
Agree to Disagree
Security Requirements Are Different, But Mechanisms For Security Adaptation Are Not

Thein Tun
The Open University

Milton Keynes, United Kingdom
thein.tun@open.ac.uk

Amel Bennaceur
The Open University

Milton Keynes, United Kingdom
amel.bennaceur@open.ac.uk

ABSTRACT
We describe a dialogue between a proponent and an opponent
of the proposition “security is not just another quality attribute
in self-adaptive systems”. The dialogue is structured in two steps.
First, we examine whether security requirements are different from
other system-level requirements. Our consensus is that security
requirements require specificmethods for elicitation, reasoning, and
analysis. However, other requirements (such as safety, usability and
performance) also require specific techniques. Then, we examine
the adaptation mechanisms for security and compare them with
other properties. Our consensus is that most adaptation techniques
can be applied to maintain security and other requirements alike.

CCS CONCEPTS
• Security and privacy; • Software and its engineering;

KEYWORDS
Security requirements, Self-adaptation

1 INTRODUCTION
For each issue considered, the proponent and the opponent both
make their arguments, which need not be in conflict.

2 SECURITY REQUIREMENTS
Adaptive systems seek to maintain requirements satisfied despite
change and uncertainty by using mechanisms to change the struc-
ture and behaviour of the system. Therefore, good understanding
of the differences between security and other requirements to man-
age adaptation is important to clarify whether self-adaptation for
security requires different techniques and mechanisms. We now
consider possible ways in which security requirements might be
different from other requirements.

2.1 Elicitation
P1. System-level security requirements are typically very difficult
to define. John Rushby [6] argues that they are like counterfactuals
— we do not really know what our security requirements are until
some attack has occurred. This suggests that we need to know
everything an attacker can do — which seems impossible at the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SEAMS ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5715-9/18/05.
https://doi.org/10.1145/3194133.3194151

system level. On the other hand, we can define requirements for
performance and safety properties fairly accurately.
O1. Self-adaptive systems often operate in uncertain environments
characterised by incomplete knowledge which challenges all types
of requirements at different levels of granularity. Consider for ex-
ample an autonomous drone; ensuring its stability would involve
assuming an acceptable range of wind speed. It is rarely the case
that one has the resources to consider all possible events in the en-
vironment a priori. This justifies the need for self-adaptive systems.

2.2 Attacker’s Perspective
P2. Capabilities of an attacker are fundamental to the design of
security properties. The notion of semantic security relies on the dif-
ficulty of attackers solving certain classes of computation problems
efficiently. Although it is easy to think of an attacker as part of the
environment, the fact that an attacker has ill intention, and might
observe the system in ways not intended by the system designer
(such as observing the power consumption of a machine or the
response time to an online request) is unique to security. Very few
safety and performance threats emerge as frequently as those for
security. The difference is often described as programming Satan’s
computer versus Murphy’s computer [1]. Other requirements do
not assume such a strong adversary in the environment.
O2. The environment can often act as an adversary or an attacker.
This is exacerbated by human agents in the environment who can
interact with the system in unforeseen way. Consider for example
usability, it is hard to predict how users will use and misuse the
system, not necessarily in a malicious way. Self-adaptive system
aim to change its behaviour at runtime as new knowledge about
the environment and users is acquired.

2.3 Refinement
P3. Secure properties do not preserve well when they are refined:
in fact, additional security issues tend to emerge when lower-level
specifications are made. For example, protocol specifications can-
not really address something like timing attacks without knowing
the properties of the programming language used to implement
it. Although some of the security-related decisions can be made
before the system is designed and implemented (such as the choice
of programming language), many of the security requirements can
be identified only after the system design is clear.
O3. The feasibility and implementation of other requirements such
as performance is often considered through refinements. For exam-
ple, deciding to use multi-threading to improve the performance of
an application can only be done at the implementation stage and
will depend on the programming language.

https://doi.org/10.1145/3194133.3194151


SEAMS ’18, May 28–29, 2018, Gothenburg, Sweden Thein Tun and Amel Bennaceur

2.4 Hierarchical properties
P4. Like safety and performance, we tend to think of security prop-
erties at the system level. However, security properties have a strong
hierarchical nature. Higher level security properties are built from
lower level ones, with typically stronger formal guarantees. For ex-
ample, some authentication protocols are built from primitives such
as hash functions and block ciphers. Vulnerabilities in the lower-
level propagate upwards. It does not seem that other system-level
properties having such strongly hierarchical nature.
O4. All requirements are refined into smaller requirements and op-
erations. Performance might be achieved through enabling multiple
tasks to execute concurrently. This in turn is achieved by implement-
ing concurrency protocols, which them use concurrency primitives.
In constrained environments, higher mathematical guarantees can
be provided. I would argue that functional requirements can be
refined into finer-grained primitives, which considering the con-
strained settings in which they operate can often provide stronger
guarantees compared with complex system-level properties.

2.5 Multi-Layering
P5. In practice, security is achieved by multiple mechanisms in
different parts of the system. For example, access to a file may be
controlled by restriction to join the network, restriction to connect
to a node in the network, restricted privileges once connected to a
node, and so on. This is the idea behind “defense in depth”. Other
system properties do not need to be satisfied in the same way.
O5. The adaptation of quality requirements is often contextual. For
example, ensuring some performance requirements would require
load balancing and the deployment of additional servers. Even func-
tional requirements can implement graceful degradation depending
on the resources and context.

2.6 Assurance
P6. Consider an operating system you normally uses. What be-
haviour of that system shows that it is secure? You would experi-
ence security breaches, for example, when you have ransomware
on your machine. Facts such as no one has reported security vul-
nerabilities for that operating system in the last few months tell
little about how secure your software will be in future. It seems
impossible to validate the requirements for system security. Con-
trast that with the performance or usability of the operating system.
Here you will have a lot to say about your experience of usabil-
ity and performance. A user never experiences security but other
properties.
O6. Assurance can only be considered when the requirements are
clearly defined. Any requirement must be testable [4]. Therefore,
security requirements need to be formulated in a way that enables
us to validate and verify them.

2.7 Ethics and Values
P7. Security properties have very clear political and moral implica-
tions [5]. One can use security tools against state surveillance and
censorship, promote freedom of speech online, and achieve a degree
of anonymity. Although requirements such as those for safety often
have a legal and moral basis, these concerns are restricted to those
engaged in the development of the system and rarely concern its

users directly. In security, the personal values and ethical behaviour
of programmers matter a lot to the users of their software.
O7. Even functional requirements may need to consider ethical
issues such as those leading to addiction or how recommender
systems can lead to biases. Hence the debate around values and
ethics for artificial intelligence systems and software engineering
in general [3]. Overall, as software systems become an integral part
of society, further considerations of their impact on individuals and
society in general must be considered.

3 MECHANISMS FOR SECURITY ADAPTATION
Let us assume that security requirements are indeed different from
other requirements. How about the mechanisms for adapting those
requirements?
P8. Once implemented in code, security properties can be adapted
using the same tools and techniques as other properties [2].Whether
we use machine learning algorithms or rule-based reasoning tech-
niques or controller synthesis approaches, they can be used to adapt
any system behaviour.
O8. Although many adaptation techniques can be reused [7], secu-
rity involves a great degree of change, which is not only technical
(e.g., the discovery of new vulnerabilities), but also organisational
or business related (e.g., new security policies). Reacting to these
changes rapidly is paramount and is key to minimising the damage
of discovered attacks. Assurance is also more challenging when it
comes to security. Not only do we need to ensure that security and
quality requirements are met but also that no vulnerabilities have
been introduced during adaptation.

4 CONCLUSION
Security requirements might be different in nature from other re-
quirements as they need different methods and tools to reason about
the attacker, delimit the scope, and test an implementation against
those requirements. However, the adaptation of those requirements
may rely on the same techniques and tools as for other properties.
Therefore, a well-engineered self-adaptive system maintains the
satisfaction of all requirements, be they security or not. Adaptation
makes security more complex without fundamentally changing it.

ACKNOWLEDGMENTS
We thank Bashar Nuseibeh for comments on an earlier draft and
the support of ERC and EPSRC (Johnny, Jenny and SAUSE).

REFERENCES
[1] Ross Anderson and Roger Needham. 1995. Programming Satan’s computer. Com-

puter Science Today (1995), 426–440.
[2] Amel Bennaceur, Thein Than Tun, Arosha K. Bandara, Yijun Yu, and Bashar

Nuseibeh. 2017. Feature-driven Mediator Synthesis: Supporting Collaborative
Security in the Internet of Things. ACM Trans. on Cyber-Physical Systems (2017).

[3] Maria Angela Ferrario, William Simm, Stephen Forshaw, Adrian Gradinar, Mar-
cia Tavares Smith, and Ian C. Smith. 2016. Values-first SE: research principles in
practice. In Proc. of International Conference on Software Engineering. 553–562.

[4] Suzanne Robertson and James Robertson. 2012. Mastering the requirements process:
Getting requirements right. Addison-wesley.

[5] Phillip Rogaway. 2015. The Moral Character of Cryptographic Work. IACR
Cryptology ePrint Archive 2015 (2015), 1162.

[6] John Rushby. 2001. Security requirements specifications: How and what. In
Symposium on Requirements Engineering for Information Security (SREIS), Vol. 441.

[7] Eric Yuan, Naeem Esfahani, and Sam Malek. 2014. A Systematic Survey of Self-
Protecting Software Systems. ACM Transactions on Autonomous and Adaptive
Systems, TAAS 8, 4 (2014), 17.


