
Filing system interfaces to support
distributed multimedia applications

Stephen Childs
University of Cambridge Computer Laboratory

New Museums Site, Pembroke Street,
Cambridge CB2 3QG UK

S t e p h e n . C h i l d s @ c l . cam. ac . uk

A b s t r a c t

As multimedia applications become part of main-
stream computing, storage systems have to deal with
many different file types, each with their own usage
patterns and resource requirements. However, con-
ventional file systems do not recognise this hetero-
geneity, and treat all stored data alike. By using
file classes and interfaces to describe files of differ-
ent types, useful information can be provided by the
application and used by the file system to choose ap-
propriate storage policies.

An architecture is proposed by which file systems
can provide support for different file classes in a flexi-
ble and extensible manner. This architecture is based
on the Multi-Service Storage Architecture (MSSA)
and will be implemented on the Nemesis operating
system, which provides the resource guarantees nec-
essary for multimedia applications.

1 In troduc t ion

Everything is a file. Or at least if you use UNIX it is.
The file abstraction has been one of the most widely
used concepts in the design and implementation of
operating systems and applications. We contend that
the "everything is a file" model has had its day. Filing
systems need a more flexible model for representing
the objects they store to applications. This model
should be based on well-defined interfaces which al-
low salient features of the object class to be exposed
to higher levels, while hiding implementation details
that are not relevant.

All storage objects are not the same. They differ

from each other in both the semantic and physical

requirements they make on a storage system. For
example, a user's document file needs to be easily lo-
catable by a plain-text name and should be accessible

as quickly as possible. On the other hand, stored e-
mails do not need to appear to the user as normal
files in a directory as long as an e-mail application
can locate and display them. On the physical side,
video and audio clips need to be stored in a manner
which facilitates their timely play-back and user files
must have a fast response time.

The use of a well-defined interface for each file type
will allow applications to specify their exact needs
and enable the system to make policy decisions which
take into account their unique properties.

However, requiring applications to know all the
implementation details for their particular file type
would make it very difficult to compose applications
in a straightforward way. But this may not be nec-
essary. It is possible to distinguish certain generic
file classes e.g. flat files, structured files, continuous-
medium (CM) files. And at a finer level, applications
use many standard file formats (e.g. MPEG for video
and AU for audio), so it makes sense to provide sys-
tem facilities to enable many applications to use these
file types.

In conventional systems, each application provides
full support for their own file type on top of the lim-
ited services provided by the file system. It would
be much more appropriate to support file types as
part of the file system, using managers to control
each generic type e.g. CM, structured files, and im-
plementing translators to provide any format-specific
processing necessary.

162

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319195.319220&domain=pdf&date_stamp=1998-09-07

This leads to a layered approach to file system de-
sign, with a ctear division of responsibilities between
different layers. Value-adding services such as index-
ing, directory services and filters can be added to the
system and associated with new file classes. These
value adding services use the functions provided by
the system, and extend them with their own extra
facilities.

These are issues which have to be addressed today
more than ever before. The continuing increase in the
power of desktop computers, coupled with the growth
of the Internet and the rise in the expectations of or-
dinary users is generating a demand for new types of
applications. These applications must process video
and audio data of different types, and will be ex-
pected to be able to interact in a distributed system,
over a LAN or the Internet. The issue of system
support for the many different file types which result
needs to be dealt with in a consistent way, rather than
on an ad hoc basis from application to application.

In this paper, I identify a number of desirable fea-
tures for a "modern" file system (2) and briefly de-
scribe an operating system which can support them
(3). I then describe the benefits of providing infor-
mation about file types at a system level (4), and
present an architecture which allows this (5). An im-
plementation framework (6) and sample application
(7) are presented and access control (8) issues briefly
discussed.

2 Layered approach and QoS
parameters

Two very desirable properties for a modern, extensi-
ble filing system which can support existing and fu-
ture file types are as follows:

• A layered structure

• Provision for Quality of Service

A layered approach to file system design provides
the flexibility needed to support the diverse storage
needs of applications. In the past, filing systems have
been vertically integrated, incorporating policy about
access patterns and usage implicitly and providing a
very restrictive interface to clients. In the layered
model, common functions are grouped together into
layers and exported via interfaces.

This approach allows higher-level services to be cre-
ated which can then use these interfaces to access
the lower-level functions in a simple manner without
needing to concern themselves with potentially com-
plex implementation details.

The lowest levels of the system are concerned with
the physical storage of data on the media. They im-
plement mechanisms for disk scheduling, block al-
location and other low-level functions. They would
then provide abstractions such as byte streams to the
higher levels. The protection mechanisms to imple-
ment security policies of higher layers must also be
located in this layer.

Directory services, indexing, security and other log-
ical features are built on top of the physical storage
layer. The layered approach means that multiple ser-
vices of this type can coexist, as long as they use the
features of the physical layer to perform storage.

High-level, type-specific translators take responsi-
bility for accepting high-level requests such as open,
close, play, record, from applications and translat-
ing them into the parameterised requests needed by
the lower layers. For example, when an application
makes a request to play a video file, the translator
would negotiate a guarantee from the storage sub-
system for a session delivering one frame every 1/30s
and then initiate playback.

This introduces the second requirement for a mod-
ern file system: the need for a mechanism to specify
and guarantee resource allocation. This is usually re-
ferred to as Quality of Service (QoS) and is increas-
ingly important as CM files become more integrated
into standard applications.

CM files differ from conventional files not only in
their large size and sequential access patterns, but
also in their need for timely delivery of data at a
specified rate. Users are sensitive to glitches in the
data they view, and so streams which are in progress
must be guaranteed the resources they need to con-
tinue transferring data at the required rate.

In a QoS-aware system, mechanisms are provided
which allow applications to specify the amount of
resources they need. Based on their requests, they
negotiate a contract with the system which specifies
these resource needs in detail. Once a contract has
been negotiated, the system guarantees the applica-
tion that it will continue to receive these resources
for as long as it needs, or until a specified termina-

tion time.

i63

The progress of technology and the increased pro-
cessing power and network bandwidth it has delivered
have led to a growing interest in multimedia applica-
tions. This in turn has brought Quality of Service
issues to the fore, as these applications require re-
source guarantees to deliver acceptable performance
to users.

For guarantees to be effective, they need to apply
end-to-end, incorporating network, disk, CPU and
memory. Previously these functions were not part
of operating systems, but a new breed of operating
system is emerging which incorporates primitives to
specify QoS requirements, and mechanisms to enforce
them.

3 Nemesis : a suitable platform

The Nemesis operating system [5], currently under
development in Cambridge and at other sites, has
been designed with support for QoS as a primary sys-
tem function. It provides primitives for specifying re-
source requirements and a mechanism for accounting
them. This is realised as follows:

• As much functionality as possible is implemented
at application-level in shared libraries.

• A highly modular system design allows resource
usage to be correctly charged to individual ap-
plications, rather than to device drivers or kernel
code.

• Resource guarantees given to applications can be
honoured because the system structure prevents
crosstalk between applications.

This integrated support for QoS is already impor-
tant to provide reliable multimedia performance, and
will be increasingly important in distributed systems,
where users may be using resources on more than one
machine.

Another factor that makes Nemesis a suitable plat-
form for a storage system of this type is that it is
based on the concepts of interfaces and objects. All
Nemesis system components are described in an in-
terface definition language known as MIDDL. This
language allows the state and methods which de-
fine objects to be described in a standard, platform-
independent way. The fact that this is integrated

into the system, rather than only at a programming-
language level, makes it easy.to integrate new com-
ponents closely with existing ones.

4 Sys tem support for f i le-types

Currently, support for different file types is imple-
mented on an ad hoc basis by the applications that
need them, or in libraries. The only abstraction pro-
vided by the filing system is that of a flat file (or
stream of bytes), and each application must do all the
extra work necessary on top of this very limited ab-
straction. So, in conventional systems, CM facilities
are implemented over the fiat-file facilities provided
by the file system. Those trying to build specialised
CM systems have realised the limitations of this ap-
proach and often use file systems which are optimised
for the periodic and sequential access patterns of CM
files and are unsuitable for traditional files. ([1], [7])

When CM support is built on top of a conventional
file system, some very undesirable side-effects result.
In the event of contention between file accesses, the
file system has no policy of arbitrating between appli-
cations that takes account of their specific character-
istics. For example, at higher levels, an application
accessing a short text file obviously has very differ-
ent needs from one playing back a long video file,
but at the file system level, these are treated exactly
the same by caching, scheduling, block allocation and
other facilities.

The system simply has no way of knowing that
the text file needs a quick response time or that the
video file has a periodicity which must be maintained.
These are properties of a specific kind of file, and as
far as it is concerned, there only is one kind of file.
There are many reasons why the file system should
have access to information about the type of files it
is dealing with. For example, in the case of overload,
if the file system "knew" about the various file types
it was serving, the system would be able to use infor-
mation about specific files in use to degrade service
to applications gracefully in a manner tha t produces
as little disruption to clients as possible.

Another example of the problems this indiscrimi-
hating approach can cause is seen when general poli-
cies for caching are implemented which apply across
file types with very different access patterns. Typ-
ically, the file system caches all data that passes
through it. This is appropriate for traditional, small

files, as there is a good chance they will be accessed
again soon. However, when large CM files are cached
in this way, their size means that they repeatedly
fill and overwrite the entire cache, thus rendering it
useless. This implies the need for multiple different
mechanisms and policies to coexist in the storage sys-
tem, which can deal with individual file-types in suit-
able ways.

Existing systems are almost all optimised for ei-
ther "traditional" file access patterns (usually derived
from a limited set of traces) or continuous media files.
They do not cope well with a mix of heterogeneous
file types, and in some cases do not even permit this.
It is clear that policies and mechanisms differ widely
between file types, and it is not possible to provide
a general solution which can deal efficiently with all
file types.

What is needed is an integrated file system, in
which strategies for multiple file types coexist, and
requests are treated differently depending on their
file class. The Symphony file system [8] provides a
good example of this approach.

5 The Multi-Service Storage
Architecture (MSSA)

The MSSA [6] is a storage system which has been
designed with a layered model to provide extensi-
bility and flexibility. The basic feature taken to be
common to all file classes is the low-level storage of
data. This function is provided by the Physical Stor-
age (PS) layer. Higher-level, logical features such as
file classes, naming and location are provided by the
Logical Storage (LS) layer. Support for a number of
generic file classes is provided in the system.

The basic low-level unit of allocation is the Byte
Segment (BS). This is a logical sequence of bytes,
maintained on disk as a list of extents. The inter-
face to all byte segments is the same, but they may
be implemented in different ways. For example, the
underlying medium for one BS may be a disk, while
another may be implemented on a tape, CD-ROM,
etc. Thus, low-level implementation details are dealt
with by the storage service, and the client accesses
the facility through a simple interface. Byte Segment
Containers group byte segments, and provide a way
of classifying byte segments implemented in different

ways.

File classes are a logical function (LS layer). Each
file class exports a different interface to allow type-
specific features to be controlled. However, all stor-
age of file data is done through the byte segment in-
terface. There are file classes which are considered
part of MSSA, such as Flat Files, Structured Files
and Continuous Media Files, and developers can also
create new file classes, which are managed by their
own value-adding services.

File classes are supported by custodes. A custode
can be thought of as a server which manages objects.
Each custode manages only one class of objects and
each object is managed by only one custode at a time.
A custode is the smallest unit of distribution and dif-
ferent custodes may be on the same machine or on
different networked machines.

Each custode manages one file class. These are
generic classes. For example, text files and data files
are ex.amples of flat files, while MPEG video and CD
audio are CM files. Each custode provides a num-
ber of high-level operations suitable to the file class
it supports. These might include such operations as
Play and Record for CM files, SelectMember for struc-
tured files, etc.

Translators are the means by which the system sup-
ports different encoding formats such as MPEG, AVI,
etc. When an application starts a session with a Con-
tinuous Medium File Custode (CFC), it specifies the
name of the translator for its data type. The transla-
tor is responsible for performing any format-specific
processing and for setting up and coordinating the
session with the (low-level) BS custode, audio, ef-
fects for video, etc.

The MSSA's built-in classes may be extended in
two ways to create Value Adding Services. Firstly,
new classes may be created, and secondly, operations
of existing classes may be specialised. This may be
described as providing the following object-oriented
functions:

Abstraction: New file classes, providing new file
service interfaces and implementations, may be
built on top of the existing MSSA custodes. (For
an example of this, see section 7).

Specialisation: A value-adding service provider
(or custode) may specialise selected operations of
an MSSA custode or other value-adding custodes
below it in the hierarchy.

165

6 Design issues

Although MSSA was originally designed as a network
storage service, it has many features which are also
suitable for a workstation file system. It is proposed
to build a native file system for Nemesis, based on the
concepts of the MSSA. This file system will provide a
flexible service to applications, which will allow them
to manipulate many file types in a simple and efficient
way.

6.1 Nemesis file sy s t em concepts

In Nemesis, the disk is represented to clients by an
abstraction known as the User-Safe Disk (described
in [2]). The basic idea behind the USD, as behind all
Nemesis device drivers, is to provide a safe way for
clients to transfer data directly to the device, without
needing to go through a server. (Incidentally, this ap-
proach is similar to that taken in many other file sys-
tem projects, such those on Network Attached Secure
Disks (NASD)[3], and seems to be widely recognised
as a good way to achieve low-latency transfers and
remove the server bottleneck.) The motivation be-
hind this approach is to allow accounting to be done
on a per-client basis, by avoiding the need to interact
with other modules.

The USD is the representation of the disk seen by
the client, and as such exports a very basic, low-level
interface. Transactions are performed on USD Ex-
tents, which are just ranges of blocks on the disk.
When a file system binds to a disk, it must register
a callback routine. This routine normally provides
the protection and translation information for the file
system.

When a client attempts to access an extent on the
disk for the first time, a fault occurs, and the USD in-
vokes the file system's callback routine. This routine
checks the client's permissions for these blocks, and
returns a success value to the USD. The USD caches
this information, so that on subsequent accesses to
the same blocks by this client, no interaction with
the file system server is necessary.

Interaction between the client and the USD is done
through streams. A client that wishes to read or
write to the disk requests a stream. Once this stream
has been set up, the client uses it for all its reads
and writes, which are accomplished by sending packet
descriptors describing the blocks to be read/written
down the stream.

6.2 M S S A o n N e m e s i s

In the MSSA, all storage is l~erformed through the
Byte Segment Custode. The byte segment is the most
basic abstraction available to clients. This may be
rate-based, in the case of segments used to store CM
files. In this case, the BSC will perform the necessary
read-ahead and buffer management to guarantee that
the data is transferred at the rate requested. Thus the
BSC controls all physical storage, acting as a storage
manager for the whole system.

The proposed implementation for Nemesis is to
have the BSC acting as a file system above the USD.
Clients which wish only to use the BS services, i.e. for
byte addressable, uniquely identified segments, will
talk directly to this module. Other modules will be
built to provide functions such as directory services,
indexing, etc. These are the value-adding services of
MSSA. Also, modules supporting different file types
will be constructed. The function of these is to ac-
cept simple requests from applications (like OpenM-
PEGFHe) and translate them into the more specific
information needed by the BSC to set up the appro-
priate rate-based session and reserve resources.

The aim of this is to make it easier to construct ap-
plications which use continuous media files. By pro-
viding support for rate-based storage and retrieval in
system modules, applications can use straightforward
constructs to manipulate multimedia.

--4

Byte Segment Custode

Control-path

Data.path

Interface

Figure 1: Architecture of MSSA for Nemesis

Figure 1 shows the proposed architecture. The nor-

i66

mal entry point for applications is through the trans-
lator for the file format they will be using. However,
if they do wish to implement a custom file format,
they can access the service through the generic Con-
tinuous File Custode. In this case, they will have to
provide the specific parameters for their file type.

The CFC sets up a control connection with the
BSC to negotiate the resources necessary to guaran-
tee timely playback. Once suitable parameters have
been established, the BSC creates a stream between
the application and the disk. This stream is then
used by the application for data transfer. The stream
maintains its guaranteed resource level for as long as
it is open. This is ensured by the USD.

Information about access rights to segments is held
in the BSC, and is translated into low-level informa-
tion on extents. When an application tries to access a
particular area for the first time, the USD will invoke
the callback function registered by the BSC. This will
perform the necessary access control checks, and re-
turn the extent permissions which apply. This is then
cached by the USD, and used when validating subse-
quent accesses to those extents by the same client.

6 .3 U s e o f i n t e r f a c e s i n N e m e s i s

Nemesis system components are defined using an in-
terface definition language known as MIDDL. (While
similar in functionality to other IDLs, MIDDL offers
a number of extra constructs to deal with low-level
and operating system interfaces. Its type-system is
unfortunately different from those of now-standard
IDLs such as OMG IDL.) This makes a clear mapping
from the MSSA constructs onto a Nemesis implemen-
tation straightforward. The interface exported by the
BSC is defined in MIDDL, and then the methods de-
fined are implemented in C. Stub files for RPC can
also be automatically generated from the interface

definition.
File classes are also represented by interfaces, and

the server which manages them implements their
methods. Thus different implementations of trans-
lators and custodes are possible, as long as they con-
form to the defined interfaces.

6 .4 S t a t u s o f i m p l e m e n t a t i o n

The implementation of MSSA on Nemesis is cur-
rently in its early stages. The previous implemen-
tation used specialised NVRAM hardware to permit

efficient atomic reads and writes. The version cur-
rently being implemented will run on standard PCs,
and so must provide similar functionality by other
means. A number of other design issues also need to
be addressed.

7 Sample application
As an example of how this approach may be used
to compose a distributed application, take an appli-
cation for recording a conference seminar. A semi-
nar is represented as a structured file, consisting of
video and audio of the speaker and any slides and
meta-data such as the speaker's name, the date and
location.

A new file class, Seminar is defined. Each recording
of a seminar will be an instance of this class. The new
file class in this case is composed of existing MSSA file
classes, i.e. Continuous Medium Files for the audio
and video, and Flat Files for textual data.

The class provides operations for manipulating
Seminar objects. These might include operations like
ShowStides, etc. If another application wishes to use
a Seminar object, it does not have to worry about how
the class is implemented, and can use simple abstrac-
tions like Seminar.Slides to manipulate components of
the class.

The server which implements the class is respon-
sible for providing the mapping between operations
invoked on Seminar objects and the MSSA file class
operations. When a Seminar file is opened, the ap-
propriate files will be opened via their managers, and
their segments retrieved from the BSC as necessary.

Figure 2 shows the situation when a Seminar file
is opened for recording. The application sends a re-
quest for a new file to be opened in Record mode to
the Seminar custode. The Seminar custode then sends
the appropriate cf_open calls to the CFC, passing the
names of the audio and video translators as parame-

ters.
The format-specific translators are then called by

the CFC. They set up rate-based sessions with the
BSC with parameters based on the timing require-
ments of their specific format. This creates a data
stream between the source and the BSC. A session ID
is also returned to the Seminar custode which allows it
to interact directly with the appropriate translators.

To enable distributed applications to be con-
structed, control interfaces may be exported using

167

r 0eo l {

Control-path

Data-path

t

{

/

/

BSC

Figure 2: Seminar application

RPC. The application may run on one node, and com-
municate with sources and custodes on other nodes.
The dashed lines in Figure 2 indicate points at which
network partitions may occur. However, synchroni-
sation issues may lead to stricter controls on distri-
bution.

If at a later date, new features are required, for
example an indexing function which indexes the sem-
inar based on the slide being displayed, these can
be implemented as value-adding clients which are in-
serted between the application and the MSSA. All file
data would then pass through the value-adding client
on storage and retrieval.

8 A c c e s s c o n t r o l

An issue of primary concern in the design of dis-
tributed applications and their storage services is that
of access control. When many applications are run- [I]
ning on different hosts in an open system, the limita-
tions of standard security systems are exposed.

In order to define security policy for many applica-
tions, each of which may represent one or more users,
traditional approaches which insist that access con- [2]
trol is determined purely in terms of user identity are
inadequate. They do not provide the flexibility neces-

sary to describe the complex roles necessary to define
delegation, grouping and other relationships between
applications.

For this reason, it is planned to use a role based ac-
cess control model. This allows a two-level approach,
where each process has a unique identifier which can
be authenticated and then gains other roles by inter-
acting with other services [4].

This approach also allows value-adding services to
provide protection for the objects they control. If
directories (for example) are managed by a directory
server, we only want to allow applications to be able
to access directory objects through that server. This
can easily be modelled by ensuring that only that
server may issue the capabilities necessary to enter
roles which can access the objects.

9 C o n c l u s i o n

An approach to building distributed storage systems
using strongly typed interfaces for files has been pre-
sented. In the context of a layered storage system,
this allows the specific properties of each file class to
be supported by the system and allows new types to
be easily integrated. It also allows the system to se-
lect appropriate policies based on the type of requests
it sees.

Any such system should also incorporate a means
of specifying and guaranteeing resources in order to
allow continuous media files to be stored and re-
trieved in a timely fashion. It is proposed to pro-
vide this by building the system on top of the Neme-
sis operating system, which provides low-level QoS
functions and uses interfaces to define system com-
ponents.

R e f e r e n c e s

David P. Anderson, Yoshitomo Osawa, and
Ramesh Govindan. A file system for continuous
media. A CM Transactions on Computer Systems,
10(4):311-337, November 1992.

Paul Barham. Devices in a Multi-Service Operat-
ing System. PhD thesis, University of Cambridge
Computer Laboratory, October 1996.

i68

[3] National Storage Industry Consortium.
Network Attached Storage Devices.
http ://www. nsic. org/nasd.

[4] Richard Hayton. OASIS: An Open Architecture
/or Secure Interworking Services. PhD thesis,
University of Cambridge Computer Laboratory,
1996. Technical Report No. TR399.

[5] Ian Leslie, Derek McAuley, Richard Black, Timo-
thy Roscoe, Paul Barham, David Evers, Robin
Fairbairns, and Eoin Hyden. The Design and
Implementation of an Operating System to Sup-
port Distributed Multimedia Applications. IEEE
Journal on Selected Areas in Communication,
14(7):1280-1297, September 1996.

[6] Sai-Lai Lo. A modular and extensible network
storage architecture. PhD thesis, University of
Cambridge Computer Laboratory, 1994. Tech-
nical Report No. TR326. Distinguished Disserta-
tions in Computer Science, CUP 1995.

[7] P. Venkat Rangan and Harrick M. Vin. Design-
ing file systems for digital video and audio. In
Proceedings of the 13th ACM Symposium on Op-
erating Systems Principles, pages 81-94, 1991.

[8] Prashant J. Shenoy, Pawan Goyal, Sriram S.
Rao, and Harrick M. Vin. Symphony: An inte-
grated multimedia file system. In Proceedings of
SPIE/ACM Conference on Multimedia Comput-
ing and Networking, January 1998.

i69

