
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Impolite High Speed Interfaces with Asynchronous Pulse Logic

Permalink
https://escholarship.org/uc/item/1hg297t5

Authors
Miller, Merritt
Segal, Carrie
Carthy, David Mc
et al.

Publication Date
2018-05-30

DOI
10.1145/3194554.3194592

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NoDerivatives License, availalbe at https://creativecommons.org/licenses/by-nd/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1hg297t5
https://escholarship.org/uc/item/1hg297t5#author
https://creativecommons.org/licenses/by-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

Impolite High Speed Interfaces with Asynchronous Pulse Logic
Merritt Miller

ECE Department, UCSB
Santa Barbara, California
merrittmiller@ece.ucsb.edu

Carrie Segal
ECE Department, UCSB
Santa Barbara, California
chsegal@umail.ucsb.edu

David Mc Carthy
ECE Department, UCSB
Santa Barbara, California
davidmc@ece.ucsb.edu

Aditya Dalakoti
ECE Department, UCSB
Santa Barbara, California
adityadalakoti@ucsb.edu

Prashansa Mukim
ECE Department, UCSB
Santa Barbara, California

prashansa_mukim@umail.ucsb.edu

Forrest Brewer
ECE Department, UCSB
Santa Barbara, California
forrest@ece.ucsb.edu

Abstract
We present a design solution that allows design of higher-than-
core rate operation with techniques that avoid PLL/DLL blocks
to provide higher speed timing. Many modern integrated circuits
(ICs) have high speed interfaces which operate at higher cycle
rates than the core of the IC. As a result of the higher-than-core
rate, these interfaces are not directly representable in the core
sequential logic. Asynchronous pulse logic offers an alternative
design method for high speed interfaces with similar performance,
simpler circuitry and without resorting to high-power logic cells
such as emitter coupled logic. Formal and practical considerations
for constructing high-speed interfaces are described. Gate designs
and timing information for example cases are presented. These
cases suggest that 80% improvements on rate compared traditional
clocked logic are possible.

ACM Reference Format:
Merritt Miller, Carrie Segal, David Mc Carthy, Aditya Dalakoti, Prashansa
Mukim, and Forrest Brewer. 2018. Impolite High Speed Interfaces with
Asynchronous Pulse Logic. In Proceedings of 2018 Great Lakes Symposium
onVLSI (GLSVLSI ’18). ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3194554.3194592

1 Introduction
This paper presents a design methodology for creating asynchro-
nous pulse circuits. The design style uses circuits that do not rely on
hand-shakes, hence we call them impolite. This methodology offers
a practical approach to energy-efficient, high-performance design.
The approach not only allows interfaces to run faster than core
logic but also easily enables interfaces between structurally differ-
ent sources. Timed asynchronous automata can use high-frequency
signals without the overhead of high-performance clock distribu-
tion and recovery. The methodology is an adaptation of existing
asynchronous design approaches. It is targeted to the production

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GLSVLSI ’18, May 23–25, 2018, Chicago, IL, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5724-1/18/05. . . $15.00
https://doi.org/10.1145/3194554.3194592

of high-rate circuits embedded in slower fabrics. Circuits with such
a rate disparity are not only common in data link and high-speed
communication systems, but are especially useful in neuromorphic
systems, distributed IOT sensor networks, and other applications
with data primarily in bursts. This methodology promises to ease
the design and extend the capability of such systems.

Interfacing between high and low speed clocking regimes is a
common design problem in integrated circuits where serial inter-
face and communication speeds frequently exceed core clock rates.
Complex communication link circuits involve operating a metal
wire near the rate where substantial amplitude loss and symbol
timing jitter are serious issues. Correction of symbol-dependent
timing errors are difficult to mitigate.

Synchronous circuits have limited capacity to handle timing is-
sues. Specifically, time domain synchronization is difficult, and is
commonly relegated to specialized blocks, such as DLLs, PLLs, and
skew compensators, whose behaviors are outside of the synchro-
nous domain.

The presented design implements asynchronous logic blocks
with a style to handle the slow-parallel to fast-serial domain inter-
face independent on the behavior of a PLL or timing circuit. Timed
asynchronous logic increases tolerance of timing variance. Fully un-
constrained asynchronous design has high design and verification
complexity. In this work, a set of composition rules and a variety
of pulse-logic gates are presented that allow a limited set of classi-
cal timing constraints to close both the low-speed and high-speed
design behaviors.

Unlike existing asynchronous systems, the proposed “Impolite”
scheme primarily uses feed-forward construction, meaning perfor-
mance with picosecond timing resolution is possible. Feed-forward
logic does come at a cost: the timing of the system needs to be
verified as part of the construction procedure. One of the novel
contributions of our methodology to the research community is
the means to limit the complexity of the timing verification.

1.1 Related Asynchronous Design Paradigms
Existing asynchronous design paradigms fail to meet the intended
performance requirements of interfaces operating at least 2X faster
than core speed. In particular, classical feed-back based delay inde-
pendent techniques are problematic. In the case of physically long
transmission media (starting at the mm scale for multi-GHz signals)
time of flight for the electromagnetic wave carrying the signals adds
substantially to the system delay, reducing performance. On-die

Session 4: Low Power Variation Aware Circuit Design GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

99

https://doi.org/10.1145/3194554.3194592
https://doi.org/10.1145/3194554.3194592
https://doi.org/10.1145/3194554.3194592

scale structures (100µ scale) have substantial propagation delay and
at lengths of 1mm have signal integrity issues. These considerations
defeat design styles based on feed-back such as GasP[1] and Null
Convention Logic[2].

Instead, the circuits presented here are a limited sub-class of
self-resetting CMOS circuits – a design style that has a reset circuit
assigned to small clusters of domino-like logic. SRCMOS circuits
work in an inherently pulsed manner but have the down side that
SRCMOS circuits require pulses to arrive nearly simultaneously
for proper function[3]. Timing analysis for SRCMOS is presented
in [4, 5]. SRCMOS circuits have seen application in asynchronous
circuits in [6, 7] but use is commonly restricted to systems that
have feed-back (polite handshakes) to confirm correct behavior.

2 On-Chip Signaling: Pulse VS. Edge
A key feature of this work is that pulses (as opposed to edge based
signals) are used for communicating timing critical events. The one-
at-a-time pulse model makes the event timing check the dual of the
SRCMOS timing check, pulses must not overlap for correct behavior.
Since the use of a pulse is critical for the presented methodology
to be successful, we now make the case that signaling with self
resetting buffers permits an event cycle rate as fast or faster than
edge event rates.

Jitter and propagation behavior of pulses and edges are nearly
identical for practical interconnect cases. Pulsed signals, with a
single characteristic width, allow the use of pulse gates, such as
in [6, 8–10] and similar to [1]. These gates are known to maintain
stable, narrow pulse widths, whereas logic without feedback would
accumulate edge-to-edge uncertainty, widening the minimum pulse
width.

In edge-based signaling, a rising edge must be followed by a
falling edge, requiring separate types of event detection. Since dif-
ferent devices are involved, systems relying on edge-based signaling
have inherently higher sensitivity to process variance but have been
used successfully (e.g.) [11].

Since edge-based communication has a theoretical advantage
in both power and bandwidth, it is important to demonstrate that
pulsed signaling does not come at a high cost relative to edges
in practical on-chip design. A case study using a 130nm process
node interconnect wire is used to demonstrate, because it is in this
process node where wire dimensions became a limiting factor[12]
in signaling rate.

2.1 Case Study 5mm wire 130nm process node
A 5mm wire in a metal layer of a 130nm process is used to compare
pulsed and edge encoding for an event signal. For this metal a
conductor thickness of .3µm and a inter-layer dielectric thickness
of .3µm is typical. The wire width and spacing is chosen to optimize
the cost function of delay ×wire pitch giving a wire width of .55µ
and a wire spacing of .38µ. This configuration gives a fringing
capacitance of 100f F/mm, a side coupling capacitance of 31f F/mm,
and, assuming a copper conductor, a resistance of 133Ω/mm.

With an inverter size of 26µ NMOS, minimal worst-case delay
(with an even number of stages) occurs with 4 internal repeaters (5,
1mm long wire segments). The single-stage worst-case delay time
constant in this configuration is 68.4ps.

Table 1: Propagation times for edge and pulse.

(100ps rise) Edge (165ps width) Pulse
Coupling noise Average σ Average σ

No coupling 251.3 ± 1.0 8.6 ± 0.7 239.5 ± 0.9 7.7 ± 0.7
Fastest 215.6 ± 0.9 7.5 ± 0.7 208.5 ± 0.8 6.9 ± 0.5
Slowest 285.9 ± 1.1 9.5 ± 0.7 276.7 ± 1.0 8.7 ± 0.6
All values shown with 95% confidence interval marked.

2.2 Edge-communicated signal
Arrival jitter is approximated by Monte-Carlo simulation consist-
ing of 1k runs, sufficient to gain 95% confidence values for most
measures. Process variation is taken from a vendor (IBM) model for
the 130nm process. Power variation is estimated to have a global,
correlated variation of 30mV power to ground, modeling power
regulator noise and a local, uncorrelated variation of 30mV is added
to each power and ground node, modeling IR noise internal to the
IC.

When there is a single fast edge (<100ps) of a slow signal (f <
200MHz) the average propagation time is projected to be 251.3 ±
1.0ps , close to the value that #staдes × staдe delay × ln(12) predicts.
The sample standard deviation (σ) of the arrival time in this exper-
iment is 8.6± .7ps . Assuming a Gaussian distribution, a 5σ interval
gives a delay between 203.5ps to 298.5ps for a 5mm wire.

Due to the high coupling capacitance (~38% of the total) the
impact of neighbor wires must be considered. The worst-case jitter
occurs when both neighbors are correlated in the same or opposing
direction as the main signal. Same direction switching has delay
215.6 ± .9ps with a sample σ of 7.5 ± .7ps . The 5σ fast arrival time
under these circumstances is 173ps . Opposite direction switching
delay is 285.9 ± 1.1ps with σ ≈ 9.5 ± .7ps , giving a 5σ slow case of
338ps . This is a range of 165ps of environmental jitter that an ideal
latching strategy cannot compensate for. A more common single
clock phasing strategy would need a flip-flop with τsu + τclk−Q <
162ps to run at 2GHz.

2.3 Pulse-communicated signal
Table 1 compares the propagation times for edges and pulses. Us-
ing 165ps as the full-width, half-maximum measure of the pulse,
propagation times are similar to edges. The minimum pulse pe-
riod is twice the pulse width – 330ps, marginally faster than the
non-skew-compensated rate of edges.

Using self-resetting gates to create a regenerative buffer, im-
proves performance. Self-resetting gates protect pulse widths, and
thus jitter cannot destroy a pulse. For systems using self-resetting
buffers, two conditions must be met: First, the pulse width and
its reset time must be obeyed. Second, the pulses must arrive in
order. The pulse width is set locally within the buffer since it is
self-timed. Native self-resetting pulse width in 130nm was deter-
mined to be 64ps with σ ≈ 4ps , giving 84ps for a maximum pulse
width, and 168ps for a safe pulse interval. Jitter for the self-timed
buffer case is slightly higher than for the inverter buffer case at an
estimated total jitter (5σ+pattern dependence) of 188ps . This extra
jitter, as compared to the inverter buffer case, is due to the extra
logic required in a self-resetting buffer. This extra logic extends

Session 4: Low Power Variation Aware Circuit Design GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

100

maximum propagation time, in this case to 405ps . The arrival order
uncertainty limit of 188ps is the dominant of the two restrictions.

2.4 Pulse vs. edge for marking an event
The relative propagation timing of pulses and edges are very sim-
ilar, even when the width of the pulse is small. Jitter dominates
gain/bandwidth in limiting performance, and a pulse because it is
atomic and unambiguous in its arrival, need not be correlated to
any other signal. Thus pulse-based event detection can operate as
fast or faster than edge event detection correlated to another signal
or state.

Table 2: Event detection times for various signalingmethods

Method Period Notes

Handshake 597p Interleaving forward & backward wires
(minimizes worst-case propagation)

Clocked Edge 338p No Phase compensation
Edge

223p
Requires DLL/PLL of ~20mW

with (assumes 15ps RMS jitter
DLL or PLL ≈ -112dBc/Hz phase noise)

Pulse 330p Not using self-reseting buffers
Pulse 188p With self-reseting buffers

Table 2 shows a number of cases, and the associated minimum
period of operation for a BER of 6 × 10−7 (corresponding to ±5σ
variance). For the purposes of comparison, the minimum latch
timing is left out of the presented period. In a clocked system, the
latch sample interval adds 50-200ps. In asynchronous systems, both
pulsed and handshake, latch sampling time need not add to the
minimum period, as both techniques have sampling times built into
their respective operating mechanisms.

3 Composition Rules
The following construction techniques give rise to a class of systems
that are delay sensitive, and are easier to verify than a system
completely free in timing specification.

The lack of delay insensitivity means timing verification is re-
quired for behavioral closure. The construction only admits designs
that can be verified with static timing. Static timing analysis is a
common part of verifying clocked systems and numerous exten-
sions, such as yield estimation, have been formulated[13]. This
method uses a constraint system with the same analytic methodol-
ogy, similar to clocked SRCMOS[5].

3.1 Basic Rules
There are a handful of rules to enable simple, closed examination
of these event-driven circuits. The circuit can be specified hierar-
chically, where each level of the hierarchy obeys these rules. For
the purposes of discussion a Block is a functional component at one
level of the hierarchy, while a Gate is specifically at the lowest level.
The rules for blocks are as follows

(1) There is a strong typing of Event and Data signals. A signal
will be of exactly one of those two classes.

(2) Specification, and verification occurs within a time Frame.
The time frame is marked by a start event and a finish event.

(3) Within a Frame, Data values will update at most once.
(4) For any Block, and most Gates only a single Event can occur

at a time.
(5) When an event occurs, Data cannot be in transition.
(6) The Consensus gate is exempt from rule # 4. The behavior of

this gate is handled as a special case.

The Frame requirement from these rules enforces a data-path check
that is similar to traditional clocked logic. The model fits well with
a system matching high-rate and low-rate regimes – the low-rate
timing can easily provide the Frame.

3.2 Timing Check Complexity
For this acyclic-within-frame logic, the complexity of the static
timing check is simply bound by the number of delays along the
path and thus scales as O(n) given n delay bearing nodes including
latches. For a circuit withm unconstrained eventsm! constraints
are needed in worst case although this is practically limited by gate
fan-in. The basic rules are placed on gates to ensure predictable
(inertial) delays apply and have complexity O(m2 · n). This has
the consequence that some kinds of circuits fall outside of the
constraints.

However, circuits including near-miss arbiters and all circuits
necessary for communication links are permitted.

3.3 Logical Constraints on Construction
Signals are partitioned into two classes or types: Events and Data.
The Event class serves to mark time, and is analogous to a clock.
The state of a gate can only change with an event, communicated by
a pulse of fixed width. The other class, Data informs state updates
in the presence of an event. Data is communicated as traditional
digital levels.

This leads to the first constraint, the value of a Data signal must
be stable between the setup and hold time for each gate relative to
the arrival of an updating event.

The second constraint is that a block interface may have only
one active event at a time. One-at-a-time events prevent complex
timing issues from arising within the relative timing check. In order
for two events to be processed simultaneously they must act on
separable parts of the system, or be passed into a Consensus gate
for processing.

For two events to inform interacting parts of the system they
must have a fixed timing relation. The relationship can be confirmed
by verification, and event re-timing can be part of the construc-
tion. The designer should describe any two-event behavior as a
set of one-at-a-time actions. Fair arbitration is not a feature of the
methodology, instead the designer must describe the arbitration
method. This can be aided by a Separating Arbiter gate, that while it
cannot perform ideal arbitration, it can separate vanishingly-close
(1ps) pulse interactions.

Because of these interaction rules the timing can be checked
in O(m2n) time complexity, involving two different timing checks
limited by this complexity class. The timing checks are of Event →
Event relationships, and Event → Data → Event relationships,

Session 4: Low Power Variation Aware Circuit Design GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

101

(a)
(b)

Figure 1: (a) Pulse Consensus gate. Gate fires output out once
at least one pulse arrives on each input (since the last fir-
ing). (b) Separating Arbiter gate. Gate recreates input pulse
sequence with restored separation.

since no more complex relation can exist. The Event simultane-
ity check needs to be performed at each gate to confirm that no
two events arrive simultaneously; This allows the event-as-a-clock
equivalentmodel. Then data timing is checked onEvent → Data →
Event sequences, similar to a clocked system where the sequence is
Clock → Data → Clock . Since events are one-at-a-time, event-data
and event-event checks are orthogonal.

In practice, the timing check is further simplified by the lim-
ited number of events used and the limited fan-in and fan-out of
practical designs.

3.4 Event timing
The one-at-a-time pulse model makes the event timing check the
dual of the SRCMOS timing check, pulses must not overlap for
correct behavior. Pulse Gating is done with a self-resetting gate
structure and data latching utilizes a Set-Reset latch style. The pulse
arriving at the gate serves as the sampling aperture for the pull-
down network; this sets the data hold window to the actual pulse
width of an event. The minimum pulse-width is thus set by the
need to reliably sample, and is a trade-off with the complexity of
the pull-down network.

There is a special case to the non-overlap verification: the Ar-
biter circuit. An arbiter circuit is allowed, logically, to have two
events occur at its inputs as long as the events are of known order
and avoid exact overlap. This non-overlap constraint is of prac-
tical importance, as arbitration circuits near meta-stability have
ill-defined behavior and can take an infinite time to resolve[14]. In
the contexts of these checks, arbitration is reduced to describing
near-miss cases.

4 Gate construction
The strict classification of signals is crucial for timing analysis and
simplifies design of the gates. This structure allows a gate to act on a
given event given a set of data guard values since the data is known
to be stable on event arrival. Logic functions are incorporated into
the front-ends of Latches and pulse Gates, giving fast, small designs.

There are two classes of gate in this construction paradigm, pulse
Gates and Latches. Pulse Gates, Figure 2a, have a pulsed output,
and thus are used to create Events, while Latches, Figure 2b, have a

level output creating Data signals. Pulse Gates use a self-resetting
logic to (re)-create the event pulse.

(a) The pulse-gate, outputs a pulse given a condition

(b) Pulse-Triggered SR Data-Latch - outputs a data level
that changes on a pulse given a condition

Figure 2: Pulse Gates and Latches

4.1 Pull-down network timing
The structure of the pull-down network, combined with the typing
rules for Events and Data, create a timing constraint set for each
pull-down network. The behavior of these networks are similar for
pulse gates and latches, and the analysis holds for both. Correct
functioning of the pull-down network determines the values for
the timing constraints in the composition rules (Section 3). The
prohibition on event overlap ensures that the action due to any
event is not preempted by another event, a critical requirement for
timing verification to not be forced to check all event combinations.
Consider the timing of as SR latch, like the one shown in Figure
2b. Event A triggers setting this latch, while event B triggers reset.
In both cases, the action is contingent on the logic of Data A, B,
and C encoded into the respective pull-down networks. Electrically,
the pull-down network is assumed conducting or non-conducting
when the associated event pulse arrives. In the case of the SR latch,
the set condition must be stable for the set pulse and the reset
condition must be stable for the reset pulse.

4.2 Drive and Feed-back network
The characteristic pulse width of a self-resetting gate is set by the
propagation delay through the feedback path. The output amplitude
is dependent on both the output driver and its load. Pulse detection
requires that the delay of the feedback path must match or exceed
the amount prescribed by driver and load environment.

Session 4: Low Power Variation Aware Circuit Design GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

102

(a) Load isolated feed-back gate. (b) Load sensitive feed-back gate.

Figure 3: Two self-reset feed-back network options.

The feed-back network for a pulse gate can either be connected
or isolated from its load as shown in Figure 3. The isolated-load
model (Figure 3a) is faster than the load sensitive feedback and
has more reliable timing. This feed-back network is well suited
when the gate load is either constant, so that a correct pulse width
can be selected, or for cases with small fan-out where pulse at-
tenuation is not a concern. Load sensitive feedback (Figure 3b) is
useful in a production environment where more universal cells are
desired. The load sensitive gate’s pulse-width and timing are de-
rived from an estimate of pulse detectability. For reasonable levels
of output loading, the feedback increases driver on-time until the
local detectability threshold is met. This model keeps the impolite
fire-and-forget model, by approximating detectability, rather than
using a handshake. To illustrate the difference, we consider two
different cases that arose in real designs executed in the 130nm
process node. First with 7f F/µdr iver of load capacitance – a typical
value for timing-critical, local wires. In this case, the two feedback
networks perform similarly. In the second a load of 50f F/µdr iver
represents a typical drive configuration for moderate-distance inter-
connect or a heavily loaded reset signal. In this case, load-sensitive
feedback produces a slower, longer, pulse. This results in a pulse
that is nearly 4x as detectable.

4.3 Two-Pulse Gates
Gates where two pulses arrive with the potential of overlap are
special cases. There are two types of these gates: The Consensus
gate, which produces an event after seeing two events is shown in
Figure 1a and the Arbiter, shown in Figure 1b can resolve pulses
that are near complete event overlap (<5ps timing difference).

The Charlie diagram, a visualization of output timing vs input
timing[15, 16], for these two gates is shown in Fig 4. It is important
to note the unstable behavior of the arbiter circuit near complete
event overlap (<5ps timing difference). This establishes the limit-
ing constraint for event-event timing checks. Two architectural
solutions exist for cases when operating in this regime. First, is to
insert arbitration up-stream to correct order. Second is to design
a system that is tolerant of this hard-to-arbitrate condition, for
example creating a parallel data-path dependent on the consensus
gate that will time-out an ambiguous arbitration.

4.4 Pulse Gate Timing Stability
Pulse gates have a higher timing stability when compared to stan-
dard CMOS gates. This phenomenon can be be seen in the high
timing stability of ring oscillators made form pulse gates[17]. The

Figure 4: Consensus and Arbiter gates

stability of the timing may be due to lowered noise in MOS tran-
sistors for inputs in some state transitions[18]. In the case of pulse
logic decisions are made by NMOS transistors turning on for all
decision cases. To confirm the applicability of these results to the
case of logic cells, timing is confirmed for the well-characterized
130nm process node, using noise models that take bias-condition
into account. Figure 5 shows the timing stability of post-layout
performance of pulse logic as compared to foundry-provided cells
– in this case a buffer cell for driving a long wire.

Figure 5: Variance of Pulse Gates, CMOS gates. Pulse gates
have much lower variance at low operating voltage

4.5 Pulse Gate Library
Table 3 shows timing from a number of pulse gates. Computed from
post-layout extracted designs. The gate set is an equivalent of a
standard cell set for pulse-logic, and is used to build the designs of
Section 5.The pull-down networks are sized for equal on current.
The gate measured by simulation is triggered by a gate with similar
drive (Fanout of 1) and loaded with a 4x pulse-repeater load (Fanout
of 4, FO4). The decision threshold for measurement is set at VDD/3,
an approximation of the pulse-gate decision threshold.

5 Data Link Performance Estimation
A hypothetical 4-bit serializer(SER) and deserializer(DES) are ana-
lyzed to demonstrate the verification procedure and construction

Session 4: Low Power Variation Aware Circuit Design GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

103

Table 3: Pulse Gate Timing in 130nm process

Delay
Gate FO4 Delay Std. Dev.

Pulse Repeater 29.9ps 2.2ps
Or of two pulses 31.9ps 2.7ps

Pulse Single-condition 31.5ps 2.7ps
Pulse 2-Condition AND 29.4ps 2.6ps
Pulse 2-Condition OR 29.1ps 2.3ps

Or of 2 pulses, w/conditions 33.3ps 3.5ps
SR Latch 37.0ps 3.3ps

methodology For a high-speed interface. The 2-line encoding of
[8, 9] is used. The SER uses 4 delayed copies of the data valid signal,
which need not be locked to any other circuit. The DES produces 1
data vector per packet and a single data valid pulse. Given these
constraints the timing results computed are shown in Table 4.

Table 4: Performance Estimates for 4-bit SER/DES system

130nm 65nm 45nm
Trigger Time 93.8ps 52.1ps 23.0ps(Pulse Width)

Max Bit-Bit Time 187.6ps 104.2ps 46.0ps
Minimum 592MHz 960MHz 2.17GHzDDR Clock Period

Max Data Rate 4.74Gbps 7.68Gbps 17.4Gbps
Comparable 2Gbps[19] 4.8Gbps[20] 10.5Gbps[21] 1Max Data Rate

5.1 Static Timing Analysis Complexity
For the serializer(SER) and deserializer(DES) from Section 5 there
are 9 blocks in the DES and 13 blocks in the SER. For the SER
there are 16 events, while the DES has 10 events. The composition
rules require checking events at each block. A simplistic algorithm
can verify timing with only 4228 path sums. This check not only
allows verification with much less computation than a mixed-signal
simulation, but also allows designers to use asymmetric or varying
components without resorting to an exponential number of cases
that need to be checked. The rules and verification become an
enabling technology for systems checked inO(m2n) time, compared
to free-for-all asynchronous systems bound by O(m!n).

6 Conclusion
Since the “Impolite” methodology permits the exploration of a de-
sign space containing a much larger number of events, it is practical
to consider what those sorts of systems could be developed to solve.
The most obvious use is the embedding of simple mathematical
functions in communications.

The Internet of things and the growing influence of practical
artificial intelligence offers a platform where localized computa-
tional models can be of great benefit. The communications between
1Design uses even and odd channels, and when combined are limited at 21Gbps

these many diverse systems will require many channels variable,
and burst data rates as well as unique light-weight interfaces. The
logic family presented here shows promise for creating unique, and
possibly asymmetric solutions that remain easy to verify.

Additionally, this composition style can implement Race Logic,
which shows promise as a new computational model[22]. The re-
quired temporal functions (MIN, MAX, and COMPARE) are permis-
sible using the composition rules discussed in Section 3.

In short, Impolite Asynchronous Pulse Logic enables verifiable
construction of high-timing-performance circuits from small cells
and simple composition rules. The fire-and-forget model, as well as
timing rules enable static-logic style checking at decision rates typ-
ically reserved for mixed-signal style design. The resulting circuits
maintain precise timing and have good idle behavior.

References
[1] I. Sutherland and S. Fairbanks. Gasp: a minimal fifo control. In ASYNC 2001,

pages 46–53, 2001.
[2] K.M. Fant and S.A. Brandt. Null convention logictm: a complete and consistent

logic for asynchronous digital circuit synthesis. In ASAP 1996, pages 261–273,
Aug 1996.

[3] Gunok Jung, V.A. Sundarajan, and G.E. Sobelman. A robust self-resetting cmos
32-bit parallel adder. In ISCAS 2002.

[4] Ayoob E Dooply and Kenneth Y Yun. Optimal clocking and enhanced testability
for high-performance self-resetting domino pipelines. In Advanced Research in
VLSI, 1999. Proceedings. 20th Anniversary Conference on, pages 200–214. IEEE,
1999.

[5] Vinod Narayanan, Barbara A Chappell, and Bruce M Fleischer. Static timing
analysis for self resetting circuits. In ICCAD 1996.

[6] Mika Nyström and Alain J Martin. Asynchronous pulse logic. Springer, 2002.
[7] T. Säntti and J. Isoaho. Modified srcmos cell for high-throughput wave-pipelined

arithmetic units. In ISCAS 2001, volume 4, pages 194–197 vol. 4, May 2001.
[8] Brian D Winters and Mark R Greenstreet. A negative-overhead, self-timed

pipeline. In ASYNC 2002, pages 37–46. IEEE, 2002.
[9] Mark R Greenstreet and Jihong Ren. Surfing interconnect. In ASYNC 2006.
[10] Merritt Miller, Greg Hoover, and Forrest Brewer. Pulse-mode link for robust,

high speed communications. In ISCAS 2008.
[11] Ivan E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–738,

1989.
[12] Ron Ho, Kenneth W Mai, and Mark A Horowitz. The future of wires. Proceedings

of the IEEE, 89(4):490–504, 2001.
[13] Anirudh Devgan and Chandramouli Kashyap. Block-based static timing analysis

with uncertainty. In ICCAD 2003, page 607. IEEE Computer Society, 2003.
[14] Thomas J Chaney and Charles E Molnar. Anomalous behavior of synchronizer

and arbiter circuits. IEEE Transactions on computers, 22(4):421–422, 1973.
[15] Jo C Ebergen, Scott Fairbanks, and Ivan E Sutherland. Predicting performance of

micropipelines using charlie diagrams. In ASYNC 1998.
[16] Anthony Winstanley and Mark Greenstreet. Temporal properties of self-timed

rings. In Advanced Research Working Conference on Correct Hardware Design and
Verification Methods, pages 140–154. Springer, 2001.

[17] Aditya Dalakoti, Merritt Miller, and Forrest Brewer. Pulse ring oscillator tuning
via pulse dynamics. In 2017 IEEE 35th International Conference on Computer
Design (ICCD), pages 469–472. IEEE, 2017.

[18] I Bloom and Y Nemirovsky. 1/f noise reduction of metal-oxide-semiconductor
transistors by cycling from inversion to accumulation. Applied Physics Letters,
58(15):1664–1666, 1991.

[19] Rashed Zafar Bhatti, Monty Denneau, and Jeff Draper. 2 gbps serdes design based
on ibm cu-11 (130nm) standard cell technology. In Proceedings of the 16th ACM
Great Lakes symposium on VLSI, pages 198–203. ACM, 2006.

[20] Peng Wang, Ziqiang Wang, Chun Zhang, and Zhihua Wang. Data lane design for
transmitter of 4.8 gbps serdes in 65nm cmos. In Electron Devices and Solid-State
Circuits (EDSSC), 2014 IEEE International Conference on, pages 1–2. IEEE, 2014.

[21] Jonathan E Proesel and Timothy O Dickson. A 20-gb/s, 0.66-pj/bit serial re-
ceiver with 2-stage continuous-time linear equalizer and 1-tap decision feedback
equalizer in 45nm soi cmos. In VLSI Circuits (VLSIC), 2011 Symposium on, pages
206–207. IEEE, 2011.

[22] Advait Madhavan, Timothy Sherwood, and Dmitri Strukov. Race Logic: A hard-
ware acceleration for dynamic programming algorithms. ISCA 2014, pages 517–
528, 2014.

Session 4: Low Power Variation Aware Circuit Design GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

104

	Abstract
	1 Introduction
	1.1 Related Asynchronous Design Paradigms

	2 On-Chip Signaling: Pulse VS. Edge
	2.1 Case Study 5mm wire 130nm process node
	2.2 Edge-communicated signal
	2.3 Pulse-communicated signal
	2.4 Pulse vs. edge for marking an event

	3 Composition Rules
	3.1 Basic Rules
	3.2 Timing Check Complexity
	3.3 Logical Constraints on Construction
	3.4 Event timing

	4 Gate construction
	4.1 Pull-down network timing
	4.2 Drive and Feed-back network
	4.3 Two-Pulse Gates
	4.4 Pulse Gate Timing Stability
	4.5 Pulse Gate Library

	5 Data Link Performance Estimation
	5.1 Static Timing Analysis Complexity

	6 Conclusion
	References

