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1. A B S T R A C T  

O n e  i m p o r t a n t  ro le  f o r  A d a  p r o g r a m m i n g  is 

to  a id  e n g i n e e r i n g  o f  c o n c u r r e n t  a n d  

d i s t r i b u t e d  so f twa re .  I n  a c o n c u r r e n t  a n d  

d i s t r i b u t e d  e n v i r o n m e n t ,  ob jec t s  m a y  execu t e  

c o n c u r r e n t l y  a n d  n e e d  to be  s y n c h r o n i z e d  to  

se rve  a c o m m o n  goal. T h r e e  bas ic  m e t h o d s  

by  w h i c h  objec ts  in  a c o n c u r r e n t  

e n v i r o n m e n t  c a n  be  c o n s t r u c t e d  a n d  

s y n c h r o n i z e d  h a v e  b e e n  i den t i f i ed  [1]. T o  

f o r m a l i z e  t he  s e m a n t i c s  o f  t hese  m e t h o d s  a n d  

to p r o v i d e  a f o r m a l  m o d e l  o f  t h e i r  co re  
b e h a v i o r ,  we p r o v i d e  s o m e  g r a p h i c  mode l s  
b a s e d  on  the  Pe t r i  n e t  f o r m a l i s m .  T h e  

p u r p o s e  o f  this  f o r m a l  m o d e f i n g  is to 

i l l u s t r a t e  the  poss ib i l i ty  of  a u t o m a t i c  

p r o g r a m  ana lys i s  f o r  o b j e c t - o r i e n t e d  f e a t u r e s  
in  Ada-95 .  M o d e l s  f o r  t he  t h r e e  d i s t r i b u t e d -  

o b j e c t  s y n c h r o n i z a t i o n  m e t h o d s  a r e  

d i scussed ,  a n d  a p o t e n t i a l  d e a d l o c k  s i t ua t ion  

f o r  one  o f  the  m e t h o d s / m o d e l s  is i l l u s t r a t ed .  

W e  c o n c l u d e  w i t h  s o m e  c o m p a r i s o n  o f  t he  
t h r e e  m e t h o d s  in  t e r m s  o f  t h e  m o d e l  
abs t r ac t i ons .  

1.1 K e y w o r d s  
Ada-95, concurrent objects, distributed software, 
synchronization methods, Patti net formalism 
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2. I N T R O D U C T I O N  
With the growing interest in concurrent and distributed 
computing applications, there is significant value in new 
capabilities to support the engineering of distributed 
software. One of the principle objectives of concurrent 
and distributed programming is to coordinate the behavior 
of concurrent tasks. This is aided by using object-oriented 
techniques in combination with concurrent programming. 
The resultant software systems consist of objects that 
execute concurrently and need to be synchronized to serve 
a common goal. There might be situations where access to 
an object is required by more than one other object or 
task. In such cases, it is vital to enforce synchronization. 
For example, consider a printer as an object. The services 
of this printer object (server) might be required by 
multiple t a s k s  (clients). This would require 
synchronization among the client tasks so that only one 
task at a time can gain access to the printer object. There 
are many such practical situations where synchronization 
is very important. Thus, synchronization among tasks 
accessing an object is a critical issue. 

In the specific context of Ada-95 [2], Burns and Wellings 
have identified three methods to ina'oduce 
synchronization among objects in a concurrent 
environment [ 1]. These methods are listed as follows: 

1. Synchronization is added if and when it is required, by 
extending the object. 

2. Synchronization is provided by the base (root) object 
type. 

3. Synchronization is provided as a separate protected 
type and the data is passed as a discriminant. 

Unfortunately, these methods can be difficult to 
understand due to the lack of an abslraction formalism. 
We have used Pelri nets [3] to formalize the behavior of 
these methods. Because PeUi nets are graphically based, 
the models provide a visualization result with well-defined 
dynamic behavior. Peui nets provide a graphic model that 
supports the fundamental concepts of concurrency, 
synchronization, and nondeterminism. In Patti net models, 
conditions are represented by "place nodes," depicted as 
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circles, and events are represented by "transition nodes," 
depicted by bars. Although we are not yet ready to discuss 
Figure 1, it provides an example of a Petri net graph. Note 
that directed arcs connect the place and ~ansition nodes 
and thus provide a logical connection between the holding 
of conditions and the occurrence of events. The other key 
component of a Petri net is its marking, which is a 
disu-ibution of tokens to place nodes. Tokens are 
represented by black dots, as can be seen in the place 
labeled L in Figure 1. As events occur (i.e., transitions 
fire), tokens are consumed from input places and 
deposited into output places. Due to lack of space in this 
paper, we are not able to provide a more complete 
introduction to Petri nets. Full details on this model, 
including associated analysis techniques, can be found in 
other references (e.g., [3]). There does exist some other 
published work on Petri net modeling for Ada. Among the 
earliest work is that of Mandrioli, et al [4], which focused 
on using Petri nets to provide a formal semantic for the 
basic tasking mechanisms of Ada-83. Earlier work by our 
own research group investigated the use of Petri nets for 
development of tools and techniques for automated 
concarrency analysis of software based on Ada tasking [5- 
6]. Again the focus was on Ada-83. More recent work 
provided a formal description of Ada-95 tasking 
constructs, such as the asynchronous transfer of control 
and requeue statement [7]. 

In the remainder of this paper, we will explain the various 
object synchronization methods and present associated net 
models for illustrative examples using these methods. We 
also discuss a potential deadlock situation and compare 
the three synchronization methods at the model level. 

3. SYNCHRONIZATION FOR 
CONCURRENT OBJECTS 
Among the three synchronization methods for concurrent 
objects in Ada-95, the first method, whose 
synchronization is added by extending the object, is the 
simplest one. In the original example for the first method 
by Burns and Wellings [1], procedures Opl and Op2, 
defined in package Object, are redefined in its child 
package Object.Synchronized and Rs grandchild package 
Object.Synchronized.Extended (as shown in Section 4.1). 
Since this kind of polymorphism is resolved at compile 
time, to make the formalism more obvious, we eliminate 
the polymorphism by changing the corresponding 
procedure name to Opl_syn, Opl_ext and so on. On the 
other hand, for both the second and third synchronization 
methods, a common procedure is used to dynamically 
dispatch the correct procedure for different parameters, 
and the polymorphism is resolved at execution time. In 
such cases, the dynamic behavior of those original 
examples are well-captured by the Petri net models. 

3.1 Synchronization Added by Extending the 
Object 
Let us first consider the method where synchronization is 
added if and when it is required by extending the object. 
This is the most general approach that could be followed 
to construct objects in a concurrent environment. The 
Obj_Type is defined as tagged and can be extended to 
facilitate synchronization. We remind the reader that this 
technique was introduced in [1]. Consider the following 
simple example: 

package Object is 

procedure Opl (O : in out Obj_Typc); 

procedure Op2 (O : in out Obj_Type); 

private 

type Obj_Type is tagged limited record ... end record; 

end Object; 

package Object.Synchronized is 

type Protected_Type is new Obj_Type with private; 

procedure Opl_syn (O : in out Protected_Type); 

procedure Op2_syn (O : in out Protected_Type); 

private 

type Protected_Type is new Obj_Type with 

record 

L : Mutex; 

end record; 

end Object.Synchronize.d; 

Type Mutex provides a simple mutual exclusion lock, and 
is defined by a protected type as follows: 

protected type Mutex is 

entry Lock; 

entry Unlock; 

end Mutex; 

In the body of package Object.Synchronized, procedm'es 
Op1_syn and Op2_syn can be defined to call the 
procedures Op I and Op2, defined in package Object, and 
to include the synchronization facilities: 

procedure Opl_syn (0 : in out Protected_Type) i s  

begin 

O.L.Lock; 

Opl(Obj_Type(O)); 
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O.L.Unlock; 

end Opl_syn; 

procedure Op2_syn (O : in out Protected_Type) is 

begin 

O.L.Lock; 

Op2(Obj_Type.(O)); 

O.L.Unlock; 

end Op2_syn; 

b~gin 
O.L.Lock; 

-- data processing 

O.L.Unlock; 

end Op3_ext; 

The use of package Object.Synchronized.Extended can be 
demonstrated by calling the procedure Opl_ext as 
follows: 

In this example, procedure Opl_syn takes O, a parameter 
of type Protected_Type, and makes an attempt to gain the 
lock. Then the procedure Opl, defined in Object, is called 
by passing Obj_Type(O) as a parameter. After the 
execution of the procedure Op 1, entry Unlock is called to 
release the Lock. Procedure Op2_syn has behavior similar 
to procedure Op l_syn. 

Now consider the following extension of the package 
Object.Synchronized: 

package Object.Synchronized.Extended is 

type Extended_Protected_Type is new Protected_Type 

with private; 

procedure Opl_ext (O : in out Extended_Protected_Type); 

procedure Op2_ext ((3 : in out Extended_Protected_Type); 

procedure Op3_ext (O : in out Extended_Protected_Type); 

private 

type Extended_Protected_Type is new Protected_Type 

with record ... end record; 

end Object.Synchronized.Extended; 

procedure Opl_ext (O : in out Extended_protected_Type) is 

begin 

O.L.Lock, 

Op l(Obj_Type(O)), 

O.L.Unlock; 

end Opl_ext; 

procedure Op2_ext ((3 : in out Extended_Protected_Type) is 

begin 

O.L.Lock; 

Op2(Obj_Type(O)); 

O.L.Unlock; 

end Op2..ext; 

procaxlure Op3__cxt (O : in out Extended_Protected_Type) is 

O : Extended_Protected_Type; 

Opl_ext(O); 

In package Object.Synchronized.Extended, procedures 
Opl_ext and Op2_ext are defined to have the same 
functional behavior as the procedures Opl_syn and 
Op2_syn, defined in package Object.Synchronized. The 
only difference is the formal parameter type, which is 
defined as Extended_Protected_Type. Procedure Op3_ext 
is a new procedure that is added to package 
Obj ect.Synchronized.Extended. 

The Object.Synchronized.Extended object can be 
modeled by a single Petri net as shown in Figure I. In this 
model, place L provides for mutual exclusion on the 
execution of procedure Opl_ext, Op2_ext and Op3_ext, 
which are represented as transitions opl_exr, op2_ext and 
op3_ext respectively. Note that we have ignored modeling 
the execution of procedure Opl_syn and Op2_syn, which 
are defined in package Object.Synchronized. This is 
because procedure Opl_syn and Op2_syn have the same 
functionality as those procedures Opl_ext and Op2_ext, 
which are defined in package 
Object.Synchronized.Extended, and they can be modeled 
in exactly the same way as shown in Figure 1. To 
understand the model behavior, assume that task A calls 
Opl_ext and task B calls Op2_ext simultaneously. Both 
transitions opl_ext and op2_ext can fire. resulting in a 
token in both places a and e. Under this condition, both 
transitions lock_opl_ext and lock_op2_ext will be enabled 
at the same time. However, due to the conflict firing these 
two transitions (i.e., the competition for the token in place 
L), only one of them will succeed. The other transition 
must wait until the procedure defined in package Object 
completes and the lock is released. The synchronization 
involving calls to Op3_ext is similar. 

3.2 Synchronization Provided by the Base 
Object Type 
The second method of providing synchronization to 
objects in a concurrent environment is synchronization 
provided by the base object type. In this method the base 
object incorporates the synchronization mechanism. 
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Consider a similar example as discussed in the first 
method. In this case the mutual exclusion lock is declared 

In this example, we declare the procedures Op l  and Op2 
to be abstract and private, and the class-wide operations, 

io~._opl_~t  

op 1 _ ~ t  

L 

tmloc&_op3_ext 

b 

i op2 

Q . 
I" 

h Obj_T~e(O) I 

m op3 I 

C)- t © 

~2_ext 

op2_~t  

op3_~t 

Figure 1. Object.Synchronized.Extended model 

in the base object. The  Ada code for this would be as 
follows: 

package Protected_Object is 

type Protected_Type is abstract tagged limited private; 

procedure Class_Wide..Op 1(O: in out Protected_Type'Class); 

procedure Class_Wide__Op2(O: in out Protected_Type'Class); 

private 

type Protected_Typ© is abstract tagged limited 

record 

L : Mutex; 

end record; 

procedure Opl (O : in out Prot~ted_TYtm) is abstract; 

procedure Op2 (O : in out Protected_Type) is abstract; 

end Protected_Object; 

Class_Wide_Opl and Class_wide_Op2, are being made 
the only interfaces that are exported from the package. 
Extensions of  the base object must implement the 
procedures Op l  and O132. The class-wide operations can 
now be defined in the package body as follows: 

procedure Class_Wide_Opl(O: in out Protected_Type'Class) is 

begin 

O.L.Lock; 

Opl (O); -- dispatch to correct operation 

O.L.Unlock; 

end Class_Wide_Op I ; 

procedure Class_Wide_Op2(O: in out Protected_Typel~lass) is 

begin 

O.L.Lock; 

Op2(O); -- dispatch to correct operation 
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O.L.Unlock; 

end Class_Wide Op2; 

The following code demonstrates 
Protected_Object: 

the usage of  this 

package Protected_Object.MLObject is 

type My_Object_Type is new Protected_Type 

with record ... end record; 

private 

procedure Opl (O : in out My_Object_Type); 

procedure O132 (O : in out My_Object__Type); 

end Protected_Object.My_Object; 

This method uses the dynamic dispatching mechanism. 
Depending on the object type of  the object that is passed 
as a parameter in the call to the procedure, the runt/me 
system directs the call to the appropriate code defined for 
that object type. The type can be extended, retaining the 
mutual exclusion, as long as the operations are called with 
the class-wide operator. For example, one extension of  the 
above is as follows: 

package Protected_Object.My Object.Extended is 

type Extended_Protected_Type is new My_Object_Type 

with private; 

procedure Class_Wide._Op3 (O: in out 

Extended_Protected_Type'Clas s); 

private 

type Extended_Protected_Type is new My_Object_Type 

with record ... end record; 

procedure Opl (O : in out Extended_Protected_Type); 

procedure Op2 (O : in out Extended_Protected_Type); 

procedure Op3 (O : in out Extended_Protected_Type); 

end Protected_Object.My_Object.Extended; 

The use of  package Protected_Object.My_Object can be 
demonstrated by calling the procedure Class_Wide_Opl,  
which is defined in package Protected_Object, with 
parameters of  different types My_Object_Type and 
Extended_Protected_Type as follows: 

MO: My_Object..Type; -- represented as color M in the 

-- following Petri net model 

Class_Wide_Op 1 (Me); 

EP: Extended_Protected_Type; -- represented as color E in the 

CI as s_Wide__Op 1 (EP); 
--following Petri net model 

For procedure Op3, if  mutual exclusion is also required, a 
new procedure Class_Wide_Op3 should be defined: 

p/ocedure Class_Wide_Op3 (O : in out 

Extended_Protected_Type'Class) is 

begin 

O.L.Loek; 

Op3(O); -- dispatch to correct operation 

O.L.Unlock; 

end Class_Wide_Op3; 

The object Protected_Object.My_Object.Extended can be 
modeled by the Petri net in Figure 2. 

When a call to Class_Wide_Opl is made with an object of  
type Extended_Protected_Type, the transition 
class_wide_opl fires. An output token with identity E 
(called the "color" of the token) is put in the place a )  
Color E signifies that the call to Class_Wide_Opl uses an 
object of  type Extended_protected_Type. The firing of 
lock_class_wide_op] models the gaining of  the lock and 
this transition firing puts an output token of color E in 
place b. Note that the firing of  transition opl or opl_ext is 
dependent on the color of  the token in place b. If  the 
token color is M, meaning that the object type is 
My_Object_Type, then ot71 would fire. But if the color is 
E, as in the present case, then the transition opl_ext will 
fire. This choice of  transition models the dynamic 
dispatching mechanism. When the transition opl_ext fires, 
an output token of  color E is put in place c. When the 
procedure execution is complete, the transition 
unlock_class_.wide_opl is enabled. Note that this 
transition can fire with an input token of  color M or E. 
The lock is released when the transition 
unlock_claas._wide_opl fires. Similarly, Class_Wide_Op2 
is modeled in the same way. Although the additional 
procedure Class_Wide_Op3 is also modeled as the 
transition class_wide_op3, this transition can fire only 
when the input token color is E. This is necessary since 
Class_Wide_Op3 is defined only on 
Extended_protected_Type and not on My_Object_Type. 

I This type of Petri net model that uses "colored" tokens (or 
tokens with attributes) is called a colored Petri net [8]. In 
colored Petri nets, a transition becomes enabled when its input 
places have tokens with attributes that match the inscriptions 
on the corresponding arcs from the place to the transition. 
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3.3 Synchronization Using a Protected Type 
with Data Parameters  
The third method of providing synchronization among 
concurrent objects is by using a protected type with the 
data passed as a discriminant. First, the base type is 
defined as protected and all of its protected operations are 
defined as abstract, which means extension of this base 
type must implement these operations. Then a protected 
type can be constructed, which has a class-wide access 
discrirninant as a formal parameter and has operations 
used to dispatch the appropriate operations according to 
the discriminant. Consider the following example: 

package Object is 

type Obj_Typc is abstract tagg~l null record; 

protected type Controller (O : access Obj_Type~lass) is 

procedure Opl; 

procedure Op2; 

end Controller; 

private 

procedure Opl ((3 : in out Obj_Typc) is abstract; 

procedure Op2 (O : in out Obj_Type) is abstract; 

end Object; 

procedure Opl is 

begin 

Op1(O.an); 
end O131; 

pmccdur¢ Op2 is 

begin 
Op2(O.aU); 

end Op2; 

In Object, the base type Controller and its operations Opl 
and Op2 are defined as a protected type. The data type 
Obj_Type~lass is passed to the protected type Controller 

lock._r.,LaM_wid e._op ] Iock_cla~_.wide_op2 

. u  n l . - ~  ess_ .w~d~Ock F.IaB widc_opZ unlock claz, s_widc_op 1 

opl • 

cba, s_wide_opt 

Figure 2. Prgtccted_Object.My Objcct~xtend~l model 
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as a discriminant. 

The usage of  Object is 
segment of  code: 

d e m o n s t r a t e d  by the following 

package Object.My_Object is 

type My_Obj is private; 

private 

type My_Obj is new Obj_Type with record ... end record; 

procedure Opl(O : in out My_Obj); 

procedure Op2(O : in out My_Obj); 

end Object.My_Object; 

O : aliased My_Obj; 

contr : Controller(O'Aecess); 

contr.Op I; 

Package Object.My_Object extends Obj_Type and 
defines Opl  and Op2, with parameters of  type My_Obj. 
Mutual exclusion over Opl  and Op2 is ensured by the 
definition of  protected declaration of  the Controller. This 
method has the similar mechanism as the second method. 
But, one disadvantage of  this method is that new 
operations cannot be added into the Controller, because a 
protected type cannot be extended. 

How consider an extension o f  Object.My_Object: 

package Object.My_Object.Extended is 

type My_Obj_Ext is private; 

private 

type My_Obj..Ext is new My_Obj with record ... end record; 

procedure Opl (O : in out My_Obj_Ext); 

procedure Op2 (O : in out My_Obj_Ext); 

end Object.My_Object.Extended; 

The use of  package Object.My_Object.Extended can be 
demonstrated by calling the protected object Controller 
with different parameters as follows: 

OM : aliased My_Obj; -- represented as color O in the 

-- following Petri net model 

contrl : Controller (OM'Access); 

contrl.Opl; 

OE: aliased My_Obj_Ext; -- represented as color E in the 

-- following Petri net model 

contr2: Controller (OE'Access); 

contr2.Op 1; 

The above extension defines a new type, My_Obj_Ext,  an 
extension o f  My_Obj, and defines procedures Opl  and 
Op2 for parameters of  type My_Obj_Ext.  A Petri net 
model of  this situation is shown in Figure 3. 

When a call to Op l  is made by an object of  type 
Controller with a data discriminant of  type My_Obj_Ext,  
the transition opl_protected_start fires, and an output 
token of  color E is put in place a. Color E signifies that 
the data discriminant of the object of  type Controller is of 
the type My_Obj_Ext.  Firing of  the transition 
opl__protected_start removes the token in controller 
place, thus disabling any other calls to the protected 
procedures Opl  and Op2. Now, the i-wing of  transition 
opl or opl_ext is dependent on the color o f  the token in 
place a. I f  the token color is O, meaning that the data 
discriminanl of  the calling object of  type Controller is of  
the type My_Obj, then transition, opl would fire. But, if  
the token color is E, which is the present case, the 
transition op]_ext would fire. Again, this choice of  firing 
of  transitions, based on the color of  the token in the input 
place, models the dynamic dispatching mechanism. Now, 
the transition opl__protected_end can fire, taking away a 
token of  color E from place b and putting an output token 
in controller place. This models the end of  the protected 
operation associated with executing Opl ,  so other objects 
waiting to gain access can now proceed. 

4. DISCUSSION 

4.1 Potential Deadlock Problem 
One disadvantage with the first method is that when the 
type Object.Synchronized is further extended, there are 
circumstances that can cause a potential for deadlock. To 
make the deadlock situation not so obvious, we rewrite 
both the child package Object.Synchronized and the 
grandchild package Object_Synchronized_Extended as 
follows, which are the same as those in Burns and 
Wellings's original example [1]: 

package Object.Synchronized is 

type Protected_Type is new Obj_Type with private; 

procedure Opl (O : in out Protected_Type); 

procedure O132 (O : in out Protected_Type); 

private 

type Protected_Type is new Obj_Type with 

record 

L : Mutex; 

end record; 

end Object.Synchronized; 
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Figure 3. Object.My_Object.Extended model 

package body Object.Synchronized is 

procedure Opl (O : in out Protected_Type) is 

begin 

O.L.Lock; 

Opl (Obj_Type(O)); 

O.L.Unleck; 

end Opl; 

. . .  

end Object.Synchronized; 

package Object.Synchronized.Extended is 

type Extended_Protected_Type is new Protected_Type 

with private; 

procedure O1)1 (O : in out Extended..Protected_Type); 

procedure Op2 (O : in out Extended_Protected_Type); 

procedure O1)3 (O : in out Extended_Protected_Type); 

private 

type Extended_Protected_Type is new Pro|ected_Type 

with record ... end record; 

end Object.Synchronized.Extended; 

package body Object.Synchronized.Extended is 

procedure Opl (O : in out Extended_Protected_Type) is 

begin 

O.L.Lock; 

-- pre_processing; 

Op 1 (Protected_Type(O)), 

-- post__processing; 

O.L.Unlock; 

end Opl; 

end Object.Synchronized.Extended; 

The use of package Object.Synchronized.Extended can be 
demonstrated by calling the procedure Opl with a 
parameter of type Extended_Protected_Type as follows: 

0 : Extended_Protected_Type; 

Opl(O);  
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In this example, the procedures Opl and Op2, which are 
defined in package Object, are redefined in both of its 
child package Object.Synchronized and grandchild 
package Object.Synchronized.Extended. The resolution of 
this polymorphism is made according to the parameter 
types at compile time. So, in our Petri net model, they are 
represented as different transitions. Similar as before, the 
procedures Opl defined in package Object, its child 
package Object.Synchronized and its grandchild package 
Object.Synchronized.Extended are represented as 
transitions Opl, Opl_syn and Opl e:ct respectively. The 
most significant difference between this example and the 
one in Section 3.1 is that here procedure Opl, defined in 
package Object.Synchronized.Extended, calls the 
procedure Opl with a parameter of type Protected_Type 
rather than Obj_Type as before. At compile time, it is 
determined that the actual called procedure Opl is the one 
which is defined in package Object.Synchronized. The 
Petri net model for this revised version of 
Object.Synchronized.Extended is shown in Figure 4. To 
make the deadlock detection more obvious, we ignore 
modeling the execution of procedures Op2 and Op3, 
which are defined in grandchild package 
Object.Synchronized.Extended. They can be modeled 
exactly the same as in Figure 1. 

In the model of Figure 4, when a call to Opl, defined in 
package Object.Synchronized.Extended, is made with an 
object of type Extended_ProtectedType, the transition 
opl_ext fires and a token is deposited into place a. The 
firing of the enabled transition lock_opl_ext takes the 
token from place L and deposits an output token in place 
b. This models the acquisition of the lock by the object 
that called procedure Op 1, defined in 
Object.Synchronized.Extended. The firing of transition 
pre_processing models the starting of some arbitrary data 

processing. Upon the completion of this data processing, a 
call is made to Opl, defined in package 
Object.Synchronized, with type ProtectedType. The 
conversion of type is modeled by the t-wing of the 
transition Protected_Type(O), and the call is modeled by 
the firing of the transition opl_syn, as was used in the 
previous model of Figure 1. But now, the procedure Opl, 
defined in package Object.Synchronized, tries to again 
obtain the lock. In this state, where there is a token in 
place e but no token in place L, the transition 
lock_opl_syn is not enabled. The resulting deadlock is 
naturally captured and can be visualized in the model by 
the lack of any enabled transition. 

4.2 Some Comparison Comments on the Net 
Models 
The study of the Petri net models for different methods of 
providing synchronization among concurrent objects 
provides us an opportunity to compare them to identify 
model relationships at the code level. The model in Figure 
1 is comparable to the models in Figure 2 and Figure 3. 
One significant difference among these is the use of 
colored Petri nets for the later two methods, whereas an 
uncolored Petri net is sufficient to model the first method. 
A study of the models reveals that the model in Figure 2 
actually contains the models used in Figures 1 and 3. For 
example, in Figure 2 the firing sequence class_wide_opl, 
lock_class_wide_op l , op l_ext, unlock_class_wide_op l is 
comparable to the firing sequence opl_ext, lock_ext_opl, 
Obj_Type(O), Opl, unlock_ext_opl in Figure 1 and the 
firing sequence op I..protected_start, op l_ext, 
opl_protected_end in Figure 3. A similar situation exists 
for the firing sequence for class_wide_op2. However, 
consider the firing sequence in Figure 2 for 
class_wide_op3, namely class_wide_op3 , 
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lock_class__ wide_op3, op3_ext, unlock_class_wide_op3. 
This has a comparable firing sequence op3_ext, 
lock_ext_op3, op3, unlock_ext_op3 in Figure 1, but there 
is no such firing sequence in Figure 3. The reason for this 
is that in the third method we cannot extend the protected 
type with respect to adding new protected procedures. 

Note that the model in Figure 1 transition opl_ext can 
only accept calls with a parameter of type 
Extended_Protected_Type, but not of type 
Protected_Type. On the other hand, both models in Figure 
2 and Figure 3 have the capability of handling all the 
extensions of the base class with a common transition, say 
class_wide_opl or opl_protected_sturt. This advantage is 
due to the dynamic dispatching mechanism in these 
methods. 

4.3 Future Work 
A well-known advantage of Petri nets is their potential for 
formal analysis. By translating Ads code into Petri nets, 
we may achieve the goal of automated analysis of Ada 
programs, such as automated deadlock analysis of Ads 
programs as we had done before [6]. The critical issue 
here is how to automatically translate Ada code into Petri 
nets, since constructing a model manually is not only 
error-prone but also unrealistic for a large program. In our 
previous work, we have successfully developed a tool kit 
called TOTAL (the tasking-oriented tool kit for the Ada 
language) [9] to build correct models for Ada tasking by 
using compiler techniques. Our future work will further 
this technique and enhance this tool kit to include the 
object-oriented features in Ada-95 programming. The 
work done in this paper indicates that automated 
translation is possible and has potential to aid validation 
of object interactions. 

5. C O N C L U S I O N  
Formal modeling of the synchronization constructs for 
concurrent objects in Ada is difficult due to the need to 
properly capture many behaviors that are interdependent. 
In this paper, we have presented and discussed a means to 
model these constructs using the Petri net modeling 
formalism. Petri nets have been chosen because they tend 
to provide a visual, and thus easy to understand, model. 
Also, Petri nets are well matched to the problem due to 
their inherent support for modeling concurrency, 
nondeterminism, synchronization, and mutual exclusion. 
We developed models for three different object 
synchronization methods. These methods were defined in 
terms of Ada-95 and presented in [1]. As a simple 
example, we described how a deadlock situation caused 
by improper object synchronization design can be 
observed in terms of a standard Petri net deadlock. Also 
we provided some comparison comments on the 
synchronization methods in terms of  their formal model 

attributes. The value of this type of modeling is revealed 
by our plans for future work. 
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