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ABSTRACT 
This paper presents a new technique for decoding a full-resolution 
video bitstream at low memory cost and displaying the signal at a 
lower resolution, Existing techniques solve the problem by storing 
the down-converted blocks into memory instead of the full- 
resolution blocks. While the memory is reduced, these techniques 
introduce drift errors because the decoder does not have the same 
pixels as the encoder in performing motion-compensated 
prediction. The approach proposed here alleviates the problem by 
tracking the drift at the decoder. It improves the video quality 
without any increase in decoder complexity. The effectiveness of 
the approach is evaluated using both objective and subjective 
tests. This minimum-drift approach is very simple to implement 
and can also be applied for memory reduction of a full resolution 
HDTV decoder. 
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1. INTRODUCTION 
The Federal Communications Commission’s requirement to start 
broadcasting digital television (DTV) in Fall 1998 will expedite the 
development of affordable DTV receivers that can accommodate the 
transition from conventional television to DTV. The cost of DTV 
receivers is driven, in part, by the large memory needed to buffer the 
decoded pictures for motion-compensated prediction. To enable 
widespread acceptability of DTV in the consumer electronics market, 
the decoder memory must be effectively reduced. 

This paper addresses the memory reduction issue of DTV down 
conversion. A DTV down- converter decodes a full-resolution digital 
video signal and displays it at a lower resolution. Such down- 
conversion is needed, for example, for viewing high definition 
television (HDTV) materials with a standard definition television 
(STDV) monitor or for generating the picture-in-picture special effect. 
The goal here is to achieve the highest possible memory reduction 
while preserving the picture quality. The down-conversion problem 
can be solved by fully decoding the HDTV signal and then post- 
processing and down-sampling the resulting images. Although this 
approach is able to achieve the best picture quality, it requires full- 
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resolution memory to store the decoded images and extra 
computations to down-sample the images. 

The down-conversion problem has been investigated in the past, and 
various approaches have been proposed. In most approaches, the 
memory reduction is achieved by storing the down-converted images 
in memory. For example, Vetro et al. [ 11, [2] proposed to store the 
lower-resolution frame and process the residual by either masking the 
high frequency coefficients of a block (the cut approach) or by 
combing the DCI’ coefficients of neighboring blocks (the synthesis 
approach). Since the motion compensation is based on the down- 
converted images, the decoder does not have the same pixels as the 
encoder for motion-compensated prediction. As a result, the quality of 
decoded images degrades (the drift problem). 

We present a new technique to reduce the drift. The basic idea is to 
minimize the accumulation of drift errors by tracking the decoded 
pixels. The technique is more effective than existing approaches 
available in the literature without any increase in complexity. (In fact, 
the complexity is sometimes slightly decreased.) The effectiveness of 
the proposed approach is tested objectively and subjectively. The 
subjective test shows that 95% of the 80 viewers (non-experts in video 
compression) participating in the test rank this approach better than the 
frequency-domain cut and synthesis approaches. The other 5% are 
unable to tell the difference. 

This paper is organized as follows: Section 2 describes the drift 
problem caused by memory reduction in an MPEG decoder. Section 3 
describes our new technique for solving the drift problem. Section 4 
demonstrates the effectiveness of the technique and provides a 
complexity analysis. A comparison of the performance of the 
technique with other existing methods is also presented. Finally, 
Section 5 concludes the paper. 

2. PROBLEM DESCRIPTION 
Figure 1 shows the simplified block diagram of a typical video 
decoder with a decoding loop that performs motion compensation 
and prediction. For the decoder to produce the same video as 
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intended by the encoder, each reference frame used by the decoder 
for motion-compensated prediction must be the same as the one 
used by the encoder. This is how a motion-compensated digital 
video system works. Thus the decoder memory should be large 
enough to store the reference frames. In a typical MPEG-2 
decoder, for example, 3 frame stores are needed. For the purpose 
of cost reduction, however, a down-converter reduces the memory 
and only stores the down-converted version of the reference 
frames in the memory instead of the full-resolution frames. The 
resulting mismatch between the decoder and encoder penalizes the 
decoded video quality and causes a drift problem. An illustration 
of the drift problem is given in Figure 2, where a video frame 
generated by perfect motion-compensated prediction is compared 
against a decoded video frame generated by using a sub-sampled 
reference frame. As can be seen, the down converted picture 
quality can be seriously degraded. 

3. DOWN CONVERSION USING DRIFT 
TRACKING 
This section describes the drift-tracking approach to DTV down- 
conversion. The approach involves two basic operations: image 
subsampling and drift tracking. The image subsampling is done 
within the motion-compensated prediction loop to reduce the 
memory required, while the drift tracking is performed to preserve 
the reference frame and thereby reduce the impact of image 
subsampling on the integrity of motion-compensated prediction. 

For the purpose of discussion, denote the decoded current frame, 
the decoded previous frame, the residual error, and the motion 
compensation operation by f(n), f(n-I), r(n). and MC(.), 
respectively. For a full-frame decoder, we have 

J‘(n) = MC(f(n - 1)) + r(n). 

For a down converter that performs in-loop subsampling (that is the 
down-converted frame instead of the lull frame is stored in memory), 
we have 

where SIJB(fl denotes the sub-sampled version of frarne$ Clearly, the 
output picture of the down-converter will be the same as the 
subsampled version of the output picture of the full frame decoder (and 
hence drift-free) if 

For this equation to hold, the reference image block used for 
motion compensation in the down-converter must be identical to 
the subsampled version of the corresponding image block in the 
full-frame decoder. Unfortunately, this relationship does not hold 
in reality. 

The difference between the two sides of the above equation is the 
drift error. Suppose the image is subsampled by a factor of l/2 in 
each dimension, three quarters of the image pixels are thrown 
away. Note that an encoder computes the motion vector of an 
image block based on the full frame. In the decoding, if the 
reference pixels that are needed for reconstructing a pixel of the 
current frame are among the thrown pixels, the pixel will start to 
drift. The drift error accumulates through all predictive frames 
until the next intra-coded frame or block, where the decoding loop 
is re-initialized. 

We propose to solve the drift problem by compensating the drift 
error in decoding each pixel. This is achieved by computing the 
drift error of each reference frame pixel and storing it in memory. 
The drift error can be tracked by, for example, a procedure similar 
to Z-A modulation [3]. Let x be the frame to be downsampled by 
using an anti-aliasing filter h and a sub-sampler. We first store the 
down-sampled frame y, where 

y(m,n) = Ch(k,Z)x(m-k,n-1). 
k,l 

Then, for each 2x2 block of pixels (three of which are to be thrown 
away), we compute the following values: 

k,l 
ay< 2m,2n) = 0, 

iIy(2m + 1,2n) = Q( y(m, n) - x(2m + 1,2n)), 

ay( 2m,2n + 1) = Q( y(m, n) - x(2m,2n + l)), and 

iIy(2m+1,2n+l) = Q(y(m,n)-x(2m+1,2n+l)). 

The function Q is a quantizer. That is, we store the quantized 
differences between the pixel to be stored and the three pixels to be 
thrown away. In our current implementation, we choose to use very 
simple quantizer and entropy coder to reduce the complexity. The 
scalar quantizer shown in Figure 3 is used to quantize the drift error. It 
is important to note that, for visual quality, a trailing-edge 
reconstruction quantizer is recommended. 

However, note that the proposed technique does not depend on any 
particular type of filters. For simplicity, we use box averaging in our 
implementation. Then the above equations become 

Figure 4 shows a block diagram of the overall down conversion 
algorithm. The decoder decodes and down-samples a full block, one at 
a time. The down-sampled block is stored into the frame memory. In 
parallel to that, the decoder also stores the quantized differences 
between the stored pixels and the thrown ones in the drift memory. 
The pixels and the quantized differences in the two memory buffers are 
used to construct motion-compensation blocks. In other words, the 
new decoding loop performs both motion compensation and drift 
compensation. 

y(m,n) = (x(2m,2n) + x(2m,2n + 1) + x(2r.n + 1,2n) 

+ x(2m + 1,2n + 1)) / 4, 

ay(2m,2n) = 0, 

ay(2m + 1,2n) = Q( y(m, n) - x(2m + 1,2n)), 

ay(2m,2n + 1) = Q(y(m,n) - x(2m,2n + l)), and 

ay(2m + 1,2n + 1) = Q( y(m, n) - x(2m + 1,2n + 1)). 
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The extra storage of this algorithm is the memory required for 
storing the quantized differences for the thrown pixels. In our 
approach, the quantized differences are coded using a variable 
length coder (VLC). In effect, the quantizer controls the quality of 
the picture and the extra storage, and the entropy coder determines 
the amount of memory required by the down converter. Overall, 
the quantizer and the entropy coder determine the overhead 
complexity of the down converter. 

To further increase the coding efficiency, a bit is used for each 
8x8 block to indicate if all the pixels in the block are zero or not. 
This is because most background blocks are zero blocks. The 
addition of this additional bit also simplifies the decoding of the 
quantized differences. 

4. RESULTS 
The algorithm is implemented on an MPEG-2 decoder. The 
effectiveness of the algorithm is demonstrated by decoding 
different CCIR image sequences. Moreover, the performance of 
the algorithm is compared to the cut and synthesis methods 
described in [1], [2]. It is also compared with the post-processing 
approach that decodes and stores the full video frame. In all 
approaches, we use the box averaging as a down-sampling filter. 
Other filters can be used, but the conclusion drawn in this section 
holds for different filter choices. The measured PSNR reflects the 
difference with the non-drift case, i.e., the box averaging method. 

The cut and the synthesis algorithms need one-fourth of the 
memory required by a full-frame decoder. Both algorithms filter 
the residual DCT block before adding it to the motion 
compensated block. In the cut method, a mask is used to mask the 
high frequency coefficients of a block, while the synthesis method 
combines the DCT coefficients of four neighboring blocks to 
produce a single DCT block. 

4.1 Quality 
The performance of the proposed approach is demonstrated by 
decoding the CCIR video sequences to one quarter of their 
original size. In other words, the image is subsampled by a factor 
of one-half horizontally and vertically. In all experiments, the 
additional memory (compared to the cut and synthesis methods) 
required by the drift-tracking algorithm is at most 1 bit per pixel 
(bpp) for tracking the drift. Table 1 shows the average memory 
required and the resulting PSNR for the CCIR sequences tested. 
The PSNR is measured against the results of the post-processing 
approach, which is drift-free. The drift-tracking algorithm used a 
scalar quantizer with quantization value of 16 and a fixed, non- 
trained 5-element VLC table. Table 1 shows that with small extra 
memory the objective quality improves. The subjective quality 
also improves as shown in Figure 5. 

4.2 Memory Requirements 
The system can set the maximum memory allowance for the drift- 
tracking algorithm. For all experiments in Table 1, the maximum 
memory used is 0.83 bpp for the Mobile-calendar sequence. 
Suppose we allow a maximum of 1 bpp for the drift memory. The 
drift-tracking algorithm would require a total of 11.0592 Mbits of 
memory for 4:2:0 format, 720-linesxl280-pixels (720P) 
sequences, whereas the post-processing decoders would require 
33.1776 Mbits of memory. The cut and synthesis methods need 
one quarter of that amount, i.e., 8.2994 Mbits. For 4:2:2 format, 
720-linesxl280-pixels progressive sequences, the post-processing 

method needs 44.2368 Mbits of memory, the cut and synthesis 
methods need 11.0592 Mbits, and the drift-tracking algoirthm 
needs 13.824 Mbits. 

The quantizer controls the memory requirement for the drift- 
tracking algorithm. To see the effect of the quantizer on the 
subjective quality, Figure 6 shows a down-converted Mobile- 
calendar video frame generated by using different quantizers, 
while the effect on objective quality is shown in Figure 7. 

4.3 Computational Requirements 
The algorithm is quite simple. The complexity of the algorithm 
depends on the quantizer, the entropy coder, and the filter used for 
down-sampling [4], [5]. In our implementation we use the box 
averaging filter. We use a power-of-2 scalar quantizer (16). These 
two steps require 12 additions and 8 shifts. The algorithm also 
needs a parser and de-parser to code the quantized differences. 
We use a 5-element VLC table, so it is very simple. However, the 
actual computational cost is image dependent; it depends on how 
many zero blocks exist. 

Table 2 summarizes the complexity of all algorithms. The 
following assumptions are made in the comparison: 

1. For the post-processing approach, a 7-4 separable filter is 
used. 

2. Video sequences are of 4:2:0,720x1280 progressive format. 

3. The memory cost of the drift-tracking approach is 1 bpp. 

To provide a fair comparison, the numbers of arithmetic 
operations (additions, shifts, and multiplies) are calculated on the 
pixel basis. These numbers are obtained by dividing the total 
number of operations by the number of pixels in a down-sampled 
frame 

5. CONCLUSIONS 
We have described a new technique for DTV down-conversion. 
The down-conversion is performed inside the motion 
compensation loop of a video codec to achieve memory reduction, 
while the pixels discarded by the down-conversion are tracked to 
preserve the integrity of motion-compensated prediction. The 
algorithm is compared against two competing methods and a 
baseline method. The results show that on average, the proposed 
algorithm outperforms the competing methods by 7.6 dB in 
PSNR. This drift-tracking approach, which is simple and 
computationally efficient, can also be easily applied to reduce the 
memory of full-resolution HDTV or MPEG decoders [ 61, [7]. 
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Figure 2: Illustration of the drift problem: (a) The image is subsampled after the full-resolution video 
frame is generated, and (b) The image is generated by a down converter using subsampled reference 
frames in the decoding loop. 
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Figure 3. The quantizer for quantizing the drift error. 
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Figure 4. A block dianam of the drift-tracking approach for DTV down conversion. 
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Figure 5: Frame 89 of the Mobile-calendar sequence generated by the post-processing (top-left), cut 
(top-right), synthesis (bottom-left), and drift-tracking (bottom-right) methods (with Quantizer=I6 and 
a S-element VT .C tahleh. 
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Figure 6: Frame 89 of the Mobile-calendar sequence decoded using the drift-tracking algorithm. 
From top to bottom, left to right: Q=6 (1.89 bpp), Q=13 (0.988 bpp), Q=25 (0.556 bpp), and 

hnnk where 0 inthe amntizer. - - 
_ _ 

c-k32 

0 1 2 3 4 5 

bpp 

Figure 7: PSNR versus bits needed per pixel and per frame for the Mobile-calendar experiment. Total 
memory needed is equal to bpp*720*480*3+4.147 Mbits. Uniform quantizers are used with operation 
mnm r-1 28. 1281. 
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Table 1: PSNR and memory comparisons. 

Table 2: Complexity comparison. 

Measure 1 Post-Proc. 1 cut 1 Synthesis 1 Drift-Track I 

Memory (Mbits) 1 33.1766 I 8.2994 I 8.2994 I 11.0592 I 
Additions 16 I 11 I 267 I 12 I 

Multiplies 

VLUDVLC 

9 

No 

0 

No 

64 

No 

0 

Yes 
I I I I 1 
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