
COMMUNICATIONS OF THE ACM November 1999/Vol. 42, No. 11 47

Traditionally, human experts have derived their knowledge

from their own personal observation and experience. With advancing

computer technology, automated knowledge discovery has become an important AI

research topic, as well as a practical business application in an increasing number of orga-

nizations. Knowledge discovery can be defined as the learning of implicit and previously

unknown nontrivial knowledge from data or observations.

Knowledge Discovery Based
on Neural Networks

LiMin Fu

The intelligence emerging from interactions among
numerous self-organizing processing elements can be trained
to discover the knowledge embedded in data.

A
N

G
EL

A
 W

IL
C

ZY
N

SK
I/

W
IZ

ZL
E.

SI
M

PL
EN

ET
.C

O
M

/
FR

A
C

TA
LS

/
FR

A
C

TA
LI

N
TR

O
.H

TM

ACM
The image on this page was omitted from the electronic version of the article due to copyright considerations.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319382.319391&domain=pdf&date_stamp=1999-11-01

In symbolic AI, learning is often viewed as search-
ing in a defined hypothesis space that typically grows
exponentially with the size of the problem to be
solved. A practical learning method has to rely on
heuristics and bias to avoid an exhaustive and
impractical search in large problem domains. As
heuristics often lack a solid mathematical basis, the
solution found is not guaranteed to be the best one
possible. The symbolic approach is also weak in deal-
ing with data noise, inconsistency, and uncertainty.

The neural network approach has emerged as a
promising alternative for knowledge discovery appli-
cations. Inspired by biological neural networks, it
assumes that intelligence emerges from interactions
among a large number of simple processing ele-
ments. Biological neurons transmit electrochemical
signals through neural pathways. Each neuron
receives signals from other neurons through special
junctions called synapses. Some inputs tend to excite
the neurons, others to inhibit them. When the
cumulative effect exceeds a threshold, the neuron
fires and sends a signal to other neurons. An artifi-
cial neuron created by AI software engineers models
these simple biological characteristics. Each artificial
neuron receives a set of inputs; each input is multi-
plied by a weight analogous to a synaptic strength.

An artificial neural network is represented by a set
of nodes and arrows. A node corresponds to a neu-
ron; an arrow corresponds to a connection, along
with the direction of signal flow between neurons.
Some nodes are designated as input units, others as
output units. An artificial neural network is
“trained” empirically on a data set by adjusting its
weights, so a given input can be mapped to a target
output. In this way, the network learns, or discovers,
the knowledge embedded in the data. Its power stems
from the network’s own internal ability to adapt and
self-organize.

The neural network approach has a good theoreti-
cal foundation and effectively addresses the weakness
of the symbolic AI approach. Although many real-
world applications attest to its viability, it also has
some disadvantages, such as the fact that neural net-
work knowledge is cryptically coded as a large num-
ber of weights, and their semantics (in terms of the
problem to be solved) are not explicit. Two issues are
important for getting past these disadvantages: how
to represent and how to extract neural network
knowledge.

Knowledge Representation
The human mind has difficulty comprehending the
knowledge of a neural network, as determined by its
connection pattern and weights. Lack of comprehen-

sion causes concern about the credibility of the result
when neural networks are applied to risky domains,
such as patient care and financial investment. In a
broad sense, we say a neural network has discovered
knowledge if it deals adequately with the problem at
hand. In a strict sense, however, we also say a neural
network has discovered knowledge only if that knowl-
edge can be put in a human-understandable form.
Numerous research papers describe interesting real-
world applications of neural networks, though only a
few have addressed how to explicitly represent neural
network knowledge. The following examples involve
a distinct formalism for knowledge representation.

Theory formation in bioinformatics. A knowledge-
based neural network refines the theory of molecular
biology based on the conformation hypothesis [6] for
predicting the presence of a “promoter” in a DNA
sequence [4, 7]. The promoter is a region in DNA
that indicates to a cellular mechanism the presence of
a gene up ahead. The theory is first mapped into the
neural network. The network is then trained using a

48 November 1999/Vol. 42, No. 11 COMMUNICATIONS OF THE ACM

Figure 1. Revision of a promoter theory
by a neural network.

Initial Theory

Conformation

Promoter

Contact

Minus-35 Minus-10

Conformation

Promoter

Contact

Minus-35 Minus-10

Revised Theory

learning procedure called “backpropagation” [4].
Finally, the knowledge of the trained network is
decoded, representing a revised version of the prior
theory. In the revised theory, the conformation
hypothesis about promoters is de-emphasized (see
Figure 1).

In both initial theory and revised theory, knowl-
edge is represented as a set of if-then rules, which are
easily converted into a computer program in the logic
programming language Prolog.

Grammatical inference in languages. A second-
order recurrent neural network has been applied to
learn regular grammars in natural languages [5].
Unlike a “feedforward” neural network, a recurrent
neural network has feedback connections. A second-
order connection combines inputs from two nodes,
often through multiplication. The network was
trained on 1,000 strings using a special gradient-
descent algorithm adapted to the recurrent structure;
the grammar learned was then extracted from the net-
work using a special procedure called “dynamic state
partition.” The knowledge—the grammar—discov-
ered was represented as a transition graph, classifying
all 65,535 test strings with no error. The neural net-
work had evidently discovered the correct grammar.

Prediction and synthesis in chemical reactions. The
Kohonen neural network, a kind of artificial neural
network, was used to classify chemical reactions with
a common reaction center described by physicochem-
ical properties [2]. The Kohonen network uses a spe-
cial self-organization mechanism to model its
environmental inputs as a map analogous to, for
instance, the visual or auditory map in the human
brain. Not only were the chemical reactions catego-
rized in a way consistent with predetermined reaction
types, their relationships were also explored. The
knowledge discovered was represented by a 2D Koho-
nen map (landscape) revealing the consequence of
various influences in a chemical reaction and suggest-
ing different levels of similarities of the reactions
under consideration. Note too that the 2D landscape
provided by a Kohonen network transcends what can
be found through traditional clustering methods.

Knowledge Extraction
Since computer programs make discoveries by seeking
“regularities” from observations, neural networks
endowed naturally with such ability show promise for
this task. Various neural network architectures
intended for this purpose all share the same idea—
that neural networks discover regularities [4]. How-
ever, heuristic guidance is still needed, since neural
networks today are not intelligent enough to learn
everything from scratch.

An important AI research topic is knowledge
extraction from a trained neural network. In general,
it proceeds as follows: An artificial neural network is
trained for modeling the knowledge embedded in the
data by adaptation, or self-organization. The network
knowledge is then extracted or interpreted. Symbolic
knowledge can be extracted from a trained neural net-
work through two approaches:

Decompositional. Each internal element in the
neural network is examined. The knowledge
extracted at this level is then combined to form the
knowledge base of the entire neural network.

Pedagogical. Only the network input/output behav-
ior is observed. It can be viewed as a learning task
in which the target concept is the function com-
puted by the neural network.

The decompositional approach is also called an
“open-box” approach; its pedagogical counterpart is a
“closed-box” approach. In general, the first approach
is more analytical, the second one more empirical [1].

The decompositional approach is represented by
two important developments: the Knowledgetron
(KT) method [4] and the so-called M-of-N method
[7]. The pedagogical approach is illustrated by the
RULENEG program [1].

KT. This method heuristically searches through the
rule space expanded in terms of combinations of
attributes, distinguished into pos-atts, which, for con-
cept C, refers to an attribute, and neg-atts, which also
refers to an attribute of concept C but in terms of a
negative weight, depending on the concept for which
the rules were formed. We define a pos-att for the con-
cept C to be an attribute designating a node that con-
nects directly to the node corresponding to C with a
positive connection weight. We define a neg-att for C
in the same way, except that the connection weight is
negative. Rules are sought for each processing node in
the network before they can be combined into input-
output rules without involving hidden concepts.

To extract conforming rules, KT first explores
combinations of pos-atts, then uses negated neg-atts
in conjunction to strengthen the positive combina-
tions. Specifically, for each hidden unit and each out-
put unit, KT searches for combinations of pos-atts
whose summed weights exceed the threshold on the
unit; for each such combination, KT then tries to
form a valid rule, often by coupling with some
negated neg-atts.

Similarly, to extract disconforming rules, KT first
explores combinations of neg-atts, then uses negated
pos-atts in conjunction. The distinction between
these two kinds of attributes—pos-atts and neg-atts—

COMMUNICATIONS OF THE ACM November 1999/Vol. 42, No. 11 49

reduces the size of the search space considerably. An
important idea in KT is to search for valid rules. The
validity condition is defined as: Whenever the rule’s
premise holds, its conclusion also holds, irrespective
of any combination of the values of attributes not ref-
erenced by the rule. A weakness of this method stems
from the combinatorial problem of rule formation.

M-of-N. This method explicitly searches for rules
of the following form: “If M of the following N
antecedents are true, then …” For each hidden unit
and output unit, M-of-N forms groups of similarly
weighted links by clustering, sets the link weights of
all group members to the average of the group,
removes the groups that do not significantly affect
whether the unit is active or inactive, keeps all link
weights constant, and optimizes the biases of all hid-
den and output units, using the backpropagation pro-
cedure.

For each hidden and output unit, a single rule is
generated consisting of a threshold given by the bias
and weighted antecedents specified by the remaining
links. Where possible, rules are simplified to eliminate
superfluous weights and thresholds. In this approach,
the extracted rules can be viewed as a simplified ver-
sion of the neural network in that they are often asso-
ciated with weights and thresholds. Such rules look
more like discriminant formulae than what we call
“rules” in traditional knowledge-based systems. More-
over, these rules cannot be run by a pure symbolic
pattern matcher.

RULENEG. This program generates rules based
on individual patterns (instances) in the training set
of given data. To generate a rule on a given instance,
RULENEG tests the importance of each attribute
value in the instance. An attribute value is considered
by the program if its negation leads to a classification
change. A rule is formed by collecting such attribute
values. RULENEG is also sensitive to data noise. For
example, if the neural network overfits the data, the
rules extracted are likely to be overly specific for the
problem domain being considered.

Future Directions
Future research on neural networks for knowledge
discovery is likely to take two directions. One is to
seek a better general theory for knowledge extraction.
The other is to develop a special neural network
whose knowledge can be decoded faithfully. Progress
in the first direction seems to have reached a plateau;
the second, however, has lots of potential. A signifi-
cant development is the Certainty Factor Network
(CFNet) described in [3]. This special network refers
to the feedforward multilayer neural network in
which the network activation function is based on the

certainty factor model, a model for uncertainty man-
agement in traditional expert systems. It overcomes
the traditional disadvantage—having a black-box
nature—in the neural network approach, allowing its
knowledge to be decoded precisely. The CFNet can
discover the domain concepts from a small fraction of
domain instances with accuracy significantly better
than C4.5, which today is the best representative rule-
learning system available.

A knowledge discovery system has to be able to
deal with domain complexity and data noise. In meet-
ing these needs, the neural network approach seems
to hold the promise of providing the ultimate solu-
tion for knowledge discovery. However, delivering
this promise depends on how neural network knowl-
edge is understood in a human sense. Two issues are
therefore critical: knowledge representation and
knowledge extraction. Future research will seek a bet-
ter general theory for knowledge extraction and a way
to develop a special neural network whose knowledge
can be decoded faithfully. As a sign of the potential of
the second approach, CFNet can accurately discover
the domain concepts and significantly outperform the
popular rule-learning tool C4.5.

References
1. Andrews, R., Diederich, J., and Tickle, A. Survey and critique of tech-

niques for extracting rules from trained artificial neural networks. Knowl.-
Based Syst. 8, 6 (1995), 373–389.

2. Chen, L. and Gasteiger, J. Knowledge discovery in reaction databases:
Landscaping organic reactions by a self-organizing neural network. J. Am.
Chem. Soc. 119, 17 (1997), 4033–4042.

3. Fu, L.M. A neural network model for learning domain rules based on its
activation function characteristics. IEEE Trans. Neur. Nets. 9, 5 (1998),
787–795; see also www.cise.u.edu/fu.

4. Fu, L.M. Neural Networks in Computer Intelligence. McGraw Hill, New
York, 1994.

5. Giles, C., Miller, C., Chen, D., Sun, G., Chen, H., and Lee, Y. Extract-
ing and learning an unknown grammar with recurrent neural networks. In
Advances in Neural Information Processing Systems 4. Morgan Kaufmann,
San Mateo, Calif., 1992.

6. Koudelka, G., Harrison, S., and Ptashne, M. Effect of non-contacted bases
on the affinity of 434 operator for 434 repressor and Cro. Nature 326
(1987), 886–888.

7. Towell, G. and Shavlik, J. Knowledge-based artificial neural networks.
Artif. Intel. 70, 1-2 (1994), 119–165.

LiMin Fu (fu@cise.ufl.edu) is an associate professor of computer and
information science and engineering in the Computer and Information
Sciences and Engineering Department at the University of Florida in
Gainesville, Fla.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 1999 ACM 0002-0782/99/1100 $5.00

c

50 November 1999/Vol. 42, No. 11 COMMUNICATIONS OF THE ACM

