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Abstract

This paper summarizes the accomplishments and recent directions of our medical safety project. 

Our process-based approach uses a detailed, rigorously-defined, and carefully validated process 

model to provide a dynamically updated, context-aware and thus, “Smart” Checklist to help 

process performers understand and manage their pending tasks [7]. This paper focuses on support 

for teams of performers, working independently as well as in close collaboration, in stressful 

situations that are life critical. Our recent work has three main thrusts: provide effective real-time 

guidance for closely collaborating teams; develop and evaluate techniques for measuring cognitive 

load based on biometric observations and human surveys; and, using these measurements plus 

analysis and discrete event process simulation, predict cognitive load throughout the process 
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model and propose process modifications to help performers better manage high cognitive load 

situations.

This project is a collaboration among software engineers, surgical team members, human factors 

researchers, and medical equipment instrumentation experts. Experimental prototype capabilities 

are being built and evaluated based upon process models of two cardiovascular surgery processes, 

Aortic Valve Replacement (AVR) and Coronary Artery Bypass Grafting (CABG). In this paper we 

describe our approach for each of the three research thrusts by illustrating our work for 

heparinization, a common subprocess of both AVR and CABG. Heparinization is a high-risk error-

prone procedure that involves complex team interactions and thus highlights the importance of this 

work for improving patient outcomes.
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1 INTRODUCTION

This paper describes progress to date on our process-based medical safety project. This 

project is aimed at using precise, rigorously-defined, and detailed process models to improve 

medical outcomes by providing timely, context-aware guidance to coordinating teams, 

especially during periods of high cognitive load. To evaluate our approach, we are working 

with medical personnel to study and model cardiovascular surgery.

Cardiovascular surgery is a life-critical procedure that demands precise coordination of 

highly skilled teams of humans as well as the timely application of complex equipment. 

Unfortunately, it is also an error prone process, averaging about four errors an hour during 

the four or more hours of surgery [35]. Thus, it is an important example for which to 

develop, apply and evaluate our software-directed, process-based guidance approach to 

reducing errors.

Building upon our previous work, our current focus is threefold:

• How to provide guidance and support to teams of performers, so that each team 

has a clear picture of their process steps and current context as well as 

understands the process state of the other teams they must interact with;

• How to measure and evaluate cognitive load so that we can predict more 

accurately the cognitive demand of the various process performers during a wide 

range of contexts;

• How to incorporate cognitive load information into the process model to help 

process performers handle high load situations better; for example, performers 

are encouraged to limit interruptions and noise during times of high cognitive 

load, and know when intra- and inter-team communication can best be received.
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Cardiovascular surgery requires high levels of both technical skills (activities like tying a 

knot, applying a clamp, etc.) and nontechnical ones involving situational awareness, 

communication, and teamwork. Both are critical to achieving good outcomes. In this paper, 

our focus is primarily on providing support for these non-technical aspects of the process 

(e.g., [13]).

Central to our approach is a cardiovascular surgical team process model: a precisely-defined 

software model that provides a detailed hierarchical view of how all the members of the 

overall surgical team do their work, and how the four specialty subteams (Surgery, 

Perfusion, Anesthesiology, and Nursing) coordinate with each other as well as with a suite 

of medical devices such as a cardiopulmonary bypass pump (also known as a heart-lung 

machine), a lung ventilator, and patient monitors. This model captures the normative (or 

usual) situations as well the non-normative (or exceptional) situations that can be expected 

to arise, as well as details of how these situations are to be handled. The model addresses, 

among other things, how each member of each specialty subteam performs their individual 

activities (or steps) and how team members interact with each other as well as with pertinent 

medical devices and software applications. The hierarchical nature of the model supports 

providing a high level view of team coordination as well as decompositions that support 

arbitrarily detailed specification of how process performers carry out their steps.

These models are being elicited, and iteratively improved, by interviewing surgical domain 

experts, by observing process performers, by consulting medical literature, and by codifying 

best practices. As described in earlier work, the models have been iteratively refined and 

improved by applying automated analyses (e.g., [4]) to identify process defects and 

vulnerabilities that domain experts believe to be hazardous, and to remove these defects and 

reduce these vulnerabilities so that the model can then be better trusted to guide the actual 

performance of surgery.

We are evaluating our approach by focusing on two surgical team processes, Aortic Valve 

Replacement (AVR) and Coronary Artery Bypass Grafting (CABG). For each of these 

processes, we have elicited precise and detailed models of several of their key high-level 

steps, as performed at the Veterans Affairs Boston Healthcare System (VABHS), and 

examples of process defects and vulnerabilities that are of particular concern to surgical 

domain experts. The surgical team process models are written in the Little-JIL process 

modeling language [6]. This language supports precise specification of complex semantics 

such as concurrency, exception management, human-directed choices, and resource 

management. In addition, the language has rigorously-defined semantics that can be used to 

formally analyze these models before they are deployed to monitor progress and provide 

situational awareness during actual surgeries.

In the next section of this paper, we describe our current work on these three aspects of our 

approach. We then present related work and end with a discussion about the status of our 

project and future directions.
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2 APPROACH

The members of an overall surgical team perform cardiovascular surgery in a high-demand 

and high-risk environment requiring simultaneous processing of large amounts of 

information (e.g., [8, 11, 37]). High demands imposed by surgical tasks may at times strain 

the cognitive capacity of process performers, perhaps leading to cognitive overload [33], 

which may impact performance negatively, increasing the risk of patient harm. Successful 

outcomes require the ability to deal with challenging situations, such as exceptional 

situations that may arise even as other exceptional situations are being dealt with. Members 

of the subteams must keep track of what their own team needs to do, but must also maintain 

“situational awareness” of the process steps of the other subteams. Patient safety requires 

that errors be avoided, and their effects mitigated when they occur.

The Multi-Team Smart Checklist draws upon the process model to provide real-time 

guidance and situational awareness by presenting the state of this complex concurrent 

process sufficiently clearly that each process performer can see how each subteam is doing 

its work, including what it has done so far and what the (possible) next steps will be. This 

work builds upon previous work (e.g., [7]) that described a Single-Team view that provides a 

sequential view of the process execution state. In this current work the Multi-Team view 

extends this Single-Team view by displaying the steps of each subteam, as well as indicating 

the ways in which one subteam’s steps interact with and depend on the steps of the others. 

The Multi-Team Smart Checklist also uses the process model to provide a view of upcoming 

situations, helping to prepare process performers for impending periods of high cognitive 

load.

Another key focus of our work will be to identify the situations that produce the high 

cognitive load that increases the likelihood of errors. To that end, our research team has been 

gathering biometric and survey data from actual cardiovascular surgery process performers 

during and immediately after surgery. We are observing that certain process steps are more 

likely to cause high load, but also that the contexts in which these steps are performed have a 

strong effect on cognitive load as well. Patient condition inferred from data gathered and 

synthesized from medical devices can create such contexts, as can the recent occurrence of 

worrisome events, as well as data taken from the skill levels of key surgical team members 

and the states of surgical devices such as cardiopulmonary bypass pumps. In addition, 

analyzing the structure of our process models, such as identifying when an exception, or a 

nest of exceptions, is being handled can be used to predict cognitive load, as can analysis of 

the path that the process has traversed.

Understanding of the effects that each of these contextual factors have on cognitive load will 

also be used to create suggestions for how to avoid these situations or mitigate them. Such 

understandings might be used, for example, to suggest choices when different options are 

available, post broadcast information to assure better coordination, or suggest making 

changes in staffing (e.g. bringing in additional high-skill personnel). We will use speculative 

execution of these process models to determine when and how particularly challenging 

situations might occur in order to advise the surgical team of their imminence, and suggest 

how to avoid them or mitigate their impact on team performance.
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Cardiovascular surgery provides a significant test case for our approach. Our process model 

of the CABG process, parts of which are still being elaborated, is written in Little-JIL and 

consists of 14 high-level steps whose decomposition consists of about 200 steps. This 

process model specifies the recommended process, including the normative scenarios as well 

as the non-normative scenarios. It was elicited through observations of, and multiple 

interviews with, members of each of the four subteams at a teaching hospital of Harvard 

Medical School, many of whom also provided us with best practice guidelines and training 

documents. We expect that these processes may be performed differently at different 

hospitals, and look forward to determining how well our current models could be adapted to 

represent practices at other locations. But we believe that the general approach described 

here for VABHS will also prove useful in other locations and, indeed, to a wide range of 

other critical processes involving the interaction of teams of humans, devices, and software 

applications.

2.1 Context-Aware, Dynamic Guidance Using Smart Checklists

Checklists that guide humans through the performance of processes in various domains have 

been shown to reduce errors (e.g., [14]). Typical checklists, however, can be inadequate in 

guiding humans through the complex aspects of intricate processes such as surgical team 

processes, which are known to be inherently error prone (e.g., [34]). We are developing and 

evaluating a framework that dynamically generates Smart Checklist user interfaces [7] that 

provide context-aware guidance to humans as they are performing a real-world process. This 

framework updates the Smart Checklists, which visualize the process execution state, by 

monitoring real-time process execution events and then matching them against sequences of 

events specified in the validated process models. In previous work, we presented an initial 

prototype of a Single-Team Smart Checklist which provides an individual view for a single 

subteam that displays their process execution state, including previously performed steps; 

step(s) currently being performed; and potential future steps for alternative ways forward. 

Here we present a design for a Multi-Team Smart Checklist that, in addition to single-team 

views, provides a shared view for multiple subteams that displays the complicated 

interactions among subteams.

In order to update the Smart Checklists, our framework must recognize events that occur in 

the actual process execution. For steps completed by human process performers, this 

information can be reported to the framework by the agent interacting with the Smart 

Checklist, by a scribe tracking the process in the operating room, or possibly even analyzing 

video or audio streams. The framework, however, must also gather information from a 

number of complex medical devices. In our project, this is handled by the OpenICE (Open 

Integrated Clinical Environment) [2] open-source implementation of the ASTM 

F2761-09(13) standard [3]. In our work OpenICE assumes responsibility for gaining access 

to device-generated data and makes it available to process subscribers. Some devices, like 

patient monitors and ventilators, monitor several hundred variables, including device 

settings, alarms, technical alerts, and internal device component status, in addition to values 

monitored from patients. Thus OpenICE also creates more abstract, higher-level information 

that combines and summarizes lower level data elements, where this data may even come 

from several different devices. This facilitates the incorporation into our process models of 
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conditions or guard statements that may be based on complicated calculations where the 

mathematics may not be appropriate to include in the process model. Thus, complex 

calculations, perhaps based on data from diverse devices are done by OpenICE, and are 

presented as a simple variable to the process model. This approach has been used, for 

instance, to replace the monitoring and integration of lung gas flow values with a single 

“patient-breath-finished” Boolean variable [1]. Additionally, OpenICE could be used to 

integrate with medical software applications such as electronic health records.

Multi-Team Smart Checklists need to guide surgical teams through processes that often 

involve complex and overlapping interactions. Since multiple subteams are often 

concurrently performing their steps, those subteams often need to communicate shared data 

and correctly synchronize or order the steps. For a given subteam, some of their steps may 

need to be performed individually and others may need to be performed collaboratively with 

at least one other subteam. Additionally, a subteam may need to go on standby while other 

subteams complete some steps before continuing on to perform their own steps. We 

therefore designed the Multi-Team view so that it can display information about the multiple 

subteams and their key shared data. We also designed this view to allow the overall surgical 

team to selectively show a Single-Team view for each subteam, showing a listing of that 

subteam’s steps as well as any other subteam’s steps that they are waiting on. The Multi-

Team view must keep those Single-Team views synchronized as the different subteams 

progress through the process.

We illustrate this here with a part of the Heparinization subprocess that is common to both 

CABG and AVR surgery. Heparinization is a complex task that is critically important. It 

incorporates the detection and response to a number of different contingencies that can add 

significantly to the cognitive load of its performers. It is also of critical importance because 

incorrect performance can create the serious risk of stroke during the cardiovascular surgery, 

due to clots that form when the patient’s blood comes in contact with the highly 

thrombogenic plastic cannulae (specialized tubing) that have been inserted directly into the 

bloodstream, or as blood circulates through the cardiopulmonary bypass pump. To reduce 

this risk, the anticoagulant drug heparin is administered to reduce the tendency of the blood 

to clot, as measured by the activated clotting time (ACT). So a key phase of standard CABG 

or AVR surgery is the administration of heparin before inserting the cannulae and initiating 

cardiopulmonary bypass. This is a complex process, involving primarily the Surgery, 

Anesthesiology, and Perfusion specialty subteams. If the initial dose of heparin does not 

provide sufficient anticoagulation, a series of additional measures based on best practices 

[12, 32] will be applied, with the ACT checked after each is tried. If none of these is 

successful, the surgeon may decide to switch to an “off-pump” procedure (in the case of 

CABG) or to abort the procedure altogether.

Figure 1 shows a Multi-Team Smart Checklist to guide the overall surgical team, consisting 

of the Anesthesiology (denoted by ’A’), Nursing (denoted by ’N’), Perfusion (denoted 

by ’P’), and Surgery (denoted by ’S’) subteams, as they execute the Perform isolated 
CABG process. (“Isolated” means that it is not performed in combination with another 

procedure such as AVR.) Specifically, the Anesthesiology, Perfusion, and Surgery subteams 

are working together on the Perform heparinization subprocess (the subteams are denoted 
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by the prefix ’A,P,S:’ and the green background indicates this subprocess is currently being 

performed by those subteams). This Smart Checklist supports context-awareness in several 

ways, including the team information (shown by the team tabs along the top and the team 

table on the top left), the patient information (shown in the top middle), and the process 

execution state (shown on the top right and the bottom). The Smart Checklist can be 

customized by selecting which information (or state) should be shown and how to display 

that information. For instance, any step name that starts with perform (e.g., Perform 
isolated CABG) can be abbreviated (e.g., Isolated CABG).

In this figure, the overall surgical team decided to show a Multi-Team view (by selecting the 

tab labeled with that view) and then selecting the Anesthesiology, Perfusion, and Surgery 

subteams (by selecting the items in the team table for those subteams), since these teams 

need to coordinate their progress during the Heparinization subprocess. The patient 

information includes some selected patient identifiers, real-time vital sign data provided by 

OpenICE, and key subprocess-related data such as the target ACT that heparinization is 

aiming to achieve. The process execution state includes the high-level subprocess listing 

(shown on the top right). Additionally, this state includes the Heparinization subprocess 

listing (shown on the bottom), consisting of Single-Team views for the Anesthesiology 

subteam (shown on the bottom left), the Perfusion subteam (shown on the bottom middle), 

and the Surgery subteam (shown on the bottom right).

For the Heparinization subprocess, a recommended dose of heparin is calculated before the 

surgery according to the guidelines [32]. To begin this subprocess, that dose is physically 

administered to the patient by the anesthesiologist. After waiting at least 3 minutes, the 

anesthesiologist draws a blood sample and the perfusionist tests its ACT. In each of the three 

Single-Team views that are shown in this figure, the Perfusion team previously completed 

step Test blood sample for ACT (indicated by the gray backgrounds along with the green 

checkmark icons and the timestamps). The Perfusion subteam’s view shows that this 

subteam is currently performing step Confirm target ACT achieved (indicated by the green 

background along with the green checkmark and red X buttons). For the current step, the 

subteam may consult with the Anesthesiology and Surgery subteams to decide whether or 

not the target ACT has been achieved (indicated by the prefix ‘P(,A,S):’). The 

Anesthesiology and Surgery subteams’ views also show that these two subteams may be 

consulted about this decision (indicated by the green backgrounds). For the normative 

situation, the Perfusion subteam would decide that the target ACT has been achieved and 

this team should click on the green checkmark button. This situation has the potential future 

step If decision to use pump sucker = YES, turn on pump sucker (the white background 

indicates that this is a future step). For the exceptional situation where the problem Low 
ACT was identified, the Perfusion subteam should click on the red X button to report the 

identified problem. This situation has the potential future step If low ACT, follow heparin 
resistance protocol. Additionally, the Perfusion subteam could decide to document their 

clinical notes by clicking on the notepad button to bring up a dialog box and then type in the 

notes.

Figure 2 depicts the process execution state just after the Anesthesiology, Perfusion, and 

Surgery subteams have completed the step Confirm target ACT achieved and reported that 
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the problem Low ACT was identified (shown towards the middle of the Heparinization 
process listing with a gray background, a red X icon, and timestamp “15:49”). To address 

that problem, the Anesthesiology, Perfusion, and Surgery subteams have started to perform 

If low ACT, follow heparin resistance protocol (shown with a green background). In the 

Perfusion subteam’s view, the Gather Anesthesiology, Perfusion, and Surgery team 
leaders is shown with a green background and a green checkmark button, indicating that the 

Perfusion subteam needs to perform this step. On the other hand, the Anesthesiology 

subteam’s view shows that Anesthesiologist is waiting for the Perfusionist to perform the 

step (the yellow background and grayed out text indicates the subteam is waiting for some 

other process performer to complete this step). For the exceptional situation where the 

problem Low ACT is being addressed, the potential future step is Treat heparin resistance 
that specifies that the subteams try several alternatives in the listed order, trying to 

successfully achieve the target ACT. If any of these alternatives succeeds, the potential 

future step is If decision to use pump sucker = YES, turn on pump sucker. If none of the 

alternatives succeed, the overall surgical team can either attempt an alternative procedure (an 

“off-bypass” approach that does not use the pump, which is not possible for AVR) or abort 

the surgery.

The proposed Smart Checklist design has been very favorably received by focus groups of 

cardiovascular surgical team members. The team members could see the potential of such 

checklists to improve team training and reduce procedural errors by their inclusion of details 

about key shared data, necessary team communication, and exceptional situations. The focus 

groups suggested that each subteam have its own monitor to display its own perspective on 

an ongoing process. They also suggested that all subteams have a shared monitor to display 

all interactions during key process steps such as heparinization. The focus groups also 

indicated that certain process steps, either by definition or because of their context, have a 

high cognitive load and thus are more likely to lead to procedural errors. The next two 

subsections describe how to measure or predict the cognitive load for such steps and how the 

Smart Checklists could modify the guidance provided based on those cognitive loads. Our 

next evaluation of these checklists will entail live human simulations aimed at guiding the 

entire team, or part of the team, through various normative and exceptional scenarios, drawn 

from recordings to be described in the next subsection.

2.2 Dynamically Measuring Cognitive Load Using Heart Rate Variability Analysis and 
Surveys

It is well established that errors are more likely when process performers are under high 

cognitive load [13, 34]. The process guidance and situational awareness provided by the 

Multi-Team Smart Checklist are expected to help reduce the likelihood of certain kinds of 

errors directly, by reminding surgical team members of the steps that need to be performed 

in a particular context, and indirectly, by providing additional situational awareness. But the 

Smart Checklist could also be used to directly reduce the cognitive load of team members 

by, for instance, indicating periods when a particular team member should not be interrupted 

with non-emergency communications or even calling for additional resources when they 

would help a team member with a particularly complex situation. To achieve these benefits, 
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however, we need a way of measuring the cognitive load on individual team members in 

something close to real time.

A well-validated retrospective measure of (self-perceived) cognitive load in surgery is the 

SURG-TLX questionnaire [36], based on the NASA-TLX (Task Load Index) [15]. But this 

questionnaire is completed after the surgery and does not provide information that can be 

used in guiding team members during the surgery. After a careful review [9] and validation 

against SURG-TLX [10], we have chosen heart rate variability (HRV) as an objective 

measure of cognitive load that can be obtained in near real time. We are currently combining 

video and audio recordings of CABG and AVR surgeries with measures of inter-beat (R-R) 

intervals captured by a smartphone app connected to heart rate sensors worn by the lead 

member of each subteam. The measure of cognitive load can be obtained from spectral 

analysis of this data. We are also using the recordings to associate cognitive load with 

specific process steps in our cardiovascular surgery process models.

Our preliminary data suggest that this approach is promising and can begin to allow us to 

use real-time measures of cognitive load to identify situations in which particular team 

members are under high (or low) cognitive load and use this information to inform process 

guidance. We also hope to be able to associate high cognitive load with particular 

subprocesses and contexts.

2.3 Reducing Errors by Predicting Cognitive Load

Some of this information about the process performer’s cognitive load can be used directly 

by the Smart Checklist. For instance, it is well-established that interruptions during periods 

of high cognitive load are very disruptive and substantially increase the load and the 

likelihood of errors. The Smart Checklist could be used to warn the members of other 

subteams that a particular subteam or subteams are under high cognitive load and 

communication with them should be limited to essential information. The Checklist could 

even request other subteams to minimize all communication and other noise during 

particularly high-load periods. Or the Checklist might provide more detailed guidance 

during periods of high cognitive load, so that performers are reminded of details that they 

might ordinarily be expected not to require.

But our long-term goal is to provide guidance that will, when possible, help re-direct the 

process execution away from high cognitive load situations. For instance, it might be 

possible to recognize that a period of especially high cognitive load is about to arise and 

request additional resources, such as advice from a senior colleague or call for the delivery 

of special equipment. One approach we are exploring is to use a process simulator to 

traverse forward from the current process state through the process model, exploring 

multiple paths when control flow alternatives are encountered. If we can associate 

appropriate levels of cognitive load to process steps in particular contexts, the simulator 

could estimate the cognitive load along each of these possible executions for a given number 

of steps, or a certain amount of time, into the future. If a critical level of cognitive load is 

predicted along such a path, or perhaps if an appropriate function of the cognitive loads 

predicted for all impending paths exceeds some criterion, the Checklist could propose steps 

to reduce or avoid that load. In the future, we might be able to guide execution by defining 
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and monitoring an optimal level of cognitive load, similar to what has been proposed for 

aviation. Such an approach requires good estimates of cognitive load for steps in context, 

which we hope to begin to get from our measurements of cognitive load in actual surgeries, 

and information about measures that might help reduce the load. That latter information 

would be derived from a careful process design effort involving the medical domain experts.

We are currently modifying our discrete event simulator to track cognitive load along a 

simulated process path. This approach needs to support considerations of the inherent load, 

for each subteam, of a particular step as well as the effect of various process contexts, e.g., 

entering or leaving the exception handlers that were described as the various responses to 

low ACT during the Heparinization subprocess. Similarly, it will be important to predict an 

increase in cognitive load during periods of the process where several subteams must 

coordinate and communicate effectively, with the cognitive load of the communicating 

subteams perhaps increasing nonlinearly with the number of subteams that must 

communicate.

Both the self-reported measures of cognitive load and our initial data from HRV 

measurements indicate that another important factor in a process performer’s cognitive load 

is the expertise level of various team members. The VABHS is a teaching hospital, and so 

training of new personnel is typically part of surgeries. Our data indicate, not surprisingly, 

that the cognitive load on a senior process performer is significantly increased when that 

person is teaching as part of the process. But even when no explicit teaching is being 

performed, we have observed, for instance, that the surgeon’s cognitive load is higher when 

working with a less experienced anesthesiologist. As part of the ROMEO resource 

management component of our simulator [28], we have the ability to quantify certain 

characteristics of the individual human process performers, and to use those quantities in 

computing cognitive load adjustment. ROMEO supports the specification of each resource, 

human and non-human, that is a candidate for participation in the performance of a process. 

Each specification contains a set of quantified attributes. At present this set includes 

experience level, and skill level, where the level of the process performer’s skill can be 

specified for each of the steps of the process. But we expect our research to indicate the need 

to include additional attributes in our model so that we will be better able to predict 

cognitive load along simulated execution paths.

3 RELATED WORK

Medical processes are known to be inherently complex and error prone (e.g., [11, 21]). Paper 

checklists have been used in multiple domains, initially in aviation (e.g., [5]) and now in 

medicine (e.g., [14]), and shown to be able to significantly reduce errors. One objection to 

such checklists, however, is that they describe the normative situations but not the 

exceptional situations where a problem is identified and then must be addressed. Another 

objection to these checklists is that they are static and hence unable to make adjustments for 

context.

Including exceptional situations can be useful for novices as well as experts because these 

situations may rarely occur and how the identified problem is addressed may be complex, 
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involving team communication, collaborative decision making, and subsequent exceptional 

situations. In the medical domain, some of the commonly occurring exceptional situations 

that are high risk for the patient have been standardized as crisis checklists (e.g., [39]). In 

our Heparinization subprocess model, the step Follow heparin resistance protocol is 

based on a customized crisis checklist developed at the VABHS [18].

Electronic checklists (e.g., [16]) have been introduced to be able to visualize the process 

execution state and dynamically update that state based on the actual process execution 

events produced by the medical team and automated components such as medical devices 

and software applications. Some of these electronic checklists provide simple visualizations 

of the paper-based checklists. Other electronic checklists (e.g., [24, 29]) support complex 

visualizations of the process execution state including information about the medical team, 

the patient, the process steps, etc. Some of this work, most notably the Tracebook project 

[26], is also based on a process model. While these process-model based projects share our 

goals, the process notations that they use seem to us to lack the powerful semantics required 

(e.g exception management, resource specification, and procedural abstraction) to represent 

complex processes such as cardiac surgery with the necessary detail, precision, and clarity.

Some related work (e.g., [19]) uses cognitive informatics techniques to evaluate how the 

cognitive abilities of a single clinician or team affect the performance of medical processes, 

impacting healthcare outcomes. Such cognitive evaluation provides feedback to clinicians, 

suggesting how to better perform the processes and improve outcomes. In our work, we 

described how Smart Checklists can provide guidance to clinicians performing medical 

processes and described our efforts to measure and predict cognitive load contexts for those 

processes. As future work, we plan to investigate how to reduce procedural errors by using 

different cognitive load contexts to tailor the guidance we provide to clinicians.

Other related work on measuring cognitive load either during or immediately after surgery is 

discussed in detail in [9].

Discrete event simulation, driven by articulate models of processes, is a research area that 

has been pursued by a number of researchers for at least 20 years [20, 27, 38]. More recently 

discrete event simulations of processes has become more ambitious, incorporating the use of 

orthogonal specifications of the behaviors and characteristics of agents performing the steps 

articulated in the simulation model [28]. In previous work we have reported on early efforts 

to use this kind of mixed agent/activity simulation for medical processes [31]. The work 

reported here extends that previous work by incorporating representations of the cognitive 

load on agents as a key focus of the simulations.

4 CONCLUSIONS

Although 18 years have elapsed since the seminal U.S. Institute of Medicine report on 

medical errors and patient safety, healthcare safety still lags significantly behind other high-

reliability organizations (e.g., [21, 23, 34]). To fill this safety gap, new medical error and 

patient safety management approaches are necessary.
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Complex procedural healthcare (e.g. surgery, interventional radiology, interventional 

cardiology, etc.) is a high-consequence team-based sociotechnical system with critical 

requirements for communication and coordination (e.g., [13, 23, 34]). Contemporary 

sociotechnical systems research has moved away from the individual as the unit of cognitive 

analysis, and a new focus on the activity system (a group of human actors, their tools and 

environment) has been proposed; this framework has been referred to as “distributed 

cognition” (e.g., [17, 30]).

Our project has taken an important step towards operationalization of many of these ideas. 

We have materialized surgical team coordination in the form of a precise, validated, 

rigorously-defined process model and have embedded observations about the loci of high 

cognitive load situations in the model. We are evaluating whether this information can be 

used to help surgical team process performers anticipate these situations, and to guide the 

participants through and/or around them. But much work remains to be done.

Thus, for example, we need to continue to improve our methods for recording human-

initiated events and communications, to gain more complete access to medical device data, 

to sharpen our ability to coordinate process model state with the state of the actual process. 

We rely heavily on scribes to do this now, but automated approaches such as voice 

recognition should be explored, as well as enhancements to the Smart Checklist user 

interface, aimed at facilitating wider categories of human input. We are also exploring how 

best to specify and monitor adherence to timing constraints, and use them to help performers 

without annoying them.

Our approach is based upon iterative incremental improvement. Thus our models are 

increasingly broader, deeper and more accurate, and the properties, constraints, and hazards 

against which they are evaluated continue to grow in number and precision. Our 

observations are being sharpened and enhanced as we continue to gather data from 

monitoring increasing numbers of surgeries. We are similarly refining our measurements of 

cognitive load and the associations of increased load with particular steps and contexts 

(especially non-normative contexts) in the process model, and we are using discrete event 

simulation to sharpen and validate these associations.

Our work fits well with work on detailed process models that focus on the fine-grained 

activities of a single process performer, such as the surgeon [22]. For example, the contexts 

provided by our higher-level team activities should be useful in helping to sharpen and adapt 

models of these fine-grained activities, and we look forward to incorporating these details 

into our models as well.

Our work should also complement work in the new area of Surgical Data Science [25]. We 

expect that the progress being made in that area will yield events, insights, and 

measurements that will be useful in further iterative improvements to our models. 

Conversely we believe that our work should be of substantial benefit to the Surgical Data 

Science community by suggesting hierarchical frameworks within which to structure 

observed and recorded data streams. As noted above, context plays a very important role in 

understanding and supporting surgical processes. While it may be possible to create such 
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contexts by inferring hierarchy and other forms of structure from raw surgical event streams, 

we believe that, in making such structure explicit, our work will provide a framework for 

creating useful contextual information from the surgical data event streams that are 

collected.
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Figure 1. 
Multi-Team Smart Checklist to guide the Anesthesiology, Perfusion, and Surgery subteams 

through the Perform isolated CABG process
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Figure 2. 
Updates to the Multi-Team Smart Checklist after the Perfusion team completes step Confirm 

target ACT achieved and reports that the problem Low ACT needs to be addressed
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