ai, bi].
Because lP > 2ε, we know that Ii ∩ Ii+1 = ∅. Let (σ, θ) be a monotone matching realizing
δF (P, e) ≤ ε. For the sake of contradiction assume there exists a hyperplaneH perpendicular
to ` such that P intersects H in at least two points P (x) and P (y), where x < y. Let pi
be the last vertex along P [x, y], and recall that e1 and e2 are the two vertices of e. First
assume that H ∩ e 6= ∅. Then pi lies on the e2-side of H and pi+1 lies on the e1-side of
H. Therefore, because Ii ∩ Ii+1 = ∅, we know that ai > bi+1. Let ti, ti+1 ∈ [0, 1] be two
values such that pi = P (σ(ti)) and pi+1 = P (σ(ti+1)), where ti < ti+1. From σ(ti) ≥ ai
and σ(ti+1) ≤ bi+1, we know that σ(ti) > σ(ti+1), which violates the monotonicity of (σ, θ),
see Fig. 4(b). Now consider the case that H ∩ e = ∅. Then pi lies on one side of H, and e
lies entirely on the other side. If H ∩ B(e1, ε) 6= ∅, then we know that P [1, y] ⊆ B(e1, ε).
But this is not possible since all edges of P are longer than 2ε. The same argument holds if
H ∩B(e2, ε) 6= ∅.

J

In fact Lemma 2 shows that for a curve P with long edges, the Fréchet distance to a line
segment e is determined by examining whether P is (e, ε)-monotone or not.
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3.2 A Simple Fréchet Matching for More than One Segment

In this section, we extend the matching between a curve P and a single line-segment e to a
matching between two curves P and Q.

I Definition 3 (Longest ε-Prefix). Let ε > 0, P : [1, n] → Rd be a polygonal curve, and
e : [1, 2]→ Rd be a line segment. Define γ = max{ t | 1 ≤ t ≤ n and δF (P [1, t], e) ≤ ε}. We
call P [1, γ] the longest ε-prefix of P with respect to e.

We now use the longest ε-prefix to define an extension of the matching introduced in
Definition 1. Definition 3 is the basis of our greedy algorithm (Algorithm 1) which is
presented in the next section. We show that if there exists a matching between two curves,
then one can necessarily cut it into m− 1 orthogonal matchings between each segment in Q
and the corresponding longest ε-prefix. Before we reach this property, we need the following
technical lemma:

I Lemma 4 ((
√
dε)-Ball). Let ε > 0 and let P : [1, n]→ Rd be a polygonal curve such that

lP > 2ε. Let e : [1, 2] → Rd where ‖e‖ > 2ε. Assume that P [1, γ] is the longest ε-prefix of
P with respect to e, and let α be a parameter such that P (α) is the first point along P that
intersects B(e2, ε). Then P [α, γ] ⊆ B(e2,

√
dε).

Proof. By assumption ‖e‖ > 2ε, we know that B(e1, ε)∩B(e2, ε) = ∅, thus α exists. Notice
that P [α, γ] ⊆ C(e, ε). Let H be the hyperplane that is intersecting and perpendicular to
e and is tangent to B(e2, ε). Hence H splits P [1, γ] into two parts, the part on the e1-
side and the part that on the e2-side. Let P (x) be the last vertex before P (γ) along P .
By Definition 3, δF (P [1, γ], e) ≤ ε, and (1) if P (x) ∈ B(e2, ε), then Lemma 2 implies that
P [1, x] is (e, ε)-monotone. Thus P [α, γ] must lie on the e2-side of H2, and in particular
inside the cube enclosing B(e2, ε), see Fig. 5. Therefore the maximum possible distance
between any point in P [α, γ] and e2 is

√
dε. (2) If P (x) /∈ B(e2, ε), we first show that P [1, x]

is monotone with respect to the line supporting e and then we use the similar argument as
in (1) to imply the maximum possible distance between any point in P [α, γ] and e2 is

√
dε.

Now let (σ, θ) be a Fréchet matching between P [1, γ] and e. For the sake of contradiction
assume there exists an edge P [i, i + 1] such that the angle between the direction vectors
of P [i, i + 1] and e is greater than π/2 with i < x. Let ti, ti+1 ∈ [0, 1] be two real values
with ti < ti+1 such that σ(ti) = i and σ(ti+1) = i + 1 and let Ii = B(pi, ε) ∩ e = e[ai, bi]
and Ii+1 = B(pi+1, ε) ∩ e = e[ai+1, bi+1]. Now from B(pi, ε) ∩ B(pi+1, ε) = ∅ follows that
Ii∩ Ii+1 = ∅. Note that the angle between the direction vectors of P [i, i+1] and e is greater
than π/2 which indicates that bi+1 < ai. Therefore ai+1 ≤ θ(ti+1) ≤ bi+1 < ai ≤ θ(ti) ≤ bi.
Now three following cases are expected: (i) if i + 1 < α, then γ does not exist since (σ, θ)
is not monotone and this would be a contradiction. Therefore P [1, x] is monotone with
respect to the line supporting e. (ii) If α < i ≤ x, then γ < x since i < γ < i + 1 which is
a contradiction with γ > x. Hence P [1, x] is monotone with respect to the line supporting
e. (iii) if i = x ≤ α, then P [α, γ] is only a subsegment of P [i, i+ 1] and trivially lies within
B(e2, ε). This completes the proof.

J

I Lemma 5 ((3ε)-Ball). Let ε > 0 and let P : [1, n] → Rd be a polygonal curve. Let
e : [1, 2]→ Rd where ‖e‖ > 2ε. Assume that P [1, γ] is the longest ε-prefix of P with respect
to e and P (α) is the first point along P that intersects B(e2, ε). Then P [α, γ] ⊆ B(e2, 3ε).

CVIT 2016
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e1

e2

P (x)p1

H

ε

P (γ)

P (α)

P

e

Figure 5 The farthest point in P [α, γ] from e2 must lie inside the cube enclosing B(e2, ε).

Proof. Although the proof of Lemma 11 in Gudmundsson and Smid [17] is similar, we
describe a slight modification of the proof that is necessary for our setting. Suppose (σ, θ) is
a Fréchet matching realizing δF (P [1, γ], e) ≤ ε. Let x ∈ [α, γ] such that P (x) is the farthest
point to e2. We need to show that ‖P (x)− e2‖ ≤ 3ε which implies P [α, γ] ⊆ B(e2, 3ε). Let
tα, tγ ∈ [0, 1] be two values such that α = σ(tα) and γ = σ(tγ). Note that there exists some
tx ∈ [tα, tγ ] such that x = σ(tx). By the triangle inequality we have:

‖P (x)− e2‖ ≤ ‖P (x)− e(θ(tx))‖+ ‖e(θ(tx))− e2‖ ≤ ε+ ‖e(θ(tx))− e2‖.

Note that tx > tα and we can have ‖e(θ(tx))− e2‖ ≤ ‖e(θ(tα))− e2‖, hence:

‖P (x)− e2‖ ≤ ε+ ‖e(θ(tα))− e2‖.

By applying the triangle inequality once more we have:

‖P (x)− e2‖ ≤ ε+ ‖e(θ(tα))− P (α)‖+ ‖P (α)− e2‖ ≤ 3ε.

J

Now we show that if δF (P,Q) ≤ ε, then the two polygonal curves P and Q admit a
piecewise orthogonal matching, which can be obtained by computing longest ε-prefixes of P
with respect to each segment of Q. This lemma is the foundation of our greedy algorithm
(Algorithm 1).

ε

P (γ)

P (α)

P

Q

σ(tγ) = γσ(t2)

2

q1

q2

q3

1
1

3

σ(t3)

θ(tγ)

P

Q

p1

pn

Figure 6 Given an arbitrary matching (the concatenation of the light and dark green reachable
paths), the orthogonal matching (the brown reachable path) between P [1, γ] and Q[1, 2] exists. We
construct a matching realizing δF (P [γ, n], Q[2,m]) ≤ ε as the concatenation of the pink and the
dark green reachable paths.
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I Lemma 6 (Cutting Lemma). Let ε > 0, and let P : [1, n] → Rd and Q : [1,m] → Rd
be two polygonal curves such that lP > 2ε and lQ > (1 +

√
d)ε. If δF (P,Q) ≤ ε, then

P [1, γ] as the longest ε-prefix of P with respect to Q[1, 2] exists, δF (P [1, γ], Q[1, 2]) ≤ ε and
δF (P [γ, n], Q[2,m]) ≤ ε.

Proof. Let (σ, θ) be any Fréchet matching realizing δF (P,Q) ≤ ε. This corresponds to a
reachable path, which is shown as the concatenation of the light and dark green paths
in the example in Fig. 6. Let t2 ∈ [0, 1] be the largest value such that Q(θ(t2)) =
q2, hence δF (P [1, σ(t2)], Q[1, 2]) ≤ ε. By Definition 3, γ exists with γ ≥ σ(t2), and
δF (P [1, γ], Q[1, 2]) ≤ ε. See the brown reachable path corresponding to the orthogonal
matching realizing δF (P [1, γ], Q[1, 2]) ≤ ε in Fig. 6. In the remainder of this proof we con-
struct a matching to prove that δF (P [γ, n], Q[2,m]) ≤ ε (the concatenation of the pink and
dark green paths).

Let tγ ∈ [0, 1] be the largest value such that P (σ(tγ)) = P (γ). By Lemma 4, P [σ(t2), γ] ⊆
B(q2,

√
dε). Now let t3 ∈ [0, 1] be the smallest value such that Q(θ(t3)) = q3. We have

‖q2 − q3‖ > (1 +
√
d)ε, therefore B(q2,

√
dε) ∩ B(q3, ε) = ∅ and thus (σ, θ) cannot match

q3 to any point in P [σ(t2), γ]. Therefore, σ(t2) ≤ γ = σ(tγ) < σ(t3), and correspondingly
θ(t2) ≤ θ(tγ) < θ(t3).

Now we construct a new matching (σ̄, θ̄) realizing δF (P [γ, n], Q[2,m]) ≤ ε as follows:
σ̄(t) = σ(t) and θ̄(t) = θ(t) for all tγ ≤ t ≤ 1 (dark green reachable path). On the other
hand, since ‖P (γ)− q2‖ ≤ ε (pink point) and ‖P (γ)−Q(θ(tγ))‖ ≤ ε (dark green point), we
know that Q[2, θ(tγ)] ⊆ B(P (γ), ε), i.e., the pink vertical segment is free. We set, σ̄(t) = γ

and θ̄(t) = tγ−t
tγ
· 2 + t

tγ
· θ(tγ) for all t2 ≤ t ≤ tγ (pink reachable path). Therefore, we have

δF (P [γ, n], Q[2,m]) ≤ ε, which completes the proof. J

Now since by Lemma 6 we have δF (P [1, γ], Q[1, 2]) ≤ ε, Lemma 2 implies that the
matching between P [1, γ] and Q[1, 2] is orthogonal. Let P (x) be the last vertex of P [1, γ]
and let Q(x′) be its closest point on Q[1, 2], for some x < γ and x′ ≤ 2. Note that if
‖P (γ)−P (x)‖ is shorter than 2ε, we can adjust the orthogonal matching by simply mapping
all points on P [x, γ] to Q[x′, 2]. In addition, if P and Q have long edges then the free-space
diagram is simpler than in the general case, since the entire vertical space (the pink segment
in Fig. 6) between the two points (γ, 2) and (γ, θ(tγ)) has to be free and cannot contain any
blocked points.

3.3 The Decision Algorithm
In this section we present a linear time decision algorithm using the properties provided
in Section 3.1 and Section 3.2. In Section 3.3.1 we consider the case that lP > 2ε and
lQ > (1 +

√
d)ε. In Section 3.3.2 we show that this approach can be generalized to the case

that lP ≥ 2ε and lQ ≥ (1 +
√
d)ε, and in Section 3.3.3 we generalize the approach to the

case that there is only an edge length assumption on Q.

3.3.1 Long Edges with lP > 2ε and lQ > (1 +
√

d)ε
At the heart of our decision algorithm is the greedy algorithm presented in Algorithm 1.
The input to this DecisionAlgorithm are two polygonal curves P and Q, and ε > 0.
The algorithm assumes that P and Q have long edges. In each iteration the function
LongestEpsilonPrefix returns γ, where P [s, γ] is the longest ε-prefix of P [s, n] with
respect to Q[i − 1, i], if it exists. Here, s is the parameter where P (s) is the endpoint of
the previous longest ε-prefix with respect to Q[i− 2, i− 1]. At any time in the algorithm, if
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γ = null, this means that the corresponding longest ε-prefix does not exist and then “No”
is returned. Otherwise, the next edge of Q is processed. This continues iteratively until all
edges have been processed, or γi does not exist for some i = 2, · · · ,m.

Algorithm 1: Decide whether δF (P,Q) ≤ ε

1 DecisionAlgorithm(P [1, n], Q[1,m], ε)
2 // Assumes lP > 2ε and lQ > (1 +

√
d)ε

3 γ1 ← 1
4 for i← 2 to m do
5 γi ←LongestEpsilonPrefix(P [γi−1, n], Q[i− 1, i], ε)
6 if γ = null then return “No”
7 s← γ

8 if γ < n then return “No”
9 return “Yes”

The LongestEpsilonPrefix(P [γi−1, n], Q[i− 1, i], ε) procedure is implemented as fol-
lows: We use Alt and Godau’s [2] dynamic programming algorithm to compute the reach-
ability information in FSD≤ε(P [γi−1, n], Q[i − 1, i]), which computes all (s, t) for which
δF (P [γi−1, s], Q[i − 1, t]) ≤ ε. This takes linear time in the complexity of P [γi−1, n] since
Q[i−1, i] is a single segment. Then γi is the largest s for which δF (P [γi−1, s], Q[i−1, i]) ≤ ε.
Note that P (s) has to lie on the boundary of B(qi, ε). If no such s exists then γi = null.
We now prove the correctness of our decision algorithm.

I Theorem 7 (Correctness). Let ε > 0, and let P : [1, n]→ Rd and Q : [1,m]→ Rd be two
polygonal curves such that lP > 2ε and lQ > (1+

√
d)ε. Then DecisionAlgorithm(P,Q, ε)

returns “Yes” if and only if δF (P,Q) ≤ ε.

Proof. If the algorithm returns “Yes” then the sequence {(qi, γi)} for all i = 1, . . . ,m with
γ1 = 1 and γm = n describes a monotone matching that realizes δF (P,Q) ≤ ε.

If δF (P,Q) ≤ ε, then we prove by induction on i that the algorithm returns “Yes”, i.e.,
all longest ε-prefixes (P [1, γ2], P [γ2, γ3], . . . , P [γm−1, γm]) of P with respect to the corre-
sponding segments of Q exist. For i = 2, following Lemma 6, γ2 exists and can be found
by the algorithm. For any i > 2, the algorithm has determined γ2, . . . , γi−1 already and
by Lemma 6, δF (P [γi−1, n], Q[i − 1,m]) ≤ ε. Another application of Lemma 6 yields that
δF (P [γi−1, γi], Q[i− 1, i]) ≤ ε and δF (P [γi, n], Q[i,m]) ≤ ε.

In the case that i = m− 1 it remains to prove that γi+1 = γm = n. For the sake of con-
tradiction, assume γm < n. Since P [γm−1, γm] is the longest ε-prefix, there is no other γ′m ∈
(γm, n] such that δF (P [γm−1, γ

′
m], Q[m− 1,m]) ≤ ε. Consequently, δF (P [γm−1, γ

′
m], Q[m−

1,m]) > ε and therefore δF (P [γm−1, n], Q[m − 1,m]) > ε. Applying the contrapositive of
Lemma 6 to P [γm−1, n] and Q[m − 1,m] yields δF (P,Q) > ε, which is a contradiction.
Therefore γm = n and the algorithm returns “Yes” as claimed. J

I Observation 8 (Piecewise Orthogonal Matching). If δF (P,Q) ≤ ε, then the sequence
{γ1, γ2, . . . , γn} computed by Algorithm 1 induces a Fréchet matching that maps P (γi)
to qi, and therefore δF (P,Q) ≤ ε for all i = 2, . . . ,m. Lemma 2 implies that the matching
between P [γi−1, γi] and Q[i− 1, i] is orthogonal.

We summarize this section with the following theorem:
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Figure 7 Two examples of matchings between P [γi−1, γi] and Q[i− 1, i] that are not (piecewise)
orthogonal. Matchings are indicated with green arrows. All balls have radius ε. (a) An example
where lP = ‖pj+1 − pj‖ = 2ε and γi exists, but the induced Fréchet matching is not orthogonal.
(b) An example where ‖qi+1 − qi‖ = (1 +

√
d)ε and B(qi+1, ε) ∩B(qi,

√
dε) ∩ P = pj . Although γi

exists, a matching that is not piecewise orthogonal of width exactly ε exists.

I Theorem 9 (Runtime). Let ε > 0, and let P : [1, n] → Rd and Q : [1,m] → Rd be two
polygonal curves such that lP > 2ε and lQ > (1 +

√
d)ε. Then there exists a greedy decision

algorithm, Algorithm 1, that can determine whether δF (P,Q) ≤ ε in O(n+m) time.

Proof. The number of vertices in P [γi−1, γi] is at most dγi − γi−1e + 1. The algorithm
greedily finds the longest ε-prefix per edge Q[i − 1, i] by calling LongestEpsilonPre-
fix(P [s, n], Q[i− 1, i], ε) in O(dγi− γi−1e+ 1) time. The for-loop iterates over m− 1 edges,
thus the runtime is

∑m
i=2(dγi − γi−1e+ 1) <

∑m
i=2(γi − γi−1 + 2) = γm − γ1 + 2(m− 1) =

n− 1 + 2m− 2 = O(n+m).
J

3.3.2 Long Edges with lP ≥ 2ε and lQ ≥ (1 +
√

d)ε
We now consider the slightly more general case that lP ≥ 2ε and lQ ≥ (1 +

√
d)ε. The

optimization algorithm presented in Section 4.1 makes use of this case. Clearly, if lP > 2ε
and lQ > (1 +

√
d)ε then Theorem 7 applies as usual. If lP = 2ε or lQ = (1 +

√
d)ε

then Algorithm 1 can still be run, however the Fréchet matching induced by the γi is not
necessarily a piecewise orthogonal matching anymore, which means Observation 8 may not
hold, see Fig. 7. However, we can still prove a slightly modified correctness theorem.

I Theorem 10. Let ε > 0, and lP ≥ 2ε and lQ ≥ (1+
√
d)ε. If DecisionAlgorithm(P,Q, ε)

returns “Yes” then δF (P,Q) ≤ ε. If it returns “No” then δF (P,Q) ≥ ε.

Proof. Let ε∗ = δF (P,Q). If lP > 2ε and lQ > (1 +
√
d)ε then Theorem 7 applies as usual.

So, assume lP = 2ε or lQ = (1 +
√
d)ε. If the algorithm returns “Yes”, then we know that

δF (P [γi−1, γi], Q[i− 1, i]) ≤ ε0 for all i = 2, . . . ,m, and therefore ε∗ ≤ ε.
In the remainder of this proof we show the contrapositive of the second part: If ε∗ =

δF (P,Q) < ε then DecisionAlgorithm(P,Q, ε) returns “Yes”. So, assume ε∗ < ε. Then,
by Theorem 7, DecisionAlgorithm(P,Q, ε∗) returns “Yes”, which means that all γ∗i =
LongestEpsilonPrefix(P [γ∗i−1, n], Q[i − 1, i], ε∗) exist for all i = 2, . . . ,m, and γ∗1 = 1.
We prove by induction that all γi = LongestEpsilonPrefix(P [γi−1, n], Q[i−1, i], ε) exist
as well. The inductive base is trivial to show since γ1 = γ∗1 = 1. Now as an inductive
hypothesis let i > 1 be the largest integer value for which γi−1 exists and is computed. In
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the following we show that γi = LongestEpsilonPrefix(P [γi−1, n], Q[i−1, i], ε) exists and
can be computed. Let P (x) be the first point along P [γ∗i , n] on the boundary of B(qi, ε). We
have γ∗i−1 < γi−1 < γ∗i < x, where the first inequality follows from B(qi−1, ε

∗) ⊂ B(qi−1, ε),
and the second inequality follows from B(qi−1, ε) ∩ B(qi, ε∗) = ∅ because lQ > 2ε. Now let
(σ, θ) be the Fréchet matching realizing δF (P [γ∗i−1, γ

∗
i ], Q[i − 1, i]) ≤ ε∗, and let t ∈ [0, 1]

such that σ(t) = γi−1. Then from γ∗i−1 < γi−1 < γ∗i follows that i − 1 ≤ θ(t) ≤ i. We
can therefore construct a piecewise re-parameterization for P [γi−1, x] and Q[i − 1, i] which
yields:

δF (P [γi−1, x], Q[i− 1, i]) ≤ max{ δF
(
P (γi−1), Q[i− 1, θ(t)]

)
,

δF
(
P [γi−1, γ

∗
i ], Q[θ(t), i]

)
, δF

(
P [γ∗i , x], qi

)
} ≤ ε.

Since γi ≥ x, this implies that all γi exist for all i = 2, . . . ,m. Note that the procedure
LongestEpsilonPrefix(P [γi−1, n], Q[i − 1, i]) can compute γi by finding the reachable
path for (γi, i) across FSD≤ε(P [γi−1, n], Q[i−1, i]). Therefore DecisionAlgorithm(P,Q, ε)
returns “Yes”. J

3.3.3 Long Edges with lQ > 4ε

Our algorithm also can be applied to the case that one curve has arbitrary edge lengths and
the other curve has edge lengths greater than 4ε.

I Theorem 11 (Single Curve with Long Edges). Let ε > 0, and let P : [1, n] → Rd and
Q : [1,m] → Rd be two polygonal curves such that lP > 0 and lQ > 4ε. Then there
exists a greedy decision algorithm, Algorithm 1, that can determine whether δF (P,Q) ≤ ε or
δF (P,Q) > ε in O(n+m) time.

Proof. In the proof of Lemma 6, we can replace Lemma 4 with Lemma 5, and realize that
Lemma 6 also holds for the case lP > 0 and lQ > 4ε. The rest follows from Theorem 7 and
Theorem 9. J

3.4 Necessity of the Assumption
As we have seen so far, Algorithm 1 greedily constructs a feasible Fréchet matching by lin-
early walking on curve P to find all longest ε-prefixes on it with respect to the corresponding
edges of Q. Unfortunately, this property is not always true for curves with short edges. In
general, there can be a quadratic number of blocked regions in the free space diagram of
two curves; see Fig. 8 as an example of two curves in R2 that have edges of length exactly
equal 2ε except for some edges with lengths in [2ε, (1 +

√
2)ε]. This example demonstrates

that our simple greedy construction of a Fréchet matching is unlikely to work if the edges
are shorter than the assumptions we made. It also shows that our greedy construction does
not work if both curves have edge lengths of at least 2ε.

4 Optimization and Approximation

In this section, we present two algorithms for computing and approximating the Fréchet
distance between two curves with long edges, respectively. First we give an exact algorithm
which runs in O((n+m) log(n+m)) time. Afterwards, we present a linear time algorithm
which is similar to the greedy decision algorithm, but it uses the notion of minimum prefix
to approximate the Fréchet distance.
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Figure 8 An example in which the greedy algorithm fails to realize the Fréchet matching high-
lighted in green. Here, P [1, γ2] is the longest ε-prefix in P with respect to Q[1, 2], as illustrated by
the red reachable path. Also Q[1, λ2] is the longest ε-prefix in Q with respect to P [1, 2] as illustrated
by the blue reachable path. Every edge is 2ε long, except for the edges Q[1, 2] and Q[2, 3] that have
lengths 2.02ε and 2.005ε, respectively. The latter values are still in the range [2ε, (1 +

√
2)ε].

4.1 Optimization
The main idea of our algorithm is that we compute critical values of the Fréchet distance be-
tween two curves and then perform binary search on these to find the optimal value acquired
by the decision algorithm. In general, there are a cubic number of critical values, which are
candidate values for the Fréchet distance between two polygonal curves. These critical val-
ues are those ε for which p1 ∈ B(q1, ε) or pn ∈ B(qm, ε), or when decreasing ε slightly a free
space interval disappears on the boundary of a free space cell or a monotone path in the
free space becomes non-monotone. See Alt and Godau [2] for more details on critical values.
In our case we can show that it suffices to consider only a linear number of critical values,
because the assumption on the edge lengths of the curves implies that a piecewise orthogo-
nal matching exists, which reduces the number of possible critical values. Our optimization
algorithm consists of the following four steps:

1. Run DecisionAlgorithm(P,Q, ε0) with ε0 = min{lP /2, lQ/(1+
√
d)} and store all γi =

LongestEpsilonPrefix(P [γi−1, n], Q[i− 1, i], ε0) for all i = 2, . . . ,m. Only proceed if
DecisionAlgorithm(P,Q, ε0) returns “Yes”.

2. If P [γi−1, γi] is not (Q[i−1, i], ε0)-monotone for some i = 2, . . . ,m then return δF (P,Q) =
ε0.

3. Compute C := ∪mi=2Ci ∪{ε0}, where Ci is the set of all critical values for P [αi−1, γi] and
Q[i − 1, i]. Here, P (αi) is the first point along P [γi−1, n] that intersects B(qi, ε0) and
α1 = 1.

4. Sort C and perform binary search on C using DecisionAlgorithm(P,Q, ·) to find
δF (P,Q).

In step (1) we set ε0 = min{lP /2, lQ/(1 +
√
d)}. This means that lP ≥ 2ε0 and lQ ≥

(1 +
√
d)ε0. Step (2) handles the case that the matching induced by the γi may not be a

piecewise orthogonal matching. But once the algorithm proceeds to step (3), there exists
a piecewise orthogonal matching between P and Q. This restricts the set of critical values
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we have to consider in step (3) as follows: Let ε∗ ≤ ε0 and assume ε∗ = δF (P,Q). Let
γ∗i = LongestEpsilonPrefix(P [γ∗i−1, n], Q[i − 1, i], ε∗), for i = 2, . . . ,m, and let P (α∗i )
be the first intersection point between P [γ∗i−1, n] and B(qi, ε∗), and α∗1 = γ∗1 = 1. From
B(qi, ε∗) ⊆ B(qi, ε0) follows that αi ≤ α∗i ≤ γ∗i ≤ γi. And since γi−1 ≤ γi, we know that
P [γ∗i−1, γ

∗
i ] ⊆ P [αi−1, γi]. We thus have observed the following, see Fig. 9:

I Observation 12. Let ε∗ ≤ ε0. For all i = 2, . . . ,m:
1. αi ≤ α∗i ≤ γ∗i ≤ γi, 2. P [γ∗i−1, γ

∗
i ] ⊆ P [αi−1, γi].

Therefore all critical values for P [γ∗i−1, γ
∗
i ] and Q[i − 1, i] must be contained in the set Ci

which are the critical values for P [αi−1, γi] and Q[i− 1, i], and the binary search in step (4)
will identify ε∗.

I Lemma 13 (Correctness). Let ε0 = min{lP /2, lQ/(1 +
√
d)} and let ε∗ = δF (P,Q). If in

step (1) of the optimization algorithm DecisionAlgorithm(P,Q, ε0) returns “Yes”, then
the optimization algorithm returns ε∗ and ε∗ ≤ ε0. Otherwise ε∗ ≥ ε0.

Proof. If DecisionAlgorithm(P,Q, ε0) returns “No” then Theorem 10 implies that δF (P,Q) =
ε∗ ≥ ε0. Now suppose, for the remainder of this proof, that DecisionAlgorithm(P,Q, ε0)
returns “Yes”. Then we know that all γi exist and δF (P [γi−1, γi], Q[i − 1, i]) ≤ ε0 for all
i = 2, . . . ,m, and therefore ε∗ ≤ ε0, see also Theorem 10. This implies that ε0 is an upper
bound on all critical values in C. It remains to show that the optimization algorithm returns
ε∗.

If in step (2) there is an i = 2, . . . ,m such that P [γi−1, γi] is not (Q[i−1, i], ε)-monotone,
then there must exist an edge P [j, j+ 1], for γi−1 ≤ j < γi, such that the angle between the
direction vectors of P [j, j + 1] and Q[i − 1, i] is greater than π/2. The length of all edges
in P must be at least 2ε0. But for this edge, the only way a (monotone) Fréchet matching
between P [γi−1, γi] and Q[i− 1, i] of width at most ε0 can exist is if ‖pj+1 − pj‖ = 2ε0 and
both pj and pj+1 are matched to x = B(pj , ε0) ∩ B(pj+1, ε0) ∩ Q[i − 1, i]. Therefore the
width of such a Fréchet matching is exactly ε0 and ε∗ = ε0.

It remains to show that if the algorithm passes step (2) it returns ε∗ at the end of step
(4). Since ε0 ∈ C and ε∗ ≤ ε0, the binary search will return ε∗ if ε∗ = ε0. So assume now
that ε∗ < ε0. Since the algorithm passes step (2), it follows from Lemma 2 that the matching
induced by the γi is indeed a piecewise orthogonal matching of width less than ε0. From
Observation 12 follows that all critical values for P [γ∗i−1, γ

∗
i ] and Q[i−1, i] must be contained

in the set Ci of all critical values for P [αi−1, γi] and Q[i− 1, i]. Thus, ε∗ ∈ C = ∪mi=2Ci, and
the binary search in step (4) returns ε∗.

J

Computing The Critical Values: A piecewise orthogonal matching of width ε∗ between
P and Q is comprised of orthogonal matchings between P [γ∗i−1, γ

∗
i ] and Q[i − 1, i] for all

i = 2, . . . ,m. The piecewise orthogonal matching may map vertices from P to Q[i − 1, i]
either by an orthogonal projection or by mapping to the endpoints qi−1, qi. And vertices
qi may be mapped by on orthogonal projection to P [αi, γi]. These mappings define point-
to-point distances that are candidates for ε∗, and thus critical values between P [γ∗i−1, γ

∗
i ]

and Q[i − 1, i] that we need to optimize over. But since ε∗ is not known beforehand, we
compute the superset Ci of critical values between P [αi−1, γi] and Q[i− 1, i] as follows: Let
H1 be the hyperplane perpendicular to Q[i− 1, i] and tangent to B(qi−1, ε0) that intersects
Q[i− 1, i]. Similarly, define H2 with respect to B(qi, ε0). For each pj ∈ P [αi−1, γi]: (1) If pj
lies between H1 and H2, then any orthogonal matching of width ε∗ maps pj to its orthogonal
projection on Q[i− 1, i]. We therefore add the distance ‖pj , Q[i− 1, i]‖ to Ci. (2) If pj lies
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on the qi−1-side of H1, then an orthogonal matching of width ε∗ can map pj either to qi−1
or to its orthogonal projection on Q[i− 1, i]. In this case we store both ‖pj , Q[i− 1, i]‖ and
‖pj − qi−1‖ in Ci. Similarly, if pj lies on the qi-side of H2 then we store ‖pj , Q[i− 1, i]‖ and
‖pj − qi‖ in Ci. Finally, for each edge e in P [αi, γi]: (3) we store ‖qi, e‖. See Fig. 9 for more
illustration. We have the following theorem:
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Figure 9 Shown are two examples of orthogonal matchings between P [γ∗
i−1, γ

∗
i ] and Q[i− 1, i],

and the associated critical values (point-to-point distances defined by the matching). The cylinders
C(Q[i− 1, i], ε0) and C(Q[i− 1, i], ε∗) are shown, where ε0 ≥ ε∗. (a) pj falls into case (2), when the
orthogonal matching maps pj either to qi (if pj lies inside B(qi, ε

∗)) or orthogonally to Q[i − 1, i]
(if pj lies outside B(qi, ε

∗)). (b) If an edge of P is tangent to B(qi, ε
∗), then case (3) occurs. Here,

the orthogonal matching has to map qi to an edge e in P [αi, γi].

I Theorem 14 (Optimization). Let P : [1, n] → Rd and Q : [1,m] → Rd be two polygonal
curves. If δF (P,Q) < min{lP /2, lQ/(1 +

√
d)}, then δF (P,Q) can be computed in O((n +

m) log(n+m)) time.

Proof. By Lemma 13 we know that the optimization algorithm returns δF (P,Q) correctly if
δF (P,Q) is strictly less than min{lP /2, lQ/(1 +

√
d)}. It only remains to prove the runtime

of the algorithm. First we show that the number of critical values is linear. For each segment
Q[i − 1, i], there are three cases for critical values contained in Ci: (1) There are at most
dαi − γi−1e + 1 values if vertex pj lies between H1 and H2. This is an upper bound for
the number of vertices in P [γi−1, αi]. (2) There are at most 2(dγi−1 − αi−1e + 1) values if
vertex pj lies on the qi−1-side of H1, and similarly there are at most 2(dγi − αie+ 1) values
if pj lies on the qi-side of H2. (3) There are at most dγi − αie critical values for each edge
e in P [αi, γi]. Overall, the total is: |Ci| ≤ (γi − αi) + (γi−1 − αi−1) + (γi − αi−1) + 11 <
2(γi−αi−1) + 11 = 2(γi− γi−1) + 2(γi−1−αi−1) + 11. The latter inequality follows because
αi−1 ≤ γi−1 ≤ αi ≤ γi, see Fig. 9. Note that

∑m
i=2(γi − γi−1) = γm − γ1 = n − 1, and∑m

i=2(γi−1−αi−1) < n, therefore, |C| =
∑m
i=2 |Ci| < 2(n−1) + 2n+ 11(m−1) = O(n+m).

The optimization algorithm first runs Algorithm 1 in O(n+m) time, then computes C
in O(n + m) time, and finally sorts C in O((n + m) log(n + m)) time and performs binary
search on C using the decision algorithm in O((n + m) log(n + m)) time. Therefore, the
total runtime is O((n+m) log(n+m)). J

4.2 Approximation Algorithm

In this section we present a
√
d-approximation algorithm running in linear time. As a

counterpart to the notion of longest ε-prefix we now introduce the notion of minimum
prefix, which is the longest prefix of P with minimum Fréchet distance to a line segment e.

CVIT 2016
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I Definition 15 (Minimum Prefix). Let P : [1, n]→ Rd be a polygonal curve and e : [1, 2]→
Rd be a segment. Define γ′ = max argmin1≤t≤n δF (P [1, t], e). We call P [1, γ′] the minimum
prefix of P with respect to e.

Note that in the definition above, P (γ′) necessarily lies on the boundary of B(e2, ε
′),

where ε′ = min1≤t≤n δF (P [1, t], e). The approximation algorithm is presented in Algo-
rithm 2. First, for an initial threshold ε0 = min{lP /(2

√
d), lQ/(2d)}, it runs the deci-

sion algorithm, i.e., DecisionAlgorithm(P,Q, ε0). The algorithm only continues if “Yes”
gets returned. This ensures that P and Q have long edges, with lP ≥ 2

√
dε > 2ε and

lQ ≥ 2dε > (1 +
√
d)ε. Then, similar to the decision algorithm, the approximation algo-

rithm greedily searches for longest ε-prefixes with respect to each segment of Q. However,
it updates the current value of ε in each step, by computing the minimum prefix and its
associated Fréchet distance to the portion of Q considered so far.

Algorithm 2: Approximate δF (P,Q)

1 ApproximationAlgorithm(P [1, n], Q[1,m])
2 ε0 ← min{lP /2

√
d, lQ/2d}

3 if DecisionAlgorithm(P,Q, ε0)= “No” then return “I don’t know”
4 (γ2, ε2)←MinimumPrefix(P [1, n], Q[1, 2])
5 ε← ε2
6 s← γ2
7 for i← 3 to m do
8 (γi, εi)←MinimumPrefix(P [s, n], Q[i− 1, i])
9 ε← max{ε, εi}

10 s← γi

11 if γm = n then
12 return ε

13 else
14 ε← max{ε, δF (P [γm, n], qm)}
15 return ε

Now we are ready to prove the correctness of Algorithm 2:

I Lemma 16 (The Approximation). Let P = P [1, n] and Q = Q[1,m] be two polygonal curves
and let ε∗ = δF (P,Q). If ε∗ ≤ min{lP /2

√
d, lQ/2d} then ApproximationAlgorithm(P,Q)

returns a value between ε∗ and
√
dε∗. Otherwise it returns “I don’t know”.

Proof. From Algorithm 2 we have that εi = δF (P [γi−1, γi], Q[i− 1, i]). We prove by induc-
tion on i that εi ≤

√
dε∗. For i = 2, ε2 is being minimized and obviously ε2 ≤ ε∗ <

√
dε∗. For

any i > 2, there are two possible cases: either εi ≤ ε∗ or εi > ε∗. In the former case, trivially
εi <

√
dε∗. In the remainder of the proof we consider the latter case that is εi > ε∗. We know

from Theorem 7 that all γ∗i = LongestEpsilonPrefix(P [γ∗i−1, n], Q[i − 1, i], ε∗) for all
i = 1, 2, . . . ,m exist. And by inductive hypothesis we know that max{ε2, . . . , εi−1} ≤

√
dε∗.

We also know from line 8 of Algorithm 2 that εi = δF (P [γi−1, γi], Q[i − 1, i]) and
P [γi−1, γi] is the minimum prefix with respect to Q[i − 1, i]. For the sake of contradic-
tion we assume εi >

√
dε∗ > ε∗. We now distinguish two cases:

(a) If γi−1 < γ∗i−1, then by Lemma 4 we have δF (P [γi−1, γ
∗
i−1], qi−1) ≤

√
dε∗. Also

δF (P [γ∗i−1, γ
∗
i ], Q[i− 1, i]) ≤ ε∗, hence δF (P [γi−1, γ

∗
i ], Q[i− 1, i]) ≤

√
dε∗ < εi. This contra-
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dicts the fact that P [γi−1, γi] is the minimum prefix of P [γi−1, n] with respect to Q[i− 1, i],
see Fig. 10(a).

(b) Now for the case that γ∗i−1 < γi−1, consider the matching (σ, θ) realizing δF (P,Q) =
ε∗. There exists some t ∈ [0, 1] such that γi−1 = σ(t). We can see that Q(θ(t)) ∈ Q[i−1, i] as
follows: We know that B(qi−1, εi−1)∩B(qi, ε∗) = ∅ since ‖qi−1−qi‖ ≥ 2dε∗ > (1+

√
d)ε∗ and

εi−1 ≤
√
dε∗. This implies γi−1 < γ∗i and therefore γ∗i−1 < γi−1 < γ∗i , and correspondingly

i− 1 ≤ θ(t) ≤ i. By inductive hypothesis we know that εi−1 = ‖qi−1 − P (γi−1)‖ ≤√
dε∗, thus Q[i − 1, θ(t)] ⊆ B(P (γi−1),

√
dε∗) which implies δF (P (γi−1), Q[i − 1, θ(t)]) ≤√

dε∗. Combining this with δF (P [γi−1, γ
∗
i ], Q[θ(t), i]) ≤ ε∗ from the optimal matching yields

δF (P [γi−1, γ
∗
i ], Q[i − 1, i]) ≤

√
dε∗ < εi. This contradicts that P [γi−1, γi] is the minimum

prefix of P [γi−1, n] with respect to Q[i− 1, i], see Fig. 10(b).
In the end, if γm < n = γ∗m, then Lemma 4 again implies δF (P [γm, n], qm) ≤

√
dε∗ as

claimed. The algorithm returns max{ε2, . . . , εm}. Since there has to be some εj > ε∗, and
we proved by induction that all εi ≤

√
dε∗, the algorithm returns a value between ε∗ and√

dε∗. J

qi−1 qi qi−1 qi

P (γ∗
i−1)

P (γ∗
i ) P (γi)P (γi−1)

(a) (b)

Q(θ(t))

P (γi)
P (γ∗

i )P (γ∗
i−1)P (γi−1)

P
P

Q Q

Figure 10 Illustration for the proof of Lemma 16 when εi > ε∗. (a) γi−1 < γ∗
i−1 (b) γi−1 > γ∗

i−1.

The MinimumPrefix Procedure: Given a polygonal curve P : [1, n]→ Rd and a segment
e : [1, 2]→ Rd, we implement MinimumPrefix(P, e), as described in Algorithm 3, as follows:
For every i = 1, . . . , n − 1, let ci be the distance associated with a minimum prefix ending
on the segment P [i, i + 1]. Formally, ci = mint∈[i,i+1] δF (P [1, t], e). Algorithm 3 computes
all the ci in a dynamic programming fashion. The minimum of the ci is the desired ε, and
the LongestEpsilonPrefix computes the corresponding γ.

Algorithm 3: Compute MinimumPrefix(P [1, n], e[1, 2])

1 MinimumPrefix(P [1, n], e[1, 2])
2 c← ||p1 − e1||
3 ε′ ← min{lP /2, ‖e‖/2

√
d}

4 γ′ ← LongestEpsilonPrefix(P [1, n], e[1, 2], ε′)
5 for i← 1 to bγ′c do
6 ci ← max{c, ||e2, P [i, i+ 1]||}
7 c← max{c, ||pi+1, e[1, 2]||}
8 ε = min1≤i≤bγ′c ci
9 return (ε, LongestEpsilonPrefix(P [1, n], e[1, 2], ε))

Before we can prove the correctness of Algorithm 3, we need the following technical
lemma that states when ε is increased, the longest ε-prefix can only get longer.
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I Lemma 17 (Prefix monotonicity). Let P : [1, n]→ Rd and Q : [1,m]→ Rd be two polygonal
curves and ε > ε′ > 0. Let γ1 = γ′1 = 1, γi = LongestEpsilonPrefix(P [γi−1, n], Q[i −
1, i], ε) and γ′i = LongestEpsilonPrefix(P [γ′i−1, n], Q[i − 1, i], ε′) for all i = 2, . . . ,m.
Then γi < γ′i for all i = 2, . . . ,m.

Proof. The proof is by the induction. For i = 2, we know that δF (P [1, γ′2], Q[1, 2]) ≤ ε′ < ε.
Let x be a parameter such that P (x) is the first intersection point between P [γ′2, n] and
the boundary of B(q2, ε), thus γ′2 < x. Now observe that δF (P [γ′2, x], q2) ≤ ε. Combining
δF (P [1, γ′2], Q[1, 2]) < ε and δF (P [γ′2, x], q2) ≤ ε yields δF (P [1, x], Q[1, 2]) ≤ ε. Since γ2 is
the longest ε-prefix with respect to Q[1, 2], we have γ′2 < x ≤ γ2, and therefore γ′2 < γ2.
Now for i > 2, by the inductive hypothesis we have γ′i−1 < γi−1. It remains to show γ′i < γi.
Consider a matching (σ, θ) realizing δF (P [γ′i−1, γ

′
i], Q[i− 1, i]) ≤ ε′. Let t be the value such

that σ(t) = γi−1. Now we construct a new matching for P [γi−1, x], where x is defined as in
the inductive base, but with respect to B(qi, ε). We know that δF (P (γi−1), Q[i−1, θ(t)]) ≤ ε.
Also we have δF (P [γi−1, γ

′
i], Q[θ(t), i]) ≤ ε′ < ε by (σ, θ). Observe that δF (P [γ′i, x], qi) ≤ ε.

Thus, δF (P [γi−1, x], Q[i − 1, i]) ≤ ε and using a similar argument as in the inductive base
we have γ′i < x ≤ γi, therefore γ′i < γi. J

Now we are ready to prove the correctness of Algorithm 3:

I Lemma 18 (Correctness). Let e : [1, 2]→ Rd be a line segment and let P : [1, n′]→ Rd be
a polygonal curve monotone with respect to the line supporting e. The distance returned by
MinimumPrefix(P, e) is min1≤t≤n′ δF (P [1, t], e).

Proof. According to the algorithm:

ci = max{‖p1 − e1‖, max
1≤j≤i−1

‖pj+1, e‖, ‖e2, P [i, i+ 1]‖}.

Since e[1, 2] is a segment and P [1, n′] is monotone with respect to the line supporting e, it
follows from Lemma 2 that for any i ≤ t ≤ i + 1 there exists an orthogonal matching such
that:

δF (P [1, t], e) = max{‖p1 − e1‖, max
1≤j≤i−1

‖pj+1, e‖, ‖P (t)− e2‖}

By taking the minimum on both sides, we get:

min
i≤t≤i+1

δF (P [1, t], e) = max{‖p1 − e1‖, max
1≤j≤i−1

‖pj+1, e‖, min
i≤t≤i+1

‖P (t)− e2‖} = ci.

It suffices to run the for-loop until n′ = bγ′c, since by the assumption we only compute the
minimum ε-prefix P [1, γ] if its distance is at most ε′ (line 3 of Algorithm 3), and by Lemma 17
it follows γ < γ′. Therefore, ε = minbγ

′c
i=1 ci = minn′

i=1 ci = min1≤t≤n′ δF (P [1, t], e). J

I Theorem 19 (Runtime). Let P : [1, n]→ Rd and Q : [1,m]→ Rd be two polygonal curves.
If δF (P,Q) ≤ min{lP /(2

√
d), lQ/(2d)}, then Algorithm 2 approximates δF (P,Q) in O(n+m)

time within an approximation factor of
√
d.

Proof. Let ε∗ = δF (P,Q). The algorithm only proceeds past line 3 if ε∗ ≤ ε0 = min{lP /2
√
d, lQ/2d}

and DecisionAlgorithm(P,Q, ε0) returns “Yes”. Now, let ε′ =
√
dε0, γ′1 = 1, and for all

i = 2, . . . ,m let γ′i = LongestEpsilonPrefix(P [γ′i−1, n], Q[i− 1, i], ε′). Note that by def-
inition of ε′, both curves have long edges, i.e., lP ≥ 2

√
dε0 > 2ε′ and lQ ≥ 2dε0 = 2

√
dε′ >

(1 +
√
d)ε′. From the proof of Lemma 16 we know that εi ≤

√
dε∗ ≤

√
dε0 = ε′ and

since ‖qi−1 − qi‖ > 2
√
dε′, we have that B(qi−1, ε

′) ∩ B(qi, εi) = ∅. Therefore, γ′i−1 < γi.
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Lemma 17 implies that γi ≤ γ′i due to εi ≤ ε′, therefore γi−1 < γ′i−1 < γi < γ′i for all
i = 2, . . . ,m.

The for-loop in Algorithm 2 has m − 2 iterations. In iteration i, the algorithm calls
MinimumPrefix(P [γi−1, γ

′
i], Q[i − 1, i]) in line 8. The for-loop in Algorithm 3 has dγ′i −

γi−1e + 1 iterations, where dγ′i − γi−1e + 1 is the upper bound for the number of ver-
tices in P [γi−1, γ

′
i]. Therefore, the runtime of Algorithm 2 is:

∑m
i=2(dγ′i − γi−1e + 1) ≤∑m

i=2(γ′i − γi−1 + 2) =
∑m
i=2(γ′i − γi) +

∑m
i=2(γi − γi−1) + 2(m − 1). Since γ′i−1 ≤ γi, we

have
∑m
i=2(γ′i−γi) ≤

∑m
i=2(γ′i−γ′i−1). Thus,

∑m
i=2(γ′i−γi)+

∑m
i=2(γi − γi−1)+2(m−1) ≤∑m

i=2(γ′i− γ′i−1) +
∑m
i=2(γi − γi−1) + 2(m− 1) = γ′m− γ′1 + γm− γ1 + 2(m− 1) = 2(n− 1) +

2(n− 1) + 2(m− 1) = O(n+m). J

5 Data Structure For Longest ε-Prefix Queries

In this section, we consider query variants of the setting in Section 3 for curves in the plane.
We wish to solve the following problem: Preprocess a polygonal curve P : [1, n] → R2

into a data structure such that for any polygonal query curve Q : [1,m] → R2 and
a positive ε < min{lP /2, lQ/(1 +

√
2)} one can efficiently decide whether δF (P,Q) ≤

ε. Note that throughout this section we assume, as before, that P and Q have long
edges, i.e., lP > 2ε and lQ > (1 +

√
2)ε. Our query algorithm is identical to Algo-

rithm 1. However, the key idea for speeding up the query algorithm is to efficiently compute
LongestEpsilonPrefix(P [1, n], Q[1, 2], ε) for a given query segment Q[1, 2] in sublinear
time. Our algorithm to compute the longest ε-prefix with respect to Q[1, 2] is shown in
Algorithm 4. According to Lemma 2 if δ(P [1, γ], Q[1, 2]) ≤ ε, then P [1, γ] is (Q[1, 2], ε)-
monotone. This is equivalent to computing the largest parameter 1 < t ≤ n such that the
following conditions hold: (1) p1 ∈ B(q1, ε) and P (t) ∈ B(q2, ε), (2) P [1, t] ⊆ C(Q[1, 2], ε),
and (3) P [1, t] is monotone with respect to line supporting Q[1, 2]. Note that the smallest
value t that violates either of the conditions above is a potential γ.

Algorithm 4: Compute LongestEpsilonPrefix(P [1, n], Q[1, 2], ε)

1 LongestEpsilonPrefix(P [1, n], Q[1, 2], ε)
2 if p1 /∈ B(q1, ε) then return ‘null’
3 λ← LongestMonotonePrefix(P [1, n], Q[1, 2])
4 α← FirstIntersection(P [1, λ], B(q2, ε))
5 if α = null then return ‘null’
6 β ← LastIntersection(P [1, λ], B(q2, ε))
7 r ← CylinderIntersection(P [1, λ], C(Q[1, 2], ε))
8 if r = null then return min(λ, β)
9 if r < α or λ < α then return ‘null’

10 if α < r < β or α < λ < β then return min(r, λ)
11 if r > β and λ > β then return β

Here, LongestMonotonePrefix returns λ, where P (λ) is the endpoint of the longest
subcurve of P [1, n] that starts in p1 and is monotone with respect to the line supporting
Q[1, 2]. FirstIntersection returns α, where P (α) is the first intersection point between
P [1, λ] and B(q2, ε). Similarly, LastIntersection returns β, where P (β) is the last inter-
section point. CylinderIntersection finds r where P (r) is the first point along P that
intersects the boundary of C(Q[1, 2], ε).
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Computing LongestMonotonePrefix: We store all the edges of P in the leaves of a
binary tree T ordered with respect to their indices. We call the subset of edges stored in the
leaves of the subtree rooted at a node v the canonical subset of v. A set of nodes v1, · · · , vk
in the subtree of v is called a set of canonical nodes of v if their leaves sets are disjoint and
the union of their leaves sets is the leaves of the subtree of v. For each edge in P we consider
its direction vector. Each internal node v stores the pair of the minimum/maximum angles
between the direction vector and x-axis among all associated direction vectors stored in its
canonical subset. Once given a query angle Φ and a starting point p1, we retrieve O(logn)
many leftmost (starting with p1) canonical nodes of T whose leaves spans all edges in P

that satisfy the monotonicity condition, i.e., condition (3) as mentioned earlier, with respect
to Φ. This can simply be done by recursively searching children of a node v violating the
monotonicity condition with respect to Φ. Once satisfying the condition, we already have
O(logn) internal nodes to report their leaves as P [1, λ]. Searching children and reporting
nodes take O(logn) time altogether using O(n) space and O(n logn) preprocessing time.

Computing FirstIntersection and LastIntersection: Let H be the hyperplane in-
tersecting Q[1, 2] that is perpendicular to Q[1, 2] and is tangent to B(q2, ε). Let H′ be the
other hyperplane perpendicular to Q[1, 2] and tangent to B(q2, ε). Since P [1, λ] is monotone
with respect to the line supporting Q[1, 2], we know that λ must lie on the q2-side of H.
And P (α) ∈ P [1, λ] must be located on the first edge intersecting H2. We start from p1
and perform an exponential search on the edges of P [1, λ] to find the first edge that inter-
sects H. Once the edge is found, we can find P (α) in constant time since each edge of P
is longer than 2ε which is the diameter of B(q2, ε). Using the same method we can find
P (β) ∈ P [1, λ], if we consider H′ instead of H. If λ is on the q2-side of H′, we perform
the exponential search on P [1, λ] to find P (β). If λ is on the q1-side of H′ then there is no
P (β) ∈ P [1, λ] and the algorithm does not require it. The whole process takes O(logn) time.

Computing CylinderIntersection: Similar to Gudmundsson and Smid [16], we con-
struct a balanced binary search tree storing the points p1, p2, . . . , pn in its leaves (sorted by
their indices). At each node of this tree, we store the convex hull of all points stored in
its subtree. Given a query range P [1, λ], we can retrieve O(logn) many canonical nodes of
the tree containing convex hulls whose leaves span the whole range. For each convex hull
we only need to compute extreme points with respect to the direction vector of the edge
Q[1, 2]. If all extreme points lie inside C(Q[1, 2], ε), then r = null, otherwise we consider
the first extreme point P (x) of some convex hull which lies outside C(Q[1, 2], ε). Note that
P [1, x] crosses one of the two boundaries of C(Q[1, 2], ε). Performing exponential search
on P [1, x] will find the first point that lies outside the respective boundary of C(Q[1, 2], ε)
for which P (x) is obtained. This structure needs O(n logn) space and preproccessing time
and answers queries in O(log2 n) time. Plugging Algorithm 4 into the decision algorithm
(Algorithm 1), we obtain the following theorem:

I Theorem 20 (General Curves). Let P : [1, n]→ R2 be a polygonal curve. A data structure
of O(n logn) size can be built in O(n logn) time such that for any query curve Q : [1,m]→
R2 and a positive constant ε < min(lP /2, lQ/(1+

√
2)), it can be decided in O(m log2 n) time

whether δF (P,Q) ≤ ε.

Proof. The correctness of the query algorithm follows from Theorem 7. As we mentioned,
the space and preprocessing time of the whole data structure is O(n logn). Using Algo-
rithm 4, the longest ε-prefix can be computed in O(log2 n) time per segment, and hence the
query algorithm runs in O(m log2 n) time. J
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When P is an x-monotone curve, we can handle queries in a slightly faster query time and
also smaller space. In this case, we assume that ε is given at the preprocessing stage. The
x-monotonicity of P allows us to use a different data structure for supporting the Cylin-
derIntersection procedure, since the query time and space of this structure dominates
the cost of our entire data structure.

q1

q2
P (λ)

H1

H2

p1

r

r

P

Q

Figure 11 Illustrating how combining the straight and circular line ray shooting queries can find
the first point along P [1, λ] that leaves C(Q[1, 2], ε).

We implement the CylinderIntersection procedure by performing two types of ray
shooting queries, straight and circular, along the boundary of C(Q[1, 2], ε). It is easy to see
that it suffices to perform at most two straight ray shooting queries and four circular ray
shooting queries since P is x-monotone. See Fig. 11 for an illustration of the queries for the
top part of the boundary of C(Q[1, 2], ε).

For straight ray shooting queries we use the data structure by Hershberger and Suri [18].
Given a simple polygon, their structure returns the first point on the boundary of the polygon
that is hit by a query ray ρ. It can be built in O(n logn) time using O(n) space and answer
queries in O(logn) time. However, to be able to use this structure we need to reduce our
problem to ray shooting in a simple polygon. Let PH be the (unbounded) polygon bounded
from below by P , from the left by a vertical ray from p1 to ∞, and from the right by a
vertical ray from pn to ∞. Similarly let PL be the (unbounded) polygon bounded from
above by P , from the left by a vertical ray from p1 to −∞, and from the right by a vertical
ray from pn to −∞. We build one data structure for PL and one for PH . For circular ray
shooting queries we use the data structure by Cheong et al. [9]. Consider a simple polygon
P with size n in the plane and let r > 0. For any circular query ray ρ with center o, radius
r, and start point s′, one can report in O(logn) query time the first point on the boundary
of P which is hit by ρ. Combining these structures gives us the first point along P [1, λ] that
leaves the cylinder, which completes the implementation of CylinderIntersection. We
have the following theorem:

I Theorem 21 (x-Monotone Preprocessed Curve). Let ε > 0 and let P : [1, n] → R2 be
an x-monotone polygonal curve in R2 such that lP > 2ε. A linear size data structure can
be built in O(n logn) time such that for any polygonal query curve Q : [1,m] → R2 with
lQ > (1 +

√
2)ε, one can decide in O(m logn) time whether δF (P,Q) ≤ ε.

6 Discussion and Future Work

In this paper we provided a linear time decision algorithm, an O((n+m) log(n+m)) time
optimization algorithm, a linear time

√
d-approximation algorithm and a data structure with

O(m log2 n) query time for the Fréchet distance between curves that have long edges. Our
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algorithms are simple greedy algorithms that run in any constant dimension. In Section 3.4
we gave a critical example that justifies our assumptions on the edge lengths.

We proposed several greedy algorithms. Our assumption on the edge lengths allowed
us to obtain a linear time constant-factor approximation algorithm for the (continuous)
Fréchet distance. On the other hand, Bringmann and Mulzer [6] presented a greedy linear
time exponential approximation algorithm for general curves under the discrete Fréchet
distance. An interesting future research direction would be to develop a trade-off between
the lengths of edges and the runtime, and in general prove hardness in terms of the edge
lengths.
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that helped us to improve the algorithm in Section 3.
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