
AnaConDebt: A Tool to Assess and Track Technical Debt
Antonio Martini
University of Oslo
Oslo, Norway

antonio.martini@ifi.uio.no

ABSTRACT
It is challenging to assess and manage Technical Debt. Technical
Debt is avoided or refactored if the long-term benefits, such as
preventing extra-costs, exceed the cost of repaying the debt.

Some tools have been recently proposed for the identification
of Technical Debt, but most of them do not help in assessing the
cost-benefits of repaying the Debt. Besides, it is challenging to
track, visualize and plan Technical Debt refactoring systematically.
Although practitioners might use simple tracking tools, calculating
and communicating Technical Debt is currently not supported.

Based on the results of previous research, combined with several
practical experiences in collaboration with large software compa-
nies, we have developed and evaluated a lightweight tool, AnaCon-
Debt, to track and assess Technical Debt.

KEYWORDS
Technical Debt; Tool; Software Management
ACM Reference format:
Antonio Martini. 2018. AnaConDebt: A Tool to Assess and Track Technical
Debt. In Proceedings of TechDebt ’18: International Conference on Technical
Debt , Gothenburg, Sweden, May 27–28, 2018 (TechDebt ’18), 2 pages.
https://doi.org/10.1145/3194164.3194185

1 INTRODUCTION
Technical Debt is regarded as sub-optimal solutions that provide
benefits in the short term but cause additional negative impact in
the long term [2]. The long-term negative impact is referred to as
the interest paid on the debt [1, 9]. So long as the debt is not repaid,
the organization pays interest, which likely grows in the future.

Technical Debt can be repaid with a refactoring of the system, to
remove the sub-optimal solution: this would prevent the organiza-
tion to pay a costly interest. However, if the (future) interest, paid
on the debt, is not enough to justify the cost of refactoring, there
might be no reason to invest resources in refactoring the system.
In other words, Technical Debt needs to be prioritized [5] based on
a cost/benefits analysis. At the moment, the prioritization of TD is
lacking good practices and tools: consequently, TD remains in the
systems and causes negative impact. [3, 6].

The interest on the debt, its growth and the cost of refactoring
are however difficult to assess [8, 10]. Understanding and commu-
nicating with other stakeholders if the Technical Debt is worth

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
TechDebt ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5713-5/18/05. . . $15.00
https://doi.org/10.1145/3194164.3194185

refactoring requires assessing interest and cost of refactoring sys-
tematically [8]. Also, it is worth understanding when the interest
is going to be paid (for example in a few months or many years),
to decide when to repay the debt [7]. It is useful to understand
where in the system the issues are, and what Technical Debt items
are related to each other [5, 11]. However, tool support for such
analysis is missing at the moment.

AnaConDebt is a management tool that builds on top of pre-
vious empirical research and industrial experiences and aims to
support tracking and assessing Technical Debt Items through a
TD-enhanced backlog.

2 BACKGROUND OF ANACONDEBT
A portfolio approach to tracking TD is a well-known practice, orig-
inally developed by Guo et al. [4]: such practice defines and ranks
items in a backlog. Other studies have reported the use of TD back-
logs (e.g. [6, 10, 11]). However, existing tools do not use TD cost
of refactoring and interest as key parameters. Such features are
critical to assess Technical Debt and to decide on its refactoring.

In a previous study [7] the authors developed a method, called
AnaConDebt (Analysis of Contagious Debt), together with several
industrial partners, to analyze the interest of large Architectural
Technical Debt items. The method was found helpful by the practi-
tioners to estimate the impact of Architectural Technical Debt. The
tool presented here was called with the same name, AnaConDebt, as
it builds on top of such work. However, it presents many differences
from the original method, which has been considerably evolved
and refined over time according to new experiences gathered from
practice.

In a first attempt to create a prototype tool, the original method
was modified and simplified to allow the efficient assessment of sev-
eral kinds of TD items. The prototype was then evaluated, and the
positive results were published in a study at the NinthWorkshop on
Technical Debt [8]. Such tool allowed the practitioners to assess the
negative impact of Technical Debt by systematically assess several
aspects, including the future growth of interest. Such prototype
was then used multiple times during consultancy assignments with
large software companies. This step allowed the author to evaluate
and refine the tool further, understanding better the requirements
and the useful features.

After the second evaluation, the prototype was found useful by
the users; however, the tool needed to be re-implemented to be avail-
able as a usable tool. For example, requirements such as portability,
security, and usability needed to be taken into account. The author
then received funds from the Swedish innovation agency Vinnova,
in collaboration with Chalmers Innovation Office, to refactor the
tool to make it practically usable and ready for commercializa-
tion. The tool is being reimplemented at the time of writing this
document and will be launched approximately during spring 2018.

https://doi.org/10.1145/3194164.3194185
https://doi.org/10.1145/3194164.3194185

TechDebt ’18, May 27–28, 2018, Gothenburg, Sweden Antonio Martini

3 ANACONDEBT
AnaConDebt is a management tool that consists of a TD-enhanced
backlog. The backlog allows the creation of TD Items and allows
performing TD-specific operations on the items, which are currently
not available in other existing tools.

AnaConDebt supports the users in the following activities:

• Tracking Technical Debt Items in a dedicated repository.
The TD Items can be further characterized with attributes
and properties such as name, description, etc.

• Assessing Technical Debt Principal (cost of refactoring)
and Interest (current and future extra-costs) systematically,
using an approach that was previously evaluated, both
scientifically and in practice. The values are inputted in a
simple and intuitive way, using advanced widgets. Addi-
tionally, the values and how they are used are explained.
This is important, as many tools are difficult to be used by
the stakeholders.

• Estimating growth of principal and interest with respect to
future scenarios: for example, in short, medium and long
term. The time related to the scenarios is customizable.

• Assessing and aggregating the amount of total Technical
Debt, Principal and Interest for the whole backlog of Tech-
nical Debt Items. This is useful for the practitioners to have
an overview a of their Technical Debt.

• Reviewing and assessing previous TD estimations. In fact,
it is important to show if the expected principal and inter-
est of Technical Debt were correctly estimated during the
initial time of estimation.

• Comparing and ranking Technical Debt Items based on the
convenience of refactoring, calculated by weighting different
parameters related to Principal and Interest. Such parame-
ters are customizable according to the company’s context.
For example, for some companies the same cost might be
more or less important with respect to other factors.

• Visualizing and comparing Technical Debt Items in a cost/
benefits graph

• Locating the Technical Debt Items in the system. For ex-
ample, linking a Technical Debt Item with a specific file or
component.

• Visualizing the areas of the system with more Technical
Debt Items and with more Interest to pay (more convenient
to refactor). This can be useful to group tasks related to
the same part of the system.

• Relating Technical Debt Items among each other by defin-
ing dependencies. For example, it might be important to
specify that one TD item should be refactored before an-
other. Eventually, this feature would help grouping and
planning the refactoring of TD Items.

• Thanks to the previous point, calculating an aggregated
Principal and Interest based on the dependencies among
the Technical Debt Items.

• Presenting an easy-to-understand report on the conve-
nience of refactoring Technical Debt Items to stakehold-
ers that are not technical (e.g. project managers or prod-
uct owners), to allow an assessment with respect to other
project or product aspects.

• Integrating the repository and the TD-specific operation
to other tools via a REST API on top of a portable web-
service. In particular, the architecture of the tool separates
the GUI from a web-service. This way, the data related to
Technical Debt can be used in other tools and visualizations:
for example, the aggregated data related to the TD intems
can be added in a dashboard containing other project- and
product data that needs to be compared with the current
information on Technical Debt.

4 CONCLUSION
The tool AnaConDebt is the outcome of a research process based
on the collaboration with several large software companies and
the subsequent transfer of knowledge generating a practical solu-
tion. AnaConDebt has been evaluated and re-implemented multiple
times and it is now available to improve software engineering prac-
tices related to the management of Technical Debt.

5 ACKNOWLEDGMENTS
We thank Vinnova for the Verifiering för tillämpning grant, and to
the Chalmers Innovation Office for funding the re-implementation
of the tool. We thank Jan Bosch for his continuous support. We
thank Enrico Mazzei and the "Mycd di Colli Luca" for the technical
assistance and for making it possible to develop the tool. We also
thank all the industrial partners of the Software Center for their
invaluable insights.

REFERENCES
[1] Areti Ampatzoglou, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, and

Paris Avgeriou. 2015. The financial aspect of managing technical debt: A sys-
tematic literature review. Information and Software Technology 64 (Aug. 2015),
52–73.

[2] P. Avgeriou, P Kruchten, I. Ozkaya, and C. Seaman. Managing Technical Debt in
Software Engineering (Dagstuhl Seminar 16162).

[3] Z. Codabux and B. Williams. 2013. Managing technical debt: An industrial case
study. In 2013 4th International Workshop on Managing Technical Debt (MTD).
8–15. https://doi.org/10.1109/MTD.2013.6608672

[4] Yuepu Guo and Carolyn Seaman. 2011. A Portfolio Approach to Technical Debt
Management. In Proceedings of the 2Nd Workshop on Managing Technical Debt.
ACM, New York, NY, USA, 31–34.

[5] Zengyang Li, Paris Avgeriou, and Peng Liang. 2015. A systematic mapping study
on technical debt and its management. Journal of Systems and Software 101
(March 2015), 193–220. https://doi.org/10.1016/j.jss.2014.12.027

[6] A. Martini, T. Besker, and J. Bosch. 2016. The Introduction of Technical Debt
Tracking in Large Companies. In accepted at APSEC 2016. Hamilton, New
Zealand.

[7] Antonio Martini and Jan Bosch. 2016. An Empirically Developed Method to Aid
Decisions on Architectural Technical Debt Refactoring: AnaConDebt. In Proceed-
ings of the 38th International Conference on Software Engineering Companion (ICSE
’16). ACM, New York, NY, USA, 31–40. https://doi.org/10.1145/2889160.2889224

[8] Antonio Martini and Jan Bosch. 2017. The Magnificent Seven: Towards a System-
atic Estimation of Technical Debt Interest. In Proceedings of the XP2017 Scientific
Workshops (XP ’17). ACM, New York, NY, USA, 7:1–7:5. https://doi.org/10.1145/
3120459.3120467

[9] Ariadi Nugroho, Joost Visser, and Tobias Kuipers. 2011. An empirical model
of technical debt and interest. In Proceedings of the 2nd Workshop on Managing
Technical Debt (MTD ’11). ACM, New York, NY, USA, 1–8. https://doi.org/10.
1145/1985362.1985364

[10] Klaus Schmid. 2013. A formal approach to technical debt decision making. In
Proceedings of the 9th international ACM Sigsoft conference on Quality of software
architectures. ACM, 153–162. http://dl.acm.org/citation.cfm?id=2465492

[11] Jesse Yli-Huumo, Andrey Maglyas, and Kari Smolander. 2016. How do software
development teams manage technical debt? An empirical study. Journal of
Systems and Software 120 (Oct. 2016), 195–218. https://doi.org/10.1016/j.jss.2016.
05.018

https://doi.org/10.1109/MTD.2013.6608672
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1145/2889160.2889224
https://doi.org/10.1145/3120459.3120467
https://doi.org/10.1145/3120459.3120467
https://doi.org/10.1145/1985362.1985364
https://doi.org/10.1145/1985362.1985364
http://dl.acm.org/citation.cfm?id=2465492
https://doi.org/10.1016/j.jss.2016.05.018
https://doi.org/10.1016/j.jss.2016.05.018

	Abstract
	1 Introduction
	2 Background of AnaConDebt
	3 AnaConDebt
	4 Conclusion
	5 Acknowledgments
	References

