
Osama Alshaykh
PacketVideo Corporation

10350 Science Center Dr. STE 140
San Diego, CA 92121

osamaQpacketvideo.com

ABSTRACT
This paper presents a new technique for decoding a full-resolution
video bitstream at low memory cost and displaying the signal at a
lower resolution, Existing techniques solve the problem by storing
the down-converted blocks into memory instead of the full-
resolution blocks. While the memory is reduced, these techniques
introduce drift errors because the decoder does not have the same
pixels as the encoder in performing motion-compensated
prediction. The approach proposed here alleviates the problem by
tracking the drift at the decoder. It improves the video quality
without any increase in decoder complexity. The effectiveness of
the approach is evaluated using both objective and subjective
tests. This minimum-drift approach is very simple to implement
and can also be applied for memory reduction of a full resolution
HDTV decoder.

Keywords
MPEG-2, HDTV, SDTV, Format Conversion.

1. INTRODUCTION
The Federal Communications Commission’s requirement to start
broadcasting digital television (DTV) in Fall 1998 will expedite the
development of affordable DTV receivers that can accommodate the
transition from conventional television to DTV. The cost of DTV
receivers is driven, in part, by the large memory needed to buffer the
decoded pictures for motion-compensated prediction. To enable
widespread acceptability of DTV in the consumer electronics market,
the decoder memory must be effectively reduced.

This paper addresses the memory reduction issue of DTV down
conversion. A DTV down- converter decodes a full-resolution digital
video signal and displays it at a lower resolution. Such down-
conversion is needed, for example, for viewing high definition
television (HDTV) materials with a standard definition television
(STDV) monitor or for generating the picture-in-picture special effect.
The goal here is to achieve the highest possible memory reduction
while preserving the picture quality. The down-conversion problem
can be solved by fully decoding the HDTV signal and then post-
processing and down-sampling the resulting images. Although this
approach is able to achieve the best picture quality, it requires full-

Minimum-Drift Digital Video Down-Conversion1
Homer Chen

Rockwell Science Center
1049 Camino DOS Rios

Thousand Oaks, CA 91320
homer8 risc,rockwell.coml

resolution memory to store the decoded images and extra
computations to down-sample the images.

The down-conversion problem has been investigated in the past, and
various approaches have been proposed. In most approaches, the
memory reduction is achieved by storing the down-converted images
in memory. For example, Vetro et al. [11, [2] proposed to store the
lower-resolution frame and process the residual by either masking the
high frequency coefficients of a block (the cut approach) or by
combing the DCI’ coefficients of neighboring blocks (the synthesis
approach). Since the motion compensation is based on the down-
converted images, the decoder does not have the same pixels as the
encoder for motion-compensated prediction. As a result, the quality of
decoded images degrades (the drift problem).

We present a new technique to reduce the drift. The basic idea is to
minimize the accumulation of drift errors by tracking the decoded
pixels. The technique is more effective than existing approaches
available in the literature without any increase in complexity. (In fact,
the complexity is sometimes slightly decreased.) The effectiveness of
the proposed approach is tested objectively and subjectively. The
subjective test shows that 95% of the 80 viewers (non-experts in video
compression) participating in the test rank this approach better than the
frequency-domain cut and synthesis approaches. The other 5% are
unable to tell the difference.

This paper is organized as follows: Section 2 describes the drift
problem caused by memory reduction in an MPEG decoder. Section 3
describes our new technique for solving the drift problem. Section 4
demonstrates the effectiveness of the technique and provides a
complexity analysis. A comparison of the performance of the
technique with other existing methods is also presented. Finally,
Section 5 concludes the paper.

2. PROBLEM DESCRIPTION
Figure 1 shows the simplified block diagram of a typical video
decoder with a decoding loop that performs motion compensation
and prediction. For the decoder to produce the same video as

’ This work was performed while the first author was with Rockwell Science Center.

277

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319463.319625&domain=pdf&date_stamp=1999-10-30

intended by the encoder, each reference frame used by the decoder
for motion-compensated prediction must be the same as the one
used by the encoder. This is how a motion-compensated digital
video system works. Thus the decoder memory should be large
enough to store the reference frames. In a typical MPEG-2
decoder, for example, 3 frame stores are needed. For the purpose
of cost reduction, however, a down-converter reduces the memory
and only stores the down-converted version of the reference
frames in the memory instead of the full-resolution frames. The
resulting mismatch between the decoder and encoder penalizes the
decoded video quality and causes a drift problem. An illustration
of the drift problem is given in Figure 2, where a video frame
generated by perfect motion-compensated prediction is compared
against a decoded video frame generated by using a sub-sampled
reference frame. As can be seen, the down converted picture
quality can be seriously degraded.

3. DOWN CONVERSION USING DRIFT
TRACKING
This section describes the drift-tracking approach to DTV down-
conversion. The approach involves two basic operations: image
subsampling and drift tracking. The image subsampling is done
within the motion-compensated prediction loop to reduce the
memory required, while the drift tracking is performed to preserve
the reference frame and thereby reduce the impact of image
subsampling on the integrity of motion-compensated prediction.

For the purpose of discussion, denote the decoded current frame,
the decoded previous frame, the residual error, and the motion
compensation operation by f(n), f(n-I), r(n). and MC(.),
respectively. For a full-frame decoder, we have

J‘(n) = MC(f(n - 1)) + r(n).

For a down converter that performs in-loop subsampling (that is the
down-converted frame instead of the lull frame is stored in memory),
we have

where SIJB(fl denotes the sub-sampled version of frarne$ Clearly, the
output picture of the down-converter will be the same as the
subsampled version of the output picture of the full frame decoder (and
hence drift-free) if

For this equation to hold, the reference image block used for
motion compensation in the down-converter must be identical to
the subsampled version of the corresponding image block in the
full-frame decoder. Unfortunately, this relationship does not hold
in reality.

The difference between the two sides of the above equation is the
drift error. Suppose the image is subsampled by a factor of l/2 in
each dimension, three quarters of the image pixels are thrown
away. Note that an encoder computes the motion vector of an
image block based on the full frame. In the decoding, if the
reference pixels that are needed for reconstructing a pixel of the
current frame are among the thrown pixels, the pixel will start to
drift. The drift error accumulates through all predictive frames
until the next intra-coded frame or block, where the decoding loop
is re-initialized.

We propose to solve the drift problem by compensating the drift
error in decoding each pixel. This is achieved by computing the
drift error of each reference frame pixel and storing it in memory.
The drift error can be tracked by, for example, a procedure similar
to Z-A modulation [3]. Let x be the frame to be downsampled by
using an anti-aliasing filter h and a sub-sampler. We first store the
down-sampled frame y, where

y(m,n) = Ch(k,Z)x(m-k,n-1).
k,l

Then, for each 2x2 block of pixels (three of which are to be thrown
away), we compute the following values:

k,l
ay< 2m,2n) = 0,

iIy(2m + 1,2n) = Q(y(m, n) - x(2m + 1,2n)),

ay(2m,2n + 1) = Q(y(m, n) - x(2m,2n + l)), and

iIy(2m+1,2n+l) = Q(y(m,n)-x(2m+1,2n+l)).

The function Q is a quantizer. That is, we store the quantized
differences between the pixel to be stored and the three pixels to be
thrown away. In our current implementation, we choose to use very
simple quantizer and entropy coder to reduce the complexity. The
scalar quantizer shown in Figure 3 is used to quantize the drift error. It
is important to note that, for visual quality, a trailing-edge
reconstruction quantizer is recommended.

However, note that the proposed technique does not depend on any
particular type of filters. For simplicity, we use box averaging in our
implementation. Then the above equations become

Figure 4 shows a block diagram of the overall down conversion
algorithm. The decoder decodes and down-samples a full block, one at
a time. The down-sampled block is stored into the frame memory. In
parallel to that, the decoder also stores the quantized differences
between the stored pixels and the thrown ones in the drift memory.
The pixels and the quantized differences in the two memory buffers are
used to construct motion-compensation blocks. In other words, the
new decoding loop performs both motion compensation and drift
compensation.

y(m,n) = (x(2m,2n) + x(2m,2n + 1) + x(2r.n + 1,2n)

+ x(2m + 1,2n + 1)) / 4,

ay(2m,2n) = 0,

ay(2m + 1,2n) = Q(y(m, n) - x(2m + 1,2n)),

ay(2m,2n + 1) = Q(y(m,n) - x(2m,2n + l)), and

ay(2m + 1,2n + 1) = Q(y(m, n) - x(2m + 1,2n + 1)).

278

The extra storage of this algorithm is the memory required for
storing the quantized differences for the thrown pixels. In our
approach, the quantized differences are coded using a variable
length coder (VLC). In effect, the quantizer controls the quality of
the picture and the extra storage, and the entropy coder determines
the amount of memory required by the down converter. Overall,
the quantizer and the entropy coder determine the overhead
complexity of the down converter.

To further increase the coding efficiency, a bit is used for each
8x8 block to indicate if all the pixels in the block are zero or not.
This is because most background blocks are zero blocks. The
addition of this additional bit also simplifies the decoding of the
quantized differences.

4. RESULTS
The algorithm is implemented on an MPEG-2 decoder. The
effectiveness of the algorithm is demonstrated by decoding
different CCIR image sequences. Moreover, the performance of
the algorithm is compared to the cut and synthesis methods
described in [1], [2]. It is also compared with the post-processing
approach that decodes and stores the full video frame. In all
approaches, we use the box averaging as a down-sampling filter.
Other filters can be used, but the conclusion drawn in this section
holds for different filter choices. The measured PSNR reflects the
difference with the non-drift case, i.e., the box averaging method.

The cut and the synthesis algorithms need one-fourth of the
memory required by a full-frame decoder. Both algorithms filter
the residual DCT block before adding it to the motion
compensated block. In the cut method, a mask is used to mask the
high frequency coefficients of a block, while the synthesis method
combines the DCT coefficients of four neighboring blocks to
produce a single DCT block.

4.1 Quality
The performance of the proposed approach is demonstrated by
decoding the CCIR video sequences to one quarter of their
original size. In other words, the image is subsampled by a factor
of one-half horizontally and vertically. In all experiments, the
additional memory (compared to the cut and synthesis methods)
required by the drift-tracking algorithm is at most 1 bit per pixel
(bpp) for tracking the drift. Table 1 shows the average memory
required and the resulting PSNR for the CCIR sequences tested.
The PSNR is measured against the results of the post-processing
approach, which is drift-free. The drift-tracking algorithm used a
scalar quantizer with quantization value of 16 and a fixed, non-
trained 5-element VLC table. Table 1 shows that with small extra
memory the objective quality improves. The subjective quality
also improves as shown in Figure 5.

4.2 Memory Requirements
The system can set the maximum memory allowance for the drift-
tracking algorithm. For all experiments in Table 1, the maximum
memory used is 0.83 bpp for the Mobile-calendar sequence.
Suppose we allow a maximum of 1 bpp for the drift memory. The
drift-tracking algorithm would require a total of 11.0592 Mbits of
memory for 4:2:0 format, 720-linesxl280-pixels (720P)
sequences, whereas the post-processing decoders would require
33.1776 Mbits of memory. The cut and synthesis methods need
one quarter of that amount, i.e., 8.2994 Mbits. For 4:2:2 format,
720-linesxl280-pixels progressive sequences, the post-processing

method needs 44.2368 Mbits of memory, the cut and synthesis
methods need 11.0592 Mbits, and the drift-tracking algoirthm
needs 13.824 Mbits.

The quantizer controls the memory requirement for the drift-
tracking algorithm. To see the effect of the quantizer on the
subjective quality, Figure 6 shows a down-converted Mobile-
calendar video frame generated by using different quantizers,
while the effect on objective quality is shown in Figure 7.

4.3 Computational Requirements
The algorithm is quite simple. The complexity of the algorithm
depends on the quantizer, the entropy coder, and the filter used for
down-sampling [4], [5]. In our implementation we use the box
averaging filter. We use a power-of-2 scalar quantizer (16). These
two steps require 12 additions and 8 shifts. The algorithm also
needs a parser and de-parser to code the quantized differences.
We use a 5-element VLC table, so it is very simple. However, the
actual computational cost is image dependent; it depends on how
many zero blocks exist.

Table 2 summarizes the complexity of all algorithms. The
following assumptions are made in the comparison:

1. For the post-processing approach, a 7-4 separable filter is
used.

2. Video sequences are of 4:2:0,720x1280 progressive format.

3. The memory cost of the drift-tracking approach is 1 bpp.

To provide a fair comparison, the numbers of arithmetic
operations (additions, shifts, and multiplies) are calculated on the
pixel basis. These numbers are obtained by dividing the total
number of operations by the number of pixels in a down-sampled
frame

5. CONCLUSIONS
We have described a new technique for DTV down-conversion.
The down-conversion is performed inside the motion
compensation loop of a video codec to achieve memory reduction,
while the pixels discarded by the down-conversion are tracked to
preserve the integrity of motion-compensated prediction. The
algorithm is compared against two competing methods and a
baseline method. The results show that on average, the proposed
algorithm outperforms the competing methods by 7.6 dB in
PSNR. This drift-tracking approach, which is simple and
computationally efficient, can also be easily applied to reduce the
memory of full-resolution HDTV or MPEG decoders [61, [7].

6. ACKNOWLEDGMENTS
The authors thank Anthony Vetro and Huifung Sun of Mitsubishi
for helpful discussions on the cut and synthesis techniques for
DTV down conversion, They also thank Alex Wang for
implementing these two techniques on an MPEG-2 decoder.

7. REFERENCES
[I] A. Vetro and H. Sun, “Frequency domain down conversion

of HDTV using optimal motion compensation,” Int’l JournaL

279

Imaging Systems and Technology, vol. 9, no. 4, pp. 274-282,
1998.

[2] A. Vetro and H. Sun, “On the motion compensation within a
down conversion decoder,” Journal of Electronic Imaging,
vol. 7, no. 3, July 1998.

[3] A.V. Oppenheim and R.W. Schafer, Discrete Time
Signal Processing, Prentice Hall, 1998.

[4] W.B. Pennebaker and J.L. Mitchel, JPEG: Still Image
Compression Standard, Van Nostrand Reinhold, New
York, NY, 1993.

151 S. Merril Weiss, Issues in Advanced Television
Technologies, Focal Press, Newton, MA, 1996.

163 R. Bruni, A. Chimienti, M. Lucenteforte, D. Pau, and
R. Sannino, “A novel adaptive vector quantization
method for memory reduction in MPEG-2 HDTV
decoders,” IEEE Transactions on Consumer
Electronics, vol. 44, no. 3, pp. 537-544, August, 1998.

[7] U. Bayazit et al., “A novel memory compression
system for MPEG-2 decoders,” Proc. Int’l Co@
Consumer Electronics, pp. 56-57, 1998.

63) 03)

Figure 2: Illustration of the drift problem: (a) The image is subsampled after the full-resolution video
frame is generated, and (b) The image is generated by a down converter using subsampled reference
frames in the decoding loop.

280

Figure 3. The quantizer for quantizing the drift error.

II Motion r Inv. WC
Motion & Drift + & Inv. Q
Compensation

’ wee
Image Subsampling

& Drift Tracting

Figure 4. A block dianam of the drift-tracking approach for DTV down conversion.

281

Figure 5: Frame 89 of the Mobile-calendar sequence generated by the post-processing (top-left), cut
(top-right), synthesis (bottom-left), and drift-tracking (bottom-right) methods (with Quantizer=I6 and
a S-element VT .C tahleh.

282

Figure 6: Frame 89 of the Mobile-calendar sequence decoded using the drift-tracking algorithm.
From top to bottom, left to right: Q=6 (1.89 bpp), Q=13 (0.988 bpp), Q=25 (0.556 bpp), and

hnnk where 0 inthe amntizer. - -
_ _

c-k32

0 1 2 3 4 5

bpp

Figure 7: PSNR versus bits needed per pixel and per frame for the Mobile-calendar experiment. Total
memory needed is equal to bpp*720*480*3+4.147 Mbits. Uniform quantizers are used with operation
mnm r-1 28. 1281.

283

Table 1: PSNR and memory comparisons.

Table 2: Complexity comparison.

Measure 1 Post-Proc. 1 cut 1 Synthesis 1 Drift-Track I

Memory (Mbits) 1 33.1766 I 8.2994 I 8.2994 I 11.0592 I
Additions 16 I 11 I 267 I 12 I

Multiplies

VLUDVLC

9

No

0

No

64

No

0

Yes
I I I I 1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page

To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ACM Multimedia ‘99 lo/99 Orlando, FL, USA
0 1999 ACM I-58113-151-8/99/0010...$5.00

284

