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Maëlick Claes
University of Oulu

Oulu, Finland
maelick.claes@oulu.�

Marko Elovainio
University of Helsinki

Helsinki, Finland
marko.elovainio@helsinki.�

ABSTRACT
According to authors best knowledge, this workshop paper makes
two novel extensions to so�ware engineering research. First, we
create and execute a daily questionnaire monitoring the work well-
being of so�ware developers through a period of eight months.
Second, we utilize statistical methods developed for discovering
psychological dynamics to analyze this data. Our questionnaire
includes elements from job satisfaction surveys and one so�ware
development speci�c element. �e data were collected every day for
a period of 8 months in a single so�ware development project pro-
ducing 526 answers from eight developers. �e preliminary analysis
shows the strongest correlations between hurry and interruptions.
Additionally, we constructed temporal and contemporaneous net-
work models used for discovering psychological dynamics from
the questionnaire responses. In the future, we will try to establish
links between the survey responses and the measures collected by
conducting so�ware repository mining and sentiment analysis.
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1 INTRODUCTION
While well-being is used synonymously with happiness in everyday
language, in academic literature it mostly refers to psychological
well-being. Characteristics that de�ne well-being are emotional
conditions, and its phenomenological and long term nature [21].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, Washington, DC, USA
© 2016 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

�at is, a person with good well-being is more likely to experience
positive emotions and believe to be well themselves.

�e job demands-resources model [1] proposes that work related
well-being is controlled by work demands and resources. Demands
include emotional demands, time and work pressures, while re-
sources can include available autonomy, time, and tools. �e model
assumes that job strain is caused by an imbalance between job
resources and demands. In other words, demands such as work
pressure are antecedents to job strain and stress. Additionally, the
model assumes that di�erent demand and job resource variables
interact in predicting job strain, e.g. increased autonomy can bu�er
the e�ects of time pressure [2, 22].

Extensive overtime work (part of job strain) has been widely re-
ported on the so�ware industry [6, 17]. Possible causes for overtime
are incorrect e�ort estimation and scheduling problems, company
culture and tight deadlines. Overtime work in turn has been associ-
ated with physical and mental distress in the so�ware industry [16].

In this paper, we develop a daily questionnaire to measure self-
reported well-being with questions assessing: hurry, interruptions,
stress, sleeping problems, ine�ective so�ware development and a
bu�ering variable of autonomy/ independence. �is questionnaire
was administered on a single so�ware development project for
eight months. �e acquired data is analyzed with correlations and
a gaussian graphical model. Our long term goal is to broaden the
understanding of job strain of developers and its relation to devel-
opment activities with sentiment analysis and repository mining.
�is paper describes the questionnaire and focuses on the initial
research questions covering:

RQ1 Are the answers to the di�erent questionnaire questions
correlated with each other?

RQ2 Can possible causal mechanisms be created based on
the results?

2 RELATEDWORK
A longitudinal study by Fujigaki [5] examined the mental health of
so�ware developers and found a statistically signi�cant correlation
between job events and an increase in depressive symptoms up to
a week a�er the job event. �e study did not di�erentiate between
di�erent job events, but instead they included: ”time pressure of a
deadline, work-overload, amount of work increase, responsibility
increase, and trouble with clients”.
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Experiment investigating interruptions in information work by
Mark, Gudith and Klocke [15] found out, that interruptions actually
decreased the amount of time needed for the task, but with a price
of increased stress, time pressure and e�ort.

A study by Laanti [12] investigated reported stress before and
a�er transitioning to agile development methodologies. �e study
found no increase or decrease of stress by the change of devel-
opment method, but teams who reported being more empowered
reported less stress. Tuomivaara et al. [20] investigated job strain
in agile and lean development projects. While the evidence gath-
ered suggests that constant deadlines in agile projects levels the
workload more evenly across the whole project, more strain was
still felt in the end of investigated projects.

In addition to well-being, the e�ects of hurry have been stud-
ied on the productivity of so�ware developers. Mäntylä and Itko-
nen [14] found increased performance on testing task with time
pressure. Conversely, Land et al. [13] do not �nd increased perfor-
mance in code reviews, or Topi et al. on database query tasks [19].

A�ective states have been shown to alter the productivity of
so�ware developers [8]. E�ects of unhappiness while developing
so�ware include low cognitive performance, low motivation, work
withdrawal, low productivity and low code quality [7].

3 METHODOLOGY
3.1 Developing a questionnaire
Our goal is to construct a repeatedly taken questionnaire, to pro-
duce longitudinal data to measure the daily level of job well-being.
�is meant having relatively few items, which can be answered
quickly to achieve a high response rate. Measurements of stress
relying on only one item have produced valid data [3]. �e ques-
tionnaire was constructed by picking relevant items on the survey
done by Heponiemi et al. [9], to which we added one so�ware
engineering speci�c item. To make sure respondents can answer
quickly, we decided to include only one so�ware speci�c question
in the questionnaire. �e questionnaire contains six items in total:

• I can make independent decisions in my work
• I am in a hurry and have too li�le time to �nish the task

properly
• I feel interrupted while working
• I experience ine�ective so�ware development (poor pro-

cesses, poorly performing tools or poor communication
with the development team)

• I feel stressed (refers to a situation in which the respondent
feels tense, restless, nervous or anxious)

• I experience sleeping problems (di�culty in falling asleep
or waking up several times during the night)

�e respondents were asked to rate items with the question:
”How frequently has the following condition occurred since the last
time you answered this survey?”. �ese items were then ranked
in �ve point Likert-scale. From 1 to 5, the corresponding textual
answers are ”Very rarely or never”, ”Rarely”, Once in a while”,
”O�en” and ”Frequently of continuously”. Before starting the data
collection, we met with the project personnel to explain the purpose
of the study, as well as the voluntary nature of participation.

3.2 So�ware project context
�e so�ware project used as a case study is developed by a medium-
sized so�ware company, for a single customer, with weekly meet-
ings and continuous delivery. �e project was originally started
in 2014. �e developed questionnaire was sent to developers of
an ongoing so�ware project from April 10th 2017 to January 12th
2018. We used Webropol1 to send the questionnaire every working
day by email at 8am and to collect the responses. Developers who
moved from or to another project, or started working in multiple
projects at the same time, stopped answering the questionnaire. In-
dividuals with less than ten responses were discarded from the data
analysis. For data analysis, a total of 526 responses were received
from eight respondents. Taking into account summer holidays, the
total response rate is 37,5% (526 / 1404) for eligible respondents.

3.3 Analysis
For correlation analysis and the produced networks, we handled
missing values by carrying back observed values. �is is because
we asked respondents to answer how frequently the condition had
occurred since last time the questionnaire was answered. Carrying
back the observed value was implemented with package imputeTS2

and ”na.locf” function. Carrying back values was used for correla-
tion analysis and the creation of Gaussian graphical models.

In time series analysis, in order to investigate correlations be-
tween series, it is necessary to take the seasonal and trend com-
ponents into account. A�er �lling the missing values by carrying
back, we removed data from weekends and assumed a weekly sea-
sonality. �en we aggregated the data into time series by daily
mean, removed the seasonal and trend components from the time
series with the decompose function 3 in R. A�erwards, we tested for
the stationarity of the residuals with Augmented Dickey-Fuller Test
(ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. ADF
test rejected the null hypothesis of non-stationarity and the pos-
session of unit root for every time series residual while KPSS test
could not reject the null hypothesis of stationarity for any of the
time series residuals. Hence stationarity is assumed.

3.4 Temporal and Contemporaneous Networks
Gaussian graphical models (GGM) have been used as an exploratory
tool for modeling networks between variables by using partial cor-
relation, i.e. correlation between two variables a�er controlling for
the e�ects of all other variables. Similarly to penalized regression,
e.g. Ridge [10] or Lasso regression [18], penalized models have
been proposed for GGMs as well [23]. GGM can be combined with
vector-autoregression (VAR) to address time series where temporal
independence cannot be assumed, e.g. stress level of today is not
independent of yesterday’s stress level.

Combining GGM and VAR with Lasso penalty has been proposed
for discovering psychological dynamics collected with Experience
Sampling Method (ESM), e.g. daily survey, by Epskamp et al. [4]
and by reanalyzing the data from previous studies. Epskamp et al.
states that psychological processes should be modeled as complex
dynamical systems where di�erent psychological and sociological

1h�p://w3.webropol.com/start/
2h�ps://cran.r-project.org/web/packages/imputeTS/imputeTS.pdf
3h�ps://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/decompose

http://w3.webropol.com/start/
https://cran.r-project.org/web/packages/imputeTS/imputeTS.pdf
https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/decompose
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Figure 1: 5-day moving average of all the answers of the aggregated responses.
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Figure 2: Normalized 5-day moving average of the aggregated responses.
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Table 1: Spearman correlation analysis, signi�cant p-values on the bottom. Mean and standard deviation of actual responses.

SD Mean Independence Hurry Interruptions Ine�ective So�ware Dev. Stress Sleeping Problems
Independence 0.698 4.648 1 -0.039 -0.085 0.001 0.139 0.006
Hurry 1.265 2.492 1 0.513 0.307 0.326 0.300
Interruptions 1.248 2.475 0.001 1 0.522 0.342 0.306
Ine�ective So�ware Dev. 1.074 1.825 0.001 0.001 1 0.350 0.249
Stress 1.054 2.496 0.001 0.001 0.001 1 0.248
Sleeping Problems 0.995 1.838 0.001 0.001 0.001 0.001 1

components interact with each other. Since these interactions are
o�en not known, a probabilistic network model should be used to
model the causal relationships. We used the R package graphical-
VAR4 to model our data.

Temporal networks show whether a certain variable in time (t )
predicts another variable at later time (t + 1). In Temporal networks
it is typical to see loops from a variable to itself as the previous
state of that variable predicts its next state. Contemporaneous
networks show relationships at the same moment in time. �ey are

4h�ps://cran.r-project.org/web/packages/graphicalVAR/graphicalVAR.pdf

needed as ”there will likely be many causal relationships that occur
much faster than the lag interval of a typical ESM study; in which
case, these pathways will be captured in the contemporaneous
networks” [4].

4 RESULTS
Before answering our two research questions, we look at the evolu-
tion of the aggregated result of the daily questionnaire. For each day,
we compute the aggregated answer of all respondents by taking the
mean of all responses. Figure 1 shows a 5-day moving average of
the aggregated results. In Figure 2, before aggregating the results,

https://cran.r-project.org/web/packages/graphicalVAR/graphicalVAR.pdf
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Figure 3: Temporal and contemporaneous network. InD corresponding to Independence, SlP to sleeping problems, Str to stress,
ISD to ine�ective so�ware development, Int to interruptions and Hrr to hurry.

we normalize each respondent answer by dividing all individuals
responses by the individual mean response.

Figure 1 shows a decrease in independence variable and increase
in all other variables at the start of October. �is trend is also
captured in the normalized Figure 2. Based on informal talks with
the developers, the cause for the spike is increased amount of
customer feedback coupled with the start developing a new feature.

RQ1 assessed the correlation between responses. A�er removing
the trend and seasonal component of each time series, we computed
correlations between the di�erent time series. We report standard
all of these correlations in Table 1. We �nd statistically signi�cant
positive correlations between all variables other than independence.
�e strongest association (0.522) is between interruptions and inef-
fective so�ware development. �e second strongest association is
between hurry and interruptions (0.513).

RQ2 assessed the possible causal mechanisms in responses. Both
temporal and contemporaneous networks are presented in Figure 3.
In the contemporaneous network, strongest positive associations
are between job demands and interruptions, interruptions and inef-
fective so�ware development, hurry and stress and �nally stress
and sleeping problems. Autonomy is negatively associated with
sleeping problems in the contemporaneous network. �e temporal
network shows that sleeping problems predict slightly negatively
job control and slightly positively ine�ective so�ware development.
In the temporal model, by far the best predictor for all variables is
the prior state of the same variable.

Our results are convergently valid with the job resources model [1],
which assumes job strain to be caused by imbalance between re-
sources and demands. �e produced temporal network shows the
e�ects of job strain (sleeping problems) to be slightly predictive of
job control.

5 CONCLUSION, THREATS AND FUTURE
WORK

Our goal was to measure stress from an ongoing so�ware project.
Our measurement of stress associates positively with job demands,
interruptions and sleeping problems.

�e study by Nishikitani et al. [16] found associations between
overtime work, physical and mental complaints in so�ware devel-
opment context. However, sleep duration and job strain were be�er
indicators for physical and mental distress. In our study sleeping
problems were associated with interruptions.

A limiting factor for our study is generalizability; the study is
made in a single so�ware project of one so�ware company. Stress
and sleeping problems are a�ected by factors outside of work.
Among other things, di�erent ways of imputing missing values to
time series greatly in�uence the produced network models.

In the future, we plan to further investigate job well-being by
including additional variables in the analysis. In the particular
case study here, we have access to instant messaging logs, a work
time monitoring system, continuous integration service logs and
a version control system. By correlating questionnaire data with
so�ware repository metrics, the underlying associations could be
be�er understood, predictive variables for stress identi�ed and
causal hypotheses formulated. Some possible testable hypotheses
are included in our prior work [11].

ACKNOWLEDGMENTS
�e �rst, second and third author have been supported by Academy
of Finland grant 298020. �e �rst author has been supported by
Kaute-foundation.



Daily�estionnaire to Assess Self-Reported Well-Being Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] Arnold B Bakker and Evangelia Demerouti. 2007. �e job demands-resources

model: State of the art. Journal of managerial psychology 22, 3 (2007), 309–328.
[2] Arnold B Bakker, Evangelia Demerouti, and Martin C Euwema. 2005. Job re-

sources bu�er the impact of job demands on burnout. Journal of occupational
health psychology 10, 2 (2005), 170.

[3] Anna-Liisa Elo, Anneli Leppänen, and An�i Jahkola. 2003. Validity of a single-
item measure of stress symptoms. Scandinavian journal of work, environment &
health (2003), 444–451.

[4] Sacha Epskamp, Lourens J Waldorp, René Mõ�us, and Denny Borsboom. 2016.
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