
Prioritizing Technical Debt in Database Normalization Using
Portfolio Theory and Data Quality Metrics

Mashel Albarak
School of Computer Science

University of Birmingham, UK
King Saud University, KSA

mxa657@cs.bham.ac.uk

 Rami Bahsoon
School of Computer Science
University of Birmingham

UK
r.bahsoon@cs.bham.ac.uk

ABSTRACT
Database normalization is the one of main principles for designing
relational databases. The benefits of normalization can be
observed through improving data quality and performance,
among the other qualities. We explore a new context of technical
debt manifestation, which is linked to ill-normalized databases.
This debt can have long-term impact causing systematic
degradation of database qualities. Such degradation can be liken
to accumulated interest on a debt. We claim that debts are likely
to materialize for tables below the fourth normal form. Practically,
achieving fourth normal form for all the tables in the database is
a costly and idealistic exercise. Therefore, we propose a pragmatic
approach to prioritize tables that should be normalized to the
fourth normal form based on the metaphoric debt and interest of
the ill-normalized tables, observed on data quality and
performance. For data quality, tables are prioritized using the risk
of data inconsistency metric. Unlike data quality, a suitable metric
to estimate the impact of weakly or un-normalized tables on
performance is not available. We estimate performance
degradation and its costs using Input\Output (I\O) cost of the
operations performed on the tables and we propose a model to
estimate this cost for each table. We make use of Modern Portfolio
Theory to prioritize tables that should be normalized based on the
estimated I\O cost and the likely risk of cost accumulation in the
future. To evaluate our methods, we use a case study from
Microsoft, AdventureWorks. The results show that our methods
can be effective in reducing normalization debt and improving the
quality of the database.

CCS CONCEPTS
• Software and its engineering → Designing software;

• Information systems → Relational Database Model;

KEYWORDS
Technical debt; Database design; Normalization

1 INTRODUCTION
Information systems evolve in response to data growth,

improving quality, and changes in users’ requirements. The
evolution process face many risks, such as cost overruns, schedule
delays and increasing chances of failure; it is believed that 80% of
the cost is spent on system’s evolution [6]. Databases are the core

of information systems; evolving databases schemas through
refactoring is common practice for improving data qualities and
performance, among other structural and behavioral qualities.
Database normalization is one of the main principles for relational
database design, invented by the Turing Award winner Ted Codd
[9]. The concept of normalization was developed to organize data
in “relations” or tables following specific rules to reduce data
redundancy, and consequently, improve data consistency by
decreasing anomalies. The benefits of normalization go beyond
data quality, and can have ramifications on improving
maintainability, scalability and performance [11], [20]. However,
developers tend to overlook normalization due to time and
expertise it requires, and instead turn to other strategies such as,
creating more indexes or writing extra code fixes to achieve quick
benefits. With the growth of data, ad-hoc fixes can become
ineffective, calling for costly and inevitable future refactoring to
address these pitfalls.

 The technical debt metaphor was coined to describe and
quantify issues arising from ill, inadequate or suboptimal
practices in developing, maintaining and evolving systems, while
compromising long-term qualities for short-term benefits, such as
fast delivery and immediate savings in cost and effort [10]. The
technical debt metaphor can be a useful tool for justifying the
value of database normalization, through capturing the likely
value of normalization (e.g. quality improvements) relative to the
cost and effort of embarking on this exercise, or delaying it.
Though technical debt research has extensively looked at code
and architectural debts [22], [3], technical debt linked to database
normalization, has not been explored, which is the goal of this
study. In our previous work [2], we defined database design debt
as:

” The immature or suboptimal database design decisions
that lag behind the optimal/desirable ones, that manifest
themselves into future structural or behavioral
problems, making changes inevitable and more
expensive to carry out”.

In [2], we developed a taxonomy that classified different types of
debts, which relate to the conceptual, logical and physical design
of the database.

In this study, we explore a specific type of database design debt
that relates to the fundamentals of normalization theory. The
underlying assumption of the theory is that the database tables
should be normalized to the ideal normal form, a hypothetical
fourth normal form, to achieve benefits [14]. While this

mailto:mxa657@cs.bham.ac.uk
mailto:r.bahsoon@cs.bham.ac.uk

assumption holds in theory, practically it fails due to the required
time and expertise. Adhering to this assumption, we link database
normalization debt to tables in the database that are below the
fourth normal form.

Given the high cost of database normalization, prioritizing
tables to be normalized is challenging. Studies have showed that
the most critical technical debt items are the ones whose
metaphoric interests grow fast over time [5]. Therefore, a method
that would aid database developers and stakeholders to analyze
and estimate the impact of normalization debts is highly needed
to avoid negative and costly consequences on database qualities
due to lack of normalization. Performance and data quality are
among the most concerned qualities when it comes to database
normalization [11], [24], [32]. In this study, we will analyze the
impact of normalization debt on both data quality and
performance and use the results to prioritize tables that should be
normalized to the fourth normal form.

 To measure the impact of normalization debt on data quality,
we use the risk of data inconsistency metric of the International
Standardization Organization [19]. Unlike data quality, a suitable
metric to measure the impact of normalization debt on
performance is not available. We analyze database performance,
by looking at the Input and Output ” I\O “ cost of the operations
performed on tables below fourth normal form. I\O cost is the
number of disk pages read or written to execute the operation
[17]. Weakly or un-normalized tables will acquire more pages due
to big amount of data duplication they hold and big records size.
Therefore, operations executed on those tables will increase the
I\O cost, which in turn will affect performance. As part of our
contribution, we propose a model to control the debt impact on
the I\O cost. We build on Modern Portfolio Theory [25] to manage
the debt by prioritizing tables that should be normalized based on
the I\O cost and the risk of table’s size growth.

The novel contributions of this paper can be summarized as
follows:

 Explore technical debt related to database
normalization: Define and estimate the impact of
normalization debt, where we specifically look at the
ramifications of the normalization decisions on
performance and data qualities.

In large-scale systems, designers are often faced with the
challenge of limited resources when it comes to
normalization and managing the debt. To address this
challenge, our approach prioritize tables that should be
normalized based on their impact on data quality and
performance. For performance, we utilize portfolio
theory to prioritize tables that should be normalized,
taking into account: debt impact on operations
performance and its accumulation over time.

The contribution provides a basis for software engineers and
database developers to understand normalization, not only from
the technical perspective but also from its connection to debt.
Coining normalization with debt hopes to provide a systematic
procedure that can eliminate unnecessary normalization efforts,
justify the essential ones, and/or prioritize investments in
normalization, when resources and budget are limited.

The methods are evaluated using a case study from Microsoft,
AdventureWorks database [1], and StoreFront web application
built on top of the database [31]. The database has a total of 64
tables, each populated with large amount of data to support e-
commerce transactions of a hypothetical cycles retail company.

2 BACKGROUND AND MOTIVATION
In this section, we will summarize the key concept of our work.

The normalization process was first introduced by Codd in 1970
[9], as a process of organizing the data in relations or “tables”.
The main goal of normalization is to reduce data redundancy,
which is accomplished by decomposing a table into several tables
after examining the dependencies between attributes. Benefits of
normalization was discussed and proved in the literature [11], [14]
. Examples of such benefits include: improving data quality as it
reduces redundancy; minimizing update anomalies and
facilitating maintenance. Fig 1 illustrates the normal forms
hierarchy. Higher level of normal form indicates a better design
[14], since higher levels reduce more redundant data. The main
condition to go higher in the hierarchy is based on the constraint
between two sets of attributes in a table, which is referred to
as dependency relationship.

Figure 1 Normal forms hierarchy

2.1 Benefits of Normalization: Data Quality and
Performance

Improving data quality is one of the main advantages of
normalization [11], [14]. This improvement is linked to decreasing
the amount of data duplication as we move higher in the
normalization hierarchy. In the presence of data duplication, in
poorly or un-normalized tables, there is always a risk of updating
only some occurrences of the data, which will affect the data
consistency. Data quality is a crucial requirement in all
information systems, as the success of any system relies on the
reliability of the data retrieved from the system. The
trustworthiness of business processes depends highly on the
quality of the exchanged data.

Benefits of normalization go beyond data quality and can be
observed on other aspects of the system such as performance.
Performance has always been a controversial subject when it
comes to normalizing databases. Some may argue that
normalizing the database involves decomposing a single table into
more tables, henceforth, data retrieval can be less efficient since it
requires joining more tables as opposed to retrieving the data
from a single table. Indeed, de-normalization was discussed as the

process of “downgrading” table’s design to lower normal forms
and have limited number of big tables to avoid joining tables when
retrieving the required data [11]. Advocates of de-normalization
argue that the Database Management System (DBMS) stores each
table physically to a file that maintains the records contiguously,
and therefore retrieving data from more than one table will
require a lot of I\O. However, this argument might not be correct:
even though there will be more tables after normalization, joining
the tables will be faster and more efficient because the sets will be
smaller and the queries will be less complicated compared to the
de-normalized design [11]. Moreover, weakly or un-normalized
tables will be stored in a large number of files as opposed to the
normalized design due to big amount of data redundancy, and
consequently, increased records size and increased I\O cost [24],
[11]. Adding to this, not all DBMS store each table in a dedicated
physical file. Therefore, several tables might be stored in a single
file due to reduced table size after normalization, which means
less I\O and improved performance, as proven in [24], [32], [11].

Despite the controversy about normalization and
performance, several arguments in favor of normalization is
presented by C. J. Date [11], an expert who was involved with
Codd in the relational database theory:

 Some of the de-normalization strategies to improve
performance proposed in the literature are not “de-
normalizing” since they do not increase data
redundancy. In fact, as Date states, some of them are
considered to be good normalized relational databases.

 There is no theoretical evidence that de-normalizing
tables will improve performance. Therefore it’s
application dependent and may work for some
applications. Nevertheless, this does not imply that a
highly normalized database will not perform better.

In this study, we view these deteriorations in performance and
data quality as debt that can be rooted in inadequate
normalization of database tables. The debt can accumulate
overtime with data growth and increased data duplication. It is
evident that the short-term savings from not normalizing the table
can have long-term consequences which may call for inevitable
costly maintenance, fixes and/or replacement of the database.
Therefore, we motivate rethinking database normalization from
the debt perspective linked to performance and data quality
issues. Rethinking databases normalization from the technical
debt angle can lead to software that has the potential to better
evolve and cope with changes and continuous data growth.

2.2 Cost of Normalization
As mentioned previously the process of normalizing the

database is relatively complex due to expertise and resources
required. According to [4], decomposing a single table for
normalization involves several refactoring tasks:

 Modifications to the database schema: create the new
tables after decomposition; create triggers to ensure that
the data in new tables will be synchronized and finally
updating all stored views, procedures and functions that
access the original table.

 Migrating data to new table/s: a strategy should be set
to migrate the data from the old weakly or un-
normalized table to the new tables.

 Modifications to the accessed application/s, which
involve introducing the new tables’ meta data and
refactor the presentation layer accordingly.

Additionally, testing the database and the applications before
deployment can be expensive and time consuming. Consequently,
the aim should not be normalizing all the tables, rather than
prioritize tables that has the most negative effect to be normalized.
In this study, we aim to formulate the normalization problem as a
technical debt. We start from the intuitive assumptions that tables,
which are weakly/not normalized to the deemed ideal form, can
potentially carry debt. To manage the debt, we adhere to the
logical practice in paying the debt with the highest negative
impact first. We use the impact information of the debt item to
inform normalization decisions, constrained to time, budget and
quality objectives.

2.3 Database Refactoring
Database refactoring, or some may refer to as schema

evolution, has been largely studied over the past years [4], [8],
[27]. Schema evolution is basically altering the schema of the
database to adapt it to a certain required change[4]. Attempts have
been made to analyze the schema evolution from earlier versions
[8], and tools have been developed to automate the evolution
process [27]. However, schema evolution literature has focused
on limited database refactoring tactics, such as adding or
renaming a column, changing the data type, etc. Evolving the
schema for the purpose of normalizing the database to create
value and avoid technical debt has not been explored. We posit
that normalization is an exercise that should create a value. By
creating a value, it is ensured that the system will sustain
and be much more usable and maintainable.

The process of normalizing a database can be very costly since
it involves decomposing weakly normalized tables into several
tables following specific rules, and update the applications that
use the database. Researchers have provided several algorithms to
automate database normalization [13], [12]. Their studies aimed
to produce up to 3rd normal form or BCNF tables automatically.
However, these studies looked at the schema in isolation from
applications using the database. The consideration of the
applications is important to better estimate the cost of
normalization taking into account refactoring, configuration and
data migration tasks. Since this process can be costly, our study
aims to provide a method to prioritize tables to be normalized to
improve the design and avoid negative consequences.

3 NORMALIZATION DEBT DEFINITION
There is no general agreement on the definition of technical

debt in the literature [21]. However, the common ground of
existing definitions is that the debt can be attributed to poor and
suboptimal engineering decisions that may carry immediate
benefits, but are not well geared for long-term benefits. Database
normalization had been proven to reduce data redundancy,

improve data quality and performance as the table is further
normalized to higher normal forms [11]. Consequently, tables
below the 4th normal form can be subjected to debts as they
potentially lag behind the optimal, where debt can be observed on
data consistency and performance degradation as the database
grows [11], [24]. To address this phenomenon of normalization
and technical debt, we have chosen 4th normal form as our target
normal form. Although most practical database tables are in 3rd
(rarely they reach BCNF) normal form [14], 4th normal form is
considered to be the optimal target since more duplicate data is
removed. Additionally, 4th normal form is based on multi valued
dependency which is common to address in real world [34].
Moreover, higher normal form of the 5th level is based on join
dependencies that rarely arise in practice, which makes it more of
a theoretical value [11], [14].

Following similar ethos of database design debt definition [2] ,
we view that database normalization debt is likely to materialize
for any table in the database that is below the 4th normal form.

Using available data in the AdventureWorks data dictionary
[1], we have identified 23 debt tables below 4th normal form. Due
to space limitation, we will analyze five tables presented below in
Table 1:

Table 1 Debt tables below 4th normal form

Table Name Normal Form
Product Un-normalized

Employee 1st normal form

EmployeePayHistory 1st normal form

ProductProductPhoto 1st normal Form

WorkOrder 2nd normal form

4 NORMALIZATION DEBT IMPACT
Data quality and performance are among the qualities that are

affected by database normalization or its absence. Normalization
technical debt can be observed on these qualities. As it can be
difficult to eliminate the debt, we hope to manage the debt by
prioritizing debt tables below the 4th normal form that are believed
to have the highest negative effect on them. Henceforth, the first
step is to estimate the impact of each debt table on those qualities,
where the estimation will be the main driver of prioritizing debts
to be paid.

 In technical debt area, the debt interest is a crucial factor for
managing debts. In general, the interest of technical debt is the
cost paid overtime by not resolving the debt [16]. Unlike finance,
interest on technical debt has been acknowledged to be difficult
to elicit and measure for software engineering problems [5].
The interest can span various dimensions; it can be observed on
technical, economic, and/or sociotechnical dimensions, etc. One
important aspect of technical debt interest is that it is context
dependent, meaning the same detected debt can have more or few
interest in the future depending on the project and its
circumstances . Researchers have coined interest with implication

on qualities [35]. The analogy is applicable to the case of
normalization as striving for the ideal 4th normal form will reduce
data duplication substantially and consequently, decrease the rate
at which the current debt tables negatively affect data quality and
performance.

4.1 Data quality
Data quality is considered as one of the main advantages of

normalization. In this study, data quality is represented by its
consistency. In weakly or un-normalized tables that store big
amount of data duplication, there is always a possibility to change
or update some occurrences of the data leaving the same
duplicated data un-updated. Therefore, the risk of data
inconsistency will be higher. This risk is decreased by
normalization as the amount of data duplication is decreased.
Thus, we view the risk of data inconsistency as an impact incurred
due to weakly normalized tables. This Impact can be quantified
using the International Standardization Organization (ISO) metric
[19]. According to ISO, The risk of data inconsistency is
proportional to the number of duplicate values in the table and it
is decreased if the table further normalized to higher normal
forms. This risk can be measured using the following formula:

X=A/B

With (𝑛
𝑘

) sets of k attributes for a table with n attributes (k=1,..n),
where A=∑k∑iDi, Di = number of duplicate values found in set i
of k attributes, and B= number of rows × number of columns.

Rows refer to the data stored in the table and columns refer to
the attributes of that table. For X, lower is better. Using this metric,
developers can prioritize tables to be normalized by calculating
the risk of data inconsistency for all the tables in the database and
identify tables with higher risks to be normalized.

We have calculated the risk of data inconsistency for the tables
in AdventureWorks database, the results are shown in Table 2.

Table 2: Risk of data inconsistency for the debt tables

Table Name Risk of Data
Inconsistency

Product 17

Employee 8.213

EmployeePayHistory 1.034

ProductProductPhoto 0.978

WorkOrder 2.910

Based on the results from the previous table, the logical
approach would be to normalize table Product to the 4th normal
form as it has the highest risk of data inconsistency. It is also
observable from the results that the risk of data inconsistency is
independent from the normal form of the debt table. As shown,
table WorkOrder has a higher risk of data inconsistency than
tables EmployeePayHistory and ProductProductPhoto
even though they are in a weaker normal form, which denotes
that the normal form alone is not sufficient to make the right
decision on which table to normalize.

4.2 Performance
Enhanced operations performance is one of the advantages of
database normalization, as the database will store smaller sets of
data in tables due to the decreased amount of data duplication.
Operations performed on the database include update; insert;
delete data stored in the tables, in addition to data retrieval
operations. Each of these operations incur a cost on the number
of disk pages read or written, which is referred to as the
Input\Output “I\O” cost [17]. The impact of normalization debt
can be observed through the I\O cost incurred by the operations
performed on the debt table in its current normal form. Due to the
huge amount of data redundancy in debt tables below 4th normal
form, tables will require more pages to be stored in, which will
affect the performance of the operations executed on those tables.
Meaning, the more data stored in the debt table, the more disk
pages it requires and henceforth, more time to go through the
pages to execute the operation. Therefore, normalization is the
sensible solution that will not only improve performance, as it has
been proven in several studies [24], [32], [11], but it will also
improve the overall design of the database to adapt easily to future
changes.
Unlike data consistency, a metric to quantify the I\O cost of all the
operations performed on debt tables is not available. In the
following section we propose a model to estimate this cost and
suggest an approach, which is grounded on portfolio approach to
manage it effectively.

4.2.1 Performance Estimate: The Impact of Normalization
Debt on the I\O cost

I\O cost of each operation can be elicited from the database
management system via query analyzer tools. To quantify the
total I\O cost for each debt table, we use the execution rate of the
operation and the I\O cost of operations. Let nu, ni , nd , ns be the
number of update, insert, delete and select operations on the debt
table R respectively. λxu , λxi , λxd , λxs represent the execution
rates of the xth update, xth insert, xth delete and xth select
respectively. Finally, the I\O costs of the xth update, xth insert, xth
delete and xth select are denoted by Cxu, Cxi, Cxd , Cxs respectively.
It is important to note that operations on a specific single table are
considered (excluding the join operations when calculating the
impact). The reason for this is because we want to examine the
cost incurred by a specific debt table due to its weakly normalized
design. Moreover, after the decision is made whether to pay or
keep the debt, the join operations are still needed to retrieve the
required data. Therefore, the I\O cost of a debt table can be
calculated as follows:

I\Ο cost = ∑ C𝑥
𝑢

𝑛𝑢

𝑥=1

λ𝑥
𝑢 + ∑ C𝑥

𝑖

𝑛𝑖

𝑥=1

λ𝑥
𝑖 + ∑ C𝑥

𝑑

𝑛𝑑

𝑥=1

λ𝑥
𝑑 + ∑ C𝑥

𝑠

𝑛𝑠

𝑥=1

λ𝑥
𝑠

Let us consider a table named Staff as an example. This table
stores staffs’ information. Assuming table Staff is in the 2nd
normal form, where the ideal is the 4th normal form and
henceforth, considered as a debt table. Suppose that there are 2
select statements to retrieve data from this table, 1 update
statement to update some information, 1 insert statement and no

delete statements. Values of the other variables are assumed as the
following Table 3:

Table 3: Values of table Staff I\O cost variables

Variable Value
nu 1

ni 1

ns 2

C1u 2 I\Os

λ1u 100/month

C1i 1 I\O

λ1i 50/month

C1s 5 I\Os

λ1s 200/month

C2s 3 I\Os

λ2s 500/month

Referring to the previous Table 3, the I\O cost of table Staff’s
operations would be:

(2 × 100) + (1 × 50) + (5 × 200) + (3 × 500) = 2750 Estimated
average I\O cost monthly.

4.2.2 Technical Debt Impact Accumulation
Technical debt grows with the accumulated interests on the

debt [16]. When likely interest accumulation is overlooked, it can
lead to ill-justified decisions regarding debt payment. For
example, suppose that that a debt is identified in a software
artifact and the developer demands that it should be fixed before
the next release. As a result, the developer may end up wasting
effort, time and cost for fixing something that may not have severe
or noticeable impact on the system or business in the future. In
normalization debt context, similar situation is resembled in I\O
cost accumulation. I\O cost changes based on the debt tables’
growth rate. If the table is likely to grow faster than other tables,
the I\O cost for the operations executed on that table will
accumulate faster than others. This due to the fact increasing table
size implies more disk pages to store the table and therefore, more
I\O cost. Tables’ growth rate is a crucial measure to prioritize
tables needed to be normalized. If the table is not likely to grow
or its growing rate is less than other tables, a strategic decision
would be to keep the debt and defer its payment. Table growth
rate can be elicited from the database monitoring system. The
growth rate of a table can be viewed as analogous to interest risk
or interest probability. Interest probability captures the
uncertainty of interest growth in the future [23]. Debt tables
which experience high growth rate in data can be deemed to have
higher interest rate. Consequently, these tables are likely to
accumulate interest faster.

4.2.3 Managing I\O cost of normalization debt (portfolio
approach)

4.2.3.1 Modern Portfolio Theory

Modern Portfolio Theory (MPT) was developed by the Nobel
Prize winner Markowits [25]. The aim of this theory is to develop
a systematic procedure to support decision making process of
selecting capital of a portfolio consisting of various investment
assets. The assets may include stocks, bonds, real estate, and other
financial products on the market that can produce a return
through investment. The objective of the portfolio theory is to
select the combination of assets using a formal mathematical
procedure that can maximize the return while minimizing the risk
associated with every asset. Portfolio management involves
determining the types that should be invested or divested and how
much should be invested in each asset. This process draws on
similarity with the normalization debt management process,
where developers can make decisions about prioritizing
investments in normalization, based on which technical debt
items should be paid, ignored, or can further wait. With the
involvement of uncertainty, assets expected return and variance
of the return are used to evaluate the portfolio performance. The
expected return of a portfolio is presented by the following
equation as the weighted sum of the expected return of the assets
in the portfolio. The weight of an asset represents the proportion
from the capital invested in this asset.

E(R)= ∑ 𝑋𝑖𝐸(𝑅𝑖)
𝑛

𝑖=1

Where E(R) is the expected return of a portfolio of n assets, Xi is
the weight of asset i . The weight determines the proportion of the
money that should be invested in asset i. E(Ri) is the expected
return of that asset. This expected return of the portfolio is
constrained by the following equation, which denotes the sum
weight of all the assets in the portfolio should equal to one:
∑ 𝑋𝑖

𝑛
𝑖=1 = 1

To measure the risk of a financial portfolio, the variance and
standard deviation is used. The risk of a portfolio depends on:

 The volatility of each asset’s return which is estimated
based on the observation of its return over time.

 The weight invested in each asset
 The correlation between assets return which is

estimated by the observation of assets overtime.
The risk of a portfolio R is calculated using the following

equation [25]:

𝑅 = √∑ 𝑋𝑖2

𝑛

𝑖=1

𝜎𝑖2 + 2 ∑ 𝑋𝑖2𝑝𝑖𝑗𝜎𝑖2𝜎𝑗2

𝑛

𝑖<j

Where Xi is the weight of an asset i, σ is the variance of this asset
return and Pij is the correlation between asset i and asset j.

4.2.3.2 Modelling the problem (Portfolio Based
Approach to Manage the I\O cost of
Normalization Debt)

Our approach aims to help database developers make strategic
decisions about refactoring the database for normalization. Let us

consider an existing database system with tens of tables, all or
most of which are below the 4th normal form. Pervious research
and the classical theory of normalization would encourage
normalizing all tables to the ideal normal form [11]; the exercise
would require a lot of time and resources, where a complete
refactoring of the whole system might be an alternative cost
saving option. Our approach acknowledges the fact that time,
resources, and budget is often a constraint that prevent exhaustive
and unjustified normalization. Our approach selects and
prioritizes the tables to be normalized by constructing a portfolio
of multiple debt tables that has the highest priority for
normalization. The objective is to minimize the negative impact
of the debt tables on performance taking into consideration the
likely growth rate of the table size and henceforth, the risk of
interest accumulation.

We view a database of debt tables below the 4th normal form
as a market of assets. To fit in portfolio management, each debt
table is treated as an asset. For each table, we need to determine
whether it is better to normalize that table to the 4th normal form
(pay the debt) or keep the table in it is current normal form (defer
the payment). To decide on this, we need to determine what the
expected return of each debt table is. In the case of normalization
debt, the expected return of the debt table resembles the estimated
performance impact of the table. Tables with the lowest estimated
impact are deemed to carry higher expected return. In other
words, If the estimated I\O of table’s A operations is less than
estimated I\O of table’s B operations, then table A expected return
would be higher than B; B will then has a higher priority for
normalization due to high I\O. We balance the expected return
with the risk. In portfolio management, this risk is represented by
the variance of the return. For the debt tables, this risk is
represented by the tables’ growth rate. Tables with the highest
growth rate are considered to be risky assets, their likely interest
and so the debt will grow faster than other tables of low growth
rate.

In order to apply the portfolio theory to normalization debt,
few considerations need to be taken into account:

 The expected return of the debt table is equal to 1/I\O
cost.

 The risk of each debt table is equal to the table growth
rate for each debt table. This information can be elicited
from the database management system by monitoring
the table’s growth.

 We set the correlation between the debt tables to zero
for several reasons: First, the I\O costs of the debt tables
are independent. Meaning, the I\O cost of the operations
executed on a debt table has no effect on the I\O cost of
the operations executed on another debt table.
Moreover, the growth rate for each table, which affects
the I\O cost, is unique and independent from each other.
Lastly, each debt table design is independent from other
debt tables, as the decision to keep the debt or normalize
the table have no effect on the design and the data of the
other debt tables.

Taking into account these considerations, we can apply the
portfolio theory, where the database developer is investing in

tables’ normalization. The database developer needs to build a
diversify portfolio of multiple debt tables. Multiple debt tables in
the database represent the assets. For each asset i, it has its own
risk Ri and I\O cost Ci . Based on these values the developer then
can prioritize tables to be normalized. The expected return of debt
tables portfolio Ep, built by prioritizing debt tables from the
database of m debt tables can be calculated as in the following
equation:

Ep = ∑ 𝑤𝑖

1

𝐶𝑖

𝑚

𝑖=1

With one constraint represented in the following equation:

∑ 𝑤𝑖 = 1

𝑚

𝑖=1

Where wi represents the resulted weight of each debt table. This
weight will resemble the priority of each table for normalization
as explained in the process steps.

The risk of table growth rate for debt table i is represented by
Ri. The global risk of the portfolio Rp is calculated as the
following:

𝑅𝑝 = √∑ 𝑤𝑖
2

𝑚

𝑖=1

𝑅𝑖
2

Process Steps:

1. Identify debt tables: tables below 4th normal form should
be identified. If this is not already documented, it would
require knowledge of the functional dependencies and
rules which can be elicited from the requirements and
business analysts.

2. Determine the debt tables’ growth rate from the database
monitor. This step will simplify the method to examine
only debt tables with high growth rate.

3. Consider only the tables with high growth rates to
calculate I\O costs of their operations.

4. For each debt table of high growth rate, list all queries,
update, insert and delete operations, execution rate for
each operation and their I\O costs

5. Calculate the I\O cost of each table’s operations as
explained in section 4.2.1

6. Determine the values of the portfolio model variables
(expected return= 1/I\O cost) and (risk= table growth
rate)

7. Run the model on the available data to produce the
optimal portfolio of the debt tables. The portfolio model
will provide the highest weights to those tables with low
I\O cost and low table growth rate. Therefore, debt table
that has the lowest weight implies the highest priority
table that should be normalized.

8. Use the results to justify the decisions to stakeholders.
It is important to mention that this process should be executed
iteratively before each release for both the I\O cost and growth
rate of debt tables vary during the system’s life.

4.2.4 Case study
We considered the AdventureWorks database, designed by

Microsoft [1] and StoreFront web application built on top of the
database [31].This database supports standard e-commerce
transactions for a fictitious bicycle manufacturer. The database
has a total of 64 tables, each filled with thousands of fictitious data.
The data dictionary is available with a fair description of the tables
and the attributes, which will facilitate the process of identifying
the normal form for each table. To better understand our
approach, the following example demonstrates how the steps
performed to manage the impact of normalization debt on
performance.

Step1: Identify debt tables: 23 tables have been identified
below 4th normal and considered to be debt tables.

Step 2 & 3: Growth rate can be monitored or retrospectively
captured from the database monitoring system. For simplicity, we
assume that this procedure has identified the following 5 tables,
presented in Table 4 to have the highest growth rate among the
debt tables.

Table 4: Debt tables with the highest growth rate

Table name Growth
rate\monthly

Product 0.2

Employee 0.1

EmployeePayHistory 0.1

ProductProductPhoto 0.2

WorkOrder 0.5

Step 4: A list for each table has been constructed similar to
the following Table 5 with all the select, insert, update delete
statements, their assumed execution rates and I\O cost per
execution. The following Table 5 demonstrates a list of table
Product operations:

Table 5: Table Product list of operations

Select Statements Execution rate per
month

I\O cost per
execution

1 3000/month 2

2 5000/month 2

3 4000/month 1

Update statements Execution rate per
month

I\O cost per
execution

1 2000/month 2

2 3000/month 1

Insert statements Execution rate per
month

I\O cost per
execution

1 100/month 1

Step 5: The following Table 6 shows the calculated I\O cost of
the operations performed on each debt table as detailed in section
4.2.1

Table 6: I\O cost of the debt tables

Table name I\O cost

Product 27100

Employee 15000

EmployeePayHistory 12000

ProductProductPhoto 20000

WorkOrder 4000

Step 6: Table 7 presents the values of the portfolio model
variables (expected return and risk); the expected return values
presented in the table are rounded values.

Table 7: Portfolio model variables

Table name
Expected

return=1/I\O
cost

Risk=growth
Rate/ monthly

Product 0.003 0.2

Employee 0.006 0.1

EmployeePayHistory 0.008 0.1

ProductProductPhoto 0.005 0.2

WorkOrder 0.025 0.5

Step 7: After running the portfolio model on the available
data, the following weights presented in Table 8 were determined
for each debt table:

Table 8: Debt tables weights

Table name Weight

Product 4.4

Employee 35.29

EmployeePayHistory 47.06

ProductProductPhoto 7.3

WorkOrder 5.8

From Table 8 we can determine that table Product has the
highest priority to normalize since it got the lowest weight.
Although this table’s growing rate is considered to be small when
compared to table WorkOrder, the I\O cost incurred by the
operations executed on table Product is the highest, meaning
the number of operations performed on that table and the
frequencies of those operations on a monthly basis are high.
Henceforth, this table will have more I\O cost compared to the
other tables; this I\O cost will accumulate faster than other tables
despite the relatively smaller table growth rate. On the other hand,

table WorkOrder has the second priority for normalization
despite its lowest I\O cost. This is because it has the fastest growth
rate among the tables, which will accelerate I\O cost accumulation
in the future and affect performance. As seen, the difference of the
weights between table Product and table WorkOrder is
relatively small, which indicates that both tables are semi-equally
important to normalize, considering time and budget constraints.
Tables Employee and EmployeePay History are the tables
with the least priority to be normalized since both their I\O costs
and growth rates are the smallest among tables. However, if time
and budget permits only one table to normalize, table Product
would be the correct choice since it also has the highest risk of
data inconsistency. Therefore, by normalizing this table, both
performance and data quality will be improved.

5 EVALUATION
One objective of the case study is to investigate how the

described methods can be applied by database developers to
reason about normalization decisions; improve data quality and
performance in an attempt to manage normalization debts and
their accumulated interests, while minimizing the cost of database
refactoring. The evaluation contrasts our debt-aware approach to
the ad-hoc one. The debt metric provides insights on the
significance of the impact of weakly or un-normalized tables and
their accumulation leading to deterioration in the quality. We
have claimed the 4th normal form as the target normal form for
the “debt-friendly” table design. However, practically, achieving
this target for all tables, as conventional approaches of database
normalization suggest, is idealistic and costly process due to
constraints on expertise, time and budget. Therefore, our
approach facilitates the decision making process for
normalization debt management, regarding which table has a
higher priority to normalize, taking into consideration the effect
of the debt table and likely future quality degradations overtime.
In particular, our debt-aware approach provides insights on
whether it is beneficial to go for the 4th normal form based on
likely benefits relative to improving the data quality and
performance due to this exercise. Table 9 presents how our
prioritization methods has followed a systematic and informed
procedure in significantly reducing normalization effort while
improving qualities (rather than ad-hocly targeting all the tables
that are below 4th normal form).

Table 9: Difference in effort between conventional
approach and debt-aware approach of normalization

Approach
Number of
tables to

normalize

Conventional
approach

5

Prioritize based on risk
of data inconsistency

1

Prioritize based on I\O
cost

2

Table 9 shows that following the conventional approach,
which encourage normalizing all the tables to 4th normal form is
more costly; time consuming and ad-hoc than the debt-aware
approach for two scenarios: The first scenario prioritizes debt-
tables based on their impact on data quality, measured using the
ISO metric Risk of Data Inconsistency [19], where it suggests to
only normalize one table, table Product, based on the biggest
amount of data duplication it holds. The second scenario considers
the performance impact of each debt table, and the likely
accumulation of this impact in the future. By utilizing the
portfolio approach, two tables are suggested for normalization,
Product and WorkOrder. Moreover, depending on available
resources, developers can include more tables to normalize and
justify their decisions based on the debt tables’ impact on data
quality and performance. In summary, our debt-aware approach
has provided more systematic and informed cost-effective
decision than the conventional approach for normalization taking
into consideration debts linked to performance and data quality.

Though our approach has looked at two essential qualities in
database normalization, performance and data quality, the
approach can be extended and be applicable to reason about the
likely debts and interests relative to other structural or behavioral
qualities such as maintenance, availability among the others. The
extension requires identifying appropriate metrics for the
analysis, however. The inclusion of other qualities has the
promise to provide database designers and developers with more
comprehensive approach for prioritization and debt management.

6 RELATED WORK
Technical debt metaphor was first introduced by Ward

Cunningham in 1992 [10]. Back then he described coding debt as
a trade-off between short term goals (i.e. shipping the application
early to meet the market) and applying the optimal coding
practices for long term goals. Technical debt has captured the
attention of many researchers over the past years. The attempts
have exceeded code level debt to encompass other aspects of the
system such as architectural debt [23], requirements debt [15],
testing debt [29], among other types of technical debt [22], [16].
As our work is closed to debt prioritization, authors in [35]
utilized prioritization to manage code level debts in software
design. The authors estimated the impact of God classes on
software maintainability and correctness. They prioritized classes
that should be refactored based on their impact on those qualities.
Portfolio Theory was proposed to by researchers to manage
technical debt [30], [18]. In [18] the authors viewed each debt item
as an asset, and they utilized Portfolio Theory to construct a
portfolio of debt items that should be kept based on debt principal,
which they defined as the effort required to remove the debt, and
debt interest which is the extra work needed if the debt is not
removed. Portfolio Theory was also proposed to manage
requirements compliance debt in [28]. The authors viewed
compliance management as an investment activity that needs
decisions to be made about the right compliance goals under
uncertainty. They identified an optimal portfolio of obstacles that
needed to be resolved, and address value-driven requirements

based on their economics and risks. Despite the vast contributions
on technical debt in software, database design debts received very
little attention. In [33], the authors studied technical debt related
to referential integrity constraints in databases schema. They
viewed missing foreign keys in the tables as a debt that will affect
data quality. They proposed an iterative process to reduce the
debt, which involves measuring the debt by making use of missing
foreign keys detection algorithms; define modification activities
that should be done in the development site and finally, package
all modifications to the deployment sites. They illustrated their
approach using OSCAR electronic medical record system.

Technical debt interest is among the essential elements needed
to manage the debt effectively [7], [26]. Ampatzoglou et al. [5]
presented a framework to manage the interest of technical debt.
Their framework involved interest definition; classification;
evolution and finally, interest management theory, based on
Liquidity Preference Theory.

7 CONCLUSION
We have explored a new context of technical debt, which is

linked to database normalization. Normalizing the database is
essential to improve data quality and performance. However,
practically, developers tend to overlook normalization process
due to time and expertise it requires, and instead, turn to other
quick procedures, such as creating more indexes or writing extra
code fixes to save time and effort. With data growth and systems’
evolution, normalizing the database becomes essential to avoid
long-term effects on data quality and performance. We have
asserted that normalization debt is likely to be materialized for
tables below the 4th normal form and we discussed the validity of
this assertion.

Conventional approaches for normalization encourage
normalizing all the tables to achieve benefits; the exercise is often
judged in isolation of the cost, long-term value and technical debt
avoidance. Furthermore, it is impractical to embark on exhaustive
normalization of all tables because of costs and uncertain benefits.
In this study, we proposed an approach to manage the debt by
prioritizing tables that should be normalized. The prioritization is
based on the impact of the weakly or un-normalized tables on data
quality and performance. To improve data quality, the
prioritization is based on a metric provided by the ISO [19] to
measure the risk of data inconsistency for each debt table below
the 4th normal form. To enhance performance, a model was
proposed to estimate the I\O cost of the operations performed on
each weakly or un-normalized table. These costs tend to increase
with the growth of the tables. To manage this debt effectively and
avoid accumulation of I\O cost, Portfolio Theory was utilized to
prioritize tables that should be normalized based on the I\O costs
of the operations performed on the tables and the risks of future
cost accumulation (e.g., interest on the debt). The techniques was
applied to AdventureWorks database from Microsoft. The results
show that rethinking conventional database normalization from
the debt angle can provide more systematic guidance and
informed decisions to improve the database quality, while

reducing the cost and effort that is linked with unnecessary
normalization.

References

[1] AdventureWorks Sample Databases:

https://msdn.microsoft.com/en-
us/library/ms124501(v=sql.100).aspx. Accessed: 2017-04-18.

[2] Al-Barak, M. and Bahsoon, R. 2016. Database Design Debts
through Examining Schema Evolution. Managing Technical
Debt (MTD), 2016 IEEE 8th International Workshop on
(2016), 17–23.

[3] Alves, N.S.R. et al. 2016. Identification and management of
technical debt: A systematic mapping study. Information
and Software Technology. 70, (Feb. 2016), 100–121.
DOI:https://doi.org/10.1016/j.infsof.2015.10.008.

[4] Ambler, S.W. and Sadalage, P.J. 2006. Refactoring databases:
Evolutionary database design. Pearson Education.

[5] Ampatzoglou, A. et al. 2015. Establishing a framework for
managing interest in technical debt. 5th International
Symposium on Business Modeling and Software Design
(2015).

[6] Aurum, A. and Wohlin, C. 2007. A value-based approach in
requirements engineering: explaining some of the
fundamental concepts. Requirements engineering:
foundation for software quality. (2007), 109–115.

[7] Charalampidou, S. et al. 2017. Assessing code smell interest
probability: a case study. (2017), 1–8.

[8] Cleve, A. et al. 2015. Understanding database schema
evolution: A case study. Science of Computer Programming.
97, (Jan. 2015), 113–121.
DOI:https://doi.org/10.1016/j.scico.2013.11.025.

[9] Codd, E.F. 1970. A relational model of data for large shared
data banks. Communications of the ACM. 13, 6 (Jun. 1970),
377–387. DOI:https://doi.org/10.1145/362384.362685.

[10] Cunningham, W. 1992. The WyCash Portfolio
Management System. Addendum to the Proceedings on
Object-oriented Programming Systems, Languages, and
Applications (Addendum) (New York, NY, USA, 1992), 29–
30.

[11] Date, C. 2012. Database Design and Relational Theory:
Normal Forms and All That Jazz. O’Reilly Media, Inc.

[12] Demba, M. 2013. Algorithm for Relational Database
Normalization Up to 3NF. International Journal of Database
Management Systems. 5, 3 (Jun. 2013), 39–51.
DOI:https://doi.org/10.5121/ijdms.2013.5303.

[13] Dongare, Y.. et al. 2011. RDBNorma: - A semi-automated
tool for relational database schema normalization up to
third normal form. International Journal of Database
Management Systems. 3, 1 (Feb. 2011), 133–154.
DOI:https://doi.org/10.5121/ijdms.2011.3109.

[14] Elmasri, R. and Navathe, S.B. 2011. Database systems:
models, languages, design, and application programming.
(2011).

[15] Ernst, N.A. 2012. On the role of requirements in
understanding and managing technical debt. Proceedings of
the Third International Workshop on Managing Technical
Debt (2012), 61–64.

[16] Fernández-Sánchez, C. et al. 2017. Identification and
analysis of the elements required to manage technical debt
by means of a systematic mapping study. Journal of

Systems and Software. 124, (Feb. 2017), 22–38.
DOI:https://doi.org/10.1016/j.jss.2016.10.018.

[17] Ferraggine, V.E. et al. 2009. Handbook of Research on
Innovations in Database Technologies and Applications:
Current and Future Trends. Information Science Reference
Hershey, PA.

[18] Guo, Y. and Seaman, C. 2011. A portfolio approach to
technical debt management. Proceedings of the 2nd
Workshop on Managing Technical Debt (2011), 31–34.

[19] ISO/IEC 25024:2015 - Systems and software engineering --
Systems and software Quality Requirements and
Evaluation (SQuaRE) -- Measurement of data quality:
https://www.iso.org/standard/35749.html. Accessed: 2017-
05-25.

[20] Jha, D.G. 2013. Computer Concepts and Management
Information Systems. PHI Learning Pvt. Ltd.

[21] Kruchten, P. et al. 2012. Technical debt: from metaphor to
theory and practice. Ieee software. 6 (2012), 18–21.

[22] Li, Z. et al. 2015. A systematic mapping study on technical
debt and its management. Journal of Systems and Software.
101, (Mar. 2015), 193–220.
DOI:https://doi.org/10.1016/j.jss.2014.12.027.

[23] Li, Z. et al. 2014. Architectural Debt Management in Value-
Oriented Architecting. Economics-Driven Software
Architecture. Elsevier. 183–204.

[24] Marion, S. et al. 1996. Performance criteria for relational
databases in different normal forms. 34, 1 (1996), 31–42.

[25] Markowitz, H. 1952. Portfolio selection. The journal of
finance. 7, 1 (1952), 77–91.

[26] Martini, A. and Bosch, J. 2016. An empirically developed
method to aid decisions on architectural technical debt
refactoring: AnaConDebt. (2016), 31–40.

[27] Meurice, L. and Cleve, A. 2014. Dahlia: A visual analyzer of
database schema evolution. Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), 2014
Software Evolution Week-IEEE Conference on (2014), 464–
468.

[28] Ojameruaye, B. and Bahsoon, R. 2014. Systematic
elaboration of compliance requirements using compliance
debt and portfolio theory. International Working Conference
on Requirements Engineering: Foundation for Software
Quality (2014), 152–167.

[29] Pugh, K. 2010. The risks of acceptance test debt. Cutter IT
Journal. 23, 10 (2010), 25.

[30] Seaman, C. et al. 2012. Using technical debt data in decision
making: Potential decision approaches. Proceedings of the
Third International Workshop on Managing Technical Debt
(2012), 45–48.

[31] Storefront: https://technet.microsoft.com/en-
us/library/ms160795(v=sql.90).aspx. Accessed: 2017-05-02.

[32] Tonkunaite, J. et al. 2006. Model driven development of
data warehouses. 2006 7th International Baltic Conference
on Databases and Information Systems (2006), 106–113.

[33] Weber, J.H. et al. 2014. Managing Technical Debt in
Database Schemas of Critical Software. (Sep. 2014), 43–46.

[34] Wu, M.S. 1992. The practical need for fourth normal form.
ACM SIGCSE Bulletin (1992), 19–23.

[35] Zazworka, N. et al. 2011. Prioritizing design debt
investment opportunities. Proceedings of the 2nd Workshop
on Managing Technical Debt (2011), 39–42.

