
Support for Repetitive Transactions
and Ad Hoc Queries in System R

D. D. CHAMBERLIN, M. M. ASTRAHAN, W. F. KING,
R. A. LORIE, J. W. MEHL, T. G. PRICE,
M. SCHKOLNICK, P. GRIFFITHS SELINGER,
D. R. SLUTZ, B. W. WADE, and R. A. YOST

IBM Research Laboratory

System R supports a high-level relational user language called SQL which may be used by ad hoc
users at terminals or as an embedded data sublanguage in PL/I or COBOL. Host-language programs
with embedded SQL statements are processed by the System R precompiler which replaces the SQL
statements by calls to a machine-language access module. The precompilation approach removes
much of the work of parsing, name binding, and access path selection from the path of a running
program, enabling highly efficient support for repetitive transactions. Ad hoc queries are processed by
a similar approach of name binding and access path selection which takes place on-line when the
query is specified. By providing a flexible spectrum of binding times, System R permits transaction-
oriented programs and ad hoc query users to share a database without loss of efficiency.

System R is an experimental database management system designed and built by members of the
IBM San Jose Research Laboratory as part of a research program on the relational model of data.
This paper describes the architecture of System R, and gives some preliminary measurements of
system performance in both the ad hoc query and the “canned program” environments.

Key Words and Phrases: relational database systems, compilation, performance measurements,
transaction processing, query languages
CR Categories: 3.70, 4.12,4.33, 4.6

INTRODUCTION

System R is an experimental database management system designed and built at
the IBM San Jose Research Laboratory as part of a program of research in the
relational model of data. The architecture of System R was fust described in
[l], and SQL, its user interface, was described in [3]. Since these publications,
System R has undergone certain architectural changes, and implementation of
the prototype system is now essentially complete. The purpose of this paper is to
bring up to date the previously published description of system architecture and
to present some preliminary measurements of the performance of the prototype.

One of the basic goals of System R is to support two different types of
processing against a database: (1) ad hoc queries and updates, which are usually

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
Authors’ address: IBM Research Laboratory, K54/282,5600 Cottle Road, San Jose, CA 95193.
0 1981 ACM 0362-5915/81/0300-0070 $09.75

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981, Pages 70-94

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319540.319550&domain=pdf&date_stamp=1981-03-01

Repetitive Transactions and Ad Hoc Queries in System R * 71

executed only once, and (2) canned programs, which are installed in a program
library and executed hundreds of times. System R makes all the features of SQL
[3] available in both these environments. These features include statements to
query and update a database, to define and delete database objects such as tables,
views, and indexes, and to control access to the database by various users.

An ad hoc user at a terminal may type SQL statements and view the result
directly at the terminal as in the following examples:

SELECT NAME, SALARY FROM EMP WHERE JOB = ‘PROGRAMMER’;

UPDATE EMP SET SALARY = 9500 WHERE EMPNO = 501;

The same SQL statements may be embedded in a PL/I or COBOL program by
prefixing them with $ signs to distinguish them from host-language statements.
SQL statements in PL/I or COBOL programs may contain host-language vari-
ables if the variable names are prefixed by $ signs, as in the following example:

$UPDATE EMP SET SALARY = $X WHERE EMPNO = $y;

Host-language variables in a SQL statement may be used in place of data
values but not in place of table names or field names.

If a PL/I or COBOL program wishes to execute a SQL query and fetch the
result, it does so by means of a “cursor.” A cursor is defined by a LET statement,
which associates the cursor name with a particular query. The cursor is readied
for retrieval by an OPEN statement, which binds the values of any host-language
variables appearing in search conditions in the query. Then a FETCH statement
is used repeatedly to fetch rows from the answer set into the designated program
variables, as in the following example:

$LET Cl BE
SELECT NAME, SALARY INTO $X, $Y
FROM EMP WHERE JOB = $Z;

$OPEN Cl; /* BINDS VALUE OF Z*/

$FETCH Cl; /* FETCHES ONE EMPLOYEE INTO X AND Y */

$CLOSE Cl; /* AFTER ALL VALUES HAVE BEEN FETCHED */

After the execution of each SQL statement, a status code is returned to the
host program in a variable called SYR-CODE.

System R is based on a special multiuser access method called the Research
Storage System (RSS), with facilities for locking, logging, recovery, and index
maintenance. The description of the RSS is essentially unchanged since [l].

However, the Relational Data System (RDS) which runs on top of the access
method is now split into two distinct functions: (1) a precompiler, called XPREP,
which is used to precompile host-language programs and install them as “canned
programs” under System R, and (2) an execution-time system, called XRDI,
which controls the execution of these “canned programs” and also executes SQL
statements for ad hoc terminal users.

When an application programmer has written a PL/I or COBOL program with
embedded SQL statements, his first step is to present the program to the System
R precompiler, XPREP. XPREP finds the SQL statements in the program and
translates them into a machine-language “access module.” In the user’s program,

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

72 - D. D. Chamberlin et al.

PL/I Source Program

SELECT NAME INTO $X

WHERE EMPNO= $Y

SYSTEM R
PRECOMPI LER

(XPREP)

Access Module

Machine code

Fig. 1. Precompilation step.

the SQL statements are replaced by host-language calls to the access module.
The access module is stored in the System R database to protect it from
unauthorized modification. The precompilation step is illustrated in Figure 1.

The advantages gained for canned programs by the precompilation step are
twofold:

(1) Much of the work of parsing, name binding, access path selection, and
authorization checking can be done once by the precompiler and thus removed
from the process of running the canned program.

(2) The access module, because it is tailored to one specific program, is much
smaller and runs much more efficiently than a generalized SQL interpreter.

After precompilation, the user’s program contains pure PL/I or COBOL and
can be compiled using a conventional language compiler.

When a “canned program” is run on System R, it makes calls to XRDI, which

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

Repetitive Transactions and Ad Hoc Queries in System R - 73

I call

1 call

RSS

DATA BASE

Fig. 2. Execution step.

in turn loads and invokes the access module for the program. The access module
operates on the database by making calls to the RSS and delivers the result to
the user’s program. This process is illustrated in Figure 2.

The ad hoc user of System R is supported by a special program called the
User-Friendly Interface (UFI), which controls dialogue management and the
formatting of the display terminal. The UFI has an access module of its own, but
its access module is not complete because the UFI’s purpose is to execute SQL
statements which are not known in advance. When a user enters an ad hoc SQL
statement, the UFI passes the statement to XRDI by means of special “PRE-
PARE” and “EXECUTE” calls, which will be described later. The effect of these
calls is to cause a new “section” of the UFI’s access module to be dynamically
generated for the new statement. The dynamically generated section of the access

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

74 * D. D. Chamberlin et al.

“PREPARE” and

I

“EXECUTE” calls

Execution-time
Builds,

System
then calls

b
Access

(XRDI) Module *

I
call

PARSE OPT CODE
GEN. v

RSS

B DATA BASE

Fig. 3. Processing of ad hoc queries.

module contains machine-language code and is in every way indistinguishable
from the sections which were generated by the precompiler. The interactions of
the UFI with System R are illustrated in Figure 3.

System R permits many users to be active simultaneously, performing a variety
of activities. Some users may be precompiling new programs, while others are
running existing “canned programs.” At the same time other users may be using
the UFI, querying and updating the database and creating new tables and views.
All these simultaneous activities are supported by the automatic locking subsys-
tem built into the RSS described in [4].

First we examine in detail the two major functions of System R: precompilation
and execution of a “canned program.” Next, we examine how System R imple-
ments the special PREPARE and EXECUTE calls which are needed to support

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

Repetitive Transactions and Ad Hoc Queries in System R l 75

ad hoc users. Finally, we present a sample database and some measurements of
the performance of System R in both a canned program and an ad hoc query
environment.

PRECOMPILATION

When a PL/I or COBOL program with embedded SQL statements is presented
to the System R precompiler, it scans the program to find the SQL statements
(they are indicated by $) and replaces each SQL statement by a valid host-
language CALL. In addition, each SQL statement is put through a three-step
process in order to translate it to a machine-language routine. The three steps
are as follows:

(1) Pursing: The parser checks the SQL statement for syntactic validity and
translates it into a conventional parse-tree representation. The parser also
returns to the System R precompiler two lists of host-program variables
found in the SQL statement: a list of input variables (values to be furnished
by the calling program and used in processing the statement) and a list of
output variables (target locations for data to be fetched by the statement).
For example, if the SQL statement being parsed were as follows:

SELECT NAME, SALARY INTO $X, $Y

FROM EMP WHERE DEPT = $A AND JOB = $B

the input variables would be A and B and the output variables would be X
and Y.

(2) Optimization: The System R optimizer is then invoked with the parse tree as
input. The optimizer performs several tasks.

(a) First, using the internal catalogs of System R, it resolves all symbolic
names in the SQL statement to internal database objects.

(b) A check is made that the current user is authorized to perform the
indicated operation on the indicated table(s).

(c) If the SQL statement operates on one or more user-defined views, the
definitions of the views (stored in parse-tree form) are merged with the
SQL statement to form a new composite SQL parse tree which operates
on real stored tables.

(d) The optimizer uses the system catalogs to find the set of available indexes
and certain other statistical information on the tables to be processed.
This information is used to choose an access path and an algorithm for
processing the SQL statement. The details of this access path selection
process are given in [lo]. The optimizer represents its chosen access path
by structural modifications to the parse tree called Access Specification
Language (ASL) [5], and by constructing the RSS control blocks to be
used in processing the statement.

(3) Code generation: The code generator translates the ASL structures produced
by the optimizer into a 370 machine-language routine which implements the
chosen access path [6]. This machine-language routine is called a “section.”
When running, the section will access the database by using the RSS control
blocks which were produced by the optimizer.

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

76 * D. D. Chamberlin et al.

Descriptor
in System
Catalog:

d
Section Location Table

1 2 1 INTERPSECT 1 l

3 PARSEDSECT 8

Section 1
Machine code

+
relocation directory

+
original SQL statement

Section 2
Parse tree

+
relocation directory

+
original SQL statement

Section 3
Parse tree

+
relocation directory

+
original SQL statement

Fig. 4. Structure of an access module.

After all the SQL statements in a program have been translated into sections,
the sections are collected together to form an access module. In the header of the
access module is placed a Section Location Table which lists the relative byte
offset of each section within the Access Module. Each section has a Relocation
Directory which lists the offsets within the section of all internal pointers which
must be relocated before the section can be used. In addition to machine-language
code, each section holds the SQL statement from which it was originally con-
structed. This enables the section to be rebuilt if its original access path should
become unavailable at some future time. The rebuilding process is similar to
precompilation and is described later. The structure of an access module is shown
in Figure 4. (Some of the entries in the access module, e.g., INTERPSECT, will
be explained later in this paper.) When the access module is complete, it is stored
in the System R database for later use. If the user who precompiled the program
passes the authorization test for all SQL statements in the program, he receives
the “RUN” privilege for the access module.

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

Repetitive Transactions and Ad Hoc Queries in System R * 77

When the precompiler translates a SQL statement into a section, it must also
replace the SQL statement in the user’s PL/I or COBOL program by a CALL.
The call invokes XRDI, the System R entry point used for executing a stored
access module. The parameters of the call are the name of the access module, the
section number within the access module, an operation code, and the addresses
of the input and/or output variables to be used in processing the statement.

If the SQL statement under consideration is not an operation on a cursor, the
construction of the call is straightforward. The operation code is AUXCALL,
meaning simply, “execute the section.” All host-program variables in the original
SQL statements are passed in with the AUXCALL, as shown for the UPDATE
statement in Figure 5.

If the SQL statement is an operation on a cursor, the situation is slightly more
complex. The cursor is defined by an SQL statement of the form:

LET (cursor name) BE (query).

The basic operations on cursors are OPEN (cursor name), FETCH (cursor
name), and CLOSE (cursor name). The LET statement does not result in a
CALL since it is definitional in nature. In response to the LET statement, the
System R precompiler produces a section for the indicated cursor containing
machine code for opening, fetching, and closing the cursor. Then, in response to
OPEN, FETCH, and CLOSE statements the precompiler generates CALLS on
the appropriate section with the appropriate operation codes, as shown in Figure
5. The addresses of input variables are passed as parameters of the OPEN call
since input values are always bound when a cursor is opened. Addresses of output
variables are passed as parameters of the FETCH call, giving the target locations
for the data to be fetched. No variables are involved in the CLOSE call.

After the System R precompiler has replaced all the SQL statements in the
user’s program by calls to XRDI, the program contains pure PL/I or COBOL,
and it may be compiled using one of the conventional language compilers. The
resulting object program is now ready to be run on System R.

EXECUTING A PRECOMPILED PROGRAM

When a user invokes a program which has been precompiled on System R, the
normal facilities of the operating system are used to load and start the object
program. System R first becomes aware of the program when it makes its first
call to XRDI. On the first such call, XRDI checks the authority of the current
user to invoke the indicated access module, and checks that the access module is
still valid. If these checks are successful, the access module is loaded from the
database into virtual memory, its internal pointers are adjusted using the relo-
cation directory of each section, and then control is passed to the indicated
section. On subsequent calls to the same access module, the authorization check,
loading, and relocation steps are bypassed, and control passes directly to the
indicated section. The machine-language code in the section examines the oper-
ation code of the call (e.g., OPENCALL or FETCHCALL) and proceeds to
process the original SQL statement from which it was compiled, using as needed
the host-program variables which were passed in with the call. When running
under MVS, the access module is assigned a different storage protection key from
the user’s program in order to provide them with mutual protection.

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

78 - D. D. Chamberlin et al.

UPDATE EMP
SET SAL = SAL + $P
WHERE EMPNO = $a;

LET Cl BE
SELECT NAME, SAL INTO $X, $Y
FROM EMP
WHERE DEPTNO =$A AND JOB = $8;

OPEN Cl;

FETCH Cl;

CLOSE Cl;

CALL XRDI ();
4

Section No. = 1
Opcode = AUXCALL

(No call produced, since this
statement serves only to define
the cursor. “Section 2” is
created in the access module
to implement the cursor.)

CALL XRDI ();
z

Section No. = 2
Opcode = OPENCALL

CALL XRDI (1;
z

Opcode = FETCHCALL

Fig. 5. Replacement of SQL statements by calls.

Since all name binding, authorization checking, and access path selection are
done during the precompilation step, the resulting access module is dependent on
the continued existence of the tables it operates on, the indexes it uses as access
paths, and the privileges of its creator. Therefore, whenever a table or index is
dropped or a privilege is revoked, System R automatically performs a search in
its internal catalogs to find access modules which are affected by the change. If
the change involves dropping a table or revoking a necessary privilege, the access

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

Repetitive Transactions and Ad Hoc Queries in System R 79

module is erased from the database. However, if the change involves merely
dropping an index used by the access module, it will be possible to regenerate the
access module by choosing an alternative access path. In this case, the access
module is marked “invalid.” When the access module is next invoked, the invalid
marking is detected and the access module is regenerated automatically. The
original SQL statement contained within each section is once again passed
through the parser, the optimizer, and the code generator to produce a new
section based on the currently available access paths. The newly regenerated
access module is stored in the database and also loaded into virtual memory for
execution. The user’s source program is not affected in any way, and the user is
unaware of the regeneration process except for a slight delay during the initial
loading of his access module.

It is possible that a user may attempt to change the database in some way
which would invalidate an access module while the access module is actually
loaded and running. It would be undesirable if such a change were allowed to
become effective while the running access module is in the middle of some
operation. To prevent this from occurring, the “transaction” mechanism of
System R is used. A programmer can declare transaction boundaries in his
program by the BEGIN TRANSACTION and END TRANSACTION state-
ments of SQL. Users are advised to end a transaction only when the database is
in a “clean” and consistent state; that is, when one user-defined unit of work has
completed and the next unit of work has not yet begun. While a transaction is in
progress, the loaded access module protects itself by holding a lock on its own
description in the system catalog tables. Therefore, any database change which
would invalidate the access module (changing its description from “valid” to
“invalid”) must wait until the lock is released. At the end of each transaction, the
running access module releases the lock on its own description, allowing any
database changes which were waiting for the lock to proceed. At the beginning of
the next transaction, the access module attempts to reacquire the lock on its own
description. There are four possible outcomes.

(1) The description is still marked “valid,” and the timestamp in the description
is unchanged. In this case, execution of the access module proceeds normally.

(2) The description is gone. The access module has been destroyed by loss of an
essential table or privilege. An appropriate code is returned to the user’s
program, which is unable to continue.

(3) The description is present but marked “invalid.” This indicates that an index
used by the access module has been dropped. The access module is regener-
ated on the spot, choosing a new access path to replace the missing index.
The user program then continues without interruption.

(4) The description is marked “valid,” but its timestamp has changed (indicating
another user has caused a regeneration). The new (regenerated) access
module is loaded into virtual memory and the user program continues.

TREATMENT OF “NONOPTIMIZABLE” STATEMENTS

For certain types of SQL statements, no significant choice of access path is
required. These statements include those which create and drop tables and
indexes, begin and end transactions, and grant and revoke privileges. The process

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

80 - D. D. Chamberlin et al.

of creating a new table, for example, involves placing a description of the table in
the system catalogs. Since this process takes place essentially the same way for
each new table, it is possible to build into System R a standard routine for
creating tables. It is then unnecessary to generate new machine code in an access
module whenever a new table is to be created. Instead, the standard program is
invoked and given the name of the table to be created and a list of its fields and
their data types. This information is conveyed in the form of the SQL parse tree
for the CREATE TABLE statement. We refer to SQL statements which can be
handled in this way as “nonoptimizable” statements.

When the System R precompiIer encounters a nonoptimizable statement in a
user program, it places the parse tree of the statement directly into the section of
the access module rather than invoking the optimizer and code generator. The
resulting section is labeled as an “INTERPSECT,” to distinguish it from asection
containing machine code, which is labeled a “COMPILESECT.”

At run time, when XRDI receives a call to execute a given section, it examines
the label on the section. If it is a COMPILESECT, XRDI gives control directly
to the section. If it is an INTERPSECT, XRDI determines the statement type
by examining the root of the parse tree, then invokes the appropriate standard
routine. The standard routine obtains its necessary inputs (e.g., table and field
names) from the parse tree in the INTERPSECT.

OPERATIONS ON TEMPORARY TABLES

Occasionally a user may write a program which creates a temporary table in the
database, processes the table in some way, then destroys the table at the end of
the run. When such a program is precompiled, the System R optimizer is unable
to choose an access path for processing the temporary table because it does not
yet exist. Whenever the optimizer discovers during precompilation that some
table referenced in an SQL statement does not exist, it places the parse tree for
the SQL statement in a special section and labels it a “PARSEDSECT.” This
indicates that the normal process of parsing, optimization, and code generation
was terminated after the parsing step.

At run time, when XRDI receives a call to execute the PARSEDSECT, it
cannot give control directly to the section because it does not yet contain machine
code. Instead, XRDI makes another attempt to invoke the optimizer on the parse
tree in the PARSEDSECT. This time, since the temporary table is about to be
operated on, it should be in existence. If optimization is successful, the code
generator is invoked, a machine language routine is generated, and the PARSED-
SECT changes into a COMPILESECT, which is immediately executed. However,
if optimization fails because the indicated table still does not exist, a code is
returned to the calling program indicating “nonexistent table.”

The transformation of a PARSEDSECT into a COMPILESECT affects only
the version of the access module which is held in virtual memory, not the version
which is stored in the database.

DYNAMICALLY DEFINED STATEMENTS

Some programs may need to execute SQL statements which were not known at
the time the program was precompiled. An example of such a program is the

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

Repetitive Transactions and Ad Hoc Queries in System R * 81

“User-Friendly Interface” of System R, which allows users to type ad hoc SQL
statements at a terminal, then executes them and displays the results. Another
example is a general-purpose bulk loader program, which loads data into tables
via SQL INSERT statements, but which does not know at precompilation time
the name of the table to be loaded or the number and data types of its columns.

The SQL language, feature which supports this type of application is the
PREPARE statement, which has the following syntax:

PREPARE (statement name) AS (variable)

For example, a programmer might write

PREPARE Sl AS QSTRING;

This indicates to System R that at run time the character-type variable
QSTRING will contain an SQL statement which should be optimized and
associated with the name Sl. QSTRING may contain any kind of SQL statement,
and the SQL statement may have “parameters” indicated by question marks, for
example,

UPDATE EMP SET SALARY = ? WHERE EMPNO = ?

When the precompiler encounters a PREPARE statement in a program, it
creates a special zero-length section in the access module called an INDEFSECT.
In the user’s program the PREPARE statement is replaced by a special call to
XRDI with operation code = SETUPCALL, containing a pointer to the variable
QSTRING.

At run time XRDI interprets the SETUPCALL as an instruction to accept a
dynamically defined SQL statement and to pass it through the parser, optimizer,
and code generator. The result is a new COMPILESECT or INTERPSECT,
which replaces the INDEFSECT in the access module. (However, the INDEF-
SECT is replaced only in the virtual-memory copy of the access module, not in
the copy which remains in the database.) The dynamically defined statement is
now ready to be executed like any other SQL statement.

After writing PREPARE Sl AS QSTRING, the programmer will want to
execute the statement he has prepared. If the prepared statement was not a
query, the programmer may use the following syntax:

EXECUTE {statement name) [USING (variable list)]

For example,

EXECUTE Sl USING $X, $Y

The precompiler will translate this EXECUTE statement into a normal AUX-
CALL on the indicated section, passing the addresses of $X and $Y as parameters
of the call. The parameters passed at EXECUTE time are bound, in positional
order, to the question marks in the SQL statement Sl. (Note: These parameters
may represent data values but not table names or column names.) The statement
Sl may be executed many times, with different parameters, without reinvoking
the optimizer. However, if the PREPARE Sl AS QSTRING statement is exe-
cuted again, the contents of the section are discarded and a new COMPILESECT
or INTERPSECT is constructed on the basis of the new contents of QSTRING.

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

a2 - D. D. Chamberlin et al.

If the prepared statement is a query, the COMPILESECT produced for it will
look exactly like a COMPILESECT produced for a cursor. In other words, the
two statements

LET Cl BE (query)

and

PREPARE Sl AS QSTRING

will produce exactly the same section if the contents of QSTRING are the same
as (query). Therefore, the operations on a “prepared” query are the same as the
operations on a cursor: OPEN, FETCH, and CLOSE. Input variables may be
included in an OPEN statement and the target variables listed in the FETCH
statement, as in the following examples.

OPEN Sl USING $A, $B, (Precompiler produces OPENCALL with addresses of $A
and $B as parameters.)

FETCH Sl INTO $X, $Y; (Precompiler produces FETCHCALL with addresses of $X
and $Y as parameters.)

CLOSE Sl; (Precompiler produces CLOSECALL.)

In addtion to OPEN, FETCH, and CLOSE, System R supports another
operation called DESCRIBE on sections which contain a query. The syntax of a
DESCRIBE statement is as follows:

DESCRIBE (statement name) INTO (array)

The System R precompiler translates the DESCRIBE statement into a special
DESCRIBECALL on the section corresponding to the indicated statement name.
At run time, when XRDI receives the DESCRIBECALL, it returns into the
indicated array a description of the field names and data types in the query result.
The calling program can then use this information in formatting the query result
for display at a terminal. A DESCRIBECALL on a section which does not
contain a query returns a code indicating “no result.”

SUMMARY OF SECTION TYPES AND CALL TYPES

The four basic steps in the processing of an SQL statement are parsing, optimi-
zation, code generation, and execution. The basic philosophy of System R is to
perform as many of these steps as possible during precompilation, then to perform
the remaining steps at run time. Depending on the nature of the statement, the
break between precompile time and run time may occur at several different places
in the processing of the statement, as shown in Figure 6. The mechanism which
implements the early-binding philosophy of System R consists of four section
types and six call types. The behavior of XRDI for each combination of section
type and call type is summarized in Figure 7.

PERFORMANCE MEASUREMENT

In order to illustrate how System R might be used in an environment where ad
hoc queries are mixed with repetitive transactions, the example database in
Figure 8 was constructed. The PARTS table contains the description, quantity
on hand, and quantity on order for a collection of parts identified by part

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

Repetitive Transactions and Ad Hoc Queries in System R * 83

Statement
Type

Section
Tvpe

Query, Insert,
Delete, Update

COMPI LESECT

Create Table,
Begin Trans, etc.

INTERPSECT

Operations on
Temporary Tables

PARSEDSECT

Parse Opt. Code Gen. Execution

Precompile time

-1 I I 1
Pre- 1

I I I
compile 1
time L-l

1;;1*,

PREPARE Sl AS QSTRING; INDEFSECT Run time
EXECUTE Sl; I I I

I

I I I I

Fig. 6. Spectrum of binding times in System R.

numbers. The ORDERS table contains a set of outstanding orders for parts. The
QUOTES table contains a set of price quotes for parts. Each price quote is
identified by a particular supplier number and part number and the minimum
and maximum quantities for which the quote applies. Typically, a given combi-
nation of supplier and part numbers may have several quotes: one for quantities
from 1 to 100, another for quantities from 101 to 10,000, etc.

The following structural and statistical information completes our description
of the example database.

(1) The total size of database (including data records but not indexes) equals
7.44 megabytes.

(2) The data values in the sample database were randomly generated according
to the following rules:

(a) The number of different part descriptions equals 1024.
(b) The .number of different supplier numbers equals 1000.
(c) Each part number has exactly three outstanding orders and three price

quotes from each of three different suppliers.

(3) Clustering method: The three tables are stored on disk in an interleaved
fashion, ordered by PARTNO. Each PARTS record is followed by all the
ORDERS and QUOTES for that part number, then by the next PARTS
record, etc. Fifteen percent free space is preserved on each data page to allow
for future insertions, which will also be clustered by PARTNO.

A two-part experiment was performed on the example database. The first part
involved measurement of three example queries submitted via the User-Friendly
Interface (UFI) of System R. For each query, the CPU time and number of I/OS
were measured for each step in processing the query: parsing, optimization, code
generation, and fetching of the answer set.

The second part of the experiment involved writing a PL/I program to process
three types of “canned transactions“ against the sample database. This program

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1961.

84 * D. D. Chamberlin et al.

AUXCALL

OPENCALL

FETCHCALL

CLOSECALL

SETUPCALL

DESCRIBE-
CALL

COMPILESECT

Execute the
machine
code in the
section.

Execute the
machine
code in the
section,
with opcode
=OPEN.

Execute the
machine
code in the
section,
with opcode
=FETCH.

Execute the
machine
code in the
section,
with opcode
=CLOSE.

INTERPSECT PARSEDSECT INDEFSECT

Execute a
standard
routine
controlled
by the
content of
the section

(Not used)

(Not used)

(Not used)

Throw away the current
content of the section,
and invoke the parser.
optimizer, and code
generator to build a
new COMPILESECT or
INTERPSECT from a new
SQL statement.

Invoke the
optimizer
and code
generator
to convert
the section
into a
COMPILESECT
or
INTERPSECT;
then
execute it.

(Not used)

(Not used)

(Not used)

(Not used)

Fig. 7. Section types and call types.

(Not used)

(Not used)

(Not used)

(Not used)

Invoke the
parser,
optimizer.
and code
generator
to convert
a new SQL
statement
into a
COMPILESEC'I
or
INTERPSECT.

(Not used)

accesses and updates the database by means of embedded SQL statements, as
described in [3]. Measurements of CPU time and number of I/OS were made
during precompilation and compilation of the transaction program, and for
execution of each of the three transaction types. In addition, measurements were
made of how the execution times for the three transactions are affected by

ACM Transactionson Database Systems,Vol. 6,No.l,March1981.

Repetitive Transactions and Ad Hoc Queries in System R * 85

PARTS PARTNO DESCR IP

CHAR(G) CHAR(50)VAR

QOH 000

INTEGER INTEGER

ORDERS ORDERNO

CHAR(6)

PARTNO

CHAR(G)

SUPPNO

CHAR(B)

DATE QTY
I

CHAR(G) INTEGER

QUOTES SUPPNO

CHAR(S)

PARTNO

CHAR(G)

MINQ MAXQ PRICE

INTEGER INTEGER INTEGER

Table

PARTS

Avg. length of
No. of record (bytes,
Records incl. header)

20,000 36

ORDERS 60,000 31

QUOTES 180,000 27

Fig.8. Sample database.

Ft:,;,:,.,
PARTNO
DESCRIP

ORDERNO
PARTNO
SUPPNO

SUPPNO
PARTNO

database size, using a series of five databases structurally identical to the one
described above, but with different numbers of records.

All experiments were performed on an IBM 370 Model 168 under the VM/
CMS operating system. Measurements were made using the timing facilities of
VM, which report the cumulative virtual CPU time and number of I/OS performed
by the user’s virtual machine. These measurements do not include the “overhead”
costs of VM in providing the user with a virtual machine (e.g., dispatching, virtual
memory paging, channel program translation, etc.). Under VM, “overhead”
includes about 2500 instructions per I/O. These costs are not included in our
experiment because they are highly dependent on the operating system or data
communication subsystem (e.g., VM/CMS, MVS/TSO, CICS) under which the
application is executing.

All measurements were made with System R running in multiuser mode
(locking subsystem enabled). Experience has shown that System R uses the same
number of I/OS to perform equivalent functions in single-user and multiuser
modes, but uses slightly less CPU time in single-user mode due to the disabling
of the locking subsystem.

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1961.

86 * D. D. Chamberlin et al.

Table I. Query 1

English form:
Find the supplier number and price of all quotes for part number 010002
in quantities of 1600.

SQL form:
SELECT SUPPNO, PRICE FROM QUOTES
WHERE PARTNO = ‘010002’
AND MINQ <= 1000 AND MAXQ >= loo0,

Access path chosen by optimizer:
PARTNO index on QUOTES table.

Cardinalitv of answer set: 3

CPU time Number
Operation (ms on 168) of I/OS

Parsing 13.3 0
Optimization 40.0 9
Code generation 10.1 0
Open cursor 3.7 5
Fetch answer set (1.5 ms per answer rec- 4.6

ord) 2
Close cursor 1.2
Total (including all of above plus format- 83.4 16

ting answer set for display)

QUERY MEASUREMENTS

The three experimental queries, and their measured performance, are summarized
in Tables I-III. In order to make these measurements reproducible, it was
necessary to ensure that no query could benefit from data which remained in the
system buffers from previous activities. (System R has a buffer space in virtual
memory containing data recently fetched from the database. The buffer space is
adjustable in size; in our experiment it was configured at twenty 4096-byte pages.)
Therefore, before each query was measured, another query was run, which
fetched at least 50 pages of data, none of which pertained to the query to be
measured.

A striking fact about the measurements shown in the tables is the small amount
of time involved in the “code generation” step. This is the processing step which
could be avoided in a system which interprets a query immediately after choice
of access path. We see that the cost of translating the chosen access path into
executable code is quite small (zero I/OS and 19-42 percent of the CPU time
required to parse and optimize the query). The payoff for this small investment
is a small, efficient machine-language routine to process the query. This generated
routine has a shorter path length and smaller working set than a general-purpose
SQL interpreter because it is tailored to a specific query. Therefore it quickly
pays off the cost of code generation as it fetches answer records from the database.
Thus we see that the SQL compilation approach of System R has significant
benefits for ad hoc query, as well as for a “canned transaction” environment.

For all the ad hoc queries the optimizer chose access paths using indexes. To
illustrate the importance of the indexes, the three queries were rerun with no
indexes on any of the tables. The CPU and I/O measurements for parsing,
optimization, and code generation were essentially unchanged. For Queries 1, 2,

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

Repetitive Transactions and Ad Hoc Queries in System R l 87

Table II. Query 2

English form:
Find the order number, part number, description, date and quantity for
all parts ordered from supplier number 797 during 1975.

SQL form:
SELECT ORDERNO, ORDERS.PARTNO, DESCRIP, DATE, QTY
FROM ORDERS, PARTS
WHERE ORDERS.PARTNO = PARTS.PARTNO
AND DATE BETWEEN ‘756000’ AND ‘751231’
AND SUPPNO = ‘797’;

Access path chosen by optimizer:
Access ORDERS by SUPPNO index. For each qualifying ORDERS
record, access corresponding PARTS record by index on PARTNO.

Cardinality of answer set: 7

Operation

Parsing
Optimization
Code generation
Open cursor
Fetch answer set (8.7 ms per answer rec-

ord)
Close cursor
Total (including all of above plus format-

ting answer set for display)

CPU time Number
(ms on 168) of I/OS

20.7 0
73.2 9
19.3 0
4.0 6

61.1
75

5.3
213.9 90

Table III. Query 3

English form:
For each supplier that supplies part number 010907, list the minimum
and maximum quoted price for that part number.

SQL form:
SELECT SUPPNO, MIN(PRICE), MAX(PRICE)
FROM QUOTES WHERE PARTNO = ‘010097’
GROUP BY SUPPNO;

Access path chosen by optimizer:
Scan QUOTES by PARTNO index to get all quotes for part number
019007. Then sort these into SUPPNO order and scan sorted list to
compute minima and maxima.

Cardinality of answer set: 3

Operation

Parsing
Optimization
Code generation
Open cursor (includes finding relevant

quotes and sorting the list)

CPU time Number
(ms on 168) of I/OS

13.0 0
40.3 9
22.6 0
11.2 9

Fetch answer set (includes scanning sorted
list for minima and maxima) (1.7 ms per
answer record)

Close cursor
Total (including all of above plus format-

ting answer set for display)

5.1

0

0.3
108.2 18

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

88 * D. D. Chamberlin et al.

and 3 the total CPU times (measured in seconds) were 13.29,30.64, and 9.11 and
the numbers of I/OS were 3201, 26070, and 3205, respectively. The significantly
higher values result, of course, from scanning all the tuples of each table involved
in the query.

TRANSACTION MEASUREMENTS

The second part of our experiment involved preparing a PL/I program with
embedded SQL statements to implement three types of “canned transactions”
against the sample database. The program, named ORDERS, is included in the
appendix. The ORDERS program differs from traditional database transaction
programs in that its terminal interactions are handled by PL/I I/O rather than
by a data communication subsystem. The program reads a transaction-type code
from a terminal and then performs one of the following types of transactions.

Transaction Type N.
(New order)

Transaction Type A.
(Arrival)

Transaction Type Q.
(Query)

A new order has been placed. Enter the new order in
the ORDERS table, and update the QOO field of the
appropriate PARTS record.
An existing order of parts has arrived. Access the
ORDERS table to find the part number and quantity
in the order, and update the appropriate PARTS rec-
ord accordingly. Then delete the appropriate OR-
DERS record from the database.
Given a part number, look up the description, quantity
on hand, and quantity on order of the given part and
display them on a terminal.

These three transactions represent simple processes which might be expected
to occur repeatedly, and which are therefore included in a precompiled program
for maximum efficiency. An actual inventory control application would probably
include a much larger collection of these “canned transactions.”

The CPU time required for precompilation of the ORDERS program on
System R was measured to be 2.22 virtual seconds on a 370/168 (approximately
half of the CPU time required for compilation of the same program using the
PL/I Optimizing Compiler).

After precompiling the ORDERS program, we examined the resulting access
module to determine its size and the access paths which had been selected. The
ORDERS program contains nine SQL statements. Therefore, its access module
contains nine sections and a Section Location Table (SLT). The size of the access
module is summarized in Table IV.

Next, measurements were made of the CPU time and number of I/OS used in
executing each of the three transaction types on System R in multiuser mode.
When the first transaction of a user session is executed (independent of its type),
an additional cost is incurred for loading the access module into virtual memory,
and this cost was measured separately. For this part of the experiment, we desired
to measure the sensitivity of transaction execution times to the size of the
database. Therefore, we loaded five databases of different sizes and ran 100
transactions of each type on each database. (Of course, the ORDERS program
was separately precompiled in each database.) Each database was structurally

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

Repetitive Transactions and Ad Hoc Queries in System R * 89

Table IV. Contents of Access Module

Section
number SQL statement

Size of
section
(bytes) Access path selected

(SLT)
1
2
3
4
5

BEGIN TRANSACTION
INSERT INTO ORDERS
UPDATE PARTS
SELECT FROM ORDERS
DELETE ORDERS WHERE CUR-

RENT OF Cl
UPDATE PARTS
SELECT FROM PARTS
END TRANSACTION
RESTORE TRANSACTION

254
70

751
1321 Index on PARTNO
1319 Index on ORDERNO
648 Established cursor position

1449 Index on PARTNO
1423 Index on PARTNO

68
72

Note. Total size of access module: 7375 bytes.

Table V. Five Experimental Databases

Database

Number of Number of Number of
PARTS ORDERS QUOTES
records records records

1 5,669
2 20,009
3 40,006
4 70,606
5 100,ooo

Total size
of database

in megabytes
(not including

indexes)

15,066 45,666 1.86
60,066 180,ooO 7.43

120,096 360,069 14.87
210,060 630,000 26.02
309,066 900,ooo 37.17

identical to the one described above, the only difference being the total num-
ber of records of each type. The sizes of the five databases are summarized in
Table V.

For each database, a “script” was created consisting of 300 part numbers
randomly selected with a uniform distribution over all the part numbers in the
database. Using the script, 100 transactions of each type were executed on the
300 random part numbers (Type N = new order for a given part; Type A = arrival
of order for a given part; Type Q = query on a given part). The three types of
transactions were mixed together in random order. Since the records in the
database are physically clustered by part number, the random sequence of part
numbers in the script is uncorrelated with the physical placement of records. This
precaution eliminates any spurious effects due to a transaction accessing pages
which were left in the system buffers by previous transactions.

For each transaction type, in each database, the average CPU time and average
number of I/OS were measured over the 100 executions of the transaction. The
CPU time measurement includes time spent in the PL/I portion of the ORDERS
program, as well as time spent in System R. However, the I/O counts include
only database accesses (not interactions with the terminal). The costs of the three
transaction types are summarized in Table VI and in Figure 9. We observe that
since all the transactions access the database directly via an index, they are

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

90 * D. D. Chamberlin et al.

Table VI. Execution Cost of Transactions

Database size (megabytes)

Me 1.86 7.43

A. Average CPU Time (ms on 168)
N 17.0 17.4

18.6 18.9
12.3 12.3

14.87 26.02 37.17

18.4 19.7 21.4
20.2 21.2 23.0
12.8 12.1 12.8

B. Average Number of I/Os
N 10.0 10.5 11.7 16.0 18.3
A 9.5 9.7 11.5 14.7 17.6
Q 3.3 3.8 4.9 5.6 6.0

24

20

16 t
,*

t
l -•-•

Q - Type
0-9

8

4

I I I I
0 4 8 12 16 20 24 28 32 36 40

Database Size (megabytes)

16

12 l --‘v’
P
A - Type

8
Q - Type

4
0-0 /*

I I I I I I I I I I I
0 4 8 12 16 20 24 28 32 36 40

Database Size (megabytes)

Fig. 9. Execution cost of transactions.

relatively insensitive to the size of the database (a twentyfold increase in database
size causes only a 26 percent increase in CPU time and an 85 percent increase in
number of I/OS).

In addition to the transaction costs listed in Table VI, two other costs were
measured. The cost of loading the access module, which occurs at the first
transaction of a session, is 28.1 milliseconds of CPU time and 6 I/OS, indepen-
dent of the size of the database. In addition, System R automatically takes a
ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

Repetitive Transactions and Ad Hoc Queries in System R - 91

“checkpoint” after approximately every 7000 transactions (frequency of check-
point is an adjustable parameter). Checkpoints involve certain internal system
bookkeeping and are not visible to users. The cost of a checkpoint depends on
the size of the database and on the activity since the last checkpoint. For our
37.17-megabyte database, the cost of a checkpoint is approximately 117 millisec-
onds of CPU time and 100 I/OS, representing an average cost per transaction of
about 0.02 millisecond and 0.014 I/O.

SUMMARY AND CONCLUSIONS

We have described the architecture of System R, which supports a flexible
spectrum of binding times, ranging from precompilation of “canned transactions”
to on-line execution of ad hoc queries. The advantages of this approach may be
summarized as follows.

(1) For repetitive transactions, all the work of parsing, name binding, and access
path selection is done once at precompilation time and need not be repeated.

(2) Ad hoc queries are compiled on-line into a small, machine-language access
module which executes more efficiently than an interpreter.

(3) Users are given a single language, SQL, for use in ad hoc queries, as well as
in writing PL/I and COBOL transaction programs.

(4) The SQL parser, access path selection routines, and machine-language code
generator are used in common between query processing and precompilation
of transaction programs.

(5) When an index used by a transaction program is dropped, a new access path
is automatically selected for the transaction without user intervention.

(6) The multiuser locking subsystem allows some users to be running transaction
programs, others to be precompiling new programs, and others to be running
ad hoc queries and updates, all on the same database at the same time.

We have also described an example database and shown how it might be used
both by ad hoc query users and by transaction programs. Some preliminary
performance measurements were made on the database using an IBM 370 Model
168 under the VM/370 operating system. The results of our measurements
support the following conclusions.

(1) Ad hoc queries, including joins of more than one table, can be parsed,
optimized, and executed in substantially less than one virtual second if their
answer sets are small and the appropriate indexes are available.

(2) The process of generating machine-language code to execute a query adds a
small increment (typically about one-third) to the cost of access path selection
for the query.

(3) The access modules resulting from compilation of simple transactions contain
about 1000-1500 bytes of code and control blocks per SQL statement.

(4) For simple transactions which are compiled in advance and which are
supported by appropriate indexes, System R can process several transactions
per second on a 370 Model 168.

(5) When a query or transaction is supported by an index, its performance is
relatively insensitive to the size of the database (e.g., in our transaction

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

92 * D. D. Chamberlin et al.

experiment, a twentyfold increase in database size caused an average increase
of only 26 percent in CPU time and 85 percent in I/O count).

APPENDIX

The following is a pseudocode form of the PL/I program which was used in the
performance measurements described in this paper.

ORDERS: PROCEDURE;

/***
* *
* INTERACTIVE PROCESSING OF 3 TRANSACTION TYPES: *
* 'N' = NEW ORDER *
* 'A' = ARRIVAL OF ORDER *
* 'Q' = QUERY SUPPLY OF .A GIVEN PART *
* *
x**************/

(A declaration of the System R return code structure,
containing SYR-CODE and SYRJESSAGE, must be copied
into the program from a macro library.)

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

PARTNO
DESCRIP
QOH
QOO
ORDERNO
SUPPNO
QTY
DATE
TRANTYPE

CHARACTER(G);
CHARACTER(SOI VARYING;
BIN FIXED(31);
BIN FIXED(31);
CHARACTER(6);
CHARACTER(31;
BIN FIXED(31);
CHARACTER(61;
CHARACTER(l);

GETNEXTTRANS:

Read TRANTYPE from terminal: N I A 1 Q or 2 to quit;

IF TRANTYPE = 'N' THEN
Read ORDERNO, PARTNO, SUPPNO, DATE, QTY from terminal;

ELSE IF TRANTYPE = 'A' THEN
Read ORDERNO from terminal;

ELSE IF TRANTYPE = 'Q' THEN
Read PARTNO from terminal;

ELSE IF TRANTYPE='Z' THEN STOP;
ELSE
DO;

Write 'INVALID TRANSACTION TYPE' on terminal;
GO TO GETNEXTTRANS;

END;

8BEGIN TRANSACTION;
IF SYR-CODE-=0 THEN CALL TROUBLEC'BEGIN TRANS'I;

IF TRANTYPE='N' THEN
DO;

/* NEW ORDER */
BINSERT INTO ORDERS:<80RDERNO,~PARTN0,8SUPPNO,gDRTEIBQTY>;
IF SYR-CODE-=0 THEN CALL TROUBLE('INSERT');

ACM Transactions onDatabase Systems,Vol. 6,No.l,March1981.

Repetitive Transactions and Ad Hoc Queries in System R - 93

BUPDATE PARTS SET QOO=Q00+9QTY WHERE PARTNO=$PARTNO;
IF SYR-CODE-=0 THEN CALL TROUBLE('UPDATE');

END ;
ELSE IF TRANTYPE='A' THEN
DO;

/* ARRIVAL */
$LET Cl BE SELECT PARTNOtQTY INTO $PARTNO,%QTY

FROM ORDERS WHERE ORDERNO=%ORDERNO;
BOPEN Cl;
IF SYR-CODE-=0 THEN CALL TROUBLE('OPEN CURSOR');
BFETCH Cl;
IF SYR-CODE-=0 THEN CALL TROUBLE('FETCH');
BDELETE ORDERS WHERE CURRENT OF cl;
IF SYR-CODE-=0 THEN CALL TROUBLE('DELETE');
BCLOSE Cl;
IF SYR-CODE-=0 THEN CALL TROUBLE('CLOSE');
3UPDATE PARTS SET QOH=QOH+$QTY, QOO=QOO-SQTY

WHERE PARTNO=BPARTNO;
IF SYR-CODE-=0 THEN CALL TROUBLE('UPDATE');

END;
ELSE IF TRANTYPE='Q' THEN
DO;

I* QUERY */
BSELECT DESCRIP,QOH,QOO INTO $DESCRIP,$QOH,~QOO

FROM PARTS WHERE PARTNO=$PARTNO;
IF SYR-CODE = 0 THEN

Write DESCRIP, QOH, QOO on terminal;
ELSE IF SYR-CODE = 100 THEN

Write 'THERE IS NO SUCH PART' on terminal;
ELSE CALL TROUBLE ('SELECT');

END;

SEND TRANSACTION;
IF SYR-CODE-=0 THEN CALL TROUBLEC’END TRANS’);

GO TO GETNEXTTRANS;
TROUBLE: PROCEDURE(STMT);

DECLARE STMT CHARACTER(12) VARYING;

Write 'TROUBLE ENCOUNTERED' on terminal;

Write TRANTYPE, STMT, ORDERNO, PARTNO, SYR-CODE,
SYR-MESSAGE on terminal;

4RESTORE TRANSACTION;
GO TO GETNEXTTRANS;

END TROUBLE;

END ORDERS;

ACKNOWLEDGMENT

The authors of this paper wish to thank all the IBM employees, visiting students
and faculty members, and IBM postdoctoral fellows who made important contri-
butions to the architecture and implementation of System R.

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

94 l D. D. Chamberlin et al.

REFERENCES

(Note. References [2, 7-9, 11-131 are not cited in the text.)
1. ASTRAHAN, M.M., ET AL. System R: A relational approach to database management. ACM

Trans. Database Syst. I,2 (June 1976), 97-137.
2. CHAMBERLIN, D.D. Relational database management systems. Comput. Surv. 8, 1 (March

1976), 43-66.
3. CHAMBERLIN, D.D., ET AL. SEQUEL 2: A unified approach to data definition, manipulation,

and control. IBM J. Res. Dev. 20,6 (Nov. 1976), 560-575.
4. GRAY, J.N., LORIE, R.A., PUTZOLU, G.R., AND TRAICER, I.L. Granularity of locks and degrees of

consistency in a shared database. Res. Rep. RJ1654, IBM Res. Lab., San Jose, CaIif., 1975.
5. LORIE, R.A., AND NILSSON, J.F. An access specification language for a relational database

system. Res. Rep. RJ2218, IBM Res. Lab., San Jose, &Iii., Apr. 1978.
6. LORIE, R.A., AND WADE, B.W. The compilation of a very high level language. Res. Rep. RJ2008,

IBM Res. Lab., San Jose, Calif., May 1977.
7. MCGEE, W.C. The information management system IMS/VS. ZBMSyst. J. 16,2 (1977), 84-168.
8. MCLEOD, D., AND MELDMAN, M. RISS-A generalized minicomputer relational database man-

agement system. In Proc. AFZPS 1975 NCC, vol. 44, AFIPS Press, Arlington, Va., pp. 397-402.
9. MYLOPOULOS, J., SCHUSTER, S., AND TSICHRITZIS, D. A multi-level relational system. In Proc.

AFZPS 1975 NCC, vol. 44, AFIPS Press, Arlington, Va., pp. 403-408.
10. SELINGER, P. G., ASTRAHAN, M.M., CHAMBERLIN, D.D., LORIE, R.A., AND PRICE, T.G. Access

path selection in a relational database management system. In Proc. ACM SZGMOD 1979 Znt.
Conf. Management of Data, 1979, pp. 23-24.

11. STONEBRAIKER, M., WONG, E., KREPS, P., AND HELD, G. The design and implementation of
INGRES. ACM Trans. Database Syst. 1,3 (Sept. 1976), 189-222.

12. TODD, S.J.P. The Peterlee relational test vehicle-A system overview. IBM Syst. J. 15, 4
(1976), 285-308.

13. ZLOOF, M.M. Query by example: A database language. IBM Syst. J. 16,4 (1977), 324-343.

Received May 1979; revised April 1980; accepted June 1980

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

