
To Call, or Not to Call: Contrasting Direct and Indirect Branch
Coverage in Test Generation *

Gregory Gay
University of South Carolina

Columbia, SC, United States

greg@greggay.com

ABSTRACT
While adequacy criteria offer an end-point for testing, they do not

mandate how targets are covered. Branch Coverage may be attained
through direct calls to methods, or through indirect calls between
methods. Automated generation is biased towards the rapid gains

offered by indirect coverage. Therefore, even with the same end-goal,

humans and automation produce very different tests. Direct coverage

may yield tests that are more understandable, and that detect faults

missed by traditional approaches. However, the added burden for the

generation framework may result in lower coverage and faults that

emerge through method interactions may be missed.

To compare the two approaches, we have generated test suites for

both, judging efficacy against real faults. We have found that requir-

ing direct coverage results in lower achieved coverage and likelihood

of fault detection. However, both forms of Branch Coverage cover

code and detect faults that the other does not. By isolating methods,

Direct Branch Coverage is less constrained in the choice of input.

However, traditional Branch Coverage is able to leverage method

interactions to discover faults. Ultimately, both are situationally

applicable within the context of a broader testing strategy.

CCS CONCEPTS
• Software and its engineering → Software testing and debug-
ging; Search-based software engineering; Software verification
and validation;

KEYWORDS
Adequacy Criteria, Automated Test Generation, Branch Coverage

ACM Reference Format:
Gregory Gay. 2018. To Call, or Not to Call: Contrasting Direct and Indirect

Branch Coverage in Test Generation . In SBST’18: SBST’18:IEEE/ACM
11th International Workshop on Search-Based Software Testing , May 28–29,
2018, Gothenburg, Sweden. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3194718.3194719

*This work is supported by National Science Foundation grant CCF-1657299.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SBST’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5741-8/18/05. . . $15.00
https://doi.org/10.1145/3194718.3194719

public int[] add(int[] values, int valueToAdd){
for(int i = 0; i < values.size(); i++){

if(valueToAdd >= 0){
values[i] = faultyAdd(values[i], valueToAdd);

}
}
return values;

}

public int faultyAdd(int value, int valueToAdd){
if (valueToAdd <= 0){ // FAULT, should be ==

return value;
}
return value + valueToAdd;

}

Figure 1: Sample code where coverage can be attained directly
or indirectly over method faultyAdd.

1 INTRODUCTION
As we cannot know what faults exist in software, dozens of criteria—

ranging from the measurement of structural coverage to the detection

of synthetic faults [9, 10]—have been proposed to judge the ade-
quacy of software testing efforts. Such adequacy criteria provide
advice to developers, and can be used as optimization targets for

automated test generation [8].

Regardless of the process used to create test cases—automated

or manual—adequacy criteria offer a measurable goal, a point at

which test creation can stop. Consider Branch Coverage—arguably

the most common criterion used in research and practice [5]. At

various points in a class, the decision of which block of statements

to execute depends on the outcome of a branch predicate. Such
branching points—contained within if and switch statements
and loop conditions—determine the flow of control. Branch Cover-

age mandates that each predicate evaluate to all possible outcomes,

ensuring that the correct statements are executed.

No conditions are placed on how coverage is achieved. As a result,
even though they may have the same end-goal, humans and automa-

tion produce very different test cases. Consider the two methods in
Figure 1. Method add iterates over an array of integers. If the value
to add to each is ≥ 0, then method faultyAdd is called to add that
amount. Method faultyAdd has a fault in it, where—if the value
to add is ≤ 0—we return the original value. The expression should

state == 0, which means that negative numbers are incorrectly han-

dled. Because the two methods are linked through the call from add
to faultyAdd, Branch Coverage of faultyAdd can be attained
indirectly by providing test input to add. Automated test generation
algorithms, designed to reward efficient attainment of coverage, may

never call add directly as its branches can be covered indirectly.
The use of adequacy criteria in automated generation contrasts

how such criteria are used by humans. For a human, a criterion such

as Branch Coverage typically serves an advisory role—as a way

to point out gaps in existing efforts. Yet, in automated generation,

43

2018 ACM/IEEE 11th International Workshop on Search-Based Software Testing

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3194718.3194719&domain=pdf&date_stamp=2018-05-28

SBST’18, May 28–29, 2018, Gothenburg, Sweden Gregory Gay

coverage is typically the goal, and generators will single-mindedly
climb towards that goal. A human tester would not stop after testing

add, just because Branch Coverage has been attained. They would
still write unit tests for faultyAdd to ensure that it works in
isolation. By stopping after attaining indirect coverage, automated

test suites cannot discover the fault in Figure 1—the indirect call
can only cover the faulty code with a value of 0, but a negative value

is needed to trigger a failure. This is impossible without a direct

call. While a human may not discover this fault either, they are more

likely to attempt such input. Although this is a simple example, more

complex representations of the same situation are common during

development (we cover real-world examples in Section 4.3).

Indirect coverage of branches also carries a cognitive cost for

human developers. In a user study, Fraser et.al found that developers

dislike tests that cover branches indirectly, because they are harder

to understand and extend with assertions [3]. This imposes a high

human oracle cost that may outweigh the benefits of automated
generation [1]. The understandability benefits of direct coverage

may help alleviate the concerns of developers with the readability of

generated unit tests [2].

Recent updates to the EvoSuite test generation framework allow

the use of both traditional Branch Coverage, where indirect attain-

ment is allowed, and Direct Branch Coverage, where branches must

be covered through direct method calls [10]. Direct Branch Coverage

should carry a lower human oracle cost, and may detect faults that

require direct calls. However, because indirect coverage does not

contribute to the total Branch Coverage, the generator must make

additional method calls to cover branches that traditional Branch

Coverage could handle indirectly. This will likely result in a dip in

coverage unless additional time is offered to the generation process.

If there is enough of a coverage loss, then generated suites may have

lower fault-detection potential as well. Additionally, while direct

coverage is required to detect the example in Figure 1, other faults

may only—or more easily—emerge by focusing on the interactions

between methods. Therefore, it is not clear whether the benefits of

direct coverage outweigh the costs of ignoring indirect coverage.

In order to study the costs and benefits of each approach, we

have used EvoSuite to generate test suites using both variants of

Branch Coverage, with efficacy judged against the Defects4J fault

database [7]. By examining the attained coverage and fault-detection

capabilities of both variants, we can determine the impact of the

choice of fitness function on the generated test suites and explore

situations where one form of Branch Coverage may be more appro-

priate than the other. To summarize our findings:

• Given a two-minute search budget, traditional Branch Cover-
age discovers 10.40% more faults and has a 13.59% higher

average likelihood of fault detection than Direct Branch Cov-

erage. With a ten-minute budget, traditional Branch Coverage

discovers 4.32% more faults and has a 7.61% higher average

likelihood of fault detection.

• Similarly, traditional Branch Coverage attains an average
7.94-9.00% higher Line Coverage and 9.09-10.20% higher

Branch Coverage over the code, as well as 8.06-9.46% higher

coverage over the faulty lines of code.
• However, each method covers portions of the code and de-
tects faults that the other does not. By examining methods

in isolation, Direct Branch Coverage is less constrained in

the input it uses to cover each method. Traditional Branch

Coverage is able to leverage the context in which methods

interact to detect faults that emerge from those interactions.

We have found that requiring direct coverage imposes a cost in

terms of coverage and likelihood of fault detection. As long as the

human oracle benefits of Direct Branch Coverage outweigh the need

to offer additional time for generation, practitioners may find value

in requiring direct coverage. Ultimately, there are clear situations

where each form of coverage is more suited to detecting a particular

fault than the other. Importantly, both also have important limitations

not possessed by the other. This indicates that both variants have

value as part of a broader testing strategy, and that future approaches

to test generation could leverage the strengths of each approach.

2 BACKGROUND
Test case creation can naturally be seen as a search problem [8]. Of

the thousands of test cases that could be generated for any SUT,

we want to select—systematically and at a reasonable cost—those

that meet our goals [8]. Given a well-defined testing goal, and a

scoring function denoting closeness to the attainment of that goal—
called a fitness function—optimization algorithms can sample from
a large and complex set of options as guided by a chosen strategy

(the metaheuristic). Metaheuristics are often inspired by natural
phenomena, such as swarm behavior or evolution.

While the particular details vary between algorithms, the general

process employed by a metaheuristic is as follows: (1) One or more

solutions are generated, (2), The solutions are scored according to

the fitness function, and (3), this score is used to reformulate the

solutions for the next round of evolution. This process continues

over multiple generations, ultimately returning the best-seen solu-

tions. By determining how solutions change over time, the choice of

metaheuristic impacts the quality and efficiency of the search.

As we cannot know what faults exist without verification, and

as testing cannot—except in simple cases—conclusively prove the

absence of faults, a suitable approximation must be used to measure

the adequacy of tests. The most common methods of measuring ade-

quacy involve coverage of structural elements of the software, such

as individual statements, branches of the software’s control flow, and

complex boolean conditional statements [9]. Each adequacy criterion

embodies a set of lessons about effective testing—requirements tests

must fulfill to be considered adequate. If tests execute elements in the

manner prescribed by the criterion, than testing is deemed “adequate”

with respect to faults that manifest through such structures. Ade-

quacy criteria have seen widespread use in software development,

and is routinely measured as part of automated build processes [5]1.

Adequacy criteria offer clear checklists of testing goals that can

be objectively evaluated and automatically measured [9]. These very

same qualities make adequacy criteria ideal for use as automated test

generation targets. In search-based testing, the fitness function needs

to capture the testing objective and guide the search. Through this

guidance, the fitness function has a major impact on the quality of

the solutions generated. Adequacy criteria can be straightforwardly

transformed into distance functions that effectively guide to the

search to better solutions [8].

1For example, see https://codecov.io/.

44

To Call, or Not to Call: Contrasting Direct and Indirect Branch
Coverage in Test Generation

SBST’18, May 28–29, 2018, Gothenburg, Sweden

3 STUDY
While coverage criteria mandate an end-goal for testing, they impose

no restrictions on how that goal is attained. Most test generation

approaches count indirect coverage of the code in called methods
towards the total. However, we could restrict counted coverage to

that attained through direct calls to methods [10]. Direct Branch

Coverage may offer benefits in terms of the understandability of test

cases, and may contribute to fault discovery. However, it is not clear

whether those benefits outweigh the potential loss in coverage—and

potentially fault-detection capability—that would result from the

additional demands imposed on the generation framework.

In order to study the costs and benefits of both forms of Branch

Coverage, we have used EvoSuite to generate test suites using both

variants, with efficacy judged against the Defects4J fault database [7].

By examining the coverage and fault-detection capabilities of suites

generated using both forms of coverage, we can determine the im-

pact of this choice on the automated test generation process and

explore situations where one form of Branch Coverage may be more

appropriate than the other. In particular, we wish to address the

following research questions:

(1) Given a fixed time budget, which form of Branch Coverage

detects the most faults, and which has the highest likelihood

of fault detection?

(2) Given a fixed time budget, does the additional difficulty of

attaining Direct Branch Coverage result in a lower final level

of attained coverage?

(3) How does an increased search budget impact the performance

gap between the two forms of Branch Coverage?

(4) Are there particular types of faults that certain forms of

Branch Coverage are better suited to detect?

We have performed the following experiment:

(1) Collected Case Examples: We have used 353 real faults,
from five Java projects, as test generation targets (Section 3.1).

(2) Generated Test Cases: For each class, we generated 10
suites satisfying each form of Branch Coverage. We per-

formed this task using a two-minute and a ten-minute search

budget per CUT (Section 3.2).

(3) Assessed Fault-finding Effectiveness (Section 3.3).
(4) Recorded Generation Statistics: For each suite, fault, and

budget, we measure factors that allow us to compare suites,

related to coverage, suite size, and suite fitness (Section 3.3).

3.1 Case Examples
Defects4J is an extensible database of real faults extracted from Java

projects [7]2. Currently, the “stable” dataset consists of 357 faults

from five projects: Chart (26 faults), Closure (133), Lang (65), Math

(106), and Time (27). Four faults from the Math project were omitted

due to complications encountered during suite generation, leaving

353 that we used in our study.

Each fault is required to meet three properties. First, a pair of

code versions must exist that differ only by the minimum changes

required to address the fault. The “fixed” version must be explicitly

labeled as a fix to an issue, and changes imposed by the fix must be

to source code, not to other project artifacts such as the build system.

2Available from http://defects4j.org

Second, the fault must be reproducible—at least one test must pass

on the fixed version and fail on the faulty version. Third, the fix must

be isolated from unrelated code changes such as refactorings. For

each fault, Defects4J provides access to the faulty and fixed versions

of the code and developer-written test cases that expose the fault.

3.2 Test Suite Generation
The EvoSuite framework uses a genetic algorithm to evolve test

suites over a series of generations, forming a new population by

retaining, mutating, and combining the strongest solutions. It is

actively maintained and has been successfully applied to a variety of

projects [4, 11]. In this study, we used EvoSuite version 1.0.3 and its

implementations of Branch Coverage and Direct Branch Coverage.

A test suite satisfies Branch Coverage if all control-flow branches

are taken by at least one test case—the test suite contains at least one

test whose execution evaluates the branch predicate to true, and
at least one whose execution evaluates the predicate to false. To
guide the search, the fitness function calculates the branch distance
from the point where the execution path diverged from the targeted

branch. If an undesired branch is taken, the function describes how

“close” the targeted predicate is to being true. The fitness value of a

test suite is measured by executing all of its tests while tracking the

branch distances d(b, Suite) for each branch.

FBC (Suite) =
∑
b ∈B

v(d(b, Suite)) (1)

Note that v(...) is a normalization of the distance d(b, Suite) be-
tween 0-1. The value of d(b, Suite), then, is calculated as follows:

d(b, Suite) =
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if the branch is covered,

v(dmin (b, Suite)) if the predicate has been exe-

cuted at least twice,
1 otherwise.

(2)

The cost function used to attain the distance value follows a

standard formulation based on the branch predicate [8].

The fitness function for Direct Branch Coverage is the same

as that used for Branch Coverage [10], but only methods directly

invoked by the test cases are considered for the fitness and coverage

computation of branches in public methods. Private methods may

be covered indirectly (as they cannot be called directly).

Test suites are generated that target the classes reported as relevant

to the fault by Defects4J. Tests are generated using the fixed version

of the CUT and applied to the faulty version in order to eliminate

the oracle problem. In practice, this translates to a regression testing

scenario, where tests guard against future issues.

Two search budgets were used—two minutes and ten minutes

per class. This allows us to examine whether an increased search

budget benefits each fitness function, and is comparable to similar

testing experiments [11]. To control experiment cost, we deactivated

assertion filtering—all possible regression assertions are included.

All other settings were kept at their default values. As results may

vary, we performed 10 trials for each fault and search budget.

Generation tools may generate flaky (unstable) tests [11]. For

example, a test case that makes assertions about the system time

will only pass during generation. We automatically remove flaky and

45

SBST’18, May 28–29, 2018, Gothenburg, Sweden Gregory Gay

Budget Chart Closure Lang Math Time Overall

BC
120 17 16 36 53 16 138
600 20 19 35 54 17 145
Total 21 21 41 57 18 158

DBC
120 14 16 32 48 15 125
600 19 19 36 47 18 139
Total 19 22 40 52 18 151

Table 1: Number of faults detected by each Branch Coverage
variant. Totals are out of 26 faults (Chart), 133 (Closure), 65
(Lang), 102 (Math), 27 (Time), and 353 (Overall).

Budget Chart Closure Lang Math Time Overall

BC
120 45.00% 4.66% 34.00% 27.94% 34.82% 22.07%

600 48.46% 5.79% 40.15% 32.75% 39.26% 25.61%

% Change 7.69% 24.19% 18.10% 17.19% 12.77% 16.05%

DBC
120 34.23% 5.11% 30.00% 24.51% 31.11% 19.43%

600 40.77% 6.09% 38.77% 28.63% 40.37% 23.80%

% Change 19.10% 19.12% 29.23% 16.80% 29.76% 22.45%

Table 2: Average likelihood of fault detection (proportion of
suites that detect the fault to those generated), broken down by
coverage type, budget, and system. “% Change” indicates how
results change when moving to a larger search budget.

non-compiling tests. On average, less than one percent of the tests

are removed from each suite [4].

3.3 Data Collection
To evaluate the fault-finding effectiveness of the generated test suites,

we execute each test suite against the faulty version of each CUT.

The effectiveness of each fitness function, for each fault, is the
proportion of suites that successfully detect the fault to the total

number of suites generated for that fault. We also collected the

following for each test suite:

Achieved Branch and Line Coverage: Using the Cobertura tool,
we have measured the Line and Branch Coverage achieved by each

suite over each CUT.

Patch Coverage: A high level of coverage does not necessarily
indicate that the lines relevant to the fault are covered. We also

record Line Coverage over the program statements modified by the

patch that fixes the fault—the lines of code that differ between the

faulty and fixed version.

Test Suite Size: Suites containing more tests are often thought to
be more effective [6]. Even if two suites achieve the same coverage,

the larger may be more effective simply because it exercises more

combinations of input.

Test Suite Length: Each test consists of one or more method calls.
Even if two suites have the same number of tests, one may have

longer tests—making more method calls. In assessing suite size, we
must also consider test length.

4 RESULTS & DISCUSSION
4.1 Comparing Fault Detection Capabilities
In Table 1, we list the number of faults detected by each variant of

Branch Coverage (BC is traditional Branch Coverage, DBC denotes

Direct Branch Coverage), broken down by system and search budget.

Due to the stochastic search, a higher budget does not guarantee

detection of the same faults found under a lower search budget.

Therefore, we also list the total number of faults detected by each

coverage type. In total, traditional Branch Coverage detects 158

faults (44.76% of the examples), while Direct Branch Coverage only

detects 151 (42.78%). From these results, we can see that our initial

hypothesis—that Direct Branch Coverage will be more difficult to

satisfy due to the requirement for direct coverage—has some truth

to it. At the two-minute budget, BC detects 10.40% more faults than

DBC. This gap narrows at the ten-minute budget, where BC only

detects 4.32% more faults.

One suite generated by EvoSuite may not always detect a fault

detected by another suite—even if the same criterion is used. To

more clearly understand the effectiveness of each fitness function, we

must not track only whether a fault was detected, but the likelihood

of detection—the proportion of detecting suites to the total number

of suites generated for that fault. The average likelihood of fault

detection is listed for each coverage type, by system and budget,

in Table 2. We also list the change in likelihood between budgets.

We largely observe the same trends as above. Given a fixed budget,

traditional Branch Coverage has an overall average likelihood of

fault detection of 22.07% given a two-minute search budget and

25.61% given a ten-minute budget. Direct Branch Coverage follow

with a 19.92% chance of detection given a two-minute budget and a

22.78% chance given a ten-minute budget. Again, traditional Branch

Coverage outperforms direct coverage, with a 13.59% higher overall

chance of detection with two minutes and 7.61% given ten minutes.

Given a fixed time budget, traditional Branch Coverage

outperforms Direct Branch Coverage, detecting 10.40%/4.32%

more faults with a 13.59%/7.61% higher average likelihood of

detection (two/ten-minute budget).

We can perform statistical analysis to assess our observations. We

formulate hypothesis H and its null hypothesis, H0:

• H : Given a fixed budget, suites generated to satisfy traditional
Branch Coverage will have a higher likelihood of fault detec-

tion than suites generated to satisfy Direct Branch Coverage.

• H0: Observations of fault detection likelihood for both criteria

are drawn from the same distribution.

Our observations are drawn from an unknown distribution; there-

fore, we cannot fit our data to a theoretical probability distribution.

To evaluate H0 without any assumptions on distribution, we use

a one-sided (strictly greater) Mann-Whitney-Wilcoxon rank-sum

test [12]. Due to the limited number of faults for the Chart and Time

systems, we have analyzed results across the combination of all sys-

tems (353 observations per budget, per criterion). We apply the test

for each pairing of fitness function and search budget with α = 0.05.

The application of this test results in a p-value of 0.13 at the

two-minute budget, and 0.27 at the ten-minute budget. Therefore,

we fail to reject the null hypothesis in both cases. Although Branch

Coverage has a higher average performance:

Traditional Branch Coverage fails to outperform Direct Branch

Coverage with statistical significance.

Further, while traditional Branch Coverage is more effective than

DBC, the gap between the two narrows as the search budget in-

creases. The differences in the number of faults detected (Table 1)

and likelihood of detection (Table 2) both decrease at the ten-minute

budget. We can also see this from the “% Change” rows in Table 2.

46

To Call, or Not to Call: Contrasting Direct and Indirect Branch
Coverage in Test Generation

SBST’18, May 28–29, 2018, Gothenburg, Sweden

Budget Chart Closure Lang Math Time Overall

BC
120 55.26% 17.00% 73.00% 64.62% 74.00% 48.00%

600 70.28% 23.00% 79.00% 67.19% 85.00% 54.00%

% Change 27.18% 35.29% 8.22% 3.98% 14.87% 12.50%

DBC
120 49.77% 14.00% 64.00% 61.37% 71.00% 44.00%

600 60.23% 18.00% 71.00% 65.16% 79.00% 49.00%

% Change 21.02% 28.57% 10.94% 6.12% 11.28% 11.36%

Table 3: Average Branch Coverage attained by generated suites,
broken down by coverage type, budget, and system.

Budget Chart Closure Lang Math Time Overall

BC
120 65.19% 27.00% 79.00% 70.77% 83.00% 56.44%

600 75.37% 34.00% 82.00% 72.39% 89.00% 61.16%

% Change 15.59% 25.93% 3.80% 2.29% 7.23% 8.93%

DBC
120 56.67% 24.00% 71.00% 68.88% 81.00% 52.29%

600 65.01% 28.00% 75.00% 71.11% 84.00% 56.11%

% Change 14.11% 16.67% 5.63% 3.24% 3.70% 7.69%

Table 4: Average Line Coverage attained by generated suites,
by coverage type, budget, and system.

Direct Branch Coverage benefits far more from the increase in search

budget than traditional Branch Coverage does for several systems—

DBC sees an average overall improvement of 22.45%, while Branch

Coverage only improves by 16.05%.

These results confirm that the “direct” coverage requirement of

Direct Branch Coverage does impose additional burden on the test

generation framework. There is a dip in average performance at both

budget levels, but not a statistically significant difference in either

case. The performance gap is not enough of a deterrent to recom-

mend the use of traditional Branch Coverage in situations where

a testing practitioner could derive human oracle benefit from the

understandable test cases generated using Direct Branch Coverage.

As the gap between traditional and Direct Branch Coverage

narrows at a higher search budget, we recommend its

use—while allocating a longer budget—in situations where

DBC may yield understandability benefits.

Additionally, although Branch Coverage detects more faults, it

does not necessarily detect the same faults. Branch Coverage detects
ten faults not detected by Direct Branch Coverage—again main-

taining a slight edge. However, Direct Branch Coverage is able to

uniquely detect three faults that are missed by traditional Branch

Coverage. There is some variation in the performance of each tech-

nique between systems. For the Chart system, traditional Branch

Coverage earns far better results, with 18.86-31.46% higher likeli-

hood of detection. In general, indirect Branch Coverage maintains

the edge, albeit with closer margins. However, there are also a few

cases where Direct Branch Coverage has a slightly higher chance

of fault detection—namely, for the Closure system at both budget

levels (5.18-9.66% improvement) and Time at the ten-minute level

(a modest 2.82% improvement). This indicates that:

Both techniques, regardless of overall performance, have some

level of situational applicability.

4.2 Comparing Suite Characteristics
In Table 3, we list the average level of Branch Coverage attained

by the final generated suites for each system, budget, and coverage

Branch Cov. to Fault Detection Line Cov. to Fault Detection

120 600 120 600
BC 0.37 0.35 0.35 0.33

DBC 0.31 0.34 0.29 0.33

Table 5: Correlation of coverage to likelihood of fault detection.

Budget Chart Closure Lang Math Time Overall

BC
120 62.76% 19.72% 73.03% 63.88% 84.60% 50.31%

600 70.80% 25.36% 75.22% 65.80% 91.60% 54.04%

% Change 12.81% 28.60% 3.00% 3.00% 8.27% 7.41%

DBC
120 55.83% 16.28% 63.99% 61.24% 81.52% 45.96%

600 64.26% 20.63% 68.73% 64.88% 85.70% 50.02%

% Change 15.10% 26.72% 7.41% 5.94% 5.13% 8.83%

Table 6: Average patch coverage (coverage over the patched
lines of code), by variant, budget, and system.

variant. We do the same for Line Coverage in Table 4. Like with

fault detection, traditional Branch Coverage has an edge over Direct

Branch Coverage given a fixed budget. Overall, traditional Branch

Coverage attains an average of 7.94% higher Line Coverage and

9.09% higher Branch Coverage than Direct Branch Coverage given

a two-minute budget. With a ten-minute budget, traditional Branch

Coverage attains 9.40% higher average Line Coverage and 10.41%

higher Branch Coverage. Again, this effect can be explained by the

additional work required to gain coverage if indirect calls do not

count towards the total.

A gap in the level of coverage does not always predict a gap in

terms of fault-detection capabilities. For Closure and Time, the two

systems where Direct Branch Coverage outperformed traditional

BC, the average attained Line and Branch Coverage are still lower

than that attained by traditional BC. To further examine this effect,

we have measured—for both metrics and budgets—the correlation

between attained Line Coverage and attained Branch Coverage using

the Kendall rank correlation. The resulting τ values are listed in
Table 5, where we can see that, at most, attained coverage has a

moderate-to-low correlation to the likelihood of fault detection for

both versions of Branch Coverage. Lower coverage for Direct Branch

Coverage does not entirely explain lower fault-detection efficacy.

Not all coverage is relevant to detecting faults. We can also an-

alyze the “patch coverage”—the coverage attained over the lines

of code related to the fault [4, 11]. The resulting patch coverage is

listed in Table 6 for each coverage type, budget, and system. Overall,

this table offers similar results, with traditional BC attaining 9.46%

higher average coverage over patched lines with a two-minute budget

and 8.06% with a ten-minute budget.

We can also see from Tables 3-6 that—unlike with the likelihood

of fault detection—Direct Branch Coverage often benefits less than

traditional BC from an increased search budget. In fact, the gap in

overall attained coverage actually increases with the larger budget.

However, the performance gap in attained patch coverage drops
slightly (9.46% to 8.06%) as the budget increases. While this is not

of the same significance as the improvement in fault-detection from

a higher budget, it does suggest that increasing the budget tends to

help Direct Branch Coverage cover the fault.

Branch Coverage attains an average 7.94/9.40% higher Line

Coverage and 9.09/10.41% higher Branch Coverage than

Direct Branch Coverage (two/ten-minute budget), as well an

average 9.46/8.06% higher Patch Coverage.

47

SBST’18, May 28–29, 2018, Gothenburg, Sweden Gregory Gay

Budget Chart Closure Lang Math Time Overall

Covered by BC, not DBC
120 13.52% 5.78% 11.39% 4.26% 5.22% 6.87%

600 14.62% 8.17% 10.61% 3.75% 6.70% 7.66%

% Change 8.14% 41.35% -6.85% -11.97% 28.35% 11.50%

Covered by DBC, not BC
120 5.29% 2.37% 3.21% 2.21% 2.76% 2.71%

600 4.24% 2.24% 3.68% 2.33% 1.71% 2.63%

% Change -19.85% -5.49% 14.64% 5.43% -38.04% -2.95%

Table 7: Average percent of code that one method covers and
the other does not—broken down by budget and system.

Budget Chart Closure Lang Math Time Overall

BC
120 42.85 17.86 73.76 30.36 53.77 36.35

600 52.52 27.36 82.84 32.74 61.99 43.71

% Change 22.57% 53.19% 12.31% 7.84% 15.29% 20.25%

DBC
120 48.12 17.69 76.13 29.47 59.77 37.31

600 65.11 27.12 90.89 34.36 70.87 47.10

% Change 35.31% 53.31% 19.39% 16.59% 18.57% 26.24%

Table 8: Average suite size—in number of tests—broken down
by coverage type, budget, and system.

Budget Chart Closure Lang Math Time Overall

BC
120 326.46 113.58 565.86 127.91 226.59 225.33

600 505.14 224.35 629.55 146.35 329.26 305.13

% Change 54.73% 97.53% 11.26% 14.42% 45.31% 35.41%

DBC
120 366.97 119.96 533.94 178.40 291.18 244.36

600 599.96 233.01 680.33 209.08 385.12 347.13

% Change 63.49% 94.24% 27.42% 17.20% 31.58% 42.06%

Table 9: Average suite size—in number of method calls—
broken down by coverage type, budget, and system.
Stating that traditional Branch Coverage outperforms Direct Cov-

erage in terms of total coverage does not offer the complete picture—

the two metrics also cover different targets. In Table 7, we list the
average percent of the code that is covered by BC and not DBC

as well as the average percent of the code that is covered by DBC

and not BC. We can see that each metric covers targets that the

other does not. An average of 6.87-7.66% of the lines covered by

traditional Branch Coverage are not touched by DBC. However, the

reverse is also true. On average, 2.71% of the code is covered by

Direct Branch Coverage and remains untouched by BC within the

two-minute budget. At the ten-minute budget, DBC covers 2.63% of

the program that is never covered by BC.

It is clear that the requirement for direct coverage imposes addi-

tional burdens on the test generator. Given a fixed budget, Direct

Branch Coverage will attain a lower final level of coverage. To a

certain extent, this can be alleviated by offering additional time for

generation. However, we can also see that the differences in the final

results are not due simply to this burden. The requirement for direct

coverage changes how the test generation framework creates test

cases, directing the search in different directions. Not only is the

total coverage different, but the targets covered differ as well. In

many cases, traditional Branch Coverage benefits from the context

offered by indirect method calls. There are also cases where Direct

Branch Coverage benefits from being forced to make direct calls.

Traditional Branch Coverage and Direct Branch Coverage

each cover different targets, again suggesting that each

technique has situational applicability.

One other factor that can be used to analyze test suites is the

size of the resulting suites. Suite size has been a focus in recent

work, with Inozemtseva et al. finding that the size has a stronger

correlation to efficacy than coverage level [6] and Gay has found

the opposite [4]. In Table 8, we measure size in terms of average

number of unit tests per suite. In Table 9, we measure size in terms

of the length—the average number of method calls per suite.

Direct Branch Coverage results in suites that are 2.60% larger at

the two-minute budget and 7.80% larger at the ten-minute budget.

These suites also have somewhat longer tests, in terms of number of

calls—8.50% and 13.76% longer at the two and ten-minute budgets.

These results reflect the requirement for direct coverage. As we

cannot cover methods indirectly, test cases will call methods and

may need more test cases to achieve the same results.

Although this is a natural result of requiring direct coverage, it is

also a potential source of concern. Each test added to a suite carries a

human oracle cost. Direct Branch Coverage should, in theory, carry

a lower total cost by producing more understandable test cases [10].
However, this benefit may be reduced by also requiring that more

test cases be produced in the first place. In most cases, the increase

in suite size is relatively modest—and unlikely to outweigh the

potential benefits. However, we cannot confirm this at this time. In

the future, we would like to more closely examine the human oracle

costs and benefits of each approach.

Direct Branch Coverage produces test suites with 2.60-7.80%

more tests and 8.50-13.76% more method calls.

4.3 Comparing Situational Applicability
Our results indicate that each version of Branch Coverage was able

to detect faults that the other was not and covered code that the

other did not. There are clearly differences between the two forms

of coverage that are not merely a result of the search budget, but

come down to fundamental differences in how each variant is driven

to attain coverage. By examining these situations, we can come

to understand the situations where each technique excels and each

technique falls short.

Fundamentally, freely allowing a generation framework to count

indirect coverage in its total—as is the current standard practice—

will bias the generator towards indirect coverage. Counting indirect
coverage will rapidly accelerate the attainment of coverage. Covering

a method through indirect calls removes the need to form input for

that method directly. This will result in tests that can differ greatly

from those created by humans. Coverage is attained through indirect

calls, but these indirect calls may constrain the range of input that is

used to call a particular method. In such cases, tests generated using

traditional Branch Coverage could miss a fault that a human—or

tests generated through Direct Branch Coverage—could detect, by

not attempting input that would be tried through direct coverage.

This is the same scenario alluded to in Section 1. Although that ex-

ample was relatively trivial, similar situations exist in the case exam-

ples studied. For instance, we can see such a situation in fault 106 for

the Closure project3. The faulty version of this class lacks a check for

a null object. This method, canCollapseUnannotatedChild
Names() is called in several other places. It has no formal parame-
ters. Rather, the execution path depends on the current state of class

attributes. As a result, the probability of detecting the fault strongly

depends on the context that the method is called in. If the method

is called indirectly, the object being examined is unlikely to be null,

3https://github.com/rjust/defects4j/blob/master/framework/projects/Closure/patches/106.src.patch

48

To Call, or Not to Call: Contrasting Direct and Indirect Branch
Coverage in Test Generation

SBST’18, May 28–29, 2018, Gothenburg, Sweden

as it has been manipulated within another method first. As the code

of interest checks for ! = null , this does mean that indirect coverage
will be attained. However, to detect the fault, we actually want the

object to be null. In tests that cover the same code, Direct Branch

Coverage will also try to make the object not null. However, the

need for a direct call also means that we see more test cases with
a null object. Traditional Branch Coverage calls the method fewer

times, with a smaller range of input values.

A similar example can be seen in Math fault 1024. The affected

method chiSquare(double[] expected, long[]
observed) is called elsewhere in the class, making indirect cover-
age possible. Both Branch and Direct Branch Coverage attain full

coverage of the patched code in all cases. However, coverage is less

important than choosing the right input. Indirect coverage results in

a smaller range of input being passed to the affected method, and a

lower likelihood of fault detection. Direct Branch Coverage calls the

method in a wider variety of configurations.

Indirect coverage can limit the range of input used to cover a

method, missing faults detected through direct calls.

Coverage is a prerequisite to fault detection, but it is not enough

to ensure that faults are detected [4, 5]. Context matters—how a
method is covered is more important than whether it was covered.
As calls come through another method, indirect coverage limits the

range of input passed to the affected method. In addition to the

potential understandability benefits, requiring direct coverage gives

the generator more freedom to choose how each method is covered.

Direct Branch Coverage is still outperformed by traditional Branch

Coverage in many situations. This is because Direct Branch Cover-

age entirely ignores the context offered by indirect coverage. Even
though the coverage attained through indirect calls is not counted,

those calls are still being made. Methods do not exist in a vacuum,

even if we pretend they do when measuring coverage. As these

methods work together to perform tasks, faults may be caught by

examining how the methods interact that are missed by looking at
each method in isolation.

Interaction context helps us find faults in two common situa-

tions. In the first case, indirect coverage of the faulty method al-
lows us to detect the fault while direct coverage does not. An ex-
ample of this can be seen in Chart fault 55. The affected method

addOrUpdate(XYDataItem item) is part of a series of add
OrUpdate(...) methods that take in various numeric primitives
and, ultimately, cast them into an instance of XYDataItem that is
passed into the affected method. Due to the difficulty of creating this

non-standard data structure, neither BC or DBC cover this method

directly. DBC occasionally detects this fault by accident—through

an indirect call. However, because traditional Branch Coverage can

explore the affected method indirectly, it is able to more reliably

cover and trigger the fault.

Another example can be seen in Closure fault 526. The affected

method, isSimpleNumber(String s), is supposed to return
true if s has a length > 0 and has ’0’ as the first character. In the

4https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/102.src.patch
5https://github.com/rjust/defects4j/blob/master/framework/projects/Chart/patches/5.src.patch
6https://github.com/rjust/defects4j/blob/master/framework/projects/Closure/patches/52.src.patch

faulty version, the requirement of ’0’ is missing from the check.

This is a case where both traditional and Direct Branch Coverage

should be on similar footing. However, the affected method is indi-

rectly called by method getSimpleNumber(String s). Cov-
erage of getSimpleNumber requires that the input string be a
simple number already, which also guarantees indirect coverage of

isSimpleNumber. This situation gives traditional Branch Cover-
age an advantage. The context offered by tracking indirect coverage

allows EvoSuite to evolve tests that simultaneously consider both

methods, rather than requiring each to be covered in isolation. As

a result, traditional Branch Coverage reliably produces input that

triggers the fault (that has a ’0’ as the first character).

The second type of situation where this context matters are cases

where the faulty method calls another method, and indirect cov-

erage of the second—non-faulty—method helps expose the fault

in the calling method. We can see an example of this situation

in Math fault 357. The faulty version of the constructor for the

class ElitisticListPopulation assigns values to the at-
tribute elitismRate, whereas the fixed version assigns this value
through the method setElitismRate(double elitismRate).
The setter method performs bounds-checking, preventing the use

of illegal rates—those below 0 or larger than 1. Because tradi-

tional Branch Coverage is able to consider indirect coverage of

setElitismRate(...), it evolves input that leads to fault de-
tection. Direct Branch Coverage is able to cover setElitismRate
(...) in isolation, but the lack of guidance when calling the faulty
constructor prevents EvoSuite from generating the right input.

By ignoring indirect coverage, Direct Branch Coverage misses

faults that emerge when covering method interactions.

Our takeaway from these observations is that both methods of

Branch Coverage are flawed. The intent behind Direct Branch Cov-
erage is reasonable, but ignoring the context offered by indirect

coverage hobbles its performance. Methods do not exist in isolation,

and the context offered by their interactions can help expose faults.

Even if direct coverage offers human understandability benefits, we

should not ignore indirect coverage entirely. Similarly, traditional

Branch Coverage is driven towards indirect coverage to the point

where the generated tests no longer resemble the tests created by hu-

man developers—raising the human oracle cost associated with their

use, and potentially missing faults by constraining input choices. It

is important to remember that a human tester’s job is not done after

indirect coverage is attained, and that a generation algorithm could

benefit from direct examination of a method.

Fundamentally, coverage is not the true goal of testing. It is a

means to judge progress, and a means to automate the creation of

input, but what we really want are tests that detect faults. Fault detec-
tion requires not just coverage, but the right context—the input that

will expose the fault. Both traditional and Direct Branch Coverage

hold pieces of that context.

We believe that the test generation frameworks of the future

should consider means of leveraging the benefits of each approach.

For example, a new form of Branch Coverage could require direct

7https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/35.src.patch

49

SBST’18, May 28–29, 2018, Gothenburg, Sweden Gregory Gay

calls to consider each branch to be covered, but—rather than ig-

noring indirect coverage—the generator could use it as a means

of weighting the fitness score. This type of approach may lend Di-

rect Branch Coverage the context that it lacks on its own, and a

small increase in generation budget may allow it to overcome the

performance loss from the direct coverage requirement.

5 RELATED WORK
Advocates of adequacy criteria hypothesize that we should see a

correlation between higher attainment of a criterion and the chance

of fault detection for a test suite [5]. Researchers have attempted to

address whether such a correlation exists for almost as long as such

criteria have existed. Inozemtseva et al. provide a good overview of

work in this area [6]. Branch Coverage is a common target for test

generation [8, 10] and measurement [5].

Shamshiri et al. found that a combination of three state-of-the-

art tools could identify 55.7% of the faults in the Defects4J data-

base [11]. Their work identifies several reasons why faults were

not detected, including low levels of coverage, heavy use of private

methods and variables, and issues with simulation of the execu-

tion environment. In their work, they only used traditional Branch

Coverage to generate suites. Recent experiments by Gay compare

a variety of fitness functions in terms of fault detection efficacy—

including both Branch and Direct Branch Coverage [4]. They found

that Branch Coverage is the most effective fitness function.

User studies conducted by Fraser et.al found that developers

dislike tests that cover branches indirectly, because they are harder

to understand and to extend with assertions [3]. Similarly, Almasi

et al. and others have found that concern over the readability of

generated suites has slowed industrial adoption of automated test

generation [2]. Direct Branch Coverage is an attempt to address such

issues [10]. Our study is the first to directly compare and contrast

Direct and traditional Branch Coverage.

6 THREATS TO VALIDITY
External Validity: Our study has focused on a relatively small
number of systems. Nevertheless, we believe that such systems

are representative of—at minimum—other small to medium-sized

open-source Java systems. We have used a single test generation

framework, EvoSuite, as it is the only framework to implement

both direct and indirect Branch Coverage. While results may differ

between generation frameworks, we believe that the underlying

trends would remain the same. Several of the observed differences

between direct and indirect Branch Coverage are a natural result of

the requirements of each method, not how they were implemented

in EvoSuite. To control experiment cost, we have only generated

ten test suites for each combination of fault, budget, and coverage

variant. It is possible that larger sample sizes may yield different

results. However, we believe that the 14,120 test suites used in

analysis are sufficient to draw stable conclusions.

Conclusion Validity: When using statistical analyses, we have at-
tempted to ensure the base assumptions behind these analyses are

met. We have favored non-parametric methods, as distribution char-

acteristics are not generally known a priori.

7 CONCLUSIONS
While adequacy criteria offer an end-point for testing, they do not

mandate how targets are covered. Branch Coverage may be attained
through direct calls to methods, or through indirect calls between
methods. In order to study the costs and benefits of each approach,

we have judged the efficacy of test suites generated using both

variants of Branch Coverage against a set of real faults.

We have found that direct coverage imposes a cost in terms of

coverage and likelihood of fault detection. However, traditional and

Direct Branch Coverage cover portions of the code and detects faults

that the other does not. By examining methods in isolation, Direct

Branch Coverage is less constrained in the input it uses to cover each

method. However, traditional Branch Coverage is able to leverage

the context in which methods interact with each other to detect faults

that emerge from those interactions. There are clear situations where

each form of coverage is more suited to detecting a particular fault

than the other. Importantly, both also have important limitations not

possessed by the other. This indicates that both variants have value

as part of a broader testing strategy, and that future approaches to

test generation should leverage the strengths of both.

REFERENCES
[1] S. Afshan, P. McMinn, and M. Stevenson. Evolving readable string test inputs

using a natural language model to reduce human oracle cost. In 2013 IEEE Sixth
International Conference on Software Testing, Verification and Validation, pages
352–361, March 2013.

[2] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds. An industrial
evaluation of unit test generation: Finding real faults in a financial application.
In Proceedings of the 39th IEEE/ACM International Conference on Software
Engineering (ICSE)—Software Engineering in Practice Track (SEIP), ICSE 2017,
New York, NY, USA, 2017. ACM.

[3] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg. Does automated unit
test generation really help software testers? a controlled empirical study. ACM
Trans. Softw. Eng. Methodol., 24(4):23:1–23:49, Sept. 2015.

[4] G. Gay. The fitness function for the job: Search-based generation of test suites
that detect real faults. In Proceedings of the International Conference on Software
Testing, ICST 2017. IEEE, 2017.

[5] A. Groce, M. A. Alipour, and R. Gopinath. Coverage and its discontents. In
Proceedings of the 2014 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software, Onward!’14, pages
255–268, New York, NY, USA, 2014. ACM.

[6] L. Inozemtseva and R. Holmes. Coverage is not strongly correlated with test suite
effectiveness. In Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pages 435–445, New York, NY, USA, 2014. ACM.

[7] R. Just, D. Jalali, and M. D. Ernst. Defects4J: A database of existing faults to
enable controlled testing studies for Java programs. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, ISSTA 2014, pages
437–440, New York, NY, USA, 2014. ACM.

[8] P. McMinn. Search-based software test data generation: A survey. Software
Testing, Verification and Reliability, 14:105–156, 2004.

[9] M. Pezze and M. Young. Software Test and Analysis: Process, Principles, and
Techniques. John Wiley and Sons, October 2006.

[10] J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, and A. Arcuri. Combining multiple
coverage criteria in search-based unit test generation. In M. Barros and Y. Labiche,
editors, Search-Based Software Engineering, volume 9275 of Lecture Notes in
Computer Science, pages 93–108. Springer International Publishing, 2015.

[11] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri. Do auto-
matically generated unit tests find real faults? an empirical study of effectiveness
and challenges. In Proceedings of the 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), ASE 2015, New York, NY, USA,
2015. ACM.

[12] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin,
1(6):pp. 80–83, 1945.

50

