
Formal Modeling of Synchronization Methods for
Concurrent Objects in Ada 95

Ravi K. Gedela
Dept. of EECS

Concurrent Software Lab
The University of Illinois at Chicago

Tel: +1-303-473-6722

R. Gedela @ ericsson .com

Sol M. Shatz
Dept. of EECS

Concurrent Software Lab
The University of Illinois at Chicago

Tel: +1-312-996-5488

shatz @ eecs.uic.edu

Haiping Xu
Dept. of EECS

Concurrent Software Lab
The University of Illinois at Chicago

Tel: +1-312-666-8588

hxul @eecs.uic.edu

1. A B S T R A C T

O n e i m p o r t a n t ro le f o r A d a p r o g r a m m i n g is

to a id e n g i n e e r i n g o f c o n c u r r e n t a n d

d i s t r i b u t e d so f twa re . I n a c o n c u r r e n t a n d

d i s t r i b u t e d e n v i r o n m e n t , ob jec t s m a y execu t e

c o n c u r r e n t l y a n d n e e d to be s y n c h r o n i z e d to

se rve a c o m m o n goal. T h r e e bas ic m e t h o d s

by w h i c h objec ts in a c o n c u r r e n t

e n v i r o n m e n t c a n be c o n s t r u c t e d a n d

s y n c h r o n i z e d h a v e b e e n i den t i f i ed [1]. T o

f o r m a l i z e t he s e m a n t i c s o f t hese m e t h o d s a n d

to p r o v i d e a f o r m a l m o d e l o f t h e i r co re
b e h a v i o r , we p r o v i d e s o m e g r a p h i c mode l s
b a s e d on the Pe t r i n e t f o r m a l i s m . T h e

p u r p o s e o f this f o r m a l m o d e f i n g is to

i l l u s t r a t e the poss ib i l i ty of a u t o m a t i c

p r o g r a m ana lys i s f o r o b j e c t - o r i e n t e d f e a t u r e s
in Ada-95 . M o d e l s f o r t he t h r e e d i s t r i b u t e d -

o b j e c t s y n c h r o n i z a t i o n m e t h o d s a r e

d i scussed , a n d a p o t e n t i a l d e a d l o c k s i t ua t ion

f o r one o f the m e t h o d s / m o d e l s is i l l u s t r a t ed .

W e c o n c l u d e w i t h s o m e c o m p a r i s o n o f t he
t h r e e m e t h o d s in t e r m s o f t h e m o d e l
abs t r ac t i ons .

1.1 K e y w o r d s
Ada-95, concurrent objects, distributed software,
synchronization methods, Patti net formalism

Permission to make digitol or hard copies of all or part el this work for
pemonal or classroom use Is granted without lee provided that copies are
not made or distdbuted |or profit or commercial advantage and that copies
bear this no§ca and the hJII citation on the [imt page.
To copy mharwise, to republish, to post on servers or to redistribute to fists,
requires prior specific permission and/or a fee.
SIGAda'99 10/99 Redonclo Beach, CA, USA
O 1999 ACM 1-581 t3-127-5/99/0010...$5.00

2. I N T R O D U C T I O N
With the growing interest in concurrent and distributed
computing applications, there is significant value in new
capabilities to support the engineering of distributed
software. One of the principle objectives of concurrent
and distributed programming is to coordinate the behavior
of concurrent tasks. This is aided by using object-oriented
techniques in combination with concurrent programming.
The resultant software systems consist of objects that
execute concurrently and need to be synchronized to serve
a common goal. There might be situations where access to
an object is required by more than one other object or
task. In such cases, it is vital to enforce synchronization.
For example, consider a printer as an object. The services
of this printer object (server) might be required by
multiple t a s k s (clients). This would require
synchronization among the client tasks so that only one
task at a time can gain access to the printer object. There
are many such practical situations where synchronization
is very important. Thus, synchronization among tasks
accessing an object is a critical issue.

In the specific context of Ada-95 [2], Burns and Wellings
have identified three methods to ina'oduce
synchronization among objects in a concurrent
environment [1]. These methods are listed as follows:

1. Synchronization is added if and when it is required, by
extending the object.

2. Synchronization is provided by the base (root) object
type.

3. Synchronization is provided as a separate protected
type and the data is passed as a discriminant.

Unfortunately, these methods can be difficult to
understand due to the lack of an abslraction formalism.
We have used Pelri nets [3] to formalize the behavior of
these methods. Because PeUi nets are graphically based,
the models provide a visualization result with well-defined
dynamic behavior. Peui nets provide a graphic model that
supports the fundamental concepts of concurrency,
synchronization, and nondeterminism. In Patti net models,
conditions are represented by "place nodes," depicted as

211

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319294.319325&domain=pdf&date_stamp=1999-09-01

circles, and events are represented by "transition nodes,"
depicted by bars. Although we are not yet ready to discuss
Figure 1, it provides an example of a Petri net graph. Note
that directed arcs connect the place and ~ansition nodes
and thus provide a logical connection between the holding
of conditions and the occurrence of events. The other key
component of a Petri net is its marking, which is a
disu-ibution of tokens to place nodes. Tokens are
represented by black dots, as can be seen in the place
labeled L in Figure 1. As events occur (i.e., transitions
fire), tokens are consumed from input places and
deposited into output places. Due to lack of space in this
paper, we are not able to provide a more complete
introduction to Petri nets. Full details on this model,
including associated analysis techniques, can be found in
other references (e.g., [3]). There does exist some other
published work on Petri net modeling for Ada. Among the
earliest work is that of Mandrioli, et al [4], which focused
on using Petri nets to provide a formal semantic for the
basic tasking mechanisms of Ada-83. Earlier work by our
own research group investigated the use of Petri nets for
development of tools and techniques for automated
concarrency analysis of software based on Ada tasking [5-
6]. Again the focus was on Ada-83. More recent work
provided a formal description of Ada-95 tasking
constructs, such as the asynchronous transfer of control
and requeue statement [7].

In the remainder of this paper, we will explain the various
object synchronization methods and present associated net
models for illustrative examples using these methods. We
also discuss a potential deadlock situation and compare
the three synchronization methods at the model level.

3. SYNCHRONIZATION FOR
CONCURRENT OBJECTS
Among the three synchronization methods for concurrent
objects in Ada-95, the first method, whose
synchronization is added by extending the object, is the
simplest one. In the original example for the first method
by Burns and Wellings [1], procedures Opl and Op2,
defined in package Object, are redefined in its child
package Object.Synchronized and Rs grandchild package
Object.Synchronized.Extended (as shown in Section 4.1).
Since this kind of polymorphism is resolved at compile
time, to make the formalism more obvious, we eliminate
the polymorphism by changing the corresponding
procedure name to Opl_syn, Opl_ext and so on. On the
other hand, for both the second and third synchronization
methods, a common procedure is used to dynamically
dispatch the correct procedure for different parameters,
and the polymorphism is resolved at execution time. In
such cases, the dynamic behavior of those original
examples are well-captured by the Petri net models.

3.1 Synchronization Added by Extending the
Object
Let us first consider the method where synchronization is
added if and when it is required by extending the object.
This is the most general approach that could be followed
to construct objects in a concurrent environment. The
Obj_Type is defined as tagged and can be extended to
facilitate synchronization. We remind the reader that this
technique was introduced in [1]. Consider the following
simple example:

package Object is

procedure Opl (O : in out Obj_Typc);

procedure Op2 (O : in out Obj_Type);

private

type Obj_Type is tagged limited record ... end record;

end Object;

package Object.Synchronized is

type Protected_Type is new Obj_Type with private;

procedure Opl_syn (O : in out Protected_Type);

procedure Op2_syn (O : in out Protected_Type);

private

type Protected_Type is new Obj_Type with

record

L : Mutex;

end record;

end Object.Synchronize.d;

Type Mutex provides a simple mutual exclusion lock, and
is defined by a protected type as follows:

protected type Mutex is

entry Lock;

entry Unlock;

end Mutex;

In the body of package Object.Synchronized, procedm'es
Op1_syn and Op2_syn can be defined to call the
procedures Op I and Op2, defined in package Object, and
to include the synchronization facilities:

procedure Opl_syn (0 : in out Protected_Type) i s

begin

O.L.Lock;

Opl(Obj_Type(O));

212

O.L.Unlock;

end Opl_syn;

procedure Op2_syn (O : in out Protected_Type) is

begin

O.L.Lock;

Op2(Obj_Type.(O));

O.L.Unlock;

end Op2_syn;

b~gin
O.L.Lock;

-- data processing

O.L.Unlock;

end Op3_ext;

The use of package Object.Synchronized.Extended can be
demonstrated by calling the procedure Opl_ext as
follows:

In this example, procedure Opl_syn takes O, a parameter
of type Protected_Type, and makes an attempt to gain the
lock. Then the procedure Opl, defined in Object, is called
by passing Obj_Type(O) as a parameter. After the
execution of the procedure Op 1, entry Unlock is called to
release the Lock. Procedure Op2_syn has behavior similar
to procedure Op l_syn.

Now consider the following extension of the package
Object.Synchronized:

package Object.Synchronized.Extended is

type Extended_Protected_Type is new Protected_Type

with private;

procedure Opl_ext (O : in out Extended_Protected_Type);

procedure Op2_ext ((3 : in out Extended_Protected_Type);

procedure Op3_ext (O : in out Extended_Protected_Type);

private

type Extended_Protected_Type is new Protected_Type

with record ... end record;

end Object.Synchronized.Extended;

procedure Opl_ext (O : in out Extended_protected_Type) is

begin

O.L.Lock,

Op l(Obj_Type(O)),

O.L.Unlock;

end Opl_ext;

procedure Op2_ext ((3 : in out Extended_Protected_Type) is

begin

O.L.Lock;

Op2(Obj_Type(O));

O.L.Unlock;

end Op2..ext;

procaxlure Op3__cxt (O : in out Extended_Protected_Type) is

O : Extended_Protected_Type;

Opl_ext(O);

In package Object.Synchronized.Extended, procedures
Opl_ext and Op2_ext are defined to have the same
functional behavior as the procedures Opl_syn and
Op2_syn, defined in package Object.Synchronized. The
only difference is the formal parameter type, which is
defined as Extended_Protected_Type. Procedure Op3_ext
is a new procedure that is added to package
Obj ect.Synchronized.Extended.

The Object.Synchronized.Extended object can be
modeled by a single Petri net as shown in Figure I. In this
model, place L provides for mutual exclusion on the
execution of procedure Opl_ext, Op2_ext and Op3_ext,
which are represented as transitions opl_exr, op2_ext and
op3_ext respectively. Note that we have ignored modeling
the execution of procedure Opl_syn and Op2_syn, which
are defined in package Object.Synchronized. This is
because procedure Opl_syn and Op2_syn have the same
functionality as those procedures Opl_ext and Op2_ext,
which are defined in package
Object.Synchronized.Extended, and they can be modeled
in exactly the same way as shown in Figure 1. To
understand the model behavior, assume that task A calls
Opl_ext and task B calls Op2_ext simultaneously. Both
transitions opl_ext and op2_ext can fire. resulting in a
token in both places a and e. Under this condition, both
transitions lock_opl_ext and lock_op2_ext will be enabled
at the same time. However, due to the conflict firing these
two transitions (i.e., the competition for the token in place
L), only one of them will succeed. The other transition
must wait until the procedure defined in package Object
completes and the lock is released. The synchronization
involving calls to Op3_ext is similar.

3.2 Synchronization Provided by the Base
Object Type
The second method of providing synchronization to
objects in a concurrent environment is synchronization
provided by the base object type. In this method the base
object incorporates the synchronization mechanism.

213

Consider a similar example as discussed in the first
method. In this case the mutual exclusion lock is declared

In this example, we declare the procedures Op l and Op2
to be abstract and private, and the class-wide operations,

io~._opl_~t

op 1 _ ~ t

L

tmloc&_op3_ext

b

i op2

Q .
I"

h Obj_T~e(O) I

m op3 I

C)- t ©

~2_ext

op2_~t

op3_~t

Figure 1. Object.Synchronized.Extended model

in the base object. The Ada code for this would be as
follows:

package Protected_Object is

type Protected_Type is abstract tagged limited private;

procedure Class_Wide..Op 1(O: in out Protected_Type'Class);

procedure Class_Wide__Op2(O: in out Protected_Type'Class);

private

type Protected_Typ© is abstract tagged limited

record

L : Mutex;

end record;

procedure Opl (O : in out Prot~ted_TYtm) is abstract;

procedure Op2 (O : in out Protected_Type) is abstract;

end Protected_Object;

Class_Wide_Opl and Class_wide_Op2, are being made
the only interfaces that are exported from the package.
Extensions of the base object must implement the
procedures Op l and O132. The class-wide operations can
now be defined in the package body as follows:

procedure Class_Wide_Opl(O: in out Protected_Type'Class) is

begin

O.L.Lock;

Opl (O); -- dispatch to correct operation

O.L.Unlock;

end Class_Wide_Op I ;

procedure Class_Wide_Op2(O: in out Protected_Typel~lass) is

begin

O.L.Lock;

Op2(O); -- dispatch to correct operation

214

O.L.Unlock;

end Class_Wide Op2;

The following code demonstrates
Protected_Object:

the usage of this

package Protected_Object.MLObject is

type My_Object_Type is new Protected_Type

with record ... end record;

private

procedure Opl (O : in out My_Object_Type);

procedure O132 (O : in out My_Object__Type);

end Protected_Object.My_Object;

This method uses the dynamic dispatching mechanism.
Depending on the object type of the object that is passed
as a parameter in the call to the procedure, the runt/me
system directs the call to the appropriate code defined for
that object type. The type can be extended, retaining the
mutual exclusion, as long as the operations are called with
the class-wide operator. For example, one extension of the
above is as follows:

package Protected_Object.My Object.Extended is

type Extended_Protected_Type is new My_Object_Type

with private;

procedure Class_Wide._Op3 (O: in out

Extended_Protected_Type'Clas s);

private

type Extended_Protected_Type is new My_Object_Type

with record ... end record;

procedure Opl (O : in out Extended_Protected_Type);

procedure Op2 (O : in out Extended_Protected_Type);

procedure Op3 (O : in out Extended_Protected_Type);

end Protected_Object.My_Object.Extended;

The use of package Protected_Object.My_Object can be
demonstrated by calling the procedure Class_Wide_Opl,
which is defined in package Protected_Object, with
parameters of different types My_Object_Type and
Extended_Protected_Type as follows:

MO: My_Object..Type; -- represented as color M in the

-- following Petri net model

Class_Wide_Op 1 (Me);

EP: Extended_Protected_Type; -- represented as color E in the

CI as s_Wide__Op 1 (EP);
--following Petri net model

For procedure Op3, if mutual exclusion is also required, a
new procedure Class_Wide_Op3 should be defined:

p/ocedure Class_Wide_Op3 (O : in out

Extended_Protected_Type'Class) is

begin

O.L.Loek;

Op3(O); -- dispatch to correct operation

O.L.Unlock;

end Class_Wide_Op3;

The object Protected_Object.My_Object.Extended can be
modeled by the Petri net in Figure 2.

When a call to Class_Wide_Opl is made with an object of
type Extended_Protected_Type, the transition
class_wide_opl fires. An output token with identity E
(called the "color" of the token) is put in the place a)
Color E signifies that the call to Class_Wide_Opl uses an
object of type Extended_protected_Type. The firing of
lock_class_wide_op] models the gaining of the lock and
this transition firing puts an output token of color E in
place b. Note that the firing of transition opl or opl_ext is
dependent on the color of the token in place b. If the
token color is M, meaning that the object type is
My_Object_Type, then ot71 would fire. But if the color is
E, as in the present case, then the transition opl_ext will
fire. This choice of transition models the dynamic
dispatching mechanism. When the transition opl_ext fires,
an output token of color E is put in place c. When the
procedure execution is complete, the transition
unlock_class_.wide_opl is enabled. Note that this
transition can fire with an input token of color M or E.
The lock is released when the transition
unlock_claas._wide_opl fires. Similarly, Class_Wide_Op2
is modeled in the same way. Although the additional
procedure Class_Wide_Op3 is also modeled as the
transition class_wide_op3, this transition can fire only
when the input token color is E. This is necessary since
Class_Wide_Op3 is defined only on
Extended_protected_Type and not on My_Object_Type.

I This type of Petri net model that uses "colored" tokens (or
tokens with attributes) is called a colored Petri net [8]. In
colored Petri nets, a transition becomes enabled when its input
places have tokens with attributes that match the inscriptions
on the corresponding arcs from the place to the transition.

215

3.3 Synchronization Using a Protected Type
with Data Parameters
The third method of providing synchronization among
concurrent objects is by using a protected type with the
data passed as a discriminant. First, the base type is
defined as protected and all of its protected operations are
defined as abstract, which means extension of this base
type must implement these operations. Then a protected
type can be constructed, which has a class-wide access
discrirninant as a formal parameter and has operations
used to dispatch the appropriate operations according to
the discriminant. Consider the following example:

package Object is

type Obj_Typc is abstract tagg~l null record;

protected type Controller (O : access Obj_Type~lass) is

procedure Opl;

procedure Op2;

end Controller;

private

procedure Opl ((3 : in out Obj_Typc) is abstract;

procedure Op2 (O : in out Obj_Type) is abstract;

end Object;

procedure Opl is

begin

Op1(O.an);
end O131;

pmccdur¢ Op2 is

begin
Op2(O.aU);

end Op2;

In Object, the base type Controller and its operations Opl
and Op2 are defined as a protected type. The data type
Obj_Type~lass is passed to the protected type Controller

lock._r.,LaM_wid e._op] Iock_cla~_.wide_op2

. u n l . - ~ ess_ .w~d~Ock F.IaB widc_opZ unlock claz, s_widc_op 1

opl •

cba, s_wide_opt

Figure 2. Prgtccted_Object.My Objcct~xtend~l model

216

as a discriminant.

The usage of Object is
segment of code:

d e m o n s t r a t e d by the following

package Object.My_Object is

type My_Obj is private;

private

type My_Obj is new Obj_Type with record ... end record;

procedure Opl(O : in out My_Obj);

procedure Op2(O : in out My_Obj);

end Object.My_Object;

O : aliased My_Obj;

contr : Controller(O'Aecess);

contr.Op I;

Package Object.My_Object extends Obj_Type and
defines Opl and Op2, with parameters of type My_Obj.
Mutual exclusion over Opl and Op2 is ensured by the
definition of protected declaration of the Controller. This
method has the similar mechanism as the second method.
But, one disadvantage of this method is that new
operations cannot be added into the Controller, because a
protected type cannot be extended.

How consider an extension o f Object.My_Object:

package Object.My_Object.Extended is

type My_Obj_Ext is private;

private

type My_Obj..Ext is new My_Obj with record ... end record;

procedure Opl (O : in out My_Obj_Ext);

procedure Op2 (O : in out My_Obj_Ext);

end Object.My_Object.Extended;

The use of package Object.My_Object.Extended can be
demonstrated by calling the protected object Controller
with different parameters as follows:

OM : aliased My_Obj; -- represented as color O in the

-- following Petri net model

contrl : Controller (OM'Access);

contrl.Opl;

OE: aliased My_Obj_Ext; -- represented as color E in the

-- following Petri net model

contr2: Controller (OE'Access);

contr2.Op 1;

The above extension defines a new type, My_Obj_Ext, an
extension o f My_Obj, and defines procedures Opl and
Op2 for parameters of type My_Obj_Ext. A Petri net
model of this situation is shown in Figure 3.

When a call to Op l is made by an object of type
Controller with a data discriminant of type My_Obj_Ext,
the transition opl_protected_start fires, and an output
token of color E is put in place a. Color E signifies that
the data discriminant of the object of type Controller is of
the type My_Obj_Ext. Firing of the transition
opl__protected_start removes the token in controller
place, thus disabling any other calls to the protected
procedures Opl and Op2. Now, the i-wing of transition
opl or opl_ext is dependent on the color o f the token in
place a. I f the token color is O, meaning that the data
discriminanl of the calling object of type Controller is of
the type My_Obj, then transition, opl would fire. But, if
the token color is E, which is the present case, the
transition op]_ext would fire. Again, this choice of firing
of transitions, based on the color of the token in the input
place, models the dynamic dispatching mechanism. Now,
the transition opl__protected_end can fire, taking away a
token of color E from place b and putting an output token
in controller place. This models the end of the protected
operation associated with executing Opl , so other objects
waiting to gain access can now proceed.

4. DISCUSSION

4.1 Potential Deadlock Problem
One disadvantage with the first method is that when the
type Object.Synchronized is further extended, there are
circumstances that can cause a potential for deadlock. To
make the deadlock situation not so obvious, we rewrite
both the child package Object.Synchronized and the
grandchild package Object_Synchronized_Extended as
follows, which are the same as those in Burns and
Wellings's original example [1]:

package Object.Synchronized is

type Protected_Type is new Obj_Type with private;

procedure Opl (O : in out Protected_Type);

procedure O132 (O : in out Protected_Type);

private

type Protected_Type is new Obj_Type with

record

L : Mutex;

end record;

end Object.Synchronized;

21"]

c p l _ l z r O ~ o p 2 ~ s l a n

O/E

opl

" E

op2_exl I

o o

O/E

Figure 3. Object.My_Object.Extended model

package body Object.Synchronized is

procedure Opl (O : in out Protected_Type) is

begin

O.L.Lock;

Opl (Obj_Type(O));

O.L.Unleck;

end Opl;

. . .

end Object.Synchronized;

package Object.Synchronized.Extended is

type Extended_Protected_Type is new Protected_Type

with private;

procedure O1)1 (O : in out Extended..Protected_Type);

procedure Op2 (O : in out Extended_Protected_Type);

procedure O1)3 (O : in out Extended_Protected_Type);

private

type Extended_Protected_Type is new Pro|ected_Type

with record ... end record;

end Object.Synchronized.Extended;

package body Object.Synchronized.Extended is

procedure Opl (O : in out Extended_Protected_Type) is

begin

O.L.Lock;

-- pre_processing;

Op 1 (Protected_Type(O)),

-- post__processing;

O.L.Unlock;

end Opl;

end Object.Synchronized.Extended;

The use of package Object.Synchronized.Extended can be
demonstrated by calling the procedure Opl with a
parameter of type Extended_Protected_Type as follows:

0 : Extended_Protected_Type;

Opl(O);

218

In this example, the procedures Opl and Op2, which are
defined in package Object, are redefined in both of its
child package Object.Synchronized and grandchild
package Object.Synchronized.Extended. The resolution of
this polymorphism is made according to the parameter
types at compile time. So, in our Petri net model, they are
represented as different transitions. Similar as before, the
procedures Opl defined in package Object, its child
package Object.Synchronized and its grandchild package
Object.Synchronized.Extended are represented as
transitions Opl, Opl_syn and Opl e:ct respectively. The
most significant difference between this example and the
one in Section 3.1 is that here procedure Opl, defined in
package Object.Synchronized.Extended, calls the
procedure Opl with a parameter of type Protected_Type
rather than Obj_Type as before. At compile time, it is
determined that the actual called procedure Opl is the one
which is defined in package Object.Synchronized. The
Petri net model for this revised version of
Object.Synchronized.Extended is shown in Figure 4. To
make the deadlock detection more obvious, we ignore
modeling the execution of procedures Op2 and Op3,
which are defined in grandchild package
Object.Synchronized.Extended. They can be modeled
exactly the same as in Figure 1.

In the model of Figure 4, when a call to Opl, defined in
package Object.Synchronized.Extended, is made with an
object of type Extended_ProtectedType, the transition
opl_ext fires and a token is deposited into place a. The
firing of the enabled transition lock_opl_ext takes the
token from place L and deposits an output token in place
b. This models the acquisition of the lock by the object
that called procedure Op 1, defined in
Object.Synchronized.Extended. The firing of transition
pre_processing models the starting of some arbitrary data

processing. Upon the completion of this data processing, a
call is made to Opl, defined in package
Object.Synchronized, with type ProtectedType. The
conversion of type is modeled by the t-wing of the
transition Protected_Type(O), and the call is modeled by
the firing of the transition opl_syn, as was used in the
previous model of Figure 1. But now, the procedure Opl,
defined in package Object.Synchronized, tries to again
obtain the lock. In this state, where there is a token in
place e but no token in place L, the transition
lock_opl_syn is not enabled. The resulting deadlock is
naturally captured and can be visualized in the model by
the lack of any enabled transition.

4.2 Some Comparison Comments on the Net
Models
The study of the Petri net models for different methods of
providing synchronization among concurrent objects
provides us an opportunity to compare them to identify
model relationships at the code level. The model in Figure
1 is comparable to the models in Figure 2 and Figure 3.
One significant difference among these is the use of
colored Petri nets for the later two methods, whereas an
uncolored Petri net is sufficient to model the first method.
A study of the models reveals that the model in Figure 2
actually contains the models used in Figures 1 and 3. For
example, in Figure 2 the firing sequence class_wide_opl,
lock_class_wide_op l , op l_ext, unlock_class_wide_op l is
comparable to the firing sequence opl_ext, lock_ext_opl,
Obj_Type(O), Opl, unlock_ext_opl in Figure 1 and the
firing sequence op I..protected_start, op l_ext,
opl_protected_end in Figure 3. A similar situation exists
for the firing sequence for class_wide_op2. However,
consider the firing sequence in Figure 2 for
class_wide_op3, namely class_wide_op3 ,

lock_op l_e.xt

lock_op I._.sy'n

b c d c I I t-

unlock_opl_syn

g opl J

unluc~_opl_ezt

h

p r a t i n g Prota:~LTYl~O) a p] _ ~ Obj_Tl~iz~(O)

~gure 4. Object.Synchronized.Extended model

pcsL.gaoccs.~g

219

lock_class__ wide_op3, op3_ext, unlock_class_wide_op3.
This has a comparable firing sequence op3_ext,
lock_ext_op3, op3, unlock_ext_op3 in Figure 1, but there
is no such firing sequence in Figure 3. The reason for this
is that in the third method we cannot extend the protected
type with respect to adding new protected procedures.

Note that the model in Figure 1 transition opl_ext can
only accept calls with a parameter of type
Extended_Protected_Type, but not of type
Protected_Type. On the other hand, both models in Figure
2 and Figure 3 have the capability of handling all the
extensions of the base class with a common transition, say
class_wide_opl or opl_protected_sturt. This advantage is
due to the dynamic dispatching mechanism in these
methods.

4.3 Future Work
A well-known advantage of Petri nets is their potential for
formal analysis. By translating Ads code into Petri nets,
we may achieve the goal of automated analysis of Ada
programs, such as automated deadlock analysis of Ads
programs as we had done before [6]. The critical issue
here is how to automatically translate Ada code into Petri
nets, since constructing a model manually is not only
error-prone but also unrealistic for a large program. In our
previous work, we have successfully developed a tool kit
called TOTAL (the tasking-oriented tool kit for the Ada
language) [9] to build correct models for Ada tasking by
using compiler techniques. Our future work will further
this technique and enhance this tool kit to include the
object-oriented features in Ada-95 programming. The
work done in this paper indicates that automated
translation is possible and has potential to aid validation
of object interactions.

5. C O N C L U S I O N
Formal modeling of the synchronization constructs for
concurrent objects in Ada is difficult due to the need to
properly capture many behaviors that are interdependent.
In this paper, we have presented and discussed a means to
model these constructs using the Petri net modeling
formalism. Petri nets have been chosen because they tend
to provide a visual, and thus easy to understand, model.
Also, Petri nets are well matched to the problem due to
their inherent support for modeling concurrency,
nondeterminism, synchronization, and mutual exclusion.
We developed models for three different object
synchronization methods. These methods were defined in
terms of Ada-95 and presented in [1]. As a simple
example, we described how a deadlock situation caused
by improper object synchronization design can be
observed in terms of a standard Petri net deadlock. Also
we provided some comparison comments on the
synchronization methods in terms of their formal model

attributes. The value of this type of modeling is revealed
by our plans for future work.

6. A C K N O W L E D G M E N T S
This material is based upon work supported by, or in part
by, the U.S, National Science Foundation under grant
CCR-9321743 and the U.S. Army Research Office under
grant number DA.AG55-98-1-0470.

7. R E F E R E N C E S
[1] A. Burns and A. Wellings, Concurrency in Ads,

Cambridge Press, 1995.

[2] J. Barnes, Programming in Ads 95. Addison-
Wesley, Inc., 1996.

[3] T. Murata, "Petri Nets: Properties, Analysis and
Applications," Proceedings o f the IEEE,
77(4):541-580, April 1989.

[4] D. Mandrioli, R. Zicari, C. Ghezzi and F. Tisato,
"Modeling the Ads Task System by Petri Nets,"
Computer Languages, 10(1):43-61, 1985.

[5] S . M . Shatz, S. Tu, T. Murata, and S. Duri, "An
Application of Pelzi Net Reduction for Ads
Tasking Deadlock Analysis," IEEE Transactions
on Parallel and Distributed Systems, Vol. 7, No.
12, Dec. 1996, pp. 1307-1322.

[6] S. Duri, U. Buy, R. Devarapalli, and S. M. Shatz,
"Application and Experimental Evaluation of State
Space Reduction Methods for Deadlock Analysis
in Ada," A CM Transactions on Software
Engineering Methodology, Vol. 3, No. 4, Oct.
1994, pp. 340-380.

[7] R. Gedela and S. M. Shatz, "Formal Modeling of
Advanced Tasking in Ada: A Petri Net
Perspective," 2nd International Workshop on
Software Engineering for Parallel and Distributed
Systems (PDSE-97), Boston, May, 1997, pp. 4-14.

[8] K. Jensen, "Coloured Pelri Nets: A High Level
Language for System Design and Analysis,"
Advances in Petri Nets 1990, G. Rozenberg
(Editor), in Lecture Notes in Computer Science,
483, Springer-Verlag, 1990.

[9] S.M. Shatz, et al, "Design and Implementation of a
Petri Net Based Tool kit for Ada Tasking
Analysis," IEEE Transactions On Parallel and
Distributed Systems, Oct. 1990, pp.424-441.

220

