
COMMUNICATIONS OF THE ACM November 1999/Vol. 42, No. 11 97

We argued in previous
columns that object-
oriented distributed

programming should not be con-
fused with distributed OO pro-
gramming and that it should not
be confused with wrapping exist-
ing distributed systems with OO
dressing. Taking OO distributed
programming seriously entails
identifying and classifying the
basic abstractions underlying
distributed computing.

We attempted to keep our pre-
vious claims at an abstract and
general level. In this column, we
make those claims more concrete.
More precisely, we describe OO
distributed programming through
an exercise consisting of abstract-
ing and factoring out a fundamen-
tal component of a distributed
system: failure detection.

1

Adopting a distributed architec-
ture for a given application might
be driven by various motivations.
One might adopt a distributed
solution for an application made
of inherently distributed compo-

nents or decide to distribute a cen-
tralized application to take some
advantage of distribution. Among
the distribution advantages are
resource sharing, load balancing,
and fault-tolerance. However, these
advantages have a dark side, and, to
paraphrase L. Lamport, a distrib-
uted system is also one that stops
you from completing any work
because of the crash of a machine
you have never heard about.

The notion of partial failure is a
fundamental characteristic of a
distributed system: at a given
time, some components of the sys-
tem might have failed whereas
others might be operational. The
ability to hide partial failures or
recover from them is a crucial
metric for measuring the reliability
of a distributed system. All relia-
bility schemes that we know make
use of some form of failure detec-
tion mechanism. Failure detection
is a crucial component in transac-
tion processing, replication man-
agement, load balancing, and
distributed garbage collection, as
well as in applications requiring
monitoring facilities such as super-
vision and control systems.

In most distributed systems
however, failure detection is left to
the application developer. Failures
are handled through mechanisms
like exceptions and it is up to the
programmer to distinguish a phys-
ical failure (the crash of a
machine) from a logical failure
specific to the application’s seman-
tics. Some reliable distributed
toolkits such as transaction moni-
tors and group communication
systems provide some support for
failure detection through time-
outs. For instance, an object is sus-
pected to be faulty if it does not
respond to an invocation after
some time. The specific code that
handles timeouts is usually mixed
up with the code of the distrib-
uted protocols in charge of failure-
hiding or failure-recovery. For
instance, in transaction monitors,
the code for timeout management
is usually mixed up with the code
for distributed transaction manip-
ulation protocols such as atomic
commitment. It is very difficult, if
not impossible, to adapt the fail-
ure detection mechanism to the
network topology without modi-
fying the application or the under-

Putting OO Distributed
Programming to Work

Pascal Felber, Rachid Guerraoui, and Mohamed E. Fayad

An exercise in abstracting and factoring
out failure detection.

1 Failure detection abstraction has been implemented
and is available at lsewww.epfl.ch/OGS.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319382.319401&domain=pdf&date_stamp=1999-11-01

lying distributed protocols. The
only parameters that are generally
left to the developer are the time-
out values. These are indeed
important parameters that enable
the developer/user to trade latency
(short timeouts and hence fast
reaction to failures) with accuracy
(long timeouts and hence more
accurate failure detection). The
developer cannot, however, tune
the failure detection protocol itself
according to the network topology.
This can be viewed as a serious
drawback of existing distributed
systems and can reduce their scala-
bility and more generally their
applicability in various contexts.

For example, according to the
network topology and the com-
munication pattern of the applica-
tion, the choice between a push
(heartbeat) or a pull (are you
alive?) monitoring model can have
an important impact on the per-
formance of the system. In a push
model, every component of the
system is supposed to regularly
send heartbeat information to the
other components: a component is
considered faulty if its heartbeats
are not received by the other com-
ponents in time. In a pull model, a
component A monitors a compo-
nent B by sending “are you alive?”
messages. If B fails to respond to
these messages after some timeout,
A considers B to be faulty. Neither
the push nor the pull model fits all
situations. In a large-scale system,
one might use either of those
models or even mix them to
reduce the number of messages
exchanged in the network.

When following an OO mod-
eling style, failure detectors should
be considered first-class citizens.
That is, failure detection should
be viewed as an abstraction, the
complexity of which is encapsu-
lated behind well-defined inter-

faces. The various roles of a failure
detection service should all be rep-
resented by first-class objects. As a
consequence, one can reuse exist-
ing failure detection protocols as
they are, or define new ones
through composition or
refinement.

Failure Detection as a
First-Class Abstraction
Failure detection can be viewed
as a generic service that supports
several interaction styles and may
be configured in various ways.
The interfaces of such a service
can be arranged in a hierarchy that
provides different views of the ser-
vice and different interaction para-
digms for failure detection. In
particular, the hierarchy may
include specialized interfaces for
push and pull execution styles. A
dual monitoring model where the
advantages of both styles are com-
bined can simply be obtained by
inheriting from both push and
pull interfaces.

On one hand, failure detection
mechanisms should be separated
from other mechanisms in the sys-
tem to provide for better modular-
ity and extensibility. In fact, even
the various roles of failure detection
components should be decoupled.
The failure detection service can be
viewed as a hierarchy of well-
defined interfaces. One can reuse
existing mechanisms or build new
ones through composition or
refinement.

On the other hand, the entities
being monitored should be abstract
objects in the system to eliminate
the mismatch between the need for
failure detection at the level of
application objects and the support
provided by some operating systems
to detect host failures. One can
configure the failure detection ser-
vice in such a way that the moni-

tored units can range from specific
application objects, processes,
machines, or even subnets.

Interfaces
Client applications using the ser-
vice for monitoring remote
objects have a limited view of the
service, restricted to the three
topmost interfaces. These inter-
faces abstract the flow model
used for object monitoring. As a
consequence, applications that
use the service do not need to
care about the interaction para-
digms used for monitoring
objects. In particular, this makes
it possible to mix several moni-
toring models in the same distrib-
uted application with no impact
on the functional objects of the
application. The three topmost
interfaces abstract the roles of the
categories of objects involved in a
monitoring system:

• Monitors (or failure detectors)
are the objects that collect infor-
mation about component fail-
ures.
• Monitorable objects are objects
that may be monitored (the fail-
ure of which may be detected by
the failure detection system).
• Notifiable objects are objects
that can be registered by the
monitoring service, and that are
asynchronously notified about
object failures.

Monitorable and notifiable
objects are generally application-
specific. In other words, the
interfaces deriving from moni-
torable and notifiable are inter-
faces that the application must
support for the service to call
back the application. Default
implementations of monitorable
objects are provided by the ser-
vice. However, these objects must

98 November 1999/Vol. 42, No. 11 COMMUNICATIONS OF THE ACM

be instantiated by the application.
In contrast to the monitorable

and notifiable interfaces, monitors
are implemented by the service
and do not need to be instantiated
by the application. More precisely,
interfaces deriving from the moni-
tor are service objects, the imple-
mentation of which is provided by
the service. These interfaces
abstract the behavior of monitor-
ing protocols and the way the
information about component
failures is propagated in the system
(the flow policy). There are two
basic forms of unidirectional flow,
push and pull, plus several vari-
ants. These flow policies corre-

spond to simple monitoring
protocols.

The Push Model. In the push
model, the direction of control
flow matches the direction of
information flow. With this
model, monitorable objects are
active. They periodically send
heartbeat messages to inform other
objects they are still alive. If a
monitor does not receive the
heartbeat from a monitorable
object within specific time
bounds, it starts suspecting the
object. This method is efficient
since only one-way messages are
sent within the system, and this
may be implemented with hard-
ware multicast facilities if several
monitors are monitoring the same
objects.

The Pull Model. In the pull
model, information flows in the

opposite direction of control flow
(only when requested by con-
sumers). With this model, moni-
tored objects are passive. Monitors
periodically send liveness requests
to monitored objects. If a moni-
tored object replies, it means it is
alive. This model may be less effi-
cient than the push model since
two-way messages are sent to
monitored objects, but it is easier
to use for the application devel-
oper since monitorable objects are
passive and do not need to have
any time knowledge (they do not
have to acknowledge the frequency
at which the monitor expects to
receive messages).

The Dual Model. Both push
and pull interaction models have
interesting properties. In the pull
model, the monitor parameters
(for example, timeouts, which may
need dynamic adjustment) need
only reside in the monitor and are
not distributed in all the moni-
torable objects. On the other
hand, push-style communication
between monitor and monitorable
objects is more efficient and may
reduce the number of messages
generated when using hardware
multicast facilities (such as IP mul-
ticast) if several monitors are lis-
tening to the heartbeats.

2
Both

models are thus complementary,
and the type of interaction to use
depends on the application.

Therefore, we introduce a
model resulting from the combina-
tion of the two models, called the
dual model, in which the push and
pull models can be used at the
same time with the same set of
objects. Informally, the dual moni-
toring protocol works as follows:
The protocol is split in two distinct
phases. During the first phase, all
the monitored objects are assumed
to use the push model, and hence
send liveness messages (heartbeats).
After some delay, the monitors
switch to the second phase, in
which they assume that all moni-
tored objects that did not send a
heartbeat during the first phase use
the pull model. In this phase, the
monitors send a liveness request to
each monitored object and expect
a liveness message (similar to the
push model) from the latter. If the
monitored object does not send
this message within specific time
bounds, it becomes suspected by
the monitor.

The dual model is not a new
failure detection protocol per se. It
should rather be viewed as a way
to mix different styles of monitor-
ing without requiring the monitor
to know which model is supported
by every single monitorable object.
Thus, it provides more flexibility
by letting monitorable objects use
the best-suited interaction style.

Interactions. There are two
types of interactions between the
components of the object moni-
toring service, such as application
clients, monitors, notifiables, and
monitorable objects as follows:

• Monitor <–> client and moni-
tor <–> notifiable. This interac-
tion allows the application to
obtain information about object
failures.
• Monitor <–> monitorable. This
interaction is performed by the

COMMUNICATIONS OF THE ACM November 1999/Vol. 42, No. 11 99

When following an OO modeling style,
failure detectors should be considered
first-class citizens.

2 Note that heartbeat messages generated by a large
number of monitorable objects may also inadvertently
flood the network.

monitoring service to keep track
of the status of monitorable
objects.

T he basic interaction para-
digm of the monitoring ser-
vice consists of having

monitors and monitorable objects
communicate with each other
using remote method invocations.
When using the push execution
style, monitorable objects periodi-
cally invoke the i_am_alive() oper-
ation of the monitors they are
registered with in order to adver-
tise the fact that they are alive.
When using the pull execution
style, monitors periodically invoke
the are_you_alive() operation of
monitorable objects; this is a one-
way operation, and the moni-
torable objects should react by
invoking the i_am_alive() opera-
tion of the monitor that originally
issued the liveness request. When
using the dual execution style,
these interfaces allow the marriage
of the push and pull models. Dur-
ing the first phase of the dual pro-
tocol, the monitor assumes that all
monitorable objects use the push
execution style, and expects heart-
beat messages. During the second
phase, the monitor assumes that
all monitorable objects from
which it did not receive a heart-
beat use the pull execution style.
Thus, it sends liveness requests to
these objects.

The default method used by a
monitor to keep track of the status
of the components in the system
is to periodically check whether
they are or are not alive. This
information is stored in a local
table, and given to clients when
asked about the status of a partic-
ular object. Liveness information
is typically associated with a time-
to-live value (which may change
on a per-object basis) telling when

to invalidate and re-evaluate the
suspicion information. Another
way to obtain information about
the status of monitored objects is
to do it on a client’s demand (lazy
evaluation). With this scheme, the
monitorable object is checked on
client demand (for example, when
the client asks the monitor for the
status of an object). This makes
the system less reactive since the
client has to wait for the liveness
request to return before knowing
the object’s status. This may
reduce the number of messages
exchanged in the system to per-
form the actual monitoring.

A client can ask the monitor to
start and stop monitoring an
object by invoking the start_mon-
itoring() and stop_monitoring()
operations, and obtains the status
of an object by invoking the
is_it_alive() operation. From a
monitor’s point of view, a moni-
tored object can have one of three
states:

• SUSPECTED means the object
is suspected by the monitor.

• ALIVE means the object is
considered to be alive by the
monitor.

• DONT_KNOW means the
object is not being monitored.

Although most applications
need to invoke the monitor syn-
chronously at specific points dur-
ing protocol execution, it may
sometimes be useful to receive
asynchronous notifications when
the state of an object changes. In
particular, when protocols are
implemented using a state
machine approach, a suspicion can
be seen as an event that may trig-
ger some specific action. In this sit-
uation, asynchronous suspicion
notifications greatly reduce the
complexity of the protocol’s imple-

mentation. A parameter of the
start_monitoring() operation
allows the registering of an object
with the notifiable interface. The
monitor invokes the notify_suspi-
cion() operation for each regis-
tered notifiable object when the
status of a monitored object
changes (if an object becomes sus-
pected, or if an object previously
suspected is discovered to be
alive). The client may still pass a
null reference as a notifiable
object if it is not interested in
asynchronous notifications.

Scalability Issues
The problem of scalability is a
major concern for a monitoring
service that has to deal with large
systems. A traditional approach
to failure detection is to augment
each entity participating in a dis-
tributed protocol with a local
monitor that provides suspicion
information. However, this archi-
tecture raises efficiency and scala-
bility problems with complex
distributed applications, in
which a large number of partici-
pants are involved. In fact, if
each participant monitors the
others using point-to-point com-
munication, the complexity of
the number of messages is O(n2)
for n participants. Wide-area
communication is especially
costly and increases the latency
of the whole system. Thus it is
very important to reduce the
amount of data exchanged across
distant hosts.

The interfaces of a generic fail-
ure detection service make it easy
to configure the monitoring sys-
tem in a hierarchy. In a LAN, one
or more

3
failure detectors keep

track of the state of all local moni-
torable objects, and transmit status

100 November 1999/Vol. 42, No. 11 COMMUNICATIONS OF THE ACM

3 Redundancy may be required for fault tolerance.

information to remote monitors in
other LANs, thus reducing the
number of costly inter-LAN
requests. Similarly, the developer
may choose to install one moni-
torable object per host, per
process, or per thread, depending
on the kinds of failures that he or
she considers. These configuration
choices may be taken at runtime,
and do not require modifications
in the interfaces of the service.

A monitor may receive liveness
information about a specific moni-
torable object from another moni-
tor rather than directly from the
monitorable object. This second-
hand information may be
obtained by asking other monitors
about the status of each individual
object or by transmitting complete
tables of suspicion information,
thus reducing the communication
overhead. Note that the latter
solution requires an extension to
the service’s interfaces in order to
transmit these tables.

The hierarchical configuration
is independent of the model used
for monitoring objects (push, pull,
or dual model). It permits a better
adaptation of monitor parameters
(such as timeouts) to the topology
of the network or to the distance
of monitored objects, and reduces
the number of messages exchanged
in the system between distant
hosts. A monitor located on a
LAN can adapt to the network
characteristics and provide a spe-
cific quality of service. The reduc-
tion of network traffic, especially
when a lot of monitorable objects
and clients are involved, is the
main reason for the good scalabil-
ity of this hierarchical approach.

One can also combine the flexi-
bility of hierarchical dissemination
with the robustness of flooding
protocols (in which a member dif-
fuses the information to all its

neighbors or to all other members)
through a gossip protocol where a
member forwards new informa-
tion to randomly chosen mem-
bers. One can easily build this
protocol with a generic OO failure
detection architecture, by imple-
menting monitors that occasion-
ally send their suspicion
information to other monitors.
The interaction between monitors
and clients/monitorable objects is
not affected.

Conclusion
Identifying the fundamental
abstractions in distributed com-
puting and classifying these
abstractions according to some
inheritance hierarchy lies at the
heart of OO distributed pro-
gramming. In this column, we
have considered one such
abstraction, namely failure detec-
tion, and we have discussed how
it can be modeled using first-class
objects. The aim is not to
describe a specific failure detec-
tion protocol but rather to sketch
a modular architecture to com-
pose and customize failure detec-
tion protocols according to the
topology of the system and the
communication pattern of the
application.

We do not claim that a failure
detection service should be used
by all developers. There are indeed
many applications where failure
detection would just be hidden

behind other services that address
reliability issues such as group
membership or transaction man-
agement. However, on one hand
the modularity of these services
would be increased if failure detec-
tion is encapsulated in a separate
component. On the other hand,
applications such as supervision
and control or network manage-
ment systems directly need to han-
dle failures. Thus it is also
important to encapsulate the com-
plexity of failure detection inside
first-class (application level) com-
ponents with well-defined inter-
faces, namely first-class objects.

Through our failure detection
architecture case study, we give a
rather concrete example of what
OO distributed programming
should be. There are many other
abstractions in distributed com-
puting for which a similar design
can be adopted.

Pascal Felber (pfelber@us.oracle.com) is a
senior engineer at Oracle Corporation, Portland,
Ore.
Rachid Guerraoui (Rachid.Guerraoui@
epfl.ch) is an assistant professor in the Computer
Science Department at the Swiss Federal
Institute of Technology, Lausanne (EPFL).
Mohamed E. Fayad (fayad@cse.unl.edu)
is an associate professor in the Computer Science
Department at the University of Nebraska,
Lincoln.

© 1999 ACM 0002-0782/99/1100 $5.00

c

COMMUNICATIONS OF THE ACM November 1999/Vol. 42, No. 11 101

The reduction of network traffic,
especially when a lot of monitorable
objects and clients are involved, is the
main reason for the good scalability of
this hierarchical approach.

