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Ontology alignment is widely used to find the correspondences between different ontologies in diverse fields.

After discovering the alignments, several performance scores are available to evaluate them. The scores typi-

cally require the identified alignment and a reference containing the underlying actual correspondences of the

given ontologies. The current trend in the alignment evaluation is to put forward a new score (e.g., precision,

weighted precision, semantic precision, etc.) and to compare various alignments by juxtaposing the obtained

scores. However, it is substantially provocative to select one measure among others for comparison. On top

of that, claiming if one system has a better performance than one another cannot be substantiated solely by

comparing two scalars. In this article, we propose the statistical procedures that enable us to theoretically

favor one system over one another. The McNemar’s test is the statistical means by which the comparison of

two ontology alignment systems over one matching task is drawn. The test applies to a 2 × 2 contingency

table, which can be constructed in two different ways based on the alignments, each of which has their own

merits/pitfalls. The ways of the contingency table construction and various apposite statistics from the Mc-

Nemar’s test are elaborated in minute detail. In the case of having more than two alignment systems for

comparison, the family wise error rate is expected to happen. Thus, the ways of preventing such an error are

also discussed. A directed graph visualizes the outcome of the McNemar’s test in the presence of multiple

alignment systems. From this graph, it is readily understood if one system is better than one another or if

their differences are imperceptible. The proposed statistical methodologies are applied to the systems par-

ticipated in the OAEI 2016 anatomy track, and also compares several well-known similarity metrics for the

same matching problem.
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1 INTRODUCTION

With the advancement in information technology, data these days come from various sources.

Such data have multiple salient but unwelcome features: they are big, dynamic, and heteroge-

neous. There are solutions to cope with any of these features, and ontology alignment (or mapping/

matching) is a remedy to data heterogeneity (Euzenat et al. 2007).

Given the source and target ontologies for alignment, a correspondence is defined as the map-

ping of one concept in the source to one concept in the target ontology. For discovering cor-

respondences, it is typical to utilize one or more similarity measures. There are three different

categories for the similarity calculation (Euzenat et al. 2007). The first category is the string-based

measures, which only considers the text of concepts to compute their similarities (Cohen et al. 2003;

Levenshtein 1966; Stoilos et al. 2005). Another group is the linguistic-based similarity measures,

which consider the linguistic relations, e.g., synonym, antonym, hypernym, and the like, between

the strings of two concepts. The linguistic-based similarity measures usually take advantages of

WordNet (Miller 1995) to discover the similarity. The third class is the structural-based measures

that take into account the position of concepts in their ontologies.

Yet, another approach is to match the entities of two given ontologies based on their instances

(Xue and Wang 2015). The underlying assumption behind this type of alignment is that two entities

are similar provided that they share, more or less, analogous instances.

Traditionally, the challenge of ontology alignment was to come up with a new similarity mea-

sure and then to find the interrelation between the ontologies (Stoilos et al. 2005). However, this

focus has moved to take advantages of various similarity measures and try to reason correspon-

dences based on the outcomes of various metrics (Jan et al. 2012; Nagy et al. 2006).

An alignment, which is the result of any standard ontology matching system, comprises a set of

correspondences, mapping various concepts of one ontology to those of the other. It is the com-

mon practice to find the goodness of an alignment system by comparing its output with the actual

reference alignment which is in hand. The typical performance scores are the precision and recall

along with their variation such as relaxed precision and recall (Ehrig and Sure 2004), semantic

precision and recall (Euzenat 2007), and so on. However, it is controversial to select the appro-

priate performance score in different cases. For instance, the comparison based on precision and

recall would lead to totally different results. A system can be quite precise and discover as few

false correspondences as possible, e.g., high precision, but could be conservative and not be able

to detect an acceptable portion of correspondences, e.g., low recall. In addition to the selection of a

performance metric, claiming the superiority of a system against one another cannot be substanti-

ated merely by comparing the acquired scores. The difference between the performance measures

of two systems could be small and imperceptible, thereby asserting the superiority of one system

might not be correct. One approach to support such allegations and verify if the difference be-

tween two systems is substantial would be the statistical analysis. In this article, the appropriate

procedures are put forward to statistically opt for one system if it has an enhanced performance

than the other.

A note of caution is in order at this point, however. According to the no free lunch theorem

(Wolpert 2012; Wolpert and Macready 1997), there is no context-independent reason to favor one

strategy (or optimization method) over one another, and the average performances of all strategies

over all possible problems are the same. It is drawn, as a result, that the superior performance of

one method over one another is due to its better fitness to the nature of the problem, not because

of its inherent features. Any claim of performing the best in a general sense must be questioned

and faced with doubts.

The no free lunch theorem is first introduced in the supervised machine learning realm (Wolpert

1996), but it is generalized to any optimization problem afterward (Wolpert and Macready 1997).
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Therefore, the results of the no free lunch theorem are also correct for the ontology matching

problem, and the preferred alignment can be only recognized in one particular context.

To date, the attempt of claiming if one alignment system is better than one another has been

solely concentrated on employing a new performance score, e.g., semantic precision, relaxed preci-

sion, and the like (Ehrig and Sure 2004; Euzenat 2007; Ritze et al. 2013). If there are multiple pairs of

ontologies for comparison, the superiority of a system is dedicated only if its average performance

across multiple pairs of ontologies is higher than the rest. Statistically speaking, the average per-

formance is unsafe and inappropriate: it is highly sensitive to outliers and having higher average

performance does not necessarily indicate the superiority since the difference might be impercep-

tible and insignificant (Demšar 2006). In the case of existing only one pair of ontologies, on the

other hand, the comparison is merely performed by the juxtaposition of the performance metric

of various systems.

As a complement to the no free lunch theorem, this article aims to consider the statistical hy-

pothesis testing to find the best ontology alignment on a particular task. Employing the appro-

priate statistical test, one can determine if one alignment system outperforms one another with

substantial statistical evidence. Instead of comparing one alignment with the reference one, the

recommended methodology here takes the reference along with two alignments under compari-

son as the inputs and states if one of them statistically outperforms the other. Thus, the expected

outcome is not a score but the statement of superiority of an alignment in comparison with one

another.

In the case that there are multiple tasks, various statistics such as Wilcoxon signed-rank and

Friedman tests can be applied to a particular performance score obtained for each matching task

(Mohammadi et al. 2018). In order words, the performance scores obtained from each task become

the samples; hence, the difference between systems can be gauged by conducting statistical tests

over the samples. However, it is not the case for comparison over one matching task since there is

no such samples.

The McNemar’s test is the statistical means by which the various matching systems can be com-

pared over one matching task. This test can be applied to the paired nominal data summarized in a

contingency table with a dichotomous trait. Interestingly, the outcome of two alignment systems

can be viewed as dichotomous (i.e., correct and incorrect correspondences) of two experiments (i.e.,

two alignment systems). Therefore, the McNemar’s test suits for comparison of alignments. How-

ever, summing up the results of alignments in a contingency table would be challenging and might

erupt discussions. We present two ways to build such a contingency table whose applicabilities is

conceptually similar to those of recall and F-measure. Further, four statistics from the McNemar’s

tests are considered, and their advantages and pitfalls are discussed. In the case of having two

systems for comparison, the McNemar’s test can be simply applied. If more than two alignments

are available, all pairwise comparisons must be performed. In this case, the family wise error rate

(FWER) is likely to happen and must be controlled (Shaffer 1995). The appropriate procedures for

the FWER prevention are elaborated as well.

We leverage the proposed methodology across the systems participated in the OAEI 2016

anatomy track, and the corresponding results are visualized by a directed graph. This graph in-

dicates if the difference between each pair of systems are significant or not. Our investigation

shows that AML and CroMatcher are the top two systems, while DKP-AOM and Alin are the

ones with reduced accomplishment. We further compare the string-based similarity measures

over this track because many correspondences can be easily discovered by comparing the strings.

The N-gram and Levenstein distances are the ones with the maximum discovery with respect to

others.
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Table 1. A Simple Contingency Table

Exp. 2

− + sum

Exp. 1 − n00 n01 n0.

+ n10 n11 n1.

sum n .0 n .1 N

The contribution of this article can be summarized as

—The utilization of the McNemar’s test to conduct the comparison of alignment systems.

—Two ways of using the McNemar’s test are proposed that are conceptually identical to those

of recall and F-measure.

—The technique for the FWER is thoroughly discussed.

—The outcome of the statistical procedure for comparison of multiple systems is visualized

by a directed graph.

—The systems participated in the OAEI anatomy track are compared and the corresponding

results are reported.

This article is structured as follows. The ways of the contingency table construction are ex-

pounded in Section 2, and the appropriate statistics from the McNemar’s test are discussed in

Section 3. The FWER and the ways of adjusting the p-values are studied in Section 4. Section 5

dedicates to the experiments of the statistical procedures over the anatomy track, and the article

is concluded in Section 6.

2 CONTINGENCY TABLE CONSTRUCTION

The McNemar’s test is applicable when there are two experiments over N samples (McNemar

1947). Let the outcome of each test be either positive or negative; then, a simple contingency table

would be as Table 1.

In this table, n00 and n11 are called the accordant pair and are, respectively, the number of times

both experiments produce positive and negative outcomes. The discordant pair, i.e., n01 and n10,

are the number of times the results of experiments are in contradiction; n01 is the number of

experiments, which the first outcome is negative, while the second one is positive and n10 is the

other way around.

In the ontology matching case, the positive or negative outcome can be defined in two ways,

each of which has its own merits and is suitable for particular situations.

For two given ontologies, let R be the reference alignment containing a set of correct correspon-

dences andA1 andA2 be two alignments retrieved by two different systems. In the first approach of

the contingency table construction, the focus is solely on the truly discovered alignments, thereby

ignoring the concepts which have not correctly mapped. Hence, n00 and n11 are, respectively, the

number of false correspondences and the number of correct correspondences jointly identified by

both systems. n01 (and similarly n10) is the number of correspondences correctly discovered by A2,

but not by A1. These elements can be written as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

n00 = |R − (A1 ∪A2) |
n01 = |(A2 ∩ R) −A1 |
n10 = |(A1 ∩ R) −A2 |
n11 = |A1 ∩A2 ∩ R |,

(1)

where |.| indicates the cardinality operator. This approach is conceptually similar to recall as it

does not consider the wrong correspondences in the alignments. We again accent that the approach
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of this article is distinct from the performance measures, including recall, as we compare two

alignments and do not produce any score indicating the fineness of a system.

An example elaborates the issue of this approach. Assume that two systems could discover

the complete reference alignment, i.e., A1 = A2 = R. In this case, n01 = n10 = 0 which means that

they are equally well (it is discussed in further sections that n01 and n10 are the only important

pair for the McNemar’s test). Now, suppose that A1 = R and A2 = R + B, where B is a set of

correspondences that are not in R (falsely discovered by A2). In this case, n01 is the same as n10

which again indicates that their performances are indiscernible. However, it is plain to grasp

that A1 is more reliable as it does not mistakenly discover any correspondences. Statistically

speaking, this approach does not take into account the false positive and only considers the true

positive. Nonetheless, such an approach is suitable for occasions where the goal is to have as

many correspondences as possible so that the false discovery does not have a profound impact.

The second approach of building the contingency table avoids the foregoing pitfall and consider

the false discovery as well. Since it considers the truly unmapped pairs of concepts, obtaining

the elements of the contingency table is of higher complexity in comparison with the previous

approach. Therefore, it is necessary to explain how to obtain each element of the table individually.

n00 is the number of correspondences, which are wrongly discovered by both alignments. Hence,

it includes the correspondences that are in R but not in A1 or A2 plus the correspondences which

are in both A1 and A2 but not in R, i.e., n00 = |R − (A1 ∪A2) | + |(A1 ∩A2) − R |. n10 is the number

of truly discovered correspondences by A1 which are not in A2 plus the correspondences which

are falsely identified only by A2 and not by A1, i.e., n10 = |(A1 ∩ R) −A2 | + |A2 −A1 − R |. By the

same token, n01 can also be obtained. n11 is a bit more challenging as the total number of possible

correspondences between two ontologies is required. Let this number be T , one possibility for T
is to multiply the number of concepts of two ontologies, i.e., T = n ×m, where n and m are the

numbers of candidate concepts for matching in two ontologies. Thus, n11 = |A1 ∩A2 ∩ R | + |(T −
R) − (A1 ∪A2) |. The statistics considered in this article only need the discordant pair; therefore,

the value of n11 and subsequently, T is not taken into account. The elements as mentioned earlier

of the contingency table from the second approach can be summarized as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

n00 = |R − (A1 ∪A2) | + |(A1 ∩A2) − R |
n01 = |(A2 ∩ R) −A1 | + |A1 −A2 − R |
n10 = |(A1 ∩ R) −A2 | + |A2 −A1 − R |
n11 = |A1 ∩A2 ∩ R | + |(T − R) − (A1 ∪A2) |,

(2)

This way of the contingency table construction considers the false correspondences as well. The

foregoing example illustrates the advantages of these formulas. AsA1 = R andA2 = R + B, n01 = 0

and n10 = |B |. The null hypothesis is thus rejected for large enough of B, and A is claimed to be

superior. Therefore, the false positive of B resulted in declaring A to be the better system. Note

that this calculation is relative to the other system. In other words, it does not consider all the

incorrectly identified correspondences, but the false correspondences are computed as the ones

which are not in the rival system. As the goal is to compare two alignments together, it is entirely

logical to find the relative false positive. This approach can be figuratively viewed as similar to

F-measure due to its consideration of both true and false discoveries.

3 MCNEMAR’S TEST

The McNemar’s test is applied to the contingency table constructed in the previous section. But

before looking into the test, we digress briefly to explain the null hypothesis testing.

To leverage any statistical test, the null and alternative hypotheses are required. The null hy-

pothesis H0 states that the difference between two populations is insignificant, and the existing

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 4, Article 51. Publication date: June 2018.



51:6 M. Mohammadi et al.

discrepancy is due to the sampling or experimental errors (Sheskin 2003). The alternative hypoth-

esis, on the other hand, states the contrary: the difference between two populations is significant

and not random.

To reject or retain H0, we need to compute the p-value and compare it with significant level

α , which must be determined before running the test. The p-value is the probability of obtaining

a result equal to, or even more extreme than, the observations given the null hypothesis is true

(Sheskin 2003). If the p-value is less than the nominal significant level α , then the null hypothesis

is rejected, and it is drawn that the disparity between populations is significant.

In comparison of ontology alignment systems, the populations mentioned above are the out-

comes of two systems. Therefore, the null hypothesis is that the difference between the outcomes

of alignments is random and insignificant. The null hypothesis in the McNemar’s test states that

the two marginal probabilities of the contingency table are the same, i.e.,

p (n00) + p (n01) = p (n00) + p (n10)

p (n10) + p (n11) = p (n01) + p (n11), (3)

wherep (a) indicates the probability of occurring the cell of Table 1 with the label a. After canceling

out thep (n00) andp (n11) from the foregoing equations, the null and alternative hypotheses become

H0 : p (n01) = p (n10)

Ha : p (n01) � p (n10). (4)

To compute the p-value of the null hypothesis (4), we consider four statistics from the McNemar’s

test and discuss their advantages and pitfalls in the hypothesis testing. The statistics studied here

only work with the accordant pair of the contingency table. However, there is also an exact un-

conditional McNemar’s test that takes into account the discordant pair of the contingency table

(Suissa and Shuster 1991). The exact unconditional test is way more intricate than the McNemar’s

tests put forward here, but its power is approximately the same as other tests (Fagerland et al.

2013). Therefore, this test is ignored in this article.

3.1 The McNemar’s Asymptotic Test

The McNemar’s asymptotic test assumes that n01 is binomially distributed with p = 0.5 and pa-

rameters n = n01 + n10 under the null hypothesis (McNemar 1947). The McNemar’s asymptotic

statistic

χ 2 =
(n01 − n10)2

n01 + n10

is distributed according to χ 2 with one degree of freedom. This test is undefined for n01 = n10 = 0.

To reject the null hypothesis, this test requires a sufficient number of data (n01 + n10 ≥ 25) since

it might violate the nominal significant level α for the small sample size.

3.2 The McNemar’s Exact Test

It is traditionally advised to use the McNemar’s exact test when a small sample size is available

in order not to exceed the nominal significant level. In this test, n01 is compared to a binomial

distribution with parameters n = n01 + n10 and p = 0.5. Thus, the p-value for this test is obtained

as

exact-p-value =

n∑
x=n01

(
n
x

) (
1

2

)2

.
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The two-sided p-value is calculated by multiplication of the one-sided p-value by two. This test

guarantees to have type I error rate below the nominal significant level α .

3.3 The McNemar’s Asymptotic Test with Continuity Correction

The main drawback of the McNemar’s exact test, though preserving the nominal significant level,

is conservatism: it unnecessarily generates large p-values so that the null hypothesis cannot be

rejected. As a remedy to conservatism, Edwards (Edwards 1948) approximated the exact p-value

by the following continuity corrected statistic

χ 2 =
( |n01 − n10 | − 1)2

n01 + n10

which is χ 2-distributed with one degree of freedom. This test is also undefined for n01 = n10 = 0.

3.4 The McNemar’s Mid-p Test

The continuity corrected method is not as conservative as the exact test, but it does not guaran-

tee to preserve the nominal significant level. The mid-p-approach propounds a way to tradeoff

between the conservatism of the exact tests and the significant level transgression of the con-

tinuity correction approach (Lancaster 1961). To obtain the mid-p-value, a simple modification is

required: the mid-p-value equals the exact p-value minus half the point probability of the observed

test statistic (Fagerland et al. 2013). Hence, the p-value could be computed as

mid-p-value = 2-sided exact p-value −
(
n
n01

)
0.5n .

The McNemar’s mid-p-test resolves the conservatism of the exact test, but it does not guarantee

theoretically to preserve the nominal significant level. In a recent study, however, it is investigated

that the mid-p-test has low type I error and does not violate the significant level. The continuity

corrected test, in contrast, indicated a high type I error, coming from the nature of asymptotic

tests, as well as high type II error, inherited from the exact test. Thus, it is rational not to use the

continuity corrected test for the alignment comparison.

4 FAMILY-WISE ERROR RATE AND P-VALUE ADJUSTMENT

When there are two systems for comparison, the null hypothesis will be rejected if the obtained

p-value is below the nominal significant level α . If more than two alignments are available for

comparison, the well-known FWER might occur. FWER refers to the increase in the probability of

type I error, which is likely to violate the nominal significant level α when multiple populations

are to be compared. To explain what FWER is, assume that there are five systems for comparison

and the significant level is α = 0.05. If it is desired to do all the pairwise comparisons, then there

are k = 5 × 4/2 = 10 hypotheses overall. For each of null hypotheses, the probability of rejection

without occurring the type I error is 1 − α = 0.95. For all comparisons, on the other hand, the

probability of not having any type I error in all the hypotheses is (0.95)10 = 0.6. As a result, the

probability of occurring at least one type I error increases to 1 − 0.6 = 0.4, which is way higher

than the nominal α = 0.05. This phenomenon is the so-called FWER.

To prevent this error, there are two primary approaches. Akin to the preceding example, the first

approach is applicable when all the pairwise comparisons are desired. Conducting all pairwise

comparisons are suitable when a comparison study of the existing systems in the literature or

their competition in a competition like OAEI is desired. Another approach to control FWER is

convenient when a new alignment system is proposed and it is to be compared with other existing
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ones. In the interest of simplicity, the former approach is called N × N comparisons and the latter

is called N × 1 comparisons.

4.1 Controlling FWER in N × 1 Comparison

When a new alignment system is proposed, it is usually compared with other existing ontology

matchers. For comparing n systems (including the proposed one) in this case, k = n − 1 compar-

isons must be performed. There are four methods, which can control the FWER in this case. These

methods can be viewed as the p-value adjustment procedures, which modify the p-values in a way

that the adjusted p-values (APV) can be directly compared with the significance level while the

nominal significant level is also preserved. Thus, a null hypothesis is rejected if its corresponding

adjusted p-value is below the nominal α .

Let Hi , i = 1, . . . ,k be all hypotheses for n systems and pi , i = 1, . . . ,k be their corresponding

p-values. The Bonferroni’s method (Dunn 1961) is the most straightforward way to prevent FWER.

In this procedure, all the p-values are compared with the nominal significant level α divided by the

total number of comparisons. In other words, the hypothesis Hi is rejected if pi < α/k . Based on

this equation, the adjusted p-value for the hypothesis Hi is obtained by multiplying both sides of

above inequality by k , i.e., APVi = min{k × pi , 1}. Thus, Hi is rejected if APVi < α . This procedure,

though simple, is too conservative: it retains the hypotheses which must be rejected by generating

high APV.

In contrary to the single step Bonferroni’s correction, there are step-up and step-down proce-

dures that sequentially reject the null hypothesis. It is necessary to order p-values for sequential

rejective procedures and we denote the ordered p-values as p1 ≤ p2 ≤ · · · ≤ pk and their corre-

sponding hypotheses as H1,H2, . . . ,Hk .

The Holm’s procedure (Holm 1979) is a step-down method, which starts with the most signif-

icant (or the smallest) p-value p1. If p1 ≤ α
k

, then H1 is rejected, and p2 is compared with α
k−1 . If

p2 ≤ α
k−1 , then H2 is rejected, and p3 is compared with α

k−2 . This procedure continues until a hy-

pothesis is retained. In other words, each pi in the Holm’s method is compared with α
k+1−i

and it is

rejected if it is below this value; otherwise, it is not rejected and the rest hypotheses are retained

as well. The Holm’s adjusted p-value is APVi = min{vi , 1}, where vi =max {(k − j )pj : 1 ≤ j ≤ i}.
Similar to the Holm’s procedure, the Holland’s correction (Holland and Copenhaver 1987) is

also a step-down method. Instead of comparing the p-values with α
k+1−i

, it compares each pi with

1 − (1 − α )k−i . Thus, the adjusted p-value isAPVi = min{vi , 1},wherevi =max {1 − (1 − pj )
k+1−j :

1 ≤ j ≤ i}. The Finner’s procedure (Finner 1993) is almost the same as the Holland’s technique and

compares each pi with 1 − (1 − α )
k
i . The Finner’s adjusted p-value is APVi = min{vi , 1}, where

vi = max{1 − (1 − pj )
k
j : 1 ≤ j ≤ i}.

The Hochberg’s method (Hochberg 1988) works in the opposite direction and starts with the

largest p-value. It compares the largest p-value withα , the next largest withα/2 and it is terminated

until a hypothesis is rejected. All the hypotheses with the smaller p-values are then rejected as well.

The Hochberg’s adjusted p-value is APVi = max{(k − j )pj : (k − 1) ≥ j ≥ i}.

4.2 Controlling FWER in N × N Comparison

For performing all the pairwise comparisons whenn systems are available, there arek = n(n − 1)/2
hypotheses overall. The Nemenyi’s method (Nemenyi 1963) is exactly the Bonferroni’s correction

with k is set to the N × N comparison, i.e., k = n(n − 1)/2. Thus, it has high type II error, which

results in not detecting the difference among the population when there is a de facto difference.

The same modification of k must be applied to other methods so that they are suitable for N × N
comparison case.
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There is also another sequential-rejective null hypothesis approach, which is suitable for N × N
comparison. This approach takes into account the logical relations between hypotheses. Shaffer

(1986) discovered that the Holm’s procedure could be improved when hypotheses are logically in-

terrelated. In many scenarios, it is not feasible to get any combination of true and false hypotheses.

In the pairwise comparison, for instance, it is not possible to have μ1 = μ2 and μ2 = μ3 but μ1 � μ3.

Thus, this case need not be protected against FWER.

Correction procedures which take into account the logical relations are similar to the Holm’s

correction: they start with the most significant (or the smallest) p-value but compare it with α/t1,

where t1 is the maximum number of hypotheses that can be retained at the first step. If p1 < α/t1,

then the corresponding hypothesis H1 is rejected, and p2 is compared with α/t2. If H2 is rejected,

then p3 is compared with α/t3 and so on. The procedure terminates at the stage j if Hj cannot be

rejected. The remaining hypotheses with bigger p-values than pj are also retained. The adjusted

p-value for the sequential corrective methods is APVi = min{vi , 1}, where vi = min{ti × pi , 1}.
There are two well-known techniques that consider the logical relations of hypotheses:

Shaffer’s and Bergmann’s. These methods differ in their way to obtain the maximum number of

true hypotheses at each level. The Holm’s procedure simply assigns the maximum number of true

hypothesis at the stage j to the number of remaining hypothesesat the jth stage, i.e., tj = k − j + 1.

In the Shaffer’s method (Shaffer 1986), the possible numbers for true hypothesis and conse-

quently, tj is obtained by the following recursive formula:

S (k ) =
k⋃

j=1

{(
2

j

)
+ x : x ∈ S (k − j )

}
,

where S (k ) is the set of all possible numbers of true hypotheses when there are k alignments for

comparison and S (0) = S (1) = 0. tj is simply computed based on the set S (k ).
Similar to the Shaffer’s method, the Bergmann’s method (Bergmann and Hommel 1988) use the

logical interrelations between the hypotheses but dynamically estimates the maximum number of

true hypotheses at the stage j, given that j − 1 hypotheses are rejected.

To do so, they defined the exhaustive which is an index set of hypotheses I ⊆ {1, . . . ,m} where

exactly all the hypotheses Hj , j ∈ I can be true. For instance, letA1,A2, andA3 be three alignments

under study. If the null hypothesis between A1 and A2 is rejected, e.g., A1 � A2, then it is not pos-

sible that both hypothesis A1 = A3 and A2 = A3 be correct because the performance of A3 cannot

be the same as A1 and A2, while A1 and A2 have been already declared significantly different.

Having calculated the exhaustive set, any hypothesis Hj is rejected if j � A, where A is the

acceptance set which is retained and defined as

A =
⋃
{I: I exhaustive,min{Pi : i ∈ I } > α/|I |}. (5)

The Bergmann’s method is one of the most powerful procedures when N × N comparison is

demanded since it dynamically takes into account the logical relations of hypothesis. However,

building the exhaustive set is time-consuming, especially if more than nine systems are available

for comparison.

5 RESULTS

In this section, the recommended statistical procedures are applied to the OAEI 2016 anatomy
track, and the corresponding results are reported. Further, different string similarity metrics are

compared and ranked according to the number of correct discoveries.

We have two ways of obtaining the contingency table, four McNemar’s statistics and four ways

to prevent FWER. Therefore, there are totally 32 states for comparison. On account of simplicity
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Table 2. The n01 and n10 for Constructing the Contingency Table from the

First Point of View Which Does Not Consider the False Positives(see Eq. (1)).

For Comparing the ith and jth Systems, n01 = (i, j ) and n10 = (j, i ) Where (i, j )
is the Element at the ith Row and the jth Column in the Table
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Alin 0 0 13 405 2 18 2 52 3 0

AML 911 0 62 1,214 184 237 328 339 118 134

CroMatcher 873 11 0 1,170 176 216 311 314 108 124

DKP-AOM 102 0 7 0 0 13 0 49 1 0

FCA-Map 763 34 77 1,064 0 161 167 253 51 58

Lily 713 21 51 1,011 95 0 176 210 45 60

LogMapLite 597 12 46 898 1 76 0 203 5 19

LPHOM 646 22 48 946 86 109 202 0 43 39

LYAM 823 27 68 1,124 110 170 230 269 0 74

XMap 804 27 68 1,107 101 169 228 249 58 0

(and probably for the exclusion of duplication), we only consider four states: the two ways of

building the contingency table compared with the McNemar’s mid-p-test and controlling FWER by

the Nemenyi’s and Bergmann’s correction techniques, the most conservative and the most robust

methods. The underlying reason behind the mid-p-test selection is that it is not as conservative

as the exact test and it is less likely to violate the nominal significant level α rather than the

asymptotic test.

The anatomy track has been a part of OAEI since 2011 and its aim is to find the alignment

between the Adult Mouse Anatomy and a part of the NCI Thesaurus related to the human anatomy.

We select 10 systems participated in the OAEI 2016 for conducting the comparison: Alin (da Silva

2016), AML (Faria et al. 2013), CroMatcher (Achichi et al. 2016), DKP-AOM (Amrouch et al. 2016),

FCA-Map (Zhao and Zhang 2016), Lily (Wang and Xu 2008), LogMapLite (Jiménez-Ruiz and Grau

2011), LPHOM (Megdiche et al. 2016), LYAM (Achichi et al. 2016), and XMap (Djeddi and Khadir

2010).

The contingency table is built by two foregoing methodologies. The values of n01 and n10 for

the first and second way of table construction are arranged in Tables 2 and 3, respectively. For the

interest of simplicity, n01 and n10 are tabulated in one single table for each perspective (below and

upper diagonal). To compare the ith and jth systems in each approach, (i, j ) and (j, i ) elements

of this table are taken as n01 and n10, where (i, j ) is the element at the ith row and jth column.

For instance, let’s compare Alin and AML systems. In the first perspective, n01 = 911 which means

that there are 911 correspondences discovered by AML but not by Alin. And, n10 = 0 indicates that

there are no correspondences identified by Alin but not by AML. In the second perspective, on the

other hand, n01 = 917 and n10 = 72. Comparing with the previous view, n10 changes from 0 to 72

which means that AML has discovered 72 wrong correspondences, while Alin has not. The little

increase in n01 is due to the false discovery rate of Alin (six correspondences) in comparison to

AML. As a result, it is grasped that the false discovery rate of Alin is less than AML, while the true
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Table 3. The n01 and n10 for Constructing the Contingency Table from the

Second Point of View Which Takes Into Account the False Positives (see Eq. (2)).

For Comparing the ith and jth Systems, n01 = (i, j ) and n10 = (j, i ) Where (i, j )
is the Element at the ith Row and jth Column in the Table
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Alin 0 72 86 405 92 195 46 506 212 100

AML 917 0 94 1,214 252 396 368 777 298 203

CroMatcher 879 42 0 1,170 249 375 351 749 298 204

DKP-AOM 108 72 80 0 90 190 50 509 210 100

FCA-Map 769 84 133 1,064 0 323 181 691 220 135

Lily 719 75 106 1,011 170 0 219 617 234 138

LogMapLite 597 74 109 898 55 246 0 648 186 107

LPHOM 647 73 97 947 155 234 238 0 214 105

LYAM 829 70 122 1,124 160 327 252 690 0 142

XMap 810 68 121 1,107 168 324 266 674 235 0

discovery rate of AML is way higher than Alin. If the McNemar’s test rejects the null hypothesis,

AML is thus concluded to have a better performance than Alin due to its higher true discovery rate.

The comparison of other systems can be conducted likewise that clarifies the difference between

two perspectives.

We conduct all the pairwise comparisons and we take advantage of the Nemenyi’s correction

and the Bergman’s correction, the most conservative and most powerful ones, to control the FWER.

A directed graph visualizes the outcome of the pairwise comparison. Four different directed graphs

correspond to each perspective and each correction method are displayed in Figures (1–4). The

nodes in these graphs are the systems under study and any directed edge A→ B means that A is

significantly better than B. If there is no such an edge, however, there is no significant difference

between the corresponding systems.

First, we compare the results obtained from the Nemenyi’s and Bergman’s correction techniques

from each perspective of the contingency table construction. Figures 1 and 2 are the directed

graphs corresponds to the pairwise comparisons of alignments obtained by applying, respectively,

the Nemenyi’s and Bergmann’s correction under the first perspective of contingency table con-

struction. The results of these two correction methods are varied only in one comparison: the

Bergmann’s correction indicates the significant difference between CroMatcher and LYAM, while

the Nemenyi’s correction cannot detect it. Thus, the Bergmann’s correction is more powerful than

the Nemenyi’s method as the theory suggests.

In the second approach, which considers the false positive, the Bergmann’s correction indicates

its power in comparison with the Nemenyi’s correction. It declares the difference between

FCA-Map and LYAM, and between LYAM and LogMapLite significant, while the Nemenyi’s

correction cannot find such differences as significant.

Now, we compare the two perspectives on the contingency table construction. To do so,

the Bergmann’s correction method is considered due to its ability to detect more differences.
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Fig. 1. Comparison of alignment systems by the McNemar’s mid-p-test with the Nemenyi’s correction while

the false positive is ignored. The edge A→ B indicates that A outperforms B.

Fig. 2. Comparison of alignment systems by the McNemar’s mid-p-test with the Bergmann’s correction

while the false positive is ignored. The edge A→ B indicates that A outperforms B.
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Fig. 3. Comparison of alignment systems by the McNemar’s mid-p-test with the Nemenyi’s correction while

the false positive is considered. The edge A→ B indicates that A outperforms B.

Fig. 4. Comparison of alignment systems by the McNemar’s mid-p-test with the Bergmann’s correction

while the false positive is considered. The edge A→ B indicates that A outperforms B.
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Table 4. Ranking of Methods Participated in the Anatomy

Track, OAEI 2016 from Two Different Perspectives. The First

Perspective is to Ignore the False Positive (IFP) and the

Second is to Consider it (CFP). The Position of Upper Rows

in This Table Indicates That it is Significantly Better Than

the Methods Coming in the Lower Rows. Cells With Two

Methods Indicate That the Methods are Not Declared

Significantly Different

IFP CFP

1 AML AML

2 CroMatcher CroMatcher

3 LYAM and XAMP FCA-MAP and XMAP

4 FCA-MAP LYAM

5 Lily LogMapLite and Lily

6 LogMapLite and LPHOM LPHOM

7 Alin Alin

8 DKP-AOM DKP-AOM

Considering Figure 2, it is readily seen that the LYAM and XMAP methods are not declared

significant, but both of them are declared significant in comparison to FCA-MAP. If the false

positive rate is taken into account, as in Figure 4, FCA-MAP is replaced LYAM. To investigate

such a replacement, Tables 2 and 3 must be considered. While the false positive rate is not

considered, FCA-Map has 51 correct correspondences which are not in LYAM, and LYAM has

110 true correspondences that do not exist in FCA-MAP. However, when the false positive is

considered, the number of truly discovered correspondences by FCA-MAP which are not in the

LYAM alignment increases to 220, while the number of truly discovered correspondences by

LYAM which are not in FCA-MAP is 160. As a result, the LYAM ontology mapping is better than

FCA-MAP from the first point of view, but FCA-MAP outperforms LYAM in the second approach

because it has a lower false discovery rate in comparison with LYAM. The same argument is also

valid for the comparison of FCA-MAP and XAMP: if the falsely discovered correspondences are

not taken into account, XAMP outperforms FCA-MAP while they are declared insignificant when

the false discovery error is considered as well.

Another difference between two perspectives on the contingency table construction is about the

LogMapLite system. When the false discovery rate does not matter, Lily outperforms LogMapLite,

which is further declared insignificant compared with LPHOM. If the false positive error is

heeded, however, LogMapLite outperforms LPHOM and it is declared insignificant with Lily. This

indicates that LogMapLite has a lower false discovery rate than Lily and LPHOM.

We rank the systems participated in the OAEI 2016 anatomy track in Table 4 based on the

Bergmann’s correction. The columns with labels IFP and CFP correspond to the contingency table

construction with ignoring the false discovery (IFP) and considering (CFP) it. In this table, the

systems in higher rows are ones that are significantly better than the ones in the lower rows. If

two systems are not significantly different, they are placed in the same cell. It can be readily seen

that AML and DKP-AOM are the best and the worst systems from two perspectives, respectively.

The results of statistical procedures are eventually compared with those of recall and F-measure.

As a matter of fact, such a comparison would be of no meaning unless some circumstances would

be considered. We say that two systems are not significantly different provided that their recall

(or F-measure for another case) will be the same. Nonetheless, it must be mentioned that the
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Table 5. The n01 and n10 for Constructing the Contingency Table from

the First Point of View (Ignoring the False Positive) Across the Various

String-Based Similarity Measures. For the Comparison of the ith and jth
Metrics, n01 = (i, j ) and n10 = (j, i ) Where (i, j ) is the Element at the ith

Row and the jth Column in the Table
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Equal 0 0 2 2 0 0 0 71 0

Hamming 842 0 51 51 32 54 48 258 494

Jaro 888 95 0 0 42 59 60 252 532

JaroWinkler 888 95 0 0 42 59 60 252 532

Levenshtein 966 156 122 122 0 64 50 277 593

N -gram 1,041 253 214 214 139 0 174 290 636

Needleman. 932 138 106 106 16 65 0 276 573

SMOA 880 225 175 175 120 58 153 0 552

SubString 422 74 68 68 49 17 63 165 0

comparison based on the McNemar’s test is distinct from that of different performance measures.

First and foremost, it does not produce any score. Second, the result of comparison might indicate

that two systems are similar, the case which is not accommodated in comparison of two scores

unless they are exactly the same.

First, the outcomes of our analysis from the first perspective with the Bergmann’s correction

(see Figure 2) is compared with the recall metric. In the OAEI 2016 anatomy track, AML and

CroMatcher have the highest recall among others. At the other extreme, DKP-AOM and Alin are

the systems with the least discovery. By the same token, they are the top two and bottom two

systems in our analysis. One salient characteristic of the statistical analysis is the equivalence of

LPHOM and LogMapLite. The recall of LogMapLite and LPHOM are 0.728 and 0.727, respectively.

If the higher recall would be an indicator for superiority, then LogMapLite is declared better.

However, the difference between these systems is a trifle. This triviality is reflected in the

statistical analysis as they are not declared significant (there is no edge between LogMapLite and

LPHOM in Figure 2). There is the same cogent argument for the comparison of XMap and LYAM.

The comparison of the second perspective is analogous to that of the F-measure. Similar to our

analysis, the F-measures of AML and CroMatcher are the top systems, and those of DKP-AOM

and Alin are the bottom two ones (see Figure 4).

For the final experiment, the string-based similarity measures are compared over the anatomy

track. These metrics are of utmost importance, by which most of the correspondences of two given

ontologies, including the ontologies of the anatomy track, could be discovered (Cheatham and

Hitzler 2013). To compare such metrics over the anatomy track, we take advantage of the Shiva

framework (Mathur et al. 2014), which converts the ontology mapping into an assignment prob-

lem. In this framework, the similarity between each concept from the source ontology is gauged

with all the concepts of the target ontology. The similarity score between the concepts of two

ontologies constructs a matrix, which can be given to the Hungarian algorithm (Munkres 1957) to
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Fig. 5. Comparison of string-based similarity measures for the anatomy track. The arrow A→ B indicates

that A outperforms B.

find the best match for each entity. We use nine string-based similarity measures to construct the

matrix: Levenstein (Levenshtein 1966), N-gram (Kondrak 2005), Hamming (Euzenat et al. 2007),

Jaro (Jaro 1995), JaroWinkler (Winkler 1999), SMOA (Stoilos et al. 2005), NeedlemanWunsch2

(Needleman and Wunsch 1970), Substring distance (Euzenat et al. 2007), and equivalence measure.

The Hungarian method applies to the resultant matrix to find the best match for each concept.

We consider the case when the false positive is not taken into account. The primary reason

is that the selection of the appropriate string similarity measure can enable us to discover most

of the potential correspondences (Cheatham and Hitzler 2013). If the right similarity metric is

chosen, then the unreliable correspondences could be omitted by applying more strict thresholds.

Similar to the previous ones, Table 5 tabulates n01 and n10 corresponding to different string-

based similarity measures while the false positive is ignored. The results are visualized by a

directed graph shown in Figure 5. From this figure, N-gram has shown the best performances and

is followed by Levenstein. Further, SMOA and Hamming distances are the ones with the least re-

trieved correspondences but they are better than Substring and Equivalence measures as expected.

6 CONCLUSION

This article proposed the utilization of the McNemar’s test to compare various ontology alignment

systems over one single task. The current approach for the alignment comparison is to first select a

performance score and then compare two systems by obtaining their performance scores on a task

with a reference alignment. In this article, the alignment produced by two systems as well as the

reference alignment are given, and the outcome is if two systems are significantly different. Thus,

the output is not a score, but to/not to declare the significance between two ontology matching

technique. Further, the ways of preventing FWER, which is likely to happen in the comparison
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of multiple (>2) alignment systems, are explored in minute detail. The proposed methodologies

are applied to the anatomy track of ontology alignment initiative evaluation (OAEI) 2016. It is

indicated that the AML and CroMatcher are the top two algorithms, and Alin and DKP-AOM are

the worst alignments. For string-based similarity measures, N-gram and Levenstein outperform

other methods, while SMOA and Hamming distance have shown poor performances.
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