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ABSTRACT 
Database normalization is the one of main principles for designing 
relational databases. The benefits of normalization can be 
observed through improving data quality and performance, 
among the other qualities. We explore a new context of technical 
debt manifestation, which is linked to ill-normalized databases. 
This debt can have long-term impact causing systematic 
degradation of database qualities. Such degradation can be liken 
to accumulated interest on a debt. We claim that debts are likely 
to materialize for tables below the fourth normal form. Practically, 
achieving fourth normal form for all the tables in the database is 
a costly and idealistic exercise. Therefore, we propose a pragmatic 
approach to prioritize tables that should be normalized to the 
fourth normal form based on the metaphoric debt and interest of 
the ill-normalized tables, observed on data quality and 
performance. For data quality, tables are prioritized using the risk 
of data inconsistency metric. Unlike data quality, a suitable metric 
to estimate the impact of weakly or un-normalized tables on 
performance is not available. We estimate performance 
degradation and its costs using Input\Output (I\O) cost of the 
operations performed on the tables and we propose a model to 
estimate this cost for each table. We make use of Modern Portfolio 
Theory to prioritize tables that should be normalized based on the 
estimated I\O cost and the likely risk of cost accumulation in the 
future. To evaluate our methods, we use a case study from 
Microsoft, AdventureWorks. The results show that our methods 
can be effective in reducing normalization debt and improving the 
quality of the database.  

CCS CONCEPTS 
• Software and its engineering → Designing software;  

• Information systems → Relational Database Model; 
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1 INTRODUCTION 
Information systems evolve in response to data growth, 

improving quality, and changes in users’ requirements. The 
evolution process face many risks, such as cost overruns, schedule 
delays and increasing chances of failure; it is believed that 80% of 
the cost is spent on system’s evolution [6]. Databases are the core 

of information systems; evolving databases schemas through 
refactoring is common practice for improving data qualities and 
performance, among other structural and behavioral qualities. 
Database normalization is one of the main principles for relational 
database design, invented by the Turing Award winner Ted Codd 
[9]. The concept of normalization was developed to organize data 
in “relations” or tables following specific rules to reduce data 
redundancy, and consequently, improve data consistency by 
decreasing anomalies. The benefits of normalization go beyond 
data quality, and can have ramifications on improving 
maintainability, scalability and performance [11], [20]. However, 
developers tend to overlook normalization due to time and 
expertise it requires, and instead turn to other strategies such as, 
creating more indexes or writing extra code fixes to achieve quick 
benefits. With the growth of data, ad-hoc fixes can become 
ineffective, calling for costly and inevitable future refactoring to 
address these pitfalls.    

 The technical debt metaphor was coined to describe and 
quantify issues arising from ill, inadequate or suboptimal 
practices in developing, maintaining and evolving systems, while 
compromising long-term qualities for short-term benefits, such as 
fast delivery and immediate savings in cost and effort [10]. The 
technical debt metaphor can be a useful tool for justifying the 
value of database normalization, through capturing the likely 
value of normalization (e.g. quality improvements) relative to the 
cost and effort of embarking on this exercise, or delaying it. 
Though technical debt research has extensively looked at code 
and architectural debts [22], [3], technical debt linked to database 
normalization, has not been explored, which is the goal of this 
study. In our previous work [2], we defined database design debt 
as: 

” The immature or suboptimal database design decisions 
that lag behind the optimal/desirable ones, that manifest 
themselves into future structural or behavioral 
problems, making changes inevitable and more 
expensive to carry out”. 

In [2], we developed a taxonomy that classified different types of 
debts, which relate to the conceptual, logical and physical design 
of the database. 

In this study, we explore a specific type of database design debt 
that relates to the fundamentals of normalization theory. The 
underlying assumption of the theory is that the database tables 
should be normalized to the ideal normal form, a hypothetical 
fourth normal form, to achieve benefits [14]. While this 
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assumption holds in theory, practically it fails due to the required 
time and expertise. Adhering to this assumption, we link database 
normalization debt to tables in the database that are below the 
fourth normal form.  

Given the high cost of database normalization, prioritizing 
tables to be normalized is challenging. Studies have showed that 
the most  critical technical debt items are the ones whose 
metaphoric interests grow fast over time [5]. Therefore, a method 
that would aid database developers and stakeholders to analyze 
and estimate the impact of normalization debts is highly needed 
to avoid negative and costly consequences on database qualities 
due to lack of normalization. Performance and data quality are 
among the  most concerned qualities when it comes to database 
normalization [11], [24], [32]. In this study, we will analyze the 
impact of normalization debt on both data quality and 
performance and use the results to prioritize tables that should be 
normalized to the fourth normal form.  

 To measure the impact of normalization debt on data quality, 
we use the risk of data inconsistency metric of the International 
Standardization Organization [19]. Unlike data quality, a suitable 
metric to measure the impact of normalization debt on 
performance is not available. We analyze database performance, 
by looking at the Input and Output ” I\O “ cost of the operations 
performed on tables below fourth normal form. I\O cost is the 
number of disk pages read or written to execute the operation 
[17]. Weakly or un-normalized tables will acquire more pages due 
to big amount of data duplication they hold and big records size. 
Therefore, operations executed on those tables will increase the 
I\O cost, which in turn will affect performance. As part of our 
contribution, we propose a model to control the debt impact on 
the I\O cost. We build on Modern Portfolio Theory [25] to manage 
the debt by prioritizing tables that should be normalized based on 
the I\O cost and the risk of table’s size growth. 

The novel contributions of this paper can be summarized as 
follows: 

 Explore technical debt related to database 
normalization: Define and estimate the impact of 
normalization debt, where we specifically look at the 
ramifications of the normalization decisions on 
performance and data qualities.  

In large-scale systems, designers are often faced with the 
challenge of limited resources when it comes to 
normalization and managing the debt. To address this 
challenge, our approach prioritize tables that should be 
normalized based on their impact on data quality and 
performance. For performance, we utilize portfolio 
theory to prioritize tables that should be normalized, 
taking into account: debt impact on operations 
performance and its accumulation over time.  

The contribution provides a basis for software engineers and 
database developers to understand normalization, not only from 
the technical perspective but also from its connection to debt. 
Coining normalization with debt hopes to provide a systematic 
procedure that can eliminate unnecessary normalization efforts, 
justify the essential ones, and/or prioritize investments in 
normalization, when resources and budget are limited. 

The methods are evaluated using a case study from Microsoft, 
AdventureWorks database [1], and StoreFront web application 
built on top of the database [31]. The database has a total of 64 
tables, each populated with large amount of data to support e-
commerce transactions of a hypothetical cycles retail company.  

2 BACKGROUND AND MOTIVATION 
In this section, we will summarize the key concept of our work. 

The normalization process was first introduced by Codd in 1970 
[9], as a process of organizing the data in relations or  “tables”. 
The main goal of normalization is to reduce data redundancy, 
which is accomplished by decomposing a table into several tables 
after examining the dependencies between attributes. Benefits of 
normalization was discussed and proved in the literature [11], [14] 
. Examples of such benefits include: improving data quality as it 
reduces redundancy; minimizing update anomalies and 
facilitating maintenance. Fig 1 illustrates the normal forms 
hierarchy. Higher  level of normal form indicates a better  design 
[14], since higher levels reduce more redundant data. The main 
condition to go higher in the hierarchy  is based on  the  constraint  
between  two  sets  of  attributes  in  a  table,  which is referred to 
as  dependency  relationship. 

 

Figure 1 Normal forms hierarchy  

2.1 Benefits of Normalization: Data Quality and 
Performance 

Improving data quality is one of the main advantages of 
normalization [11], [14]. This improvement is linked to decreasing 
the amount of data duplication as we move higher in the 
normalization hierarchy. In the presence of data duplication, in 
poorly or un-normalized tables, there is always a risk of updating 
only some occurrences of the data, which will affect the data 
consistency. Data quality is a crucial requirement in all 
information systems, as the success of any system relies on the 
reliability of the data retrieved from the system. The 
trustworthiness of business processes depends highly on the 
quality of the exchanged data. 

Benefits of normalization go beyond data quality and can be 
observed on other aspects of the system such as performance. 
Performance has always been a controversial subject when it 
comes to normalizing databases. Some may argue that 
normalizing the database involves decomposing a single table into 
more tables, henceforth, data retrieval can be less efficient since it 
requires joining more tables as opposed to retrieving the data 
from a single table. Indeed, de-normalization was discussed as the 



  
 

 

process of “downgrading” table’s design to lower normal forms 
and have limited number of big tables to avoid joining tables when 
retrieving the required data [11]. Advocates of de-normalization 
argue that the Database Management System (DBMS) stores each 
table physically to a file that maintains the records contiguously, 
and therefore retrieving data from more than one table will 
require a lot of I\O. However, this argument might not be correct: 
even though there will be more tables after normalization, joining 
the tables will be faster and more efficient because the sets will be 
smaller and the queries will be less complicated compared to the 
de-normalized design [11]. Moreover, weakly or un-normalized 
tables will be stored in a large number of files as opposed to the 
normalized design due to big amount of data redundancy, and 
consequently, increased records size and increased I\O cost [24], 
[11]. Adding to this, not all DBMS store each table in a dedicated 
physical file. Therefore, several tables might be stored in a single 
file due to reduced table size after normalization, which means 
less I\O and improved performance, as proven in [24], [32], [11].  

Despite the controversy  about normalization and 
performance, several arguments in favor of normalization is 
presented by C. J. Date [11], an expert who was involved with 
Codd in the relational database theory: 

 Some of the de-normalization strategies to improve 
performance proposed in the literature are not “de-
normalizing” since they do not increase data 
redundancy. In fact, as Date states, some of them are 
considered to be good normalized relational databases. 

 There is no theoretical evidence that de-normalizing 
tables will improve performance. Therefore it’s 
application dependent and may work for some 
applications. Nevertheless, this does not imply that a 
highly normalized database will not perform better. 

In this study, we view these deteriorations in performance and 
data quality as debt that can be rooted in inadequate 
normalization of database tables. The debt can accumulate 
overtime with data growth and increased data duplication. It is 
evident that the short-term savings from not normalizing the table 
can have long-term consequences which may call for inevitable 
costly maintenance, fixes and/or replacement of the database. 
Therefore, we motivate rethinking database normalization from 
the debt perspective linked to performance and data quality 
issues. Rethinking databases normalization from the technical 
debt angle can lead to software that has the potential to better 
evolve and cope with changes and continuous data growth. 

2.2 Cost of Normalization 
As mentioned previously the process of normalizing the 

database is relatively complex due to expertise and resources 
required. According to [4], decomposing a single table for 
normalization involves several refactoring tasks: 

 Modifications to the database schema: create the new 
tables after decomposition; create triggers to ensure that 
the data in new tables will be synchronized and finally 
updating all stored views, procedures and functions that 
access the original table.   

 Migrating data to new table/s: a strategy should be set 
to migrate the data from the old weakly or un-
normalized table to the new tables. 

 Modifications to the accessed application/s, which 
involve introducing the new tables’ meta data and 
refactor the presentation layer accordingly. 

Additionally, testing the database and the applications before 
deployment can be expensive and time consuming. Consequently, 
the aim should not be normalizing all the tables, rather than 
prioritize tables that has the most negative effect to be normalized. 
In this study, we aim to formulate the normalization problem as a 
technical debt. We start from the intuitive assumptions that tables, 
which are weakly/not normalized to the deemed ideal form, can 
potentially carry debt. To manage the debt, we adhere to the 
logical practice in paying the debt with the highest negative 
impact first. We use the impact information of the debt item to 
inform normalization decisions, constrained to time, budget and 
quality objectives.  

2.3 Database Refactoring 
Database refactoring, or some may refer to as schema 

evolution, has been largely studied over the past years [4], [8], 
[27]. Schema evolution is basically altering the schema of the 
database to adapt it to a certain required change[4]. Attempts have 
been made to analyze the schema evolution from earlier versions 
[8], and tools have been developed to automate the evolution 
process [27]. However, schema evolution literature has focused 
on limited database refactoring tactics, such as adding or 
renaming a column, changing the data type, etc. Evolving the 
schema for the purpose of normalizing the database to create 
value and avoid technical debt has not been explored. We posit 
that normalization is an exercise that should create a value.  By  
creating  a  value,  it  is  ensured  that  the  system  will sustain 
and be much more usable and maintainable.  

The process of normalizing a database can be very costly since 
it involves decomposing weakly normalized tables into several 
tables following specific rules, and update the applications that 
use the database. Researchers have provided several algorithms to 
automate database normalization [13], [12]. Their studies aimed 
to produce up to 3rd normal form or BCNF tables automatically. 
However, these studies looked at the schema in isolation from 
applications using the database. The consideration of the 
applications is important to better estimate the cost of 
normalization taking into account refactoring, configuration and 
data migration tasks. Since this process can be costly, our study 
aims to provide a method to prioritize tables to be normalized to 
improve the design and avoid negative consequences.  

3 NORMALIZATION DEBT DEFINITION 
There is no general agreement on the definition of technical 

debt in the literature [21]. However, the common ground of 
existing definitions is that the debt can be attributed to poor and 
suboptimal engineering decisions that may carry immediate 
benefits, but are not well geared for long-term benefits. Database 
normalization had been proven to reduce data redundancy, 



  
 

 

 

improve data quality and performance as the table is further 
normalized to higher normal forms [11]. Consequently, tables 
below the 4th normal form can be subjected to debts as they 
potentially lag behind the optimal, where debt can be observed on 
data consistency and performance degradation as the database 
grows [11], [24]. To address this phenomenon of normalization 
and technical debt, we have chosen 4th normal form as our target 
normal form. Although most practical database tables are in 3rd 
(rarely they reach BCNF) normal form [14], 4th normal form is 
considered to be the optimal target since more duplicate data is 
removed. Additionally, 4th normal form is based on multi valued 
dependency which is common to address in real world [34].  
Moreover, higher normal form of the 5th level is based on join 
dependencies that rarely arise in practice, which makes it more of 
a theoretical value [11], [14]. 

Following similar ethos of database design debt definition [2] , 
we view that  database normalization debt is likely to materialize 
for any table in the database that is below the 4th normal form. 

Using available data in the AdventureWorks data dictionary 
[1], we have identified 23 debt tables below 4th normal form. Due 
to space limitation, we will analyze five tables presented below in 
Table 1: 

Table 1 Debt tables below 4th normal form 

Table Name Normal Form 
Product Un-normalized 

Employee 1st normal form 

EmployeePayHistory 1st normal form 

ProductProductPhoto 1st normal Form 

WorkOrder 2nd normal form 

4 NORMALIZATION DEBT IMPACT 
Data quality and performance are among the qualities that are 

affected by database normalization or its absence. Normalization 
technical debt can be observed on these qualities. As it can be 
difficult to eliminate the debt, we hope to manage the debt by 
prioritizing debt tables below the 4th normal form that are believed 
to have the highest negative effect on them. Henceforth, the first 
step is to estimate the impact of each debt table on those qualities, 
where the estimation will be the main driver of prioritizing debts 
to be paid. 

  In technical debt area, the debt interest is a crucial factor for 
managing debts.  In general, the interest of technical debt is the 
cost paid overtime by not resolving the debt [16]. Unlike finance, 
interest on technical debt  has  been acknowledged  to  be  difficult  
to  elicit  and  measure  for  software engineering problems [5]. 
The interest can span various dimensions; it can be observed on 
technical, economic, and/or sociotechnical dimensions, etc. One 
important aspect of technical debt interest is that it is context 
dependent, meaning the same detected debt can have more or few 
interest in the future depending on the project and its 
circumstances . Researchers have coined interest with implication 

on qualities [35]. The analogy is applicable to the case of 
normalization as striving for the ideal 4th normal form will reduce 
data duplication substantially and consequently, decrease the rate 
at which the current debt tables negatively affect data quality and 
performance.  

4.1 Data quality 
Data quality is considered as one of the main advantages of 

normalization. In this study, data quality is represented by its 
consistency. In weakly or un-normalized tables that store big 
amount of data duplication, there is always a possibility to change 
or update some occurrences of the data leaving the same 
duplicated data un-updated. Therefore, the risk of data 
inconsistency will be higher. This risk is decreased by 
normalization as the amount of data duplication is decreased. 
Thus, we view the risk of data inconsistency as an impact incurred 
due to weakly normalized tables. This Impact can be quantified 
using the International Standardization Organization (ISO) metric 
[19]. According to ISO, The risk of data inconsistency is 
proportional to the number of duplicate values in the table and it 
is decreased if the table further normalized to higher normal 
forms. This risk can be measured using the following formula: 

X=A/B 

With (𝑛
𝑘

) sets of k attributes for a table with n attributes (k=1,..n), 
where A=∑k∑iDi, Di  = number of duplicate values found in set i 
of k attributes, and B= number of rows × number of columns. 

Rows refer to the data stored in the table and columns refer to 
the attributes of that table. For X, lower is better. Using this metric, 
developers can prioritize tables to be normalized by calculating 
the risk of data inconsistency for all the tables in the database and 
identify tables with higher risks to be normalized. 

We have calculated the risk of data inconsistency for the tables 
in AdventureWorks database, the results are shown in Table 2. 

Table 2: Risk of data inconsistency for the debt tables 

Table Name Risk of Data 
Inconsistency 

Product 17 

Employee 8.213 

EmployeePayHistory 1.034 

ProductProductPhoto 0.978 

WorkOrder 2.910 

Based on the results from the previous table, the logical 
approach would be to normalize table Product to the 4th normal 
form as it has the highest risk of data inconsistency. It is also 
observable from the results that the risk of data inconsistency is 
independent from the normal form of the debt table. As shown, 
table WorkOrder has a higher risk of data inconsistency than 
tables EmployeePayHistory and ProductProductPhoto 
even though they are in a weaker normal form, which denotes 
that the normal form alone is not sufficient to make the right 
decision on which table to normalize.    



  
 

 

4.2 Performance 
Enhanced operations performance is one of the advantages of 
database normalization, as the database will store smaller sets of 
data in tables due to the decreased amount of data duplication. 
Operations performed on the database include update; insert; 
delete data stored in the tables, in addition to data retrieval 
operations. Each of these operations incur a cost on the number 
of disk pages read or written, which is referred to as the  
Input\Output “I\O” cost [17]. The impact of normalization debt 
can be observed through the I\O cost incurred by the operations 
performed on the debt table in its current normal form. Due to the 
huge amount of data redundancy in debt tables below 4th normal 
form, tables will require more pages to be stored in, which will 
affect the performance of the operations executed on those tables. 
Meaning, the more data stored in the debt table, the more disk 
pages it requires and henceforth, more time to go through the 
pages to execute the operation. Therefore, normalization is the  
sensible solution that will not only improve performance, as it has 
been proven in several studies [24], [32], [11], but it will also 
improve the overall design of the database to adapt easily to future 
changes.  
Unlike data consistency, a metric to quantify the I\O cost of all the 
operations performed on debt tables is not available. In the 
following section we propose a model to estimate this cost and 
suggest an approach, which is grounded on portfolio approach to 
manage it effectively.   

4.2.1 Performance Estimate: The Impact of Normalization 
Debt on the I\O cost 

I\O cost of each operation can be elicited from the database 
management system via query analyzer tools. To quantify the 
total I\O cost for each debt table, we use the execution rate of the 
operation and the I\O cost of operations. Let nu,  ni , nd , ns be the 
number of  update, insert, delete and select operations on the debt 
table R respectively. λxu  , λxi  , λxd , λxs represent the execution 
rates of the xth update, xth insert, xth delete and xth select 
respectively. Finally, the I\O costs of the xth update, xth insert, xth 
delete and xth select are denoted by Cxu, Cxi, Cxd , Cxs respectively. 
It is important to note that operations on a specific single table are 
considered (excluding the join operations when calculating the 
impact). The reason for this is because we want to examine the 
cost incurred by a specific debt table due to its weakly normalized 
design.  Moreover, after the decision is made whether to pay or 
keep the debt, the join operations are still needed to retrieve the 
required data. Therefore, the I\O cost of a debt table can be 
calculated as follows: 

I\Ο cost = ∑ C𝑥
𝑢

𝑛𝑢

𝑥=1

λ𝑥
𝑢 +  ∑ C𝑥

𝑖

𝑛𝑖

𝑥=1

λ𝑥
𝑖 + ∑ C𝑥

𝑑

𝑛𝑑

𝑥=1

λ𝑥
𝑑 + ∑ C𝑥

𝑠

𝑛𝑠

𝑥=1

λ𝑥
𝑠  

Let us consider a table named Staff as an example. This table 
stores staffs’ information. Assuming table Staff is in the 2nd 
normal form, where the ideal is the 4th normal form and 
henceforth, considered as a debt table. Suppose that there are 2 
select statements to retrieve data from this table, 1 update 
statement to update some information, 1 insert statement and no 

delete statements. Values of the other variables are assumed as the 
following Table 3: 

Table 3: Values of table Staff I\O cost variables 

Variable Value 
nu 1 

ni 1 

ns 2 

C1u 2 I\Os 

λ1u 100/month 

C1i 1 I\O 

λ1i 50/month 

C1s  5 I\Os 

λ1s 200/month 

C2s 3 I\Os 

λ2s 500/month 

Referring to the previous Table 3, the I\O cost of table Staff’s 
operations would be: 

(2 × 100) + (1 × 50) + (5 × 200) + (3 × 500) = 2750 Estimated 
average I\O cost monthly. 

4.2.2 Technical Debt Impact Accumulation 
Technical debt grows with the accumulated interests on the 

debt [16]. When likely interest accumulation is overlooked, it can 
lead to ill-justified decisions regarding debt payment. For 
example, suppose that that a debt is identified in a software 
artifact and the developer demands that it should be fixed before 
the next release. As a result, the developer may end up wasting 
effort, time and cost for fixing something that may not have severe 
or noticeable impact on the system or business in the future. In 
normalization debt context, similar situation is resembled in I\O 
cost accumulation.  I\O cost changes based on the debt tables’ 
growth rate. If the table is likely to grow faster than other tables, 
the I\O cost for the operations executed on that table will 
accumulate faster than others. This due to the fact increasing table 
size implies more disk pages to store the table and therefore, more 
I\O cost. Tables’ growth rate is a crucial measure to prioritize 
tables needed to be normalized. If the table is not likely to grow 
or its growing rate is less than other tables, a strategic decision 
would be to keep the debt and defer its payment. Table growth 
rate can be elicited from the database monitoring system.  The 
growth rate of a table can be viewed as analogous to interest risk 
or interest probability. Interest probability captures the 
uncertainty of interest growth in the future [23]. Debt tables 
which experience high growth rate in data can be deemed to have 
higher interest rate. Consequently, these tables are likely to 
accumulate interest faster.       

 



  
 

 

 

4.2.3 Managing I\O cost of normalization debt (portfolio 
approach) 

4.2.3.1  Modern Portfolio Theory 

Modern Portfolio Theory (MPT) was developed by the Nobel 
Prize winner Markowits  [25]. The aim of this theory is to develop 
a systematic procedure to support decision making process of 
selecting capital of a portfolio consisting of various investment 
assets. The assets may include stocks, bonds, real estate, and other 
financial products on the market that can produce a return 
through investment. The objective of the portfolio theory is to 
select the combination of assets using a formal mathematical 
procedure that can maximize the return while minimizing the risk 
associated with every asset. Portfolio management involves 
determining the types that should be invested or divested and how 
much should be invested in each asset.  This process draws on 
similarity with the normalization debt management process, 
where developers can make decisions about prioritizing 
investments in normalization, based on which technical debt 
items should be paid, ignored, or can further wait. With the 
involvement of uncertainty, assets expected return and variance 
of the return are used to evaluate the portfolio performance. The 
expected return of a portfolio is presented by the following 
equation as the weighted sum of the expected return of the assets 
in the portfolio. The weight of an asset represents the proportion 
from the capital invested in this asset.   

E(R)= ∑ 𝑋𝑖𝐸(𝑅𝑖)
𝑛

𝑖=1
 

Where E(R) is the expected return of a portfolio of n assets, Xi is 
the weight of asset i . The weight determines the proportion of the 
money that should be invested in asset i. E(Ri) is the expected 
return of that asset. This expected return of the portfolio is 
constrained by the following equation, which denotes the sum 
weight of all the assets in the portfolio should equal to one: 
∑ 𝑋𝑖

𝑛
𝑖=1  = 1 

To measure the risk of a financial portfolio, the variance and 
standard deviation is used. The risk of a portfolio depends on: 

 The volatility of each asset’s return which is estimated 
based on the observation of its return over time.  

 The weight invested in each asset  
 The correlation between assets return which is 

estimated by the observation of assets overtime.  
The risk of a portfolio R is calculated using the following 

equation [25]: 

𝑅 = √∑ 𝑋𝑖2

𝑛

𝑖=1

𝜎𝑖2 + 2 ∑ 𝑋𝑖2𝑝𝑖𝑗𝜎𝑖2𝜎𝑗2

𝑛

𝑖<j

 

Where Xi is the weight of an asset i,  σ  is the variance of this asset 
return and Pij is the correlation between asset i and asset j. 

4.2.3.2 Modelling the problem (Portfolio Based 
Approach to Manage the I\O cost of 
Normalization Debt) 

Our approach aims to help database developers make strategic 
decisions about refactoring the database for normalization. Let us 

consider an existing database system with tens of tables, all or 
most of which are below the 4th normal form. Pervious research 
and the classical theory of normalization would encourage 
normalizing all tables to the ideal normal form [11]; the exercise 
would require a lot of time and resources, where a complete 
refactoring of the whole system might be an alternative cost 
saving option. Our approach acknowledges the fact that time, 
resources, and budget is often a constraint that prevent exhaustive 
and unjustified normalization. Our approach selects and 
prioritizes the tables to be normalized by constructing a portfolio 
of multiple debt tables that has the highest priority for 
normalization. The objective is to minimize the negative impact 
of the debt tables on performance taking into consideration the 
likely growth rate of the table size and henceforth, the risk of 
interest accumulation.  

We view a database of debt tables below the 4th normal form 
as a market of assets. To fit in portfolio management, each debt 
table is treated as an asset. For each table, we need to determine 
whether it is better to normalize that table to the 4th normal form 
(pay the debt) or keep the table in it is current normal form ( defer 
the payment). To decide on this, we need to determine what the 
expected return of each debt table is. In the case of normalization 
debt, the expected return of the debt table resembles the estimated 
performance impact of the table. Tables with the lowest estimated 
impact are deemed to carry higher expected return. In other 
words, If the estimated I\O of table’s A operations is less than 
estimated I\O of table’s B operations, then table A expected return 
would be higher than B;  B will then has a higher priority for 
normalization due to high I\O. We balance the expected return 
with the risk. In portfolio management, this risk is represented by 
the variance of the return. For the debt tables, this risk is 
represented by the tables’ growth rate.  Tables with the highest 
growth rate are considered to be risky assets, their likely interest 
and so the debt will grow faster than other tables of low growth 
rate. 

In order to apply the portfolio theory to normalization debt, 
few considerations need to be taken into account: 

 The expected return of the debt table is equal to 1/I\O 
cost.  

 The risk of each debt table is equal to the table growth 
rate for each debt table. This information can be elicited 
from the database management system by monitoring 
the table’s growth. 

 We set the correlation between the debt tables to zero 
for several reasons: First, the I\O costs of the debt tables 
are independent. Meaning, the I\O cost of the operations 
executed on a debt table has no effect on the I\O cost of 
the operations executed on another debt table. 
Moreover, the growth rate for each table, which affects 
the I\O cost, is unique and independent from each other. 
Lastly, each debt table design is independent from other 
debt tables, as the decision to keep the debt or normalize 
the table have no effect on the design and the data of the 
other debt tables.  

Taking into account these considerations, we can apply the 
portfolio theory, where the database developer is investing in 



  
 

 

tables’ normalization. The database developer needs to build a 
diversify portfolio of multiple debt tables. Multiple debt tables in 
the database represent the assets. For each asset i, it has its own 
risk Ri and I\O cost Ci . Based on these values the developer then 
can prioritize tables to be normalized. The expected return of debt 
tables portfolio Ep, built by prioritizing debt tables from the 
database of m debt tables can be calculated as in the following 
equation: 

Ep = ∑ 𝑤𝑖

1

𝐶𝑖

𝑚

𝑖=1

 

With one constraint represented in the following equation: 

∑ 𝑤𝑖 = 1

𝑚

𝑖=1

 

Where wi represents the resulted weight of each debt table. This 
weight will resemble the priority of each table for normalization 
as explained in the process steps. 

The risk of table growth rate for debt table i is represented by 
Ri. The global risk of the portfolio Rp is calculated as the 
following: 

𝑅𝑝 = √∑ 𝑤𝑖
2

𝑚

𝑖=1

𝑅𝑖
2 

Process Steps: 

1. Identify debt tables: tables below 4th normal form should 
be identified. If this is not already documented, it would 
require knowledge of the functional dependencies and 
rules which can be elicited from the requirements and 
business analysts.  

2. Determine the debt tables’ growth rate from the database 
monitor. This step will simplify the method to examine 
only debt tables with high growth rate. 

3. Consider only the tables with high growth rates to 
calculate I\O costs of their operations. 

4. For each debt table of high growth rate, list all queries, 
update, insert and delete operations, execution rate for 
each operation and their I\O costs  

5. Calculate the I\O cost of each table’s operations as 
explained in section 4.2.1 

6. Determine the values of the portfolio model variables 
(expected return= 1/I\O cost) and (risk= table growth 
rate) 

7. Run the model on the available data to produce the 
optimal portfolio of the debt tables. The portfolio model 
will provide the highest weights to those tables with low 
I\O cost and low table growth rate. Therefore, debt table 
that has the lowest weight implies the highest priority 
table that should be normalized.  

8. Use the results to justify the decisions to stakeholders. 
It is important to mention that this process should be executed 
iteratively before each release for both the I\O cost and growth 
rate of debt tables vary during the system’s life. 

4.2.4 Case study 
We considered the AdventureWorks database, designed by 

Microsoft [1] and  StoreFront  web application built on top of the 
database [31].This database supports standard e-commerce 
transactions for a fictitious bicycle manufacturer. The database 
has a total of 64 tables, each filled with thousands of fictitious data. 
The data dictionary is available with a fair description of the tables 
and the attributes, which will facilitate the process of identifying 
the normal form for each table. To better understand our 
approach, the following example demonstrates how the steps 
performed to manage the impact of normalization debt on 
performance. 

Step1: Identify debt tables: 23 tables have been identified 
below 4th normal and considered to be debt tables.  

Step 2 & 3: Growth rate can be monitored or retrospectively 
captured from the database monitoring system. For simplicity, we 
assume that this procedure has identified the following 5 tables, 
presented in Table 4 to have the highest growth rate among the 
debt tables. 

Table 4: Debt tables with the highest growth rate 

Table name Growth 
rate\monthly 

Product 0.2 

Employee 0.1 

EmployeePayHistory 0.1 

ProductProductPhoto 0.2 

WorkOrder 0.5 

Step 4:  A list for each table has been constructed similar to 
the following Table 5 with all the select, insert, update delete 
statements, their assumed execution rates and I\O cost per 
execution. The following Table 5 demonstrates a list of table 
Product operations:  

Table 5: Table Product list of operations 

Select Statements Execution rate per 
month 

I\O cost per 
execution 

1 3000/month 2 

2 5000/month 2 

3 4000/month 1 

Update statements Execution rate per 
month 

I\O cost per 
execution 

1 2000/month 2 

2 3000/month 1 

Insert statements Execution rate per 
month 

I\O cost per 
execution 

1 100/month 1 



  
 

 

 

Step 5: The following Table 6 shows the calculated I\O cost of 
the operations performed on each debt table as detailed in section 
4.2.1 

Table 6: I\O cost of the debt tables 

Table name I\O cost 

Product 27100 

Employee 15000 

EmployeePayHistory 12000 

ProductProductPhoto 20000 

WorkOrder 4000 

Step 6: Table 7 presents the values of the portfolio model 
variables (expected return and risk); the expected return values 
presented in the table are rounded values.   

Table 7: Portfolio model variables 

Table name 
Expected 

return=1/I\O 
cost 

Risk=growth 
Rate/ monthly 

Product 0.003 0.2 

Employee 0.006 0.1 

EmployeePayHistory 0.008 0.1 

ProductProductPhoto 0.005 0.2 

WorkOrder 0.025 0.5 

Step 7: After running the portfolio model on the available 
data, the following weights presented in Table 8 were determined 
for each debt table: 

Table 8: Debt tables weights 

Table name Weight 

Product 4.4 

Employee 35.29 

EmployeePayHistory 47.06 

ProductProductPhoto 7.3 

WorkOrder 5.8 

From Table 8 we can determine that table Product has the 
highest priority to normalize since it got the lowest weight. 
Although this table’s growing rate is considered to be small when 
compared to table WorkOrder, the I\O cost incurred by the 
operations executed on table Product is the highest, meaning 
the number of operations performed on that table and the 
frequencies of those operations on a monthly basis are high. 
Henceforth, this table will have more I\O cost compared to the 
other tables; this I\O cost will accumulate faster than other tables 
despite the relatively smaller table growth rate. On the other hand, 

table WorkOrder has the second priority for normalization 
despite its lowest I\O cost. This is because it has the fastest growth 
rate among the tables, which will accelerate I\O cost accumulation 
in the future and affect performance. As seen, the difference of the 
weights between table Product and table WorkOrder is 
relatively small, which indicates that both tables are semi-equally 
important to normalize, considering time and budget constraints. 
Tables Employee and EmployeePay History are the tables 
with the least priority to be normalized since both their I\O costs 
and growth rates are the smallest among tables. However, if time 
and budget permits only one table to normalize, table Product 
would be the correct choice since it also has the highest risk of 
data inconsistency. Therefore, by normalizing this table, both 
performance and data quality will be improved. 

5 EVALUATION 
One objective of the case study is to investigate how the 

described methods can be applied by database developers to 
reason about normalization decisions; improve data quality and 
performance in an attempt to manage normalization debts and 
their accumulated interests, while minimizing the cost of database 
refactoring. The evaluation contrasts our debt-aware approach to 
the ad-hoc one. The debt metric provides insights on the 
significance of the impact of weakly or un-normalized tables and 
their accumulation leading to deterioration in the quality. We 
have claimed the 4th normal form as the target normal form for 
the “debt-friendly” table design. However, practically, achieving 
this target for all tables, as conventional approaches of database 
normalization suggest, is idealistic and costly process due to 
constraints on expertise, time and budget. Therefore, our 
approach facilitates the decision making process for 
normalization debt management, regarding which table has a 
higher priority to normalize, taking into consideration the effect 
of the debt table and likely future quality degradations overtime. 
In particular, our debt-aware approach provides insights on 
whether it is beneficial to go for the 4th normal form based on 
likely benefits relative to improving the data quality and 
performance due to this exercise. Table 9 presents how our 
prioritization methods has followed a systematic and informed 
procedure in significantly reducing normalization effort while 
improving qualities (rather than ad-hocly targeting all the tables 
that are below 4th normal form). 

Table 9: Difference in effort between conventional 
approach and debt-aware approach of normalization 

Approach 
Number of 
tables to 

normalize 

Conventional 
approach 

5 

Prioritize based on risk 
of data inconsistency  

1 

Prioritize based on I\O 
cost  

2 



  
 

 

Table 9 shows that following the conventional approach, 
which encourage normalizing all the tables to 4th normal form is 
more costly; time consuming and ad-hoc than the debt-aware 
approach for two scenarios: The first scenario prioritizes debt-
tables based on their impact on data quality, measured using the 
ISO metric Risk of Data Inconsistency [19], where it suggests  to 
only normalize one table, table Product, based on the biggest 
amount of data duplication it holds. The second scenario considers 
the performance impact of each debt table, and the likely 
accumulation of this impact in the future. By utilizing the 
portfolio approach, two tables are suggested for normalization, 
Product and WorkOrder. Moreover, depending on available 
resources, developers can include more tables to normalize and 
justify their decisions based on the debt tables’ impact on data 
quality and performance. In summary, our debt-aware approach 
has provided more systematic and informed cost-effective 
decision than the conventional approach for normalization taking 
into consideration debts linked to performance and data quality.  

Though our approach has looked at two essential qualities in 
database normalization, performance and data quality, the 
approach can be extended and be applicable to reason about the 
likely debts and interests relative to other structural or behavioral  
qualities such as maintenance, availability among the others. The 
extension requires identifying appropriate metrics for the 
analysis, however. The inclusion of other qualities has the 
promise to provide database designers and developers with more 
comprehensive approach for prioritization and debt management.  

6 RELATED WORK 
Technical debt metaphor was first introduced by Ward 

Cunningham in 1992 [10]. Back then he described coding debt as 
a trade-off between short term goals (i.e. shipping the application 
early to meet the market) and applying the optimal coding 
practices for long term goals. Technical debt has captured the 
attention of many researchers over the past years. The attempts 
have exceeded code level debt to encompass other aspects of the 
system such as architectural debt [23], requirements debt [15], 
testing debt [29], among other types of technical debt [22], [16]. 
As our work is closed to debt prioritization, authors in [35] 
utilized prioritization to manage code level debts in software 
design. The authors estimated the impact of God classes on 
software maintainability and correctness. They prioritized classes 
that should be refactored based on their impact on those qualities. 
Portfolio Theory was proposed to by researchers to manage 
technical debt [30], [18]. In [18] the authors viewed each debt item 
as an asset, and they utilized Portfolio Theory to construct a 
portfolio of debt items that should be kept based on debt principal, 
which they defined as the effort required to remove the debt, and 
debt interest which is the extra work needed if the debt is not 
removed. Portfolio Theory was also proposed to manage 
requirements compliance debt in [28]. The authors viewed 
compliance management as an investment activity that needs 
decisions to be made about the right compliance goals under 
uncertainty. They identified an optimal portfolio of obstacles that 
needed to be resolved, and address value-driven requirements 

based on their economics and risks. Despite the vast contributions 
on technical debt in software, database design debts received very 
little attention. In [33], the authors studied technical debt related 
to referential integrity constraints in databases schema. They 
viewed missing foreign keys in the tables as a debt that will affect 
data quality. They proposed  an iterative process to reduce the 
debt, which involves measuring the debt by making use of missing 
foreign keys detection algorithms;  define modification activities 
that should be done in the development site and finally, package 
all modifications to the deployment sites. They illustrated their 
approach using OSCAR electronic medical record system.  

Technical debt interest is among the essential elements needed 
to manage the debt effectively [7], [26]. Ampatzoglou et al.  [5] 
presented a framework to manage the interest of technical debt. 
Their framework involved interest definition; classification; 
evolution and finally, interest management theory, based on 
Liquidity Preference Theory.  

7 CONCLUSION  
We have explored a new context of technical debt, which is 

linked to database normalization. Normalizing the database is 
essential to improve data quality and performance. However, 
practically, developers tend to overlook normalization process 
due to time and expertise it requires, and instead, turn to other 
quick procedures, such as creating more indexes or writing extra 
code fixes to save time and effort. With data growth and systems’ 
evolution, normalizing the database becomes essential to avoid 
long-term effects on data quality and performance. We have 
asserted that normalization debt is likely to be materialized for 
tables below the 4th normal form and we discussed the validity of 
this assertion.  

Conventional approaches for normalization encourage 
normalizing all the tables to achieve benefits; the exercise is often 
judged in isolation of the cost, long-term value and technical debt 
avoidance. Furthermore, it is impractical to embark on exhaustive 
normalization of all tables because of costs and uncertain benefits. 
In this study, we proposed an approach to manage the debt by 
prioritizing tables that should be normalized. The prioritization is 
based on the impact of the weakly or un-normalized tables on data 
quality and performance. To improve data quality, the 
prioritization is based on a metric provided by the ISO [19] to 
measure the risk of data inconsistency for each debt table below 
the 4th normal form. To enhance performance, a model was 
proposed to estimate the I\O cost of the operations performed on 
each weakly or un-normalized table. These costs tend to increase 
with the growth of the tables. To manage this debt effectively and 
avoid accumulation of I\O cost, Portfolio Theory was utilized to 
prioritize tables that should be normalized based on the I\O costs 
of the operations performed on the tables and the risks of future 
cost accumulation (e.g., interest on the debt). The techniques was 
applied to AdventureWorks database from Microsoft. The results 
show that rethinking conventional database normalization from 
the debt angle can  provide  more  systematic  guidance  and  
informed decisions  to  improve  the database quality,  while  



  
 

 

 

reducing  the  cost and effort that is linked with unnecessary  
normalization.    
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