
NECTAR: Non-Interactive Smart Contract Protocol using
Blockchain Technology

Alexandra Covaci
nChain

London, United Kingdom
alexandra@ncrypt.com

Simone Madeo
nChain

London, United Kingdom
simone@ncrypt.com

Patrick Motylinski
nChain

London, United Kingdom
patrick@ncrypt.com

Stéphane Vincent
nChain

London, United Kingdom
vincent@ncrypt.com

ABSTRACT
Blockchain-driven technologies are considered disruptive because
of the availability of dis-intermediated, censorship-resistant and
tamper-proof digital platforms of distributed trust. Among these
technologies, smart contract platforms have the potential to take
over functions usually done by intermediaries like banks, escrow or
legal services. In this paper, we introduce a novel protocol aiming to
execute smart contracts as part of a blockchain transaction valida-
tion.We enable extensions in the execution of smart contracts while
guaranteeing their privacy, correctness and verifiability. Man-in-
the-middle attacks are prevented, since no communication between
participants is requested, and contract validations do not imply the
re-execution of the code by all the nodes in the network. However,
proofs of correct execution are stored on the blockchain and can be
verified by multiple parties. Our solution is based on programming
tools which optimize the time execution and the required memory
while preserving the embedded functionality.

KEYWORDS
Smart contract, blockchain, Bitcoin, verifiable computation, non-
interactive protocol.

1 INTRODUCTION
Blockchain, the core technology of cryptocurrencies, is generating
significant interest across a wide range of industries, promising to
support the redesign of interactions in business, politics and society
at large. A permission-less blockchain network can be seen as a
global, public log that records transactions between cryptocurrency
clients in a decentralized manner, with internal consistency main-
tained through a distributed consensus mechanism [1]. The state
of the world in the Bitcoin blockchain is represented by a series of
messages called transactions [2]. Bitcoin transactions have locking
and unlocking mechanisms based on a scripting language which is
primitive recursive, thus lacking expressive power. Transactions are
recorded in blocks, each block being linked-back to the previous one
through its hash value. Hence, blockchain security is established by
this chain of cryptographic hashes solved by a loosely-organized
network of participants called miners.

Blockchain-driven technologies are considered disruptive be-
cause of the availability of dis-intermediated, censorship-resistant
and tamper-proof digital platforms of distributed trust [3]. Among

the potential uses and innovations for blockchains, smart contract
platforms have the potential to take over functions usually done
by intermediaries like banks, escrow or legal services. However,
for their broad adoption, there is still a need for developing easily
verifiable protocols that respect the confidentiality and privacy of
data, and this is a gap addressed by the current publication.

In this paper, we introduce NECTAR, i.e. Non intEractive smart
ConTrAct pRotocol, aiming to execute smart contracts as part of a
blockchain transaction validation1. The protocol is non-interactive,
i.e. no direct communication between the parties is required during
the verification stage. We concentrate on investigating the use of
advanced cryptographic techniques to enhance and expand the
blockchain capabilities in the context of smart contracts. Our pro-
posed solution lies within the intersection of cryptography and
formal verification, enabling extensions and innovations in the
execution of smart contracts while guaranteeing their privacy, cor-
rectness and verifiability. Its principal benefits are (i) man-in-the-
middle attacks are prevented, since no communication between
participants is requested; (ii) malicious nodes cannot tamper with
the data due to the use of blockchain technologies; (iii) contract
validations do not require the re-execution of the code by all the
nodes in the network, like in Ethereum [4].

Three different entities operate in our protocol: the client creates
the contract, the worker evaluates its computation using a given set
of input values and produces a Proof of Correctness (PoC), while
the verifier validates the contract by checking the PoC. In building
NECTAR, our main contributions can be summarized as follows:

• Minimal contract execution: contract validations do not re-
quire code re-execution and computations are not replicated
by every node in the network.

• Practical formal verification: proofs of correct execution of
the smart contracts are stored on the blockchain and can be
verified by multiple parties.

• Outsourcing of the contract execution: a worker produces a
certificate of correctness that can convince untrusted parties
of the validity of the contract.

• Functional correctness: during verification, the worker pub-
lishes a non-interactive proof as part of a transaction and a
verifier may accept or reject it.

1NECTAR’s technologies are the subject of the following UK patent applications:
1718505.9 (9/11/17), 1719998.5 (30/11/17), 1720768.9 (13/12/17), 1801753.3 (2/1/18).

ar
X

iv
:1

80
3.

04
86

0v
1

 [
cs

.C
Y

]
 1

3
M

ar
 2

01
8

Table 1: Smart contract technologies and available features.

Technology Non-interactive Trustless
Minimal contract

execution
Ethereum [4] ✓ ✓
ZKCP [8, 9] ✓ ✓
Hawk [10] ✓ ✓

• Reduced space and time complexity: our solution is based on
programming tools which optimize the time execution and
the required memory while preserving the embedded func-
tionality.

The paper is structured as follows: a background on smart contracts,
verifiable computation and algebraic tools used in our protocol is
presented in Section 2. The details of NECTAR are introduced in
Section 3, with specific focus on the compiling pipeline for the trans-
lation of a contract written in a high-level language to a suitable
arithmetic representation. In Section 4, we illustrate the interaction
with the blockchain using the Bitcoin Script language. Finally,
conclusions are presented in Section 5.

2 BACKGROUND
This section focuses on introducing the reader to the main technolo-
gies that underpin NECTAR: the existing smart contract platforms
and the required mathematical tools.

2.1 Smart contracts
Although commonly known as the technology underpinning cryp-
tocurrencies such as Bitcoin [5], blockchain applications have in-
creasingly gone beyond digital currencies [2]. Blockchains can be
regarded as computational engines for digitizing asset ownership,
intellectual property and the execution of smart contracts.

The term smart contract is generally used to describe a com-
puter protocol that automatically facilitates, executes and enforces
a contract made between two or more counterparties, removing
the need for contractual clauses and recourse to the law. The idea
behind smart contracts dates back to the mid 1990s, when Nick
Szabo predicted that the digital revolution would drastically change
the way humans make contracts [6]. The rules of a contract can
be encoded in a program that is replicated and executed across
blockchain nodes. Privacy-friendly and secure contracts encrypt in-
formation using a public key or a commitment scheme, while trans-
action validations enable the verification of the correct execution
of the smart contract. This process can employ Zero-Knowledge
(ZK) proofs, Succinct Non-interactive ARguments of Knowledge
(SNARK) proofs or a combination of both. Finally, the results of the
secure computation process are stored on the blockchain [7].

Existing smart contract applications built on top of Bitcoin (e.g.
lotteries [11] or multi-party computation [12]) experience diffi-
culties interfacing with the Bitcoin scripting language [10]. These
served as motivation for the development of other blockchain script-
ing languages and platforms that are better suited to smart contracts.
New emerging technologies (e.g. Ethereum, Counterparty [13]) ac-
celerate the evolution of smart contracts by extending Bitcoin de-
sign through a rich Turing-complete bytecode language. Ethereum

has a flexible interface that enables a large variety of applications
for smart contracts. Additionally, the latest Ethereum Metropolis
(Byzantium) software upgrademade possible privacy advancements
that enable zk-SNARK-infused contracts [14].

However, not all the smart contract solutions are based on zero-
knowledge protocols. Counterparty extends Bitcoin with advanced
financial operations, e.g. creation of virtual assets and payment
of dividends, by embedding its metadata into Bitcoin transactions
recognized and interpreted by Counterparty nodes. Stellar [15] is
an open source platform that enables the provision of affordable
financial services to peoplewho have never had access to them (with
a focus on Africa). Stellar is governed by a consensus algorithm
inspired by the federated Byzantine agreement [16], where a node
agrees on a transaction if the nodes in its neighborhood agree as
well, thus consuming less computing power compared to proof-of-
work. Stellar’s virtual currency is called lumens, but it also allows
users to retain other assets, e.g. telephone minutes. Monax [17] is a
proof-of-stake smart contract-enabled blockchain that allows users
to create private blockchains and define dedicated authorization
policies.

Zero-knowledge cryptography on the blockchain was pioneered
by Zcash [18], a global open payment network, which can be used
as a method for verifying a ledger entry without revealing the
identity of any parties. Hawk [10] is a zero-knowledge based frame-
work for building privacy-preserving smart contracts that provides
both programmability and transaction privacy. Hawk includes a
correct-by-construction compiler for user-defined applications that
allows any non-specialist programmer to write a program without
implementing any cryptography. Trust assumptions introduced
by Hawk-generated protocols rely on minimally trusted managers,
who can see the user’s inputs but cannot affect the correct execution
of the contract. Zero Knowledge Contingent Payment (ZKCP) is
another protocol based on zero-knowledge techniques that allows
fair exchange over the Bitcoin blockchain [8, 9]. ZKCP relies on two
processes: an atomic swap over the blockchain and an interactive
zero-knowledge scheme, where communication between the parties
is necessary, making the protocol susceptible to denial-of-service
attacks.

In Table 1, we present the most important features required
to build privacy-friendly and secure contracts, showing how the
above-mentioned technologies fulfill them. We observe that none
of the existing solutions ticks all the boxes that would offer an ideal
minimal set of functionalities.

2.2 Algebraic tools
In the following sections, we use the term smart contract to describe
general purpose computations that take place on a blockchain and
are influenced by external events. In recent seminal works [19, 20],
it was shown how to compactly encode computations as quadratic
programs, in order to provide non-interactive, publicly verifiable
computations. The basic definitions of arithmetic circuits, quadratic
arithmetic programs and bilinear groups are now provided.

2.2.1 Basic Notation. We denote by G a group, and consider
only groups that are cyclic and have prime order r . Group elements
are denoted with calligraphic letters, such as P and Q. Given a
group G, we say that P generates G, i.e. G = ⟨P⟩, and use additive

2

notation for group arithmetic. Hence, P + Q denotes addition of
the elements P and Q; a · P denotes scalar multiplication of P by
the scalar a ∈ Z. We denote by F a field, and by Fp the field of order
p. We consider only fields of prime order. We denote by Fpk the
extension field of degree k of Fp , where k is a non-zero integer.
Let E be an elliptic curve over the finite field Fp (resp. Fpk), we
sometimes write E(Fp [r]) (resp. E(Fpk [r])) to denote the abelian
subgroup of order r of E(Fp)[r] (resp. E(Fpk)[r]).

2.2.2 Modeling computations as Quadratic Arithmetic Programs.
An arithmetic circuit C over a finite field F and a set of variables
®x = (x1, ...,xk) consists of indegree 2 addition and multiplication
gates and a set of wires between the gates. The wires carry values
over F. Every gate in C of indegree 0 is labeled by either a variable
from ®x or a field element from F. We always regard an arithmetic
circuit as computing a polynomial in F[x]. Unless otherwise stated,
an arithmetic circuit C has d multiplication gates and k wires. The
wires (1, ...,n) occupy inputs and outputs and the set (n + 1, ...,k)
represents the internal wires.

A quadratic arithmetic program (QAP) is a way of encoding
arithmetic circuits, and some more general computations, over a
field F of prime order p given by a collection of polynomials over
F. For any function f represented by an arithmetic circuit, we can
easily construct a QAP that evaluates the function f .

Definition 2.1. [19] A QAP Q over a field F is a tuple Q

Q =
(
vi (x)ki=1, wi (x)ki=1, yi (x)

k
i=1, t(x)

)
, (1)

withvi (x), wi (x), yi (x) ∈ F[x] polynomials of degree at most d −1.
The polynomial t(x) ∈ F[x] is called a target polynomial and has
degree d . The size of the QAP is k while its degree is d . We say
thatQ evaluates a function (an+1, ...,ak) = f (a1, ...,an) if the tuple
(a1, ...,an) ∈ Fn is a valid assignment of the inputs and outputs
of C and there exists a tuple (an+1, ...,ak) such that t(x) divides
p(x) =

(∑k
i=1 aivi (x)

)
·
(∑k

i=1 aiwi (x)
)
−
(∑k

i=1 aiyi (x)
)
∈ F[x],

i.e. there exists some polynomials h(x) such that h(x) · t(x) = p(x).

The very basic intuition for building a QAP is to encode the input-
output correctness for each gate in the polynomials vi (x), wi (x)
and yi (x). For each multiplication gate д this is done by first select-
ing an arbitrary value rд ∈ F (i.e. a root) and then, for every left
wire i going to gate д, one imposes vi (rд) = 1. A similar process is
done for polynomialswi (x) and yi (x) w.r.t. right input and output
wires respectively. The target polynomial t(x) is defined over the
roots rд : t(x) =

∑d
i=1(x − ri).

2.2.3 Bilinear Groups. The protocol as described herein is based
on bilinear pairing cryptography, i.e. the polynomials of a QAP are
encoded into elements of groups. We assume two cyclic additive
groups G1 and G2 of prime order r with generators P and Q re-
spectively together with map e : G1 × G2 → GT , where GT is a
multiplicative group of order r . The map e is assumed to be bilinear,
i.e. ∀P ∈ G1, Q ∈ G2, a,b ∈ Zr :

e(aP,bQ) = e(P,Q)ab . (2)

The map e is non-degenerate, i.e. for P , 0G1 and Q , 0G2 ,
e(P,Q) = 1GT ; where 0G1 (resp. 0G2 and 1GT) is the neutral of
the group G1 (resp. G2 and GT). There are many ways to set up

bilinear groups, and our construction uses asymmetric bilinear
groups where G1 , G2.

The idea of encoding consists in evaluating, for example, the
polynomials vi (x),wi (x) at a random element s ∈ F and mapping
these elements tovi (s)·P inG1 andwi (s)·Q inG2. The calculations
in the polynomial ring F[x] are translated into calculations in the
exponent of GT by e

(
vi (s) · P,wi (s) · Q

)
= e

(
P,Q

)vi (s)wi (s).

2.2.4 Proving Correctness of Computations. For the worker to
prove that an assignment (a1, . . . ,an) on input/output wires is
valid, it suffices to prove that there exists (an+1, ...,ak) correspond-
ing to assignments on the internal wires such that p(x) has roots
(r1, . . . , rd). Each polynomial of the quadratic program, e.g.vi (x) ∈
F[x], is mapped to an element vi (s) · P in a bilinear group, where
s is a secret value selected by the client, P is a generator of the
group, and F is the field of discrete logarithms of P. We refer
to these elements as public parameters or a common reference
string. Thus, for a given input, the worker evaluates the circuit
directly to obtain the output and the values of the internal cir-
cuit wires which correspond to the coefficients ai . To oversim-
plify, the worker evaluates v(s) · P = ∑k

i=1 ai · vi (s) · P (resp.
w(s) · Q = ∑k

i=1 ai ·wi (s) · Q and y(s) · P = ∑k
i=1 ai ·yi (s) · P). The

worker computes the polynomial h(x) = p(x)/t(x) = ∑d
i=1 hi · x i

and constructs h(s) · Q = ∑d
i=1 hi · (si · Q). The elements si · Q

are public parameters. In this way, the worker is able to evaluate
h(s) · Q without learning the value s .

In the last phase, the verifier uses bilinear pairings to check
whether t(x) divides p(x):

e
(
v(s) · P,w(s) · Q

)
= e

(
y(s) · P,Q

)
· e
(
t(s) · P,h(s) · Q

)
. (3)

In existing QAP constructions, the worker does not know s , and
hence cannot directly evaluate the polynomials vi (s),wi (s),yi (s)
on each wire. In fact, security would be broken if the worker knew
the value of the polynomials at x = s . The interested reader may
also consult [19–21].

3 NECTAR PROTOCOL
NECTAR allows non-specialist programmers to compose smart con-
tracts, outsource the contract execution to untrusted parties and
publicly verify the correctness of the contract execution. As illus-
trated in Figure 1, the protocol consists of three main phases. In
the setup phase, contracts are written in a formal language with
precise semantics. Contracts expressed in such a language have a
mathematically precise meaning and can be manipulated by soft-
ware. A compiler/interpreter takes as input the source code and
produces an arithmetic circuit C which consists of wires that carry
values from a field F and connect to addition and multiplication
gates. From the circuit C , the system first generates a quadratic
program and then a set of public parameters that can be outsourced
for execution to untrusted parties. During the evaluation phase,
a worker evaluates the computation on a particular input x and
produces a PoC that is stored on the blockchain, based on the public
parameters associated with the quadratic program. Finally, during
the validation phase, the network nodes run a formal verification
of the contract execution using the public parameters and the PoC.

3

Figure 1: NECTAR is characterized by three phases: setup, evaluation and validation. During the setup phase, a compiler/in-
terpreter takes as input a contract source code, produces an arithmetic circuit and generates a quadratic program containing
a set of polynomials that provides a complete description of the original circuit. The public parameters (Ek ,Vk) required by
the worker and the verifiers are also generated. During the evaluation phase, the worker evaluates the computation over a
particular input x and obtains the output y. Then, it uses the evaluation key Ek to produce a proof-of-correctness π . The proof
π is stored on the blockchain and can be verified during the validation phase bymultiple parties without requiring the worker
to interact with them. Every node can validate the payment transaction using the set (π ,x ,y,Vk), thus validating the contract.

Although more domain-specific languages (DSL) are required to
implement a smart contract, e.g. Digital Asset Modeling Language
(DAML) and Financial products Markup Language (FpML), as a first
step we focus on a more generic language that provides a broader
range of types, operators and constructs such as C. Our compilation
pipeline is structured as follows. (i) The high-level C program con-
taining the contract and the required external libraries are linked
together to make the pre-processed contract. Pre-processor direc-
tives are evaluated. (ii) An intermediate-level language is a set of
expressions of C-like operators, such as addition, multiplication,
comparison, conditionals and logics. (iii) The arithmetic circuit is
built as symbols with wires connected to elementary arithmetic
gates, e.g. addition and multiplication. (iv) The arithmetic circuit
is optimized by exploiting mathematical and logic properties. (v)
Finally, the polynomials (v,w,y) in the QAP are defined in terms of
their evaluations at the roots of the arithmetic circuit, as explained
in Section 2.2.2.

3.1 QAP-friendly curve
When implementing pairing, one of the parameters on the curve is
defined over the base field Fp , and the other over E(Fpk). A pairing-
friendly elliptic curve needs to be added to the protocol in order
to support the functionalities of NECTAR. Pairing-based crypto-
graphic schemes require elliptic curves with a small embedding
degree and a large-prime order subgroup that randomly generated
elliptic curves are unlikely to have. It turns out that the elliptic
curve group secp256k1 used in Bitcoin has a fairly large embed-
ding degree. We consider a class of curves with embedding degree
k = 12, but elliptic curve arithmetic over Fp12 can be computation-
ally very expensive. However, by using an appropriate map, we
can compress certain points in E(Fp12) to points in a twisted curve
Ẽ(Fpk/d). We consider a sextic twist (d = 6).

We chose to build NECTAR by extending the Pinocchio C++
implementation [20]. The original implementation of Pinocchio

uses libraries that are not available for public use (Microsoft inter-
nals). The first step was to replace those libraries with available
libraries that have similar characteristics. We use the GNU Multi-
Precision (GMP) library [22] for polynomial arithmetic along with
the Pairing-Based Cryptography (PBC) library [23] for Tate-pairing
over a Barreto-Naehrig curve [24].

3.2 Smart contracts and circuit representation
Our compiler is able to process a significant set of instructions
natively supported by the C language, such as static initializers,
global functions and block-scoped variables, arrays and structs,
pointers, function calls, conditionals and loops, arithmetic and bit-
wise Boolean operators. We highlight that the target arithmetic cir-
cuits can only support expressions solvable at compile time, therefore
pointers and array dereferences must be known constants during
the compilation. Dynamic references would require an impractical
overhead on the circuit size due to the evaluation of conditional
expressions. In a worst-case scenario, the expected circuit size can
be proportional to the amount of addressable memory. Static con-
ditions are collapsed at compile time, while loops with statically
evaluable termination conditions are automatically unrolled.

The arithmetic gate language not only supports addition and
multiplication operations, but also wire expansion and wire com-
pression for binary operations. Signed numbers are represented as
two-complement with a sign bit at the most significant bit, while
Boolean expansion is represented as multiple 1-bit wires. We as-
sume that only operations between (signed or unsigned) integers
are available. Let us consider the following portion of a contract:
"Check if the average salary of the employees is greater than $32.5K".
This statement requires a division (byN employees) in order to com-
pute the average value. However, the statement can be converted
into the following expression between integers:

∑N
i=1 si > 32500N ,

where si represents the salary of the i-th employee.

4

3.2.1 Pre-processing. A smart contract may consist of multiple
files and libraries. The first step of the protocol involves the creation
of a single source file containing the full set of instructions required
to implement the contract. Header declarations from the header
files are imported to the source files, all source files are merged and
all pre-processor C directives, macros and constants are evaluated
or solved. They include #define directives and conditional #ifdef
directives. Moreover, the declaration of the entry point in the source
code must have a predefined syntax highlighting input and output
types. The code in Listing 1 shows an example of a C-language
contract containing a sum operation between two unsigned integer
inputs.

3.2.2 Creation of the global table of symbols. A table of symbols
is a data structure used by a compiler or interpreter to associate each
identifier (symbol) in the source code with information relating to
its declaration. In this second step, the interpreter detects all the
global symbols declared in the source file, e.g. functions, structures,
classes and constants. For each of these symbols, a hierarchy of local
symbols representing the internal declarations of their identifiers is
built. At the end of this stage, each global symbol (name, type and
value) in the table can be directly addressed for further processing.
One of the global symbols must be the entry point of the contract
(i.e. main function contract() in Listing 1). Name, number and
type of its parameters are checked against the expected syntax.

3.2.3 Line-by-line evaluation. Each source code line is analyzed
independently. Local symbols, representing the internal declara-
tions of identifiers, are included in the hierarchy of the global table
of symbols. In more detail, this stage is responsible for the following
tasks: (i) decoding of types, including the declaration of structures
and array, elementary types (Booleans, integers, etc.) and pointers;
(ii) decoding of expressions, e.g. unary or binary operations, con-
stants, identifiers, data structures and function calls; (iii) evaluation
of expressions, i.e. evaluation of (numeric) expressions which do not
depend on the input values; (iv) memory allocation, i.e. temporary
storage allocation for the data structures required by the contract
functionality. This stage links all the statements of the arithmetic
expression from a spatial (i.e. memory used) and temporal (i.e. op-
erator precedence) point of view. Therefore, each output variable
is expressed as a combination of logic and arithmetic operations
applied on the input variables.

A generic arithmetic/logic expression is collapsed in order to be
represented in an explicit form, i.e. an arbitrary operator OPi+1 is
applied to the expression after the operator OPi . The expression is
used to create the arithmetic primitives required to represent the
contract functionality.

3.3 Generation of the arithmetic primitives
At this stage, the compiler is ready to make a one-to-one mapping
between the operations used to generate the expression and the
structures required to implement these functionalities on a circuit.
We denote by nbit the number of bits (bit-width) used to represent
a signed or unsigned integer in binary. Different computer archi-
tectures are characterized by different nbit values. If a client does
not know a preferred bit-width value of a worker, its value will be
arbitrarily chosen and specified in the header of the circuit. In the

struct in_T { unsigned int i1; unsigned int i2; };
struct out_T { unsigned int o; };

void contract(struct in_T *in, struct out_T *out)
{

unsigned int val = in→ i1 + in→ i2;
out→o = val;

}

Listing 1: Example of C-like contract skeleton.

same way compilation is performed for a specific target architec-
ture, knowing the bit-width value may result in a more efficient
implementation and execution of the circuit.

3.3.1 Addition and multiplication operations. Every arithmetic
or Boolean wire x in the circuit can be uniquely identified by a value
idx . As for binary variables, we start to count from zero. Addition
and multiplication operations are mapped one-to-one into addition
and multiplication gates in the circuit. Given two n-bit wire inputs,
an addition wire output requires n+1 bits and a multiplication wire
output requires 2n bits. For instance, a multiplication between two
nbit wires a and b can be represented as: MUL [ida idb] TO [idc].

3.3.2 Boolean operations. The full set of Boolean gates can be
computed using arithmetic gates, e.g. given two Boolean values
a and b, we have: AND(a,b) = ab, OR(a,b) = 1 − (1 − a)(1 − b),
and XOR(a,b) = (1 − a)b + (1 − b)a. All arithmetic operations are
performed on 1-bit width wires. Bitwise Boolean operations onn-bit
width inputs require n 1-bit multiplications (for AND) or additions
(for OR). Starting from the least significant output bit, each element
is then multiplied by two and added to the next element to build
the resulting n-bit integer value.

3.3.3 Wire expansion. Wire expansion is usually used to trans-
late an arithmetic wire a to an na -bit output wire, where na is the
base-2 logarithm of the maximum value which can be expressed by
a. For instance, let us consider the following portion of a contract:
"Check if variable [a] is even". Assuming that na = 4 and a0 repre-
sents the least significant bit of a, the output of the statement is
given by a0. This circuit building block can be expressed as: EXPAND
[ida] TO [ida3 ida2 ida1 ida0]. The compiler may generate only
the individual 1-bit wires used in the rest of the contract, removing
the remaining 1-bit wires, by applying a specific syntax for the
optimized wire expander: EXPAND [ida] TO [0 → ida0]. That is,
only the least significant 1-bit wire (i.e. identifier number zero) is
taken, and identifier ida0 is assigned to it. The greater na , the more
effective the space optimization2 may be.

3.3.4 Negate operation. The negate operation is necessary to
compare two variables, since their difference can be compared to
the value zero. Negating an nbit -bit wire can be implemented as
multiplication by constant −1. This constant (on nbit bit) must be
represented as: −1nbit ≜

∑nbit−1
i=0 2i .

3.3.5 Equal to zero operation. This building block for an nbit -
bit wire a can be implemented as follows: (i) wire expansion on
2In this context, we define space optimization to be the amount of memory saved to
store or transmit the low-level directives used to represent the arithmetic circuit.

5

Figure 2: Building block implementation of a conditional
statement. Depending on the (binary) output of statement
Sc , statement Sa or statement Sb will be executed. The binary
operation x + 1 is used to negate x .

nbit bit {a0, . . . ,anbit−1}; (ii) negate each 1-bit wire (i.e. ai → bi);
(iii) multiply the resulting bi wires: c =

∏nbit−1
i=0 bi . Therefore, 1-bit

variable c is set to one if and only if a = 0.

3.3.6 Compare to zero operation. A greater than operation can
be transformed to a less than operation using simple equation sub-
stitutions. In the two’s complement representation, this operation
corresponds to check if the difference between two signed integers
is positive or negative (or equal to zero in the case of less than or
equal to operation). The discriminant of the sign of the difference,
e.g. c = a − b, is given by the most significant bit x in the binary
representation: negative numbers are characterized by x = 1, while
positive numbers are characterized by x = 0. This statement can be
represented as: EXPAND [idc] TO [nbit − 1 → x]. Depending on
the type of comparison (positive vs. negative), the binary value x is
required to be negated.

3.3.7 Conditional statement. A conditional statement in a high-
level language can be expressed in the following form: IF (Sc)
Sa ELSE Sb . Since the statement Sc depends on the input of the
contract, both branches Sa and Sb must be implemented in the
circuit. The logic flow is depicted in Figure 2.

3.3.8 Generation of constants. Constants’ values do not depend
on the input wires of the circuit. Using dedicated unary multiplica-
tion gates in the form mul-by-const-c , we propose the following
additional circuitry to generate the constant values required by
the contract: (i) constant zero is computed by multiplying an input
wire by zero; (ii) constant one is computed by adding one to con-
stant zero and (iii) any additional constant ci is computed by using
mul-by-const-ci on constant one. Since constants zero and one
are always added to the circuit, the implementation of k arbitrary
constants requires k + 2 gates. Constants have a known bit-width
as specified by the two’s complement standard.

3.4 Circuit minimization
The circuit size can be reduced in order to optimize the contract exe-
cution time, the circuit upload/download time and the storage space.
The HLL compiler produces a circuit composed of arithmetic gates.
However, complex arithmetic circuits embed logic submodules be-
cause of conditional and flow control statements. These submodules
are still converted to arithmetic circuits, but they are characterized
by 1-bit width gate connections. Since logic and arithmetic 1-bit
width circuits are dual, the theory of logic circuit minimization can

be applied to logic submodules in the arithmetic circuits (see thin
wires in Figure 2). Moreover, submodules do not share any internal
gate, therefore the minimization procedure can be parallelized to
reduce the time complexity.

One of the historical methods used to simplify a Boolean ex-
pression f is the Quine-McCluskey algorithm, which returns the
complete list of prime implicants3 of a Boolean function [25]. More-
over, Petrick’s method [26] can be used to reduce the number of
prime implicants in order to represent f as a composition of essen-
tial prime implicants, i.e. prime implicants that cover an output of f
that no combination of other prime implicants is able to cover. An
auxiliary Boolean function f ∗ can be expressed as product of sums
σi of the prime implicants contributing to each output of f , i.e.
f ∗ =

∏M
i=1 σi , where M is the number of minterms (i.e. products)

used to express f and terms σi are represented as follows:

σi =

|zi |∑
k=1

zik . (4)

Therefore, zik represents the k-th prime implicant contributing to
the sum σi . Starting from σ1 and σ2, we look for the simplification
of the product terms of f ∗ using a set of elementary Boolean rules:

(1) u(u +v) = u
(2) u(u ′ +v) = uv
(3) (u +v)(u +w) = u +vw

Let us consider the product terms σi as a list {σ1, . . . ,σM }. At
each step, two members of the list are compared (as left and right
members) and simplified if possible (see Figure 3). If the first two
members σ1 (left) and σ2 (right) can be simplified, then they will be
substituted with a new term σ12. In the second step, left member σ1
or σ12 will be checked against right member σ3, and the outcome
can be σ1, σ13 or σ123. The third step involves σ4 as right member
and so on. When all right members are checked, the left member
is set to its next member in the list and the right member is set
to the next member of the new left member. The process ends
when no more checks are due. The number of simplification steps is
bounded from above by M (M−1)

2 . The u term in rules (1), (2) and (3)
represents the common part in the (left, right) pair. A cross-check
(intersection) between the addends of left and right members is
characterized by a time complexity O(n2) or O(n logn) depending
on the specific implementation (e.g. naïve or sorted lists).

Function f ∗ is covered by each term independently, i.e. f ∗ =
σ ∗
0 +σ

∗
1 + · · ·+σ

∗
p . Since each term σ ∗

i is actually a product of the set
of prime implicants zi , function f ∗ can be covered by the minterm
σ ∗
L in σ ∗ containing the minimum number of prime implicants, i.e.
f ∗ = σ ∗

L , where L = argmini C(σ ∗
i) and function C(σ ∗

i) counts the
number of prime implicants z(σ ∗

i) contained in σ
∗
i . Finally, the dual

function f can be expressed as follows:

f =

C(σ ∗
L)∑

k=1
zk (σ ∗

L). (5)

We propose a computationally-optimized heuristic to assign the
individual logic submodules to different processing cores for the

3A product termψ in a sum of products is an implicant of the Boolean function f if
ψ → f . A prime implicant of f is an implicant that cannot be covered by implicants
with fewer terms. Removing any term from theψ results in a non-implicant for f .

6

Figure 3: Example of prime implicant reduction with M = 5.
L (left) and R (right) members are highlighted at each step of
the process. The auxiliary function f ∗ is reduced to σ13 ·σ245.

logic minimization stage, called the LPT greedy algorithm (Longest
Processing Time). If the jobs are sorted by their processing time
and then assigned to the machine with the earliest end time so
far, the scheduler tries to balance the computational load for each
transaction. We assume that the number of initial gates дi of a logic
submodule Si represents a good estimation of the expected time
required to minimize Si . Therefore, given a machine with N cores
and n submodules to minimize, submodules Si are sorted by their
дi value (1 ≤ i ≤ n) and then assigned to list {listj } of core j with
lowest aggregate G j (t ′) metric at a given time t ′:

G j (t ′) =
t ′∑
t=0

дi (t) ∀i | Si ∈ {list j }. (6)

Alternatively, submodules Si can be assigned to the processing
core in a round-robin fashion without considering the дi values.
Therefore, Si is assigned to core j if and only if i (modulo N) = j.

4 BLOCKCHAIN INTERACTION
In validating transactions, the Bitcoin blockchain makes use of the
Unspent Transaction Output (UTXO) set. UTXOs consist of two
main parts: the amount transferred to the output and the locking
script (scriptPubKey) that specifies the conditions to be met in or-
der to spend the output. Bitcoin scripts are written in a bytecode
stack-based language called Script. They consist of a sequence of
instructions executed linearly, with no jumps backwards. Essen-
tially, to access a specific output, the corresponding locking script
must be supplied with parameters that render its result to true [27].
Standard blockchain scripts can be categorized into five4 types: Pay-
to-Public-Key-Hash (P2PKH), Pay-to-Script-Hash (P2SH), Multisig,
Pubkey (P2PK), and null data (OP_RETURN). In P2SH transactions,
the locking script that is replaced by a hash is referred to as the
redeem script.

In NECTAR, smart contract verifications are part of the blockchain
transaction validation, therefore we store the elements required dur-
ing the verification stage in the unlocking script. To illustrate how
4Bitcoin (Core) also has Witness versions, e.g. Segregated Witness.

our solution extends the functionality of the Bitcoin blockchain, we
consider a simple smart contract that transfers a token to a certain
party, triggered by a condition. For example: "Transfer Token A
(e.g. 100 tulips, 100 shares) from Charlie to Alice on 1st of January
2018 at a cost of 1 BTC that Alice agrees to pay." The contractual
parties (e.g. Alice and Charlie) agree on the contract conditions
over the phone. Charlie creates a transaction (Funding TX) with
two inputs and two outputs and signs both inputs with the follow-
ing: SIGHASH_SINGLE | SIGHASH_ANYONECANPAY. The first
output contains the contract details, while the second output is a
P2PKH paying 1 BTC (the price for Token A) to Charlie’s address.
Charlie does not broadcast this transaction, but he gives it off-line
to Alice, who checks that the transaction is correct and the price
for Token A is as agreed.

Our proposed protocol makes use of zero-knowledge cryptog-
raphy in the execution of the contract. Thus, for executing the
Funding TX, Alice needs to compute a set of public parameters
(EK ,VK), i.e. the evaluation and verification keys, based on the
QAP. The size of EK depends on the size of the circuit under con-
sideration, i.e. the number of elements making up EK corresponds
to the number of internal multiplication gates of the circuit, while
the size of VK depends on the number of inputs and outputs.

In the context of smart contracts, it is of general interest to have
a public record of the PoC and VK , allowing everyone to verify the
validity of the computation and proof. Therefore, Alice needs the
services of a worker that uses EK to generate a PoC verifiable by
any third party using VK . For this to happen on the blockchain, we
need to make sure that: (i) Alice has provided (EK ,VK) off-line; (ii)
the appropriate VK is used in the creation and verification of the
PoC, and both these parameters are available on the blockchain
and can be checked by any party.

As explained in Section 2.2.2, the set of keys may consist of a
large number of elliptic curve points. This requires the storage of
large blocks of data on the blockchain to represent the contract.
The challenge, thus, is to arrange the redeem script and the corre-
sponding input script in such a way that they contain the largest
amount of data possible.

4.1 Recording the proof using a P2SH script
In the current Bitcoin script implementation, it is possible to asso-
ciate up to 1461 bytes of data with a corresponding input (scriptSig)
and a redeem script. This is a well-known means of including larger
chunks of data in a transaction. Our protocol for storing the public
elements in Bitcoin scripts consists of:

• Determining how many funding payments to create. This,
in turn, depends on the size of the VK .

• If necessary, splitVk into chunks, i.e.VK = {VK1 ∥ . . . ∥VKn },
according to the (maximally) allowed size of data blocks that
can be pushed onto the script stack.

The interaction of Alice (client) and Bob (worker) with the blockchain
is shown in Figure 1. Alice chooses a secret value s , builds Ek (s) and
Vk (s), and creates a locking script that contains the hash of VK , i.e.
H(VK). The locking script is placed inside the funding transaction
(Funding TX) and is of the form:

OP_HASH160 <H(redeem_script)> OP_EQUAL

7

The redeem script includes the PoC verification. In the caseVK can
fit into one block of data, the redeem script is given by:

<redeem_script > :=
OP_HASH160 <H(VK)> OP_EQUALVERIFY <PubKey_worker >
<script_PoC_verification >

To allow such construction, a new Bitcoin script opcode that enables
pairing verification is required within script_PoC_verification.
Here we have omitted the push-byte operations, used to push ele-
ments onto the stack. Because of the size of VK and the constraints
of the data pushed onto the stack, the redeem script can also be a
succession of hashes of VK , i.e.

H(OP_HASH160 <H(VKi)> OP_EQUALVERIFY ...
OP_HASH160 <H(VKn)> OP_EQUALVERIFY
<PubKey_worker > <script_PoC_verification >)

where H(VKi) is the hash of VKi . The funding transaction is subse-
quently signed and broadcast by Alice.

When Bob has evaluated the circuit and is able to produce a PoC,
he proceeds with creating the corresponding unlocking script. For
instance, if Vk fits in a single data block, the script is of the form:

<PoC > x y VK <redeem_script >

Here x and y are the inputs and outputs of the circuit, respectively.
We thus see that Bob needs to provide the PoC in order to redeem
the funds, paid by Alice, for the work.

5 CONCLUSIONS
WithNECTARwe tackled and successfully solved the problem of im-
proving the privacy, correctness and verifiability of smart contracts
that are executed as part of transaction validation on the blockchain.
In this paper we showed how any non-specialist programmer can
publish a contract on the blockchain without the need to implement
any cryptographic protocol. This smart contract is translated under
the hood of NECTAR into a set of verifiable equations. Proofs of
correct executions are then included in blockchain transactions,
demonstrating the practical viability of our solution. The ability
to support operations like exponentiation or floating point repre-
sentation will be a significant improvement, giving NECTAR the
potential to address complex anonymity concepts and sophisticated
financial contracts.

REFERENCES
[1] V. Dhillon, D. Metcalf, and M. Hooper. 2017. Foundations of Blockchain. Apress,

Berkeley, CA, 15–24. https://doi.org/10.1007/978-1-4842-3081-7_3
[2] Joseph Bonneau, Andrew Miler, Jeremy Clark, Arvind Narayanan, Joshua A.

Kroll, and Edward W. Felten. 2015. Research Perspectives and Challenges for
Bitcoin and Cryptocurrencies. Cryptology ePrint Archive, Report 2015/261.
(2015). https://eprint.iacr.org/2015/261.

[3] Juri Mattila et al. 2016. The Blockchain Phenomenon–The Disruptive Potential of
Distributed Consensus Architectures. Technical Report. The Research Institute of
the Finnish Economy.

[4] Ethereum. 2017. (2017). https://www.ethereum.org/ Accessed: 2018-01-12.
[5] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. (2008).

https://bitcoin.org/bitcoin.pdf.
[6] Nick Szabo. 1997. The idea of smart contracts. Nick Szabo’s Papers and Concise

Tutorials (1997).

[7] David Cerezo Sánchez. 2015. Raziel. Private and Verifiable Smart Contracts on
Blockchains. (2015). https://eprint.iacr.org/2017/878.pdf Accessed: 2018-01-13.

[8] Sean Bowe. 2016. pay-to-sudoku. (2016). https://github.com/zcash/pay-to-sudoku
Accessed: 2018-01-13.

[9] G. Maxwell. 2015. ZKCP. (2015). https://en.bitcoin.it/wiki/Zero_Knowledge_
Contingent_Payment Accessed: 2018-01-13.

[10] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papa-
manthou. 2016. Hawk: The Blockchain Model of Cryptography and Privacy-
Preserving Smart Contracts. In 2016 IEEE Symposium on Security and Privacy (SP).
839–858. https://doi.org/10.1109/SP.2016.55

[11] Iddo Bentov and Ranjit Kumaresan. 2014. How to Use Bitcoin to Design Fair
Protocols. Springer Berlin Heidelberg, Berlin, Heidelberg, 421–439. https://doi.
org/10.1007/978-3-662-44381-1_24

[12] Ranjit Kumaresan and Iddo Bentov. 2014. How to Use Bitcoin to Incentivize
Correct Computations. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’14). ACM, New York, NY, USA,
30–41. https://doi.org/10.1145/2660267.2660380

[13] Counterparty. 2017. (2017). https://counterparty.io/ Accessed: 2018-01-12.
[14] Ethereum. 2018. (2018). https://blog.ethereum.org/2017/10/12/

byzantium-hf-announcement/ Accessed: 2018-01-17.
[15] Stellar. 2014-2018. (2014-2018). https://www.stellar.org/ Accessed: 2018-01-13.
[16] David Mazieres. 2015. The stellar consensus protocol: A federated model for

internet-level consensus. Stellar Development Foundation (2015).
[17] Monax. 2014-2017. (2014-2017). https://monax.io/ Accessed: 2018-01-13.
[18] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. 2016. Zcash

protocol specification. Technical Report. Tech. rep. 2016-1.10. Zerocoin Electric
Coin Company.

[19] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. 2012. Qua-
dratic Span Programs and Succinct NIZKs without PCPs. Cryptology ePrint
Archive, Report 2012/215. (2012). https://eprint.iacr.org/2012/215.

[20] Bryan Parno, Craig Gentry, Jon Howell, and Mariana Raykova. 2016. Pinocchio:
Nearly Practical Verifiable Computation. Commun. ACM 59, 2 (February 2016).

[21] Berry Schoenmakers, Meilof Veeningen, and Niels de Vreede. 2016. Trinocchio:
Privacy-Preserving Outsourcing by Distributed Verifiable Computation. Springer
International Publishing, 346–366.

[22] GMP development team. 2006. GMP: The GNU Multiple Precision Arithmetic
Library. (2006). https://gmplib.org/.

[23] Ben Lynn. 2006. PBC: Pairing-Based Cryptography Library. (2006). https:
//crypto.stanford.edu/pbc/.

[24] Augusto Jun Devegili, Michael Scott, and Ricardo Dahab. 2007. Implementing
Cryptographic Pairings over Barreto-Naehrig Curves. 4575 (07 2007), 197–207.

[25] E. J. McCluskey. 1956. Minimization of Boolean functions. The Bell System
Technical Journal 35, 6 (Nov 1956), 1417–1444. https://doi.org/10.1002/j.1538-7305.
1956.tb03835.x

[26] Stanley R. Petrick. 1956. Direct Determination Irredundant Forms of Boolean
Function from Set of Prime Implicants. https://books.google.co.uk/books?id=
mgKnAQAACAAJ Accessed: 2018-01-23.

[27] Aviv Zohar. 2015. Bitcoin: Under the Hood. Commun. ACM 58, 9 (Aug. 2015),
104–113. https://doi.org/10.1145/2701411

8

https://doi.org/10.1007/978-1-4842-3081-7_3
https://eprint.iacr.org/2015/261
https://www.ethereum.org/
https://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2017/878.pdf
https://github.com/zcash/pay-to-sudoku
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1145/2660267.2660380
https://counterparty.io/
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/
https://www.stellar.org/
https://monax.io/
https://eprint.iacr.org/2012/215
https://gmplib.org/
https://crypto.stanford.edu/pbc/
https://crypto.stanford.edu/pbc/
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://books.google.co.uk/books?id=mgKnAQAACAAJ
https://books.google.co.uk/books?id=mgKnAQAACAAJ
https://doi.org/10.1145/2701411

	Abstract
	1 Introduction
	2 Background
	2.1 Smart contracts
	2.2 Algebraic tools

	3 NECTAR Protocol
	3.1 QAP-friendly curve
	3.2 Smart contracts and circuit representation
	3.3 Generation of the arithmetic primitives
	3.4 Circuit minimization

	4 Blockchain interaction
	4.1 Recording the proof using a P2SH script

	5 Conclusions
	References

