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ABSTRACT

Striving for reliability of software systems often results in immense

numbers of tests. Due to the lack of a generally used annotation,

finding the parts of code these tests were meant to assess can be a

demanding task. This is a valid problem of software engineering

called test-to-code traceability. Recent research on the subject has at-

tempted to cope with this problem applying various approaches and

their combinations, achieving profound results. These approaches

have involved the use of naming conventions during development

processes and also have utilized various information retrieval (IR)

methods often referred to as conceptual information. In this work

we investigate the benefits of textual information located in soft-

ware code and its value for aiding traceability. We evaluated the

capabilities of the natural language processing technique called La-

tent Semantic Indexing (LSI) in the view of the results of the naming

conventions technique on five real, medium sized software systems.

Although LSI is already used for this purpose, we extend the view-

point of one-to-one traceability approach to the more versatile view

of LSI as a recommendation system. We found that considering

the top 5 elements in the ranked list increases the results by 30%

on average and makes LSI a viable alternative in projects where

naming conventions are not followed systematically.

CCS CONCEPTS

· Computing methodologies → Natural language process-

ing; · Software and its engineering→ Traceability;
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1 INTRODUCTION

The strive for higher software quality produces an increasingly

large amount of test code. Nowadays larger systems include tens

of thousands of test cases. This vast amount of test cases can be

genuinely hard tomanage properly. In these cases identifyingwhich

test case is meant to test which parts of the system becomes a major

issue. This is a well known problem of software engineering called

test-to-code traceability [21, 29].

Having a large number of tests, it is crucial to be able to find out

in a relatively simple way which parts of the production code are

tested by a single test case. If we encounter a failed test case, the code

under test usually needs to be modified. Test-to-code traceability is

still an open problem in software engineering, but several results

have been achieved in the recent years. The most simple solution

would be to regulate the process of testing so that traceability

information could be close at hand at any time. Regrettably, these

regulations are rather hard to maintain and without the proper

awareness of their importance are seldom used. This would also be

tedious to implement on already existing software systems with no

previous traceability information.

There are several techniques however for extracting test-to-code

traceability information from an existing codebase. Rompaey and

Demeyer [29] inspect some of these techniques and provide a com-

parison between them. These techniques included naming conven-

tions and information retrieval (IR) which are based on conceptual

information. As reported by the paper, the naming convention

technique achieved perfect precision on this evaluation, but its

applicability proved rather low generally. Naming conventions are

very precise and provide an easy way to extract traceability links,

but they are in most cases loosely defined and hard to enforce. They

mainly depend on the conscience and the discipline of the develop-

ers. Even assuming the best possible attitude, naming conventions

are still unable to cope with every situation.

The information retrieval approach relies mainly on textual in-

formation extracted from the source code of the system. Variables

and comments usually contain meaningful text aimed to be under-

stood by human readers. Uncovering the conceptual context of the

test cases can be used for extracting traceability information. The

state of the art techniques in test-to-code traceability use a combina-

tion of different approaches, including structural dependencies and

conceptual information, which latter relies on the Latent Semantic

Indexing (LSI) technique [23].

In this paper we extend the viewpoint of one-to-one traceability

approach of naming conventions to the more flexible view of LSI as
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a traceability recommendation system [27, 28]. This means that in-

stead of the most similar class we consider the 5 most similar classes

as subjects to a given test case. This introduces fault tolerance and

greater versatility when traceability links are not obvious at a cost

of a small amount of additional human intervention. Although LSI

is not the leading standalone technique, we argue that it provides

a viable alternative in projects where testing naming conventions

are not followed. To support this view, we experiment with naming

conventions and textual similarities provided by the LSI technique

as traceability methods.

We provide the following contributions by applying natural

language processing to test-to-code traceability:

• We introduce flexibility to test-to-code traceability by apply-

ing the LSI technique as a recommendation system. Consid-

ering top 5 classes instead of only 1 increases recall rate by

30% on average.

• We show that a customized LSI recommender system approx-

imates the naming convention technique by 97% on average

when top 5 recommended classes are considered.

• Manual inspection shows that LSI can produce meaningful

results even when naming conventions are not followed. In

some cases the tested class is ranked within the top 5 results

by the LSI.

2 GOALS AND METHOD

2.1 Test-to-Code Traceability Approach

Our current goals were to recover test-to-code traceability informa-

tion relying on conceptual information extracted through natural

language processing. To achieve this, we used the LSI technique

widely used throughout software engineering. LSI has been suc-

cessfully applied in various traceability problems in the recent

years [2]. Test-to-code traceability differs from these tasks in many

aspects [21]. One of the biggest differences is that there is no com-

pletely natural language based text to rely on as a textbase. This

means that we have to work with only identifier names and com-

ments found throughout the code. This complicates the work, op-

posed to different traceability problems, where the algorithm can

rely on larger textual information like requirements or bug reports.

Information retrieval methods also depend on the habits of the

developers, proper commenting and descriptive naming factors

greatly. The LSI technique builds a corpus from a set of documents

and computes conceptual similarity of these documents with each

query presented to it. In our current experiments the production

code classes of a system were considered the documents forming

the corpus, while the test cases were used as queries. The textual

information was prepared with the habitual preprocessing methods.

Figure 1 provides a high level glance at our process (see Section 2.3

for details).

pu b l i c vo id t e s t I n i tMak e sManag e rAva i l a b l e I n F a c a d e ( ) {
t r y {

P r o f i l e F a c a d e . getManager ( ) ;
f a i l ( " P r o f i l e F a c a d e shouldn ' t be i n i t i a l i z e d ! " ) ;

} c a t ch ( Runt imeExcept ion e ) { }
i n i t S u b s y s t em . i n i t ( ) ;
a s s e r tNo tNu l l ( P r o f i l e F a c a d e . getManager ( ) ) ;

}

Listing 1: A simple example of a JUnit test case

Software Code

Static Analysis and 

Textual Preprocessing

Assembling Corpus

Documents

public class SomeClass {

  public static boolean doSomeStuff() {

    //an example production code

    ...

  }

}
 

    
Classes

LSI Assembling Queries

Queries

  public static void testSomeStuff() {

    //an example test case

    ...

    assertTrue(anObject.doSomeStuff());

  } 

    Test CasesMeasuring Similarity

1

2

3

4

5

6

7

8

9

Ranked List

of Similar

Classes

Figure 1: An illustration of our process

Let us consider a real test case taken from ArgoUML, featured in

Listing 1. This test case ensures that ProfileFacade’s manager is not

initialized before we call initSubsystem’s init method, and that it is

properly initialized afterwards. It is not visible from the example,

but initSubsystem is an instance of InitProfileSubsystem. The test

case is located in the org.argouml.profile.TestSubsystemInit class.

Recovering test-to-code traceability links in a recommendation

system manner holds a number of benefits. Though unit tests usu-

ally aim to test one part of the code, this is often less clear in prac-

tice. In our current example the success of the test depends both

on InitProfileSubsystem’s init method and also ProfileFacade’s state.

While naming conventions could only approach this as a simple

one-to-one relationship, this is not necessarily the best way. A rec-

ommendation system providing for instance five possible matches

for the test case could highlight this relationship more thoroughly.

As a matter of fact, the top two classes found most similar to the

test case by LSI are exactly ProfileFacade and InitProfileSubsystem.

Of course, recommending a number of matches for each test

case results in having to filter out the possible bad matches. It is

a small amount of manual work, but it is still vastly less effort

than searching the whole projects for the tested code would mean.

With only one-to-one matching used by naming conventions, we

would not get any clues on what other parts of the code might

be influencing the failure of the test case, while with similarity,

this information is readily available. In case of a faulty match, this

also results in a number of other possibilities to choose from. Thus,

naming conventions, though highly useful, can still have drawbacks

even if they have been properly used. It is also important to note that

naming conventions in many cases are not really defined formally
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and can vary by each system, or even within one system itself,

which means that uncovering traceability links may need to be

tuned to a specific system before functioning properly.

As the naming conventions technique utilizes textual matching,

its results could theoretically also be reproduced by textual simi-

larity. These would provide less certain matches, but leave room

for the small violations of the naming conventions often present.

We can also see this in the example, where InitProfileSubsystem and

TestSubsystemInit would match only by a very loose definition of

naming conventions, while their similarity is still very high. Thus,

relying on similarity of the names could result in a more versatile

approach than simply defining rules.

In determining the recommendation factor, we rely on empirical

results borrowed from fault localization research. In a fault localiza-

tion scenario, developers examine methods based on suspiciousness

rank to find the cause of test failures. User experiments report, that

developers tend to examine only the first 5, or at least the first 10

elements in the ranked list [11, 34]. Other places are neglected by

developers regardless of their content. Thus, we experiment with

1 to 10 long recommendation lists, where 1 long list means the

one-to-one matching of LSI. In our experiments we put emphasis

on 5 long lists, since this was supported by most developers, and an

acceptable degree of freedom can be achieved by the LSI algorithm.

Considering the arguments presented in this section, we set up

three research questions we aim to answer in this paper:

RQ1: How does the IR method applied as a recommendation

system perform compared to the naming conventions method?

RQ2: Can we customize the IR method to achieve similar results

as the naming conventions technique?

RQ3: Are there useful results produced by LSI when naming

conventions are barely followed (manual investigation)?

2.2 Evaluation Procedure

According to previous research [29], proper naming conventions

can produce 100% precision in finding the tested class where the

conventions were systematically followed. As the systems under

test contain naming conventions to at least some extent, we based

our evaluationmethod on the test cases properly covered by naming

conventions. To produce a sufficiently precise set of correct test-

code pairs, wemade an algorithmwith rather simple, yet sufficiently

strict rules. We require the test class to have the same name as the

production code class it tests, having the word ’Test’ before or

after the name. Pairs should also have the same package hierarchy,

starting from the test package in case of the test classes, meaning

that their qualified names are also the same. If these rules apply

to two classes, we deemed it sufficient to be covered by naming

conventions, and be used for evaluation purposes.

In order to quantify our results, we introduce the recall rate met-

ric, which is frequently used in case of recommendation systems

[33, 36]. The number of results provided is represented by k . Since

the recommendations are aimed for human users, we do not evalu-

ate outside this k recommendation factor. In our experiments we

mainly considered the top 5 results, because this is the quantity the

developers tend to still accept, as stated in the previous subsection.

recall-rate@k =
Ndetected

Ntotal

In the current case Ndetected signifies the total number of cor-

rectly detected units under test, while Ntotal represents the total

number of units under test we are looking for. Because of the limi-

tations of our chosen evaluation technique based on naming con-

ventions we are only capable of considering one-to-one traceability

links. This means that Ntotal is always the same as the number

of test cases in a system. Thus the results of the recall rate and an

average of the frequently used recall measure will always coincide

in our case.

2.3 Applying LSI on Real Projects

The experiments featured in this paper were done on systems writ-

ten in the Java programming language. Since we work with an

IR-based technique, using mainly the natural language part of the

code, the programming language of the source code should be of

no real significance, however we cannot guarantee this. Our exper-

iments feature the extraction of program code from the systems

under test using static analysis, distinguishing tests from produc-

tion code, textual preprocessing and determining the conceptual

connections between tests and production code using Latent Se-

mantic Indexing. During the experiments we used the Gensim [26]

toolkit’s implementation of LSI. The initial static analysis that pro-

vides the text of each method and class of a system in a structured

manner is performed with the Source Meter [32] static source code

analysis tool.

Table 1: Size and versions of the programs used, Methods =

the number of all production and test methods, NC = the

percentage of test cases which follow naming conventions

Program Version Classes Methods Tests NC

Comm. Lang 3.4 596 6 523 2 473 87.38%

Comm. Math 3.4.1 2 033 14 837 3 493 77.61%

ArgoUML 0.35.1 2 404 17 948 554 75.63%

Mondrian 3.0.4 1 626 12 186 1 546 19.73%

JFreeChart 1.0.19 953 11 594 2 239 37.42%

JFreeChart

Mondrian

ArgoUML

Commons Math

Commons Lang

Number of Methods

0 5000 10000 15000 20000

Production.Methods

Test.Methods.Not.Covered.by.Naming.Conventions

Test.Methods.Covered.by.Naming.Conventions

Figure 2: Properties of the sample projects used

The preprocessing phase involves the commonly used prepro-

cessing methods of NLP. It features splitting [6][4] up camel case

names, which can transform variable names to a more useful, mean-

ingful form, lower casing, bringing the terms to a more similar and
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more easily manageable form with stemming [7], filtering out some,

mainly Java-specific stopwords, and weighting some other terms

positively, like the terms in the names of methods.

LSI’s corpus can basically be considered as a multidimensional

semantic field in which the conceptually more similar documents

are located closer to each other. If a query is inserted into this field,

it also signifies a point in the field, which results in a measurable

distance, thus similarity to the documents of the corpus. This means

that for every document-query pair we can easily get the magnitude

of semantic similarity. If we order these results by similarity then

we can recover any desired number of most similar documents

for each query, or using a well chosen similarity threshold value,

we can create a versatile algorithm, producing only the pairs with

significant similarity.

We evaluated our technique on the following programs listed

in Table 1. Commons Lang is a module of the Apache Commons

project. It aims to broaden the functionality provided by Java re-

garding the manipulation of Java classes. Commons Math is also a

module of Apache Commons, aiming to provide mathematical and

statistical functions missing from the Java language. ArgoUML is a

tool for creating and editing UML diagrams, offering a graphic in-

terface and relatively easy usage. The Mondrian Online Analytical

Processing (OLAP) server improves the handling of SQL databases

of large applications. JFreeChart enables Java programs to display

various diagrams, supporting several diagram types and output

formats.

The evaluated versions of programs, their total number of classes

andmethods and the quantity of their test cases are shown in Table 1

with the NC column featuring how many of the test cases followed

the naming conventions based on qualified names. Figure 2 reflects

these numbers in a visual manner.

3 RESULTS AND DISCUSSION

3.1 LSI as a standalone technique

In this section we evaluate LSI as a recommendation system for

traceability, compared to the naming convention technique. Results

were evaluated on five open source programs and are shown in

Table 2. We experimented with ranked lists of 1, 2, 5 and 10 most

similar classes according to LSI. We used method bodies, Javadoc

comments and qualified names in the corpus. In order to achieve

an accurate evaluation, we compare LSI results to traceability links

identified by naming conventions, which means that the numbers

on the table represent the results achieved with only these test cases.

We have to remark that though most cases this means a large part of

the system under test, there are some systems, especially Mondrian

with only 19.73% of its test cases covered by naming conventions,

that provide less data of thewhole system. Furthermore, considering

the limitations of naming conventions, it is not possible to assess

the possibility of more than one-to-one real traceability links.

Our results show that LSI as a standalone technique can usually

successfully produce 30-60% of the valid traceability links also

recovered by naming conventions. From the results it is also visible

that the high or low use of naming conventions does not necessarily

mean that the LSI result will be the same, its success does not seem

to depend on naming conventions.

Table 2: Results featuring the corpus built from code,

Javadoc comments and qualified names of the methods

Program LSI LSItop2 LSItop5 LSItop10

Commons Lang 61.7% 73.6% 88.5% 96.3%

Commons Math 29.7% 42.3% 56.9% 67.0%

ArgoUML 37.2% 49.9% 60.9% 68.1%

Mondrian 45.2% 58.4% 73.1% 80.3%

JFreeChart 33.5% 45.7% 63.0% 75.2%
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Figure 3: Our method to class traceability results

Figure 4 presents the values of Table 2 in a more easily compara-

ble manner, while Figure 3 highlights the improvement achieved by

using the top 5 most similar classes rather than only one. As these

figures also testify, providing a number of results can increase the

quality of the output significantly, achieving an improvement of on

average 30% at the top 5 scenario, raising the number of correctly

found links to a number between 57 and 88 percent. While LSI as a

standalone technique may perform worse than relying on naming

conventions where these are followed systematically, a recommen-

dation system based on LSI can successfully identify a considerable

amount of the correct traceability links. It is also apparent that

there are great differences between projects. LSI is not bound by

differences and provides results for each case. For example in case

of Mondrian less than a fifth of its code follows naming conventions

and the top1 45% and top5 73% LSI results are still relatively high.

Judging by the numbers, we believe that in case of a weak naming

convention result, LSI especially as a recommendation system, can

bring significant benefits and projected to the whole system it may

even outperform naming conventions.

Answer to RQ1: Considering LSI as a recommendation sys-

tem (top5 case) increases its overall benefits by 30% on average.

Where naming conventions are not often followed (Mondrian and

JFreeChart projects), top1 LSI results may be comparable to naming

conventions, but the top5 recommendation version may outper-

form naming conventions projected to the whole project and can

be a valuable alternative.

LSI also produces results where naming conventions were not

applied, while a technique relying solely on naming conventions

could produce none. The number of correct results in these cases
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Figure 4: An overview of our results on different programs

unfortunately cannot be measured with our current technique, thus

these are not reflected in our numbers. Not following naming con-

ventions may worsen LSI results too, but it may still provide a

considerable amount of correct traceability links. This is an impor-

tant point and we are taking a glance at this scenario in a later

subsection by manual evaluation.

3.2 Approximating the Naming Conventions

Technique

In the second experiment the LSI corpus is built only from the

qualified names of the methods. This approach is in some respects

close to the naming conventions technique, which uses only names

to detect connections. The results of this approach are shown on

Table 3. As it can bee seen from the table, LSI can successfully

approximate the results of naming conventions. Since our evalu-

ation method is based on the detected naming conventions, the

precision of the naming conventions method is considered 100% in

each presented case. This does not mean that our technique per-

forms necessarily poorer on the whole system than the one using

naming conventions only, nor does it mean that this name-based

LSI performs better than the one using code also. These results are

only given on the code covered by naming conventions, saying

nothing of the remaining classes, so these numbers merely show

that the results of the method using naming conventions can be

successfully approximated by a name-based LSI method. While

the naming conventions can identify only one-to-one connections,

and only in the cases they where correctly used, the LSI technique

can be effective in theses cases too, given the appropriate settings.

Thus, LSI can produce similarly correct results, while maintaining

a limited amount of versatility at the same time.

Table 3: Results featuring the corpus built from qualified

names of the methods

Program LSI LSItop2 LSItop5 LSItop10

Commons Lang 55.3% 82.2% 96.4% 100.0%

Commons Math 73.9% 89.6% 97.2% 99.3%

ArgoUML 92.8% 98.8% 99.8% 100.0%

Mondrian 75.1% 95.7% 99.7% 99.7%

JFreeChart 63.4% 77.7% 91.7% 97.8%

Answer to RQ2: A customized LSI recommender system ap-

proximates the naming convention technique to 97% on average

when the top 5 recommended classes are considered.

3.3 Manual Evaluation

As already established, the biggest disadvantage of the naming

conventions technique is that conventions are not followed in every

single case and the rate of their usage differs largely depending on

which system we are talking about. We see IR-based techniques

as a possible circumvention of this obstacle, since the usage of

natural language during development is much less optional than

conventions. Due to the lack of the true traceability links, the real

performance of LSI on the parts of systems not following naming

conventions is unknown. That is why we deemed it necessary

to do a manual evaluation of our results too, thus reducing their

dependence on the naming conventions technique. For this purpose

we investigated several different, randomly chosen cases for which

the naming conventions were not applicable to. Our findings show

that LSI can indeed produce veritable traceability links even in

these circumstances. We have already seen a simple example on

this in Section 2, but we would like to present some further points

on this matter.

Let us look at a real example shown on Listing 2. It is a test case

of the org.jfree.chart.StackedBarChartTest class of JFreeChart. This

is one case chosen randomly of the several test cases located in the

same package not covered by naming conventions.

/ ∗ ∗
∗ R ep l a c e s the d a t a s e t and checks t h a t i t has changed

as expec t ed .
∗ /

@Test
p u b l i c vo id t e s t R e p l a c eD a t a s e t ( ) {

/ / c r e a t e a d a t a s e t . . .
Number [ ] [ ] da t a = new I n t e g e r [ ] [ ]

{ { new I n t e g e r ( −30 ) , new I n t e g e r ( −20 ) } ,
{ new I n t e g e r ( −10 ) , new I n t e g e r ( 1 0 ) } ,
{ new I n t e g e r ( 2 0 ) , new I n t e g e r ( 3 0 ) } } ;

Ca t ego ryDa t a s e t newData =
D a t a s e t U t i l i t i e s . c r e a t eC a t e g o r yDa t a s e t (
" S " , "C" , d a t a ) ;

L o c a l L i s t e n e r l = new L o c a l L i s t e n e r ( ) ;
t h i s . c h a r t . addChangeL i s t ene r ( l ) ;
C a t e go ryP l o t p l o t = ( Ca t e go ryP l o t )

t h i s . c h a r t . g e t P l o t ( ) ;
p l o t . s e t D a t a s e t ( newData ) ;
a s s e r t E q u a l s ( t rue , l . f l a g ) ;
Va lueAxi s a x i s = p l o t . ge tRangeAxi s ( ) ;
Range range = a x i s . ge tRange ( ) ;
a s s e r t T r u e ( " Expec t i ng the lower bound o f the range to

be around −30: " + range . getLowerBound ( ) ,
range . getLowerBound ( ) <= −30) ;

a s s e r t T r u e ( " Expec t i ng the upper bound o f the range to
be around 3 0 : " + range . getUpperBound ( ) ,
range . getUpperBound ( ) >= 3 0 ) ;

}

Listing 2: A test method from JFreeChart

As it can be observed after manual inspection, the focal method

should be the setDataset(int index, CategoryDataset dataset)method

presented in Listing 3, located in the org.jfree.chart.plot.CategoryPlot

class. It is called by the setDataset(CategoryDataset dataset)method,
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with an index value of 0, which is the sole purpose of the method.

This setter changes the old dataset to a new one obtained through

parameter by changing the dataset’s ChangeListener and triggering

a new change event. The test case basically tests this process. It

firstly tests whether the change event occurred through checking

whether the LocalListener defined in the same class for the pur-

pose of this test has changed its flag to true, which signifies that a

ChartChangeEvent occurred. The test case also tests whether the

range of the plot with new data is of appropriate lower and upper

bound, using previously defined values.

/ ∗ ∗
∗ S e t s a d a t a s e t f o r the p l o t and sends a change

n o t i f i c a t i o n to a l l
∗ r e g i s t e r e d l i s t e n e r s .
∗
∗ @param index the d a t a s e t index ( must be &gt ; = 0 ) .
∗ @param d a t a s e t the d a t a s e t ( { @code n u l l } p e rm i t t e d ) .
∗
∗ @see # g e tDa t a s e t ( i n t )
∗ /

p u b l i c vo id s e tD a t a s e t ( i n t index , Ca t ego ryDa t a s e t
d a t a s e t ) {

Ca t ego ryDa t a s e t e x i s t i n g = ( Ca t ego ryDa t a s e t )
t h i s . d a t a s e t s . g e t ( index ) ;

i f ( e x i s t i n g != n u l l ) {
e x i s t i n g . removeChangeL i s tener ( t h i s ) ;

}
t h i s . d a t a s e t s . put ( index , d a t a s e t ) ;
i f ( d a t a s e t != n u l l ) {

d a t a s e t . addChangeL i s t ene r ( t h i s ) ;
}
/ / send a d a t a s e t change even t to s e l f . . .
Da tase tChangeEvent even t = new

Datase tChangeEvent ( t h i s , d a t a s e t ) ;
da t a se tChanged ( even t ) ;

}

Listing 3: The code Listing 2 was meant to test

As it is evident from the names, this traceability connection is

not recoverable through naming conventions, since all class and

method names differ greatly. Our LSI-based method however marks

CategoryPlot as the most similar production code class, leading us

correctly to the relevant part of the code. It is also worth mention-

ing that although setDataset is the method the test was meant to

evaluate, the success of the test also depends on the correctness

of several other methods of JFreeChart, hence a failure of the test

does not necessarily stem from the fault of setDataset. The test case

also depends on ChartChangeEvent, CategoryPlot’s getRangeAxis

method, and even on DatasetUtilities for creating new dataset value

and ValueAxis for the range it is meant to test. In a fault localiza-

tion scenario these can mean crucial information, which IR-based

methods can also highlight.

Generally speaking of JFreeChart, it can be observed that the two

main packages of production code, chart and data show significant

difference in the appliance of conventions. In the data package

naming conventions are used with great thoroughness, the name

of the test class always includes the name of the class tested. In

the chart package on the other hand, there are many cases that

do not reflect any other class in name, only the functionality they

are meant to test, like generating a specific type of plot. Testing

higher level functions can involve the use of several different parts

of the production code, and this may present significant barriers to

naming conventions, though the code may still provide clues to the

appropriate traceability links. Considering the above circumstances,

we believe that leaning more on textual similarity can produce good

results evenwhen conventions can not. Amore thorough evaluation

of this case is needed in future research.

Answer to RQ3: First manual evaluation shows that LSI can

produce meaningful results even when naming conventions are

neglected. In some cases the tested class is ranked within the top 5

results by LSI.

4 RELATEDWORK

Conceptual analysis was successfully applied in various software

engineering topics in recent years [19]. LSI [3] is often used through-

out software engineering, for example in fault localization [18], in

detection of bug report duplicates [12], test-prioritization [30], fea-

ture analysis [9, 10] and in the field of traceability, for example

between tests and requirements [15]. Several efforts have been

made to improve the application of the LSI technique itself, for

example Query-based reconfiguration approach [17] and using part

of speech information [1]. Summarization techniques aim to gener-

ate descriptive names or human-oriented summaries of program

elements in general [5, 16], and for tests as well [8, 13, 20, 35].

Test-to-code traceability is an intensively studied topic [14],

however no known perfect solution exists to the problem. Sev-

eral individual solutions were proposed, like plugins integrated

in development environments [22], and also methods relying on

static or dynamic analysis [31], highlighting their usage in this cur-

rent problem. Call graphs, information in names and timestamps

were utilized in the process of finding traceability links. Rompaey et

al. [29] use three open source programs to evaluate the effectiveness

of techniques that rely on naming conventions, fixture elements,

the program’s call graph, the last call before each assert command

(LCBA), their code as a text, and data provided by a version control

system. For their information retrieval based technique the authors

chose LSI, which proved outstanding in its applicability, but per-

formed the worst at its precision. Qusef et al. [25] improved the

LCBA technique with data flow analysis, relying highly on data

dependencies. In a follow-up work [23] dynamic slicing is used

to increase the number of identified connections, and precision

is maintained using conceptual coupling, incorporating the LSI

technique. The authors named their method SCOTCH and have

proposed several improvements to it [24].

In this paper we provided a deeper analysis of the LSI technique

and compared it to the naming convention-based method. Although

LSI is not appropriate as a standalone technique, we carried out

using extensive measurements and pointed out its advantages, es-

pecially when naming conventions are not properly followed. The

current state of the art solutions also use conceptual information.

We introduced a recommendation system approach to its use and

presented measurable benefits, with the tradeoff of having top 5

results.

5 CONCLUSION

In this paper we experimented with how natural language process-

ing can aid test-to-code traceability. We used the Latent Semantic

Indexing technique to identify the tested class for each test case of

a program. We analyzed the LSI method in the light of the naming
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convention-based approach and performed experiments on five

open source systems. Our contribution lies in the idea to apply LSI

as a recommendation system, thus to consider not only the topmost

element of its ranked list. This allows much greater versatility and

fault tolerance in traceability. The LSI is always applicable, and can

also detect one-to-many links, which is a deficiency of the naming

conventions technique.

We found that considering the top 5 elements in the ranked list

increases the results by 30% on average and makes LSI as viable

alternative in projects where naming conventions are not strictly

followed. With special corpus selection we approximated the nam-

ing convention technique to 97% in the top 5 scenario, however in

this case the generality of the LSI is questionable. We also manually

looked at cases where naming conventions are not followed and

found examples for LSI being capable. In the future we plan to ex-

tend themanual analysis and collect data for a combined traceability

method incorporating LSI.
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