
FLexiTASK: A Flexible FPGA Overlay for Efficient Multitasking
Joel Mandebi Mbongue
University of Arkansas
Fayetteville, Arkansas
jmmandeb@uark.edu

Danielle Tchuinkou Kwadjo
University of Arkansas
Fayetteville, Arkansas
dtchuink@uark.edu

Christophe Bobda
University of Arkansas
Fayetteville, Arkansas
cbobda@uark.edu

ABSTRACT
One of the major obstacles to the adoption of FPGAs in high-
performance computing is their programmability. It requires hard-
ware design skills and long compilation times. Overlays have been
proposed as a way to abstract FPGA resources. Unfortunately, most
of the time, the topologies they use to connect computing cores
impose restrictions on where tasks are placed and how they commu-
nicate. In this paper, we propose an overlay architecture designed
for efficiency and flexibility. It features a novel Network-on-Chip
(NoC) infrastructure making flexible, with no limitation, the place-
ment of hardware tasks. The presented architecture allows tasks
to communicate with a low latency and eases the reconfiguration
of desired areas on the fabric at runtime. After prototyping the
proposed architecture on an Altera Cyclone V FPGA, a maximum
frequency of 282 MHz has been reached and a speedup ranging
from 4× to 195× has been observed in some applications compared
to the native execution.

KEYWORDS
FPGA; Overlay; Multitasking
ACM Reference Format:
Joel Mandebi Mbongue, Danielle Tchuinkou Kwadjo, and Christophe Bobda.
2018. FLexiTASK: A Flexible FPGA Overlay for Efficient Multitasking. In
GLSVLSI ’18: 2018 Great Lakes Symposium on VLSI, May 23–25, 2018, Chicago,
IL, USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3194554.
3194644

1 INTRODUCTION
The insatiable demand for innovative, faster, and efficient tech-
nologies has led from high-clocked single processors to the use of
multicores. In multicores with customized components, computing
resources can be tailored to applications’ needs, resulting in better
system throughput and power consumption compared to homoge-
neous multicores. Devices like FPGAs can play a big role in such
platforms because of their reconfigurable nature and low power
consumption compared to general purpose cores [6]. For such an
integration to be viable, it must be possible to place, execute and
replace tasks on the FPGA fabric at runtime. However, using FPGAs
at the raw level raises some hurdles. As a prelude to accelerating
a task, a corresponding circuit must be synthesized to specify the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GLSVLSI ’18, May 23–25, 2018, Chicago, IL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5724-1/18/05. . . $15.00
https://doi.org/10.1145/3194554.3194644

functionality on the FPGA. Unfortunately, the process of synthe-
sizing hardware designs from hardware description languages or
high-level synthesis is time consuming. Secondly, for upcoming
tasks, new circuits will have to be synthesized. These problems
make this approach unviable. On the other hand, an abstraction
layer offering a hardware virtualization of the FPGA resources could
help to tackle those obstacles. This will remove the need for syn-
thesizing hardware circuits and reduce the configuration overhead.
In addition, it will provide more flexibility to dynamically place
and replace threads on specific regions of the FPGA when needed
[3]. The problem addressed in this work is hardware multitasking
on coarse-grained reconfigurable architectures (CGRAs). The im-
provement and development of CGRAs arise from the huge variety
of research and industry needs for flexible high performance com-
puting. Our main contribution is to propose a novel virtualization
architecture which makes flexible and unrestricted the placement,
and communication of hardware tasks at runtime.

Recent works in CGRAs and FPGA overlays mostly present
dataflow machine architectures [4, 5, 7]. They are usually added
into systems as co-processors for accelerating tasks. They have
the advantage to exhibit FPGA’s flexibility and break the FPGA-
ASIC performance gap. Communications among functional units
embedded in these architectures are usually based on direct inter-
connections among neighbor or distant units. Because of that, those
architectures do not address the problem of accessibility and flexibil-
ity of communication between computational resources. Bus-based
communications (see Figure 1a) present a potential alternative but
the overhead of hundreds or thousands of processing elements (PE)
trying to communicate using a single bus will drastically reduce
system performances, and ultimately obfuscate any parallelism and
multitasking gain. A Network-on-Chip architecture (NoC) [1] im-
plemented as an abstraction layer to connect all the cores can be
a solution to this communication bottleneck. NoCs use messages
for communications between cores, memories and peripherals, all
of them connected to the network infrastructure instead of using
dedicated wires. Their advantages have been deeply studied and dis-
cussed in the literature [9]. Despite their great assets, NoCs present
some drawbacks. NoCs are usually provided as a 2-dimensional
mesh with PEs or routers at the intersection between lines and
columns. There are few problems nevertheless raised:

1) Architectures with PEs at the intersection of lines and columns
like in Figure 1b only provide communication links between neigh-
bor PEs [4, 5, 7]. Though they allow a high throughput between
adjacent PEs, they impose a restricted task placement and fixed
communication exchanges. They are not best optimized for multi-
tasking in which communication between distant tasks is needed.
2) In architectures with routers at the intersection of lines and
columns (see Figure 1c), each PE is attached to a router [2]. This
makes unrestricted the communication between distant cores, but

Poster Session 2 GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

483

https://doi.org/10.1145/3194554.3194644
https://doi.org/10.1145/3194554.3194644
https://doi.org/10.1145/3194554.3194644
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3194554.3194644&domain=pdf&date_stamp=2018-05-30

(a) (b)

(c) (d)

Figure 1: Bus-based Interconnection (1a). PEs at the Intersec-
tion of Lines and Columns of the 2-D Mesh (1b). Routers at
the Intersection of Lines andColumns (1c), each PE attached
to one Router. The Zippy architecture (1d) uses buses for
distant communication between PEs belonging to the same
row.

introduce a high communication overhead because the number of
routers to get packets to their destinations is usually more than
what is really needed: more hops between the source and desti-
nation of a packet imposes more communication latencies and
message blocking probability.

In order to make flexible communications between distant PEs
while maintaining direct links between neighbor ones, [8] proposes
the Zippy architecture (see Figure 1d). It does not use routers, rather,
it features PEs at the intersection of lines and columns of the grid.
It employs direct interconnections between adjacent PEs and uses
a bus to connect PEs belonging to the same row. The issue with
this architecture is the overhead generated by the bus management
if the number of PEs is drastically increased. In addition to that,
transfers between distant PEs is limited to the same lines.

In this work, we introduce a novel architecture that uses routers
for communications between distant cores and direct links between
adjacent PEs. It differs from other architectures relying on routers
as it decreases the number of routers by increasing the number of
PEs attached to each of them.

2 PROPOSED ARCHITECTURE
2.1 General Organization
We propose the general organization of Figure 2. It is a Torus in-
terconnect consisting of a two-dimensional array of routers (R in
Figure 2) and programmable processing elements (PE in Figure 2).
PEs communicate through a flexible and scalable NoC architecture
providing a high path diversity and minimal routes. They are gath-
ered in groups around routers to form a subnetwork. The overlay
uses data packets for communications. This is beneficial because it
makes the overlay scalable, and resources can directly be reused
when they complete message transmissions. The Torus topology
is implemented to shorten distances between PEs and increase the
connectivity: routers at the left edge of the first and last lines are
connected to those at the opposite edge, PEs which are all over the
edges of the overlay are connected to PEs at their opposite edges.

Figure 2: Overlay Architecture

To make it possible to send packets simultaneously to different
subnetworks, each router at the edge of the overlay has an external
connection. Figure 2 presents an instance of the overlay using 3× 3
routers, each surrounded by four PEs. The number of PEs attached
to each router, and how many routers to use can be modified ac-
cording to the needs and available resources on the chip. To be
operational, PEs are configured to implement specific operations
and send results of their computations to specific targets. There
are two configuration modes:(1) The online mode: in which con-
figuration packets containing operands are sent. In this case, the
next use of the PE will require a new configuration packet. (2) The
offline mode: configuration packets are sent first, and operands
will arrive later from neighbor PEs or through the router of the
subnetwork. This mode is interesting for vector processing since
configurations can be kept as long as needed.

2.2 Routing and Processing Elements
Routers (see Figure 3a) control paths taken by data to make sure
that each packet reaches its destination. Each router features four
channels for communicating with adjacent routers and direct links
with PEs. The scheduler uses the First Come First Serve scheduling
algorithm, with the highest priority given to communications com-
ing from PEs, to brings packets to the crossbar matrix. FIFOs store
packets waiting to be scheduled. Communications from PEs are
first considered to have them available for new computations as
soon as possible. The crossbar matrix transfers packets to the next
direction. A PE is directly connected to at most eight other adjacent
PEs. The Broadcast unit (see Figure 3b) forwards channels activated
by the configuration to input multiplexers. Input Multiplexers se-
lect the origin of operands sent to the Functional Unit (FU), while
the Demultiplexer chooses where to send results of computations
. The Output Register always contains a copy of the latest result
computed in the FU. The Configuration Register stores configura-
tion packets received by the PE. This allows to fix the source of
operands, the operation to be performed and the destination where
to send results. The FU runs computations on one or two 32 bits
operands.

2.3 Programming Flow
Overlays have the advantage that application kernels can bemapped
with a programmability similar to software executed into proces-
sors. The design, implementation and synthesis of the overlay itself
is done off-line using vendor tools. Our custom mapping tool is a

Poster Session 2 GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

484

(a)

(b)

Figure 3: Router Architecture (Figure 3a). Processing Ele-
ment (Figure 3b).

C/C++ library providing high level functions to access the overlay
resources. In its current version, kernels and where computations
will take place on the overlay are specified manually. This because
the attention of the paper is on the hardware architecture. Future
works will focus on having automatic placements. In order to use
some hardware acceleration from the overlay, a C/C++ application
just needs to call functions from our library. The code can then be
compiled using a regular C/C++ compiler like the GNU Compiler
Collection (GCC).

3 EVALUATION
Evaluation Infrastructure: the Terasic DE1-SoC board with an
Altera Cyclone V FPGA was chosen to verify the operation of the
prototyped architecture. To edit and synthesize the overlay, we used
Quartus Prime Standard Edition 16.0. In addition, ModelSim-Intel
FPGA Edition allowed to run RTL simulations and observe latencies.
Throughout our experimental evaluations, we used an instance of
the overlay featuring 5×5 routers, each router surrounded by 4 PEs.
Evaluation Metrics: we look at speedups compared to the native
execution. For that purpose, a sytem-on-chip is designed to evaluate
execution times on the Dual-Core ARM Cortex A9 Hard Processor
burned into the FPGA, as opposed to the same Hard Processor cou-
pled with our overlay. We also consider the fMAX observed at the
level of routers under various conditions. Given that the number
of PEs around routers is scalable, we trace routing latencies and
also study the impact of increasing the number of PEs on FPGA
resources. Finally, we discuss some issues arising when comparing
our architecture to existing works. Evaluation Benchmarks: we
tested three image processing operations on 800×600 input images.
Afterwards, we ran some matrix/vector operations with matrices
of size 100 × 100, and vectors of 100 entries. For each application,
we manually configured a parallelized placement of operations
onto the overlay and a sequential one. The parallelized placement

Table 1: Execution Times

Appli-
cations

Cortex A9 Cortex A9 +
Overlay

(Sequential
Mapping)

Cortex A9 +
Overlay
(Parallel
Mapping)

Roberts
Cross

763.69 ms 67 ms 5.15 ms

Corner
Detection

488.70 ms 161.77 ms 53.92 ms

Smoothing 116.28 ms 104.98 ms 8.075 ms
Matrix
Multiplication

48.77 ms 42 ms 11.4 ms

Outer
Product

0.39 ms 0.05 ms 0.002 ms

Dot
Product

0.008 ms 0.008 ms 0.001 ms

Figure 4: Execution Speedups

provides an idea on how our overlay performs on multithreaded
applications, while the sequential placement demonstrates that our
architecture also fits pipelined executions. For evaluation purposes,
we examine how much acceleration is achieved on multithreaded
and sequential environments. Observations: table 1 summarizes
execution times observed when running all test applications on
our three testing infrastructures. It demonstrates that the overlay
excels when tasks are executed in parallel. Figure 4 depicts speed
up statistics: the parallel placement of the Outer product executed
195× faster than the native execution, and 25× faster compared
to the sequential execution on the overlay. While the overlay best
performs on multithreaded applications, sequential placements still
outperform native executions. The Matrix multiplication in the par-
allel placement on the overlay only executes about 5× faster. This
is due to the dependencies between operations, and to the size of
the overlay. Using 100 PEs to run computation on matrices of size
100x100 restricts the number of tasks that could be run in parallel.
Figure 5 studies the resource usage incurred by the scaling of PEs
around routers. Everytime we double the number of PEs in a sub-
network, the new circuit synthesized employs about 12 more ALMs
and 4 more registers on the FPGA. It demonstrates that PEs are not
resource intensive. This observation is particularly interesting as
it could pave the way to more PEs for more speed up. However,
if increasing the number of PEs provides more computing power,
it also influences routing latencies. Figure 6 studies average wait-

Poster Session 2 GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

485

Figure 5: Resource Usage for PE Scaling

Figure 6: Routing Latencies for PE Scaling

ing times and maximum waiting times for packets simultaneously
reaching a router, targeting each PE in the subnetwork. Having 4
PEs, the average routing latency would be 3 clocks cycles and the
last packet will wait at most 6 clock cyles. By increasing the number
of PEs to 16, the average waiting time could easily increase up to
15 clock cycles and the last packet transferred by the router could
wait up to 30 clock cycles. Using more than 32 PEs around a router
would become unviable as it will cause an average waiting time of
at least 31 clock cycles. The average latency is approximately equal
to number of PEs while the maximum waiting time is almost the
double. These results indicate that: 1) Though using more PEs looks
attractive and not resource hungry, keeping a relative small amount
of PEs could drastically decrease the communication overhead, es-
pecially when routers are to be crossed. And 2) to best benefit from
the architecture, the placement of hardware tasks should avoid
saturating routers with communication requests. The fMAX of the
overlay is derived from the Quartus Prime Timing Analysis tool.
For instance, we observed a maximum frequency of 282MHz for 4
PEs around a router and 270MHz when having 256 PEs.

In [4], authors propose an architecture for speeding up data flow
graph executions using an Altera Stratix III platform. They achieved
a maximum frequency of 172MHz and a speed up of 9× compared
to an execution on a NIOS II soft processor. Sen Ma and al [7] de-
signed an overlay for accelerating custom instructions built on a
Xilinx Kintex-7 FPGA for testing purposes. They claimed a speedup
of 25× on a 3x3 matrix multiplication. [5] proposes an architec-
ture for pipelined execution of data flow graphs. After prototyping
their overlay on an Altera Stratix IV FPGA, they reported a fMAX
reaching up to 355MHz and throughputs obtained in GFLOPS. It
could be tempting to claim that our architecture outperforms re-
sults presented in [4] as we obtain a greater speedup and higher

maximum frequency. Following the same logic, it might also ap-
pear like the architecture described in [5] is more efficient than
ours since authors claim to achieve a better maximum frequency.
We could even speculate which of our architecture or the one por-
trayed in [7] offers a better speedup. But this form of comparison is
misleading since it lacks context. For instance, [4], [7], and [5] do
not use similar testing applications (i.e. lack shared benchmarks).
Even when they try to, the size of the dataset is generally different
and sometimes not even disclosed. This is on top of the fact that
evaluation platforms generally rely on FPGAs from different man-
ufacturers with completely different hardware structures. Finally,
even when FPGAs from the same brand are used, using various se-
ries produce different results. To illustrate that point, when testing
our architecture on an Altera Stratix IV FPGA, we observe a max-
imum frequency rising up to 359MHz compared to the 282MHz
on the Cyclone V. This new frequency observed even surpasses
the one pointed out in [5]. Those three factors make it difficult to
fairly provide performance comparisons between architectures as
it is particularly challenging to reproduce the exact same testing
environment.

4 CONCLUSION
We presented a novel virtualization architecture for FPGAs which
is suitable for multithreaded applications but also for sequential
execution. The architecture allows to modify the functionality of
any region of the layout at runtime. Our evaluation showed that
adding our overlay as a co-processor allowed significantly decreased
execution time compared to the native execution. Future researches
will focus on automatically identifying kernels from application
specified with high-level programming languages.

ACKNOWLEDGMENTS
This work was supported in part by the NSF under Grant CNS-
1618606 & 1302596.

REFERENCES
[1] Luca Benini andGiovanni DeMicheli. 2002. Network on chips: A new soc paradigm.

computer 35, 1 (Aug. 2002), 70–78. https://doi.org/10.1109/2.976921
[2] Tobias Bjerregaard and Shankar Mahadevan. 2006. A survey of research and

practices of network-on-chip. ACM Computing Surveys (CSUR) 38, 1 (June 2006),
1. https://doi.org/10.1145/1132952.1132953

[3] Christophe Bobda. 2007. Introduction to reconfigurable computing architectures,
algorithms and applications. Springer Science & Business Media.

[4] Davor Capalija and T Abdelrahman. 2012. A coarse-grain fpga overlay for exe-
cuting data flow graphs. The Second Workshop on the Intersections of Computer
Architecture and Reconfigurable Logic (CARL 2012) (2012).

[5] Davor Capalija and Tarek S Abdelrahman. 2013. A high-performance overlay
architecture for pipelined execution of data flow graphs. Field Programmable
Logic and Applications (FPL), 2013 23rd International Conference on (2013), 1–8.
https://doi.org/10.1109/FPL.2013.6645515

[6] Jeremy Fowers, Greg Brown, Patrick Cooke, and Greg Stitt. 2012. A Performance
and Energy Comparison of FPGAs, GPUs, and Multicores for Sliding-window
Applications. In Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA ’12). ACM, New York, NY, USA, 47–56. https:
//doi.org/10.1145/2145694.2145704

[7] Sen Ma, Zeyad Aklah, and David Andrews. 2015. A run time interpretation ap-
proach for creating custom accelerators. Field Programmable Logic and Applications
(FPL), 2015 25th International Conference on (2015), 1–4. https://doi.org/10.1109/
FPL.2015.7293996

[8] Christian Plessl and Marco Platzner. 2011. Hardware virtualization on dynamically
reconfigurable processors. (2011).

[9] Muhammad Athar Javed Sethi, Fawnizu Azmadi Hussin, and Nor Hisham Hamid.
2015. Survey of network on chip architectures. Sci. Int.(Lahore) 5, 27 (2015),
4133–4144.

Poster Session 2 GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

486

https://doi.org/10.1109/2.976921
https://doi.org/10.1145/1132952.1132953
https://doi.org/10.1109/FPL.2013.6645515
https://doi.org/10.1145/2145694.2145704
https://doi.org/10.1145/2145694.2145704
https://doi.org/10.1109/FPL.2015.7293996
https://doi.org/10.1109/FPL.2015.7293996

	Abstract
	1 INTRODUCTION
	2 PROPOSED ARCHITECTURE
	2.1 General Organization
	2.2 Routing and Processing Elements
	2.3 Programming Flow

	3 EVALUATION
	4 CONCLUSION
	Acknowledgments
	References

