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System R supports a high-level relational user language called SQL which may be used by ad hoc 
users at terminals or as an embedded data sublanguage in PL/I or COBOL. Host-language programs 
with embedded SQL statements are processed by the System R precompiler which replaces the SQL 
statements by calls to a machine-language access module. The precompilation approach removes 
much of the work of parsing, name binding, and access path selection from the path of a running 
program, enabling highly efficient support for repetitive transactions. Ad hoc queries are processed by 
a similar approach of name binding and access path selection which takes place on-line when the 
query is specified. By providing a flexible spectrum of binding times, System R permits transaction- 
oriented programs and ad hoc query users to share a database without loss of efficiency. 

System R is an experimental database management system designed and built by members of the 
IBM San Jose Research Laboratory as part of a research program on the relational model of data. 
This paper describes the architecture of System R, and gives some preliminary measurements of 
system performance in both the ad hoc query and the “canned program” environments. 
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INTRODUCTION 

System R is an experimental database management system designed and built at 
the IBM San Jose Research Laboratory as part of a program of research in the 
relational model of data. The architecture of System R was fust described in 
[l], and SQL, its user interface, was described in [3]. Since these publications, 
System R has undergone certain architectural changes, and implementation of 
the prototype system is now essentially complete. The purpose of this paper is to 
bring up to date the previously published description of system architecture and 
to present some preliminary measurements of the performance of the prototype. 

One of the basic goals of System R is to support two different types of 
processing against a database: (1) ad hoc queries and updates, which are usually 
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executed only once, and (2) canned programs, which are installed in a program 
library and executed hundreds of times. System R makes all the features of SQL 
[3] available in both these environments. These features include statements to 
query and update a database, to define and delete database objects such as tables, 
views, and indexes, and to control access to the database by various users. 

An ad hoc user at a terminal may type SQL statements and view the result 
directly at the terminal as in the following examples: 

SELECT NAME, SALARY FROM EMP WHERE JOB = ‘PROGRAMMER’; 

UPDATE EMP SET SALARY = 9500 WHERE EMPNO = 501; 

The same SQL statements may be embedded in a PL/I or COBOL program by 
prefixing them with $ signs to distinguish them from host-language statements. 
SQL statements in PL/I or COBOL programs may contain host-language vari- 
ables if the variable names are prefixed by $ signs, as in the following example: 

$UPDATE EMP SET SALARY = $X WHERE EMPNO = $y; 

Host-language variables in a SQL statement may be used in place of data 
values but not in place of table names or field names. 

If a PL/I or COBOL program wishes to execute a SQL query and fetch the 
result, it does so by means of a “cursor.” A cursor is defined by a LET statement, 
which associates the cursor name with a particular query. The cursor is readied 
for retrieval by an OPEN statement, which binds the values of any host-language 
variables appearing in search conditions in the query. Then a FETCH statement 
is used repeatedly to fetch rows from the answer set into the designated program 
variables, as in the following example: 

$LET Cl BE 
SELECT NAME, SALARY INTO $X, $Y 
FROM EMP WHERE JOB = $Z; 

$OPEN Cl; /* BINDS VALUE OF Z*/ 

$FETCH Cl; /* FETCHES ONE EMPLOYEE INTO X AND Y */ 

$CLOSE Cl; /* AFTER ALL VALUES HAVE BEEN FETCHED */ 

After the execution of each SQL statement, a status code is returned to the 
host program in a variable called SYR-CODE. 

System R is based on a special multiuser access method called the Research 
Storage System (RSS), with facilities for locking, logging, recovery, and index 
maintenance. The description of the RSS is essentially unchanged since [l]. 

However, the Relational Data System (RDS) which runs on top of the access 
method is now split into two distinct functions: (1) a precompiler, called XPREP, 
which is used to precompile host-language programs and install them as “canned 
programs” under System R, and (2) an execution-time system, called XRDI, 
which controls the execution of these “canned programs” and also executes SQL 
statements for ad hoc terminal users. 

When an application programmer has written a PL/I or COBOL program with 
embedded SQL statements, his first step is to present the program to the System 
R precompiler, XPREP. XPREP finds the SQL statements in the program and 
translates them into a machine-language “access module.” In the user’s program, 
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Fig. 1. Precompilation step. 

the SQL statements are replaced by host-language calls to the access module. 
The access module is stored in the System R database to protect it from 
unauthorized modification. The precompilation step is illustrated in Figure 1. 

The advantages gained for canned programs by the precompilation step are 
twofold: 

(1) Much of the work of parsing, name binding, access path selection, and 
authorization checking can be done once by the precompiler and thus removed 
from the process of running the canned program. 

(2) The access module, because it is tailored to one specific program, is much 
smaller and runs much more efficiently than a generalized SQL interpreter. 

After precompilation, the user’s program contains pure PL/I or COBOL and 
can be compiled using a conventional language compiler. 

When a “canned program” is run on System R, it makes calls to XRDI, which 
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I call 

1 call 
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Fig. 2. Execution step. 

in turn loads and invokes the access module for the program. The access module 
operates on the database by making calls to the RSS and delivers the result to 
the user’s program. This process is illustrated in Figure 2. 

The ad hoc user of System R is supported by a special program called the 
User-Friendly Interface (UFI), which controls dialogue management and the 
formatting of the display terminal. The UFI has an access module of its own, but 
its access module is not complete because the UFI’s purpose is to execute SQL 
statements which are not known in advance. When a user enters an ad hoc SQL 
statement, the UFI passes the statement to XRDI by means of special “PRE- 
PARE” and “EXECUTE” calls, which will be described later. The effect of these 
calls is to cause a new “section” of the UFI’s access module to be dynamically 
generated for the new statement. The dynamically generated section of the access 
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Fig. 3. Processing of ad hoc queries. 

module contains machine-language code and is in every way indistinguishable 
from the sections which were generated by the precompiler. The interactions of 
the UFI with System R are illustrated in Figure 3. 

System R permits many users to be active simultaneously, performing a variety 
of activities. Some users may be precompiling new programs, while others are 
running existing “canned programs.” At the same time other users may be using 
the UFI, querying and updating the database and creating new tables and views. 
All these simultaneous activities are supported by the automatic locking subsys- 
tem built into the RSS described in [4]. 

First we examine in detail the two major functions of System R: precompilation 
and execution of a “canned program.” Next, we examine how System R imple- 
ments the special PREPARE and EXECUTE calls which are needed to support 
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ad hoc users. Finally, we present a sample database and some measurements of 
the performance of System R in both a canned program and an ad hoc query 
environment. 

PRECOMPILATION 

When a PL/I or COBOL program with embedded SQL statements is presented 
to the System R precompiler, it scans the program to find the SQL statements 
(they are indicated by $) and replaces each SQL statement by a valid host- 
language CALL. In addition, each SQL statement is put through a three-step 
process in order to translate it to a machine-language routine. The three steps 
are as follows: 

(1) Pursing: The parser checks the SQL statement for syntactic validity and 
translates it into a conventional parse-tree representation. The parser also 
returns to the System R precompiler two lists of host-program variables 
found in the SQL statement: a list of input variables (values to be furnished 
by the calling program and used in processing the statement) and a list of 
output variables (target locations for data to be fetched by the statement). 
For example, if the SQL statement being parsed were as follows: 

SELECT NAME, SALARY INTO $X, $Y 

FROM EMP WHERE DEPT = $A AND JOB = $B 

the input variables would be A and B and the output variables would be X 
and Y. 

(2) Optimization: The System R optimizer is then invoked with the parse tree as 
input. The optimizer performs several tasks. 

(a) First, using the internal catalogs of System R, it resolves all symbolic 
names in the SQL statement to internal database objects. 

(b) A check is made that the current user is authorized to perform the 
indicated operation on the indicated table(s). 

(c) If the SQL statement operates on one or more user-defined views, the 
definitions of the views (stored in parse-tree form) are merged with the 
SQL statement to form a new composite SQL parse tree which operates 
on real stored tables. 

(d) The optimizer uses the system catalogs to find the set of available indexes 
and certain other statistical information on the tables to be processed. 
This information is used to choose an access path and an algorithm for 
processing the SQL statement. The details of this access path selection 
process are given in [lo]. The optimizer represents its chosen access path 
by structural modifications to the parse tree called Access Specification 
Language (ASL) [5], and by constructing the RSS control blocks to be 
used in processing the statement. 

(3) Code generation: The code generator translates the ASL structures produced 
by the optimizer into a 370 machine-language routine which implements the 
chosen access path [6]. This machine-language routine is called a “section.” 
When running, the section will access the database by using the RSS control 
blocks which were produced by the optimizer. 
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Fig. 4. Structure of an access module. 

After all the SQL statements in a program have been translated into sections, 
the sections are collected together to form an access module. In the header of the 
access module is placed a Section Location Table which lists the relative byte 
offset of each section within the Access Module. Each section has a Relocation 
Directory which lists the offsets within the section of all internal pointers which 
must be relocated before the section can be used. In addition to machine-language 
code, each section holds the SQL statement from which it was originally con- 
structed. This enables the section to be rebuilt if its original access path should 
become unavailable at some future time. The rebuilding process is similar to 
precompilation and is described later. The structure of an access module is shown 
in Figure 4. (Some of the entries in the access module, e.g., INTERPSECT, will 
be explained later in this paper.) When the access module is complete, it is stored 
in the System R database for later use. If the user who precompiled the program 
passes the authorization test for all SQL statements in the program, he receives 
the “RUN” privilege for the access module. 
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When the precompiler translates a SQL statement into a section, it must also 
replace the SQL statement in the user’s PL/I or COBOL program by a CALL. 
The call invokes XRDI, the System R entry point used for executing a stored 
access module. The parameters of the call are the name of the access module, the 
section number within the access module, an operation code, and the addresses 
of the input and/or output variables to be used in processing the statement. 

If the SQL statement under consideration is not an operation on a cursor, the 
construction of the call is straightforward. The operation code is AUXCALL, 
meaning simply, “execute the section.” All host-program variables in the original 
SQL statements are passed in with the AUXCALL, as shown for the UPDATE 
statement in Figure 5. 

If the SQL statement is an operation on a cursor, the situation is slightly more 
complex. The cursor is defined by an SQL statement of the form: 

LET (cursor name) BE (query). 

The basic operations on cursors are OPEN (cursor name), FETCH (cursor 
name), and CLOSE (cursor name). The LET statement does not result in a 
CALL since it is definitional in nature. In response to the LET statement, the 
System R precompiler produces a section for the indicated cursor containing 
machine code for opening, fetching, and closing the cursor. Then, in response to 
OPEN, FETCH, and CLOSE statements the precompiler generates CALLS on 
the appropriate section with the appropriate operation codes, as shown in Figure 
5. The addresses of input variables are passed as parameters of the OPEN call 
since input values are always bound when a cursor is opened. Addresses of output 
variables are passed as parameters of the FETCH call, giving the target locations 
for the data to be fetched. No variables are involved in the CLOSE call. 

After the System R precompiler has replaced all the SQL statements in the 
user’s program by calls to XRDI, the program contains pure PL/I or COBOL, 
and it may be compiled using one of the conventional language compilers. The 
resulting object program is now ready to be run on System R. 

EXECUTING A PRECOMPILED PROGRAM 

When a user invokes a program which has been precompiled on System R, the 
normal facilities of the operating system are used to load and start the object 
program. System R first becomes aware of the program when it makes its first 
call to XRDI. On the first such call, XRDI checks the authority of the current 
user to invoke the indicated access module, and checks that the access module is 
still valid. If these checks are successful, the access module is loaded from the 
database into virtual memory, its internal pointers are adjusted using the relo- 
cation directory of each section, and then control is passed to the indicated 
section. On subsequent calls to the same access module, the authorization check, 
loading, and relocation steps are bypassed, and control passes directly to the 
indicated section. The machine-language code in the section examines the oper- 
ation code of the call (e.g., OPENCALL or FETCHCALL) and proceeds to 
process the original SQL statement from which it was compiled, using as needed 
the host-program variables which were passed in with the call. When running 
under MVS, the access module is assigned a different storage protection key from 
the user’s program in order to provide them with mutual protection. 
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UPDATE EMP 
SET SAL = SAL + $P 
WHERE EMPNO = $a; 

LET Cl BE 
SELECT NAME, SAL INTO $X, $Y 
FROM EMP 
WHERE DEPTNO =$A AND JOB = $8; 

OPEN Cl; 

FETCH Cl; 

CLOSE Cl; 

CALL XRDI ( ); 
4 

Section No. = 1 
Opcode = AUXCALL 

(No call produced, since this 
statement serves only to define 
the cursor. “Section 2” is 
created in the access module 
to implement the cursor.) 

CALL XRDI ( ); 
z 

Section No. = 2 
Opcode = OPENCALL 

CALL XRDI ( 1; 
z 

Opcode = FETCHCALL 

Fig. 5. Replacement of SQL statements by calls. 

Since all name binding, authorization checking, and access path selection are 
done during the precompilation step, the resulting access module is dependent on 
the continued existence of the tables it operates on, the indexes it uses as access 
paths, and the privileges of its creator. Therefore, whenever a table or index is 
dropped or a privilege is revoked, System R automatically performs a search in 
its internal catalogs to find access modules which are affected by the change. If 
the change involves dropping a table or revoking a necessary privilege, the access 
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module is erased from the database. However, if the change involves merely 
dropping an index used by the access module, it will be possible to regenerate the 
access module by choosing an alternative access path. In this case, the access 
module is marked “invalid.” When the access module is next invoked, the invalid 
marking is detected and the access module is regenerated automatically. The 
original SQL statement contained within each section is once again passed 
through the parser, the optimizer, and the code generator to produce a new 
section based on the currently available access paths. The newly regenerated 
access module is stored in the database and also loaded into virtual memory for 
execution. The user’s source program is not affected in any way, and the user is 
unaware of the regeneration process except for a slight delay during the initial 
loading of his access module. 

It is possible that a user may attempt to change the database in some way 
which would invalidate an access module while the access module is actually 
loaded and running. It would be undesirable if such a change were allowed to 
become effective while the running access module is in the middle of some 
operation. To prevent this from occurring, the “transaction” mechanism of 
System R is used. A programmer can declare transaction boundaries in his 
program by the BEGIN TRANSACTION and END TRANSACTION state- 
ments of SQL. Users are advised to end a transaction only when the database is 
in a “clean” and consistent state; that is, when one user-defined unit of work has 
completed and the next unit of work has not yet begun. While a transaction is in 
progress, the loaded access module protects itself by holding a lock on its own 
description in the system catalog tables. Therefore, any database change which 
would invalidate the access module (changing its description from “valid” to 
“invalid”) must wait until the lock is released. At the end of each transaction, the 
running access module releases the lock on its own description, allowing any 
database changes which were waiting for the lock to proceed. At the beginning of 
the next transaction, the access module attempts to reacquire the lock on its own 
description. There are four possible outcomes. 

(1) The description is still marked “valid,” and the timestamp in the description 
is unchanged. In this case, execution of the access module proceeds normally. 

(2) The description is gone. The access module has been destroyed by loss of an 
essential table or privilege. An appropriate code is returned to the user’s 
program, which is unable to continue. 

(3) The description is present but marked “invalid.” This indicates that an index 
used by the access module has been dropped. The access module is regener- 
ated on the spot, choosing a new access path to replace the missing index. 
The user program then continues without interruption. 

(4) The description is marked “valid,” but its timestamp has changed (indicating 
another user has caused a regeneration). The new (regenerated) access 
module is loaded into virtual memory and the user program continues. 

TREATMENT OF “NONOPTIMIZABLE” STATEMENTS 

For certain types of SQL statements, no significant choice of access path is 
required. These statements include those which create and drop tables and 
indexes, begin and end transactions, and grant and revoke privileges. The process 
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of creating a new table, for example, involves placing a description of the table in 
the system catalogs. Since this process takes place essentially the same way for 
each new table, it is possible to build into System R a standard routine for 
creating tables. It is then unnecessary to generate new machine code in an access 
module whenever a new table is to be created. Instead, the standard program is 
invoked and given the name of the table to be created and a list of its fields and 
their data types. This information is conveyed in the form of the SQL parse tree 
for the CREATE TABLE statement. We refer to SQL statements which can be 
handled in this way as “nonoptimizable” statements. 

When the System R precompiIer encounters a nonoptimizable statement in a 
user program, it places the parse tree of the statement directly into the section of 
the access module rather than invoking the optimizer and code generator. The 
resulting section is labeled as an “INTERPSECT,” to distinguish it from asection 
containing machine code, which is labeled a “COMPILESECT.” 

At run time, when XRDI receives a call to execute a given section, it examines 
the label on the section. If it is a COMPILESECT, XRDI gives control directly 
to the section. If it is an INTERPSECT, XRDI determines the statement type 
by examining the root of the parse tree, then invokes the appropriate standard 
routine. The standard routine obtains its necessary inputs (e.g., table and field 
names) from the parse tree in the INTERPSECT. 

OPERATIONS ON TEMPORARY TABLES 

Occasionally a user may write a program which creates a temporary table in the 
database, processes the table in some way, then destroys the table at the end of 
the run. When such a program is precompiled, the System R optimizer is unable 
to choose an access path for processing the temporary table because it does not 
yet exist. Whenever the optimizer discovers during precompilation that some 
table referenced in an SQL statement does not exist, it places the parse tree for 
the SQL statement in a special section and labels it a “PARSEDSECT.” This 
indicates that the normal process of parsing, optimization, and code generation 
was terminated after the parsing step. 

At run time, when XRDI receives a call to execute the PARSEDSECT, it 
cannot give control directly to the section because it does not yet contain machine 
code. Instead, XRDI makes another attempt to invoke the optimizer on the parse 
tree in the PARSEDSECT. This time, since the temporary table is about to be 
operated on, it should be in existence. If optimization is successful, the code 
generator is invoked, a machine language routine is generated, and the PARSED- 
SECT changes into a COMPILESECT, which is immediately executed. However, 
if optimization fails because the indicated table still does not exist, a code is 
returned to the calling program indicating “nonexistent table.” 

The transformation of a PARSEDSECT into a COMPILESECT affects only 
the version of the access module which is held in virtual memory, not the version 
which is stored in the database. 

DYNAMICALLY DEFINED STATEMENTS 

Some programs may need to execute SQL statements which were not known at 
the time the program was precompiled. An example of such a program is the 
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“User-Friendly Interface” of System R, which allows users to type ad hoc SQL 
statements at a terminal, then executes them and displays the results. Another 
example is a general-purpose bulk loader program, which loads data into tables 
via SQL INSERT statements, but which does not know at precompilation time 
the name of the table to be loaded or the number and data types of its columns. 

The SQL language, feature which supports this type of application is the 
PREPARE statement, which has the following syntax: 

PREPARE (statement name) AS (variable) 

For example, a programmer might write 

PREPARE Sl AS QSTRING; 

This indicates to System R that at run time the character-type variable 
QSTRING will contain an SQL statement which should be optimized and 
associated with the name Sl. QSTRING may contain any kind of SQL statement, 
and the SQL statement may have “parameters” indicated by question marks, for 
example, 

UPDATE EMP SET SALARY = ? WHERE EMPNO = ? 

When the precompiler encounters a PREPARE statement in a program, it 
creates a special zero-length section in the access module called an INDEFSECT. 
In the user’s program the PREPARE statement is replaced by a special call to 
XRDI with operation code = SETUPCALL, containing a pointer to the variable 
QSTRING. 

At run time XRDI interprets the SETUPCALL as an instruction to accept a 
dynamically defined SQL statement and to pass it through the parser, optimizer, 
and code generator. The result is a new COMPILESECT or INTERPSECT, 
which replaces the INDEFSECT in the access module. (However, the INDEF- 
SECT is replaced only in the virtual-memory copy of the access module, not in 
the copy which remains in the database.) The dynamically defined statement is 
now ready to be executed like any other SQL statement. 

After writing PREPARE Sl AS QSTRING, the programmer will want to 
execute the statement he has prepared. If the prepared statement was not a 
query, the programmer may use the following syntax: 

EXECUTE {statement name) [USING (variable list)] 

For example, 

EXECUTE Sl USING $X, $Y 

The precompiler will translate this EXECUTE statement into a normal AUX- 
CALL on the indicated section, passing the addresses of $X and $Y as parameters 
of the call. The parameters passed at EXECUTE time are bound, in positional 
order, to the question marks in the SQL statement Sl. (Note: These parameters 
may represent data values but not table names or column names.) The statement 
Sl may be executed many times, with different parameters, without reinvoking 
the optimizer. However, if the PREPARE Sl AS QSTRING statement is exe- 
cuted again, the contents of the section are discarded and a new COMPILESECT 
or INTERPSECT is constructed on the basis of the new contents of QSTRING. 

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981. 



a2 - D. D. Chamberlin et al. 

If the prepared statement is a query, the COMPILESECT produced for it will 
look exactly like a COMPILESECT produced for a cursor. In other words, the 
two statements 

LET Cl BE (query) 

and 

PREPARE Sl AS QSTRING 

will produce exactly the same section if the contents of QSTRING are the same 
as (query). Therefore, the operations on a “prepared” query are the same as the 
operations on a cursor: OPEN, FETCH, and CLOSE. Input variables may be 
included in an OPEN statement and the target variables listed in the FETCH 
statement, as in the following examples. 

OPEN Sl USING $A, $B, (Precompiler produces OPENCALL with addresses of $A 
and $B as parameters.) 

FETCH Sl INTO $X, $Y; (Precompiler produces FETCHCALL with addresses of $X 
and $Y as parameters.) 

CLOSE Sl; (Precompiler produces CLOSECALL.) 

In addtion to OPEN, FETCH, and CLOSE, System R supports another 
operation called DESCRIBE on sections which contain a query. The syntax of a 
DESCRIBE statement is as follows: 

DESCRIBE (statement name) INTO (array) 

The System R precompiler translates the DESCRIBE statement into a special 
DESCRIBECALL on the section corresponding to the indicated statement name. 
At run time, when XRDI receives the DESCRIBECALL, it returns into the 
indicated array a description of the field names and data types in the query result. 
The calling program can then use this information in formatting the query result 
for display at a terminal. A DESCRIBECALL on a section which does not 
contain a query returns a code indicating “no result.” 

SUMMARY OF SECTION TYPES AND CALL TYPES 

The four basic steps in the processing of an SQL statement are parsing, optimi- 
zation, code generation, and execution. The basic philosophy of System R is to 
perform as many of these steps as possible during precompilation, then to perform 
the remaining steps at run time. Depending on the nature of the statement, the 
break between precompile time and run time may occur at several different places 
in the processing of the statement, as shown in Figure 6. The mechanism which 
implements the early-binding philosophy of System R consists of four section 
types and six call types. The behavior of XRDI for each combination of section 
type and call type is summarized in Figure 7. 

PERFORMANCE MEASUREMENT 

In order to illustrate how System R might be used in an environment where ad 
hoc queries are mixed with repetitive transactions, the example database in 
Figure 8 was constructed. The PARTS table contains the description, quantity 
on hand, and quantity on order for a collection of parts identified by part 
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Statement 
Type 

Section 
Tvpe 

Query, Insert, 
Delete, Update 

COMPI LESECT 

Create Table, 
Begin Trans, etc. 

INTERPSECT 

Operations on 
Temporary Tables 

PARSEDSECT 

Parse Opt. Code Gen. Execution 

Precompile time 

-1 I I 1 
Pre- 1 

I I I 
compile 1 
time L-l 

1;;1*, 

PREPARE Sl AS QSTRING; INDEFSECT Run time 
EXECUTE Sl; I I I 

I 

I I I I 

Fig. 6. Spectrum of binding times in System R. 

numbers. The ORDERS table contains a set of outstanding orders for parts. The 
QUOTES table contains a set of price quotes for parts. Each price quote is 
identified by a particular supplier number and part number and the minimum 
and maximum quantities for which the quote applies. Typically, a given combi- 
nation of supplier and part numbers may have several quotes: one for quantities 
from 1 to 100, another for quantities from 101 to 10,000, etc. 

The following structural and statistical information completes our description 
of the example database. 

(1) The total size of database (including data records but not indexes) equals 
7.44 megabytes. 

(2) The data values in the sample database were randomly generated according 
to the following rules: 

(a) The number of different part descriptions equals 1024. 
(b) The .number of different supplier numbers equals 1000. 
(c) Each part number has exactly three outstanding orders and three price 

quotes from each of three different suppliers. 

(3) Clustering method: The three tables are stored on disk in an interleaved 
fashion, ordered by PARTNO. Each PARTS record is followed by all the 
ORDERS and QUOTES for that part number, then by the next PARTS 
record, etc. Fifteen percent free space is preserved on each data page to allow 
for future insertions, which will also be clustered by PARTNO. 

A two-part experiment was performed on the example database. The first part 
involved measurement of three example queries submitted via the User-Friendly 
Interface (UFI) of System R. For each query, the CPU time and number of I/OS 
were measured for each step in processing the query: parsing, optimization, code 
generation, and fetching of the answer set. 

The second part of the experiment involved writing a PL/I program to process 
three types of “canned transactions“ against the sample database. This program 
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AUXCALL 

OPENCALL 

FETCHCALL 

CLOSECALL 

SETUPCALL 

DESCRIBE- 
CALL 

COMPILESECT 

Execute the 
machine 
code in the 
section. 

Execute the 
machine 
code in the 
section, 
with opcode 
=OPEN. 

Execute the 
machine 
code in the 
section, 
with opcode 
=FETCH. 

Execute the 
machine 
code in the 
section, 
with opcode 
=CLOSE. 

INTERPSECT PARSEDSECT INDEFSECT 

Execute a 
standard 
routine 
controlled 
by the 
content of 
the section 

(Not used) 

(Not used) 

(Not used) 

Throw away the current 
content of the section, 
and invoke the parser. 
optimizer, and code 
generator to build a 
new COMPILESECT or 
INTERPSECT from a new 
SQL statement. 

Invoke the 
optimizer 
and code 
generator 
to convert 
the section 
into a 
COMPILESECT 
or 
INTERPSECT; 
then 
execute it. 

(Not used) 

(Not used) 

(Not used) 

(Not used) 

Fig. 7. Section types and call types. 

(Not used) 

(Not used) 

(Not used) 

(Not used) 

Invoke the 
parser, 
optimizer. 
and code 
generator 
to convert 
a new SQL 
statement 
into a 
COMPILESEC'I 
or 
INTERPSECT. 

(Not used) 

accesses and updates the database by means of embedded SQL statements, as 
described in [3]. Measurements of CPU time and number of I/OS were made 
during precompilation and compilation of the transaction program, and for 
execution of each of the three transaction types. In addition, measurements were 
made of how the execution times for the three transactions are affected by 
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PARTS PARTNO DESCR IP 

CHAR(G) CHAR(50)VAR 

QOH 000 

INTEGER INTEGER 

ORDERS ORDERNO 

CHAR(6) 

PARTNO 

CHAR(G) 

SUPPNO 

CHAR(B) 

DATE QTY 
I 

CHAR(G) INTEGER 

QUOTES SUPPNO 

CHAR(S) 

PARTNO 

CHAR(G) 

MINQ MAXQ PRICE 

INTEGER INTEGER INTEGER 

Table 

PARTS 

Avg. length of 
No. of record (bytes, 
Records incl. header) 

20,000 36 

ORDERS 60,000 31 

QUOTES 180,000 27 

Fig.8. Sample database. 

Ft:,;,:,., 
PARTNO 
DESCRIP 

ORDERNO 
PARTNO 
SUPPNO 

SUPPNO 
PARTNO 

database size, using a series of five databases structurally identical to the one 
described above, but with different numbers of records. 

All experiments were performed on an IBM 370 Model 168 under the VM/ 
CMS operating system. Measurements were made using the timing facilities of 
VM, which report the cumulative virtual CPU time and number of I/OS performed 
by the user’s virtual machine. These measurements do not include the “overhead” 
costs of VM in providing the user with a virtual machine (e.g., dispatching, virtual 
memory paging, channel program translation, etc.). Under VM, “overhead” 
includes about 2500 instructions per I/O. These costs are not included in our 
experiment because they are highly dependent on the operating system or data 
communication subsystem (e.g., VM/CMS, MVS/TSO, CICS) under which the 
application is executing. 

All measurements were made with System R running in multiuser mode 
(locking subsystem enabled). Experience has shown that System R uses the same 
number of I/OS to perform equivalent functions in single-user and multiuser 
modes, but uses slightly less CPU time in single-user mode due to the disabling 
of the locking subsystem. 
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Table I. Query 1 

English form: 
Find the supplier number and price of all quotes for part number 010002 
in quantities of 1600. 

SQL form: 
SELECT SUPPNO, PRICE FROM QUOTES 
WHERE PARTNO = ‘010002’ 
AND MINQ <= 1000 AND MAXQ >= loo0, 

Access path chosen by optimizer: 
PARTNO index on QUOTES table. 

Cardinalitv of answer set: 3 

CPU time Number 
Operation (ms on 168) of I/OS 

Parsing 13.3 0 
Optimization 40.0 9 
Code generation 10.1 0 
Open cursor 3.7 5 
Fetch answer set (1.5 ms per answer rec- 4.6 

ord) 2 
Close cursor 1.2 
Total (including all of above plus format- 83.4 16 

ting answer set for display) 

QUERY MEASUREMENTS 

The three experimental queries, and their measured performance, are summarized 
in Tables I-III. In order to make these measurements reproducible, it was 
necessary to ensure that no query could benefit from data which remained in the 
system buffers from previous activities. (System R has a buffer space in virtual 
memory containing data recently fetched from the database. The buffer space is 
adjustable in size; in our experiment it was configured at twenty 4096-byte pages.) 
Therefore, before each query was measured, another query was run, which 
fetched at least 50 pages of data, none of which pertained to the query to be 
measured. 

A striking fact about the measurements shown in the tables is the small amount 
of time involved in the “code generation” step. This is the processing step which 
could be avoided in a system which interprets a query immediately after choice 
of access path. We see that the cost of translating the chosen access path into 
executable code is quite small (zero I/OS and 19-42 percent of the CPU time 
required to parse and optimize the query). The payoff for this small investment 
is a small, efficient machine-language routine to process the query. This generated 
routine has a shorter path length and smaller working set than a general-purpose 
SQL interpreter because it is tailored to a specific query. Therefore it quickly 
pays off the cost of code generation as it fetches answer records from the database. 
Thus we see that the SQL compilation approach of System R has significant 
benefits for ad hoc query, as well as for a “canned transaction” environment. 

For all the ad hoc queries the optimizer chose access paths using indexes. To 
illustrate the importance of the indexes, the three queries were rerun with no 
indexes on any of the tables. The CPU and I/O measurements for parsing, 
optimization, and code generation were essentially unchanged. For Queries 1, 2, 
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Table II. Query 2 

English form: 
Find the order number, part number, description, date and quantity for 
all parts ordered from supplier number 797 during 1975. 

SQL form: 
SELECT ORDERNO, ORDERS.PARTNO, DESCRIP, DATE, QTY 
FROM ORDERS, PARTS 
WHERE ORDERS.PARTNO = PARTS.PARTNO 
AND DATE BETWEEN ‘756000’ AND ‘751231’ 
AND SUPPNO = ‘797’; 

Access path chosen by optimizer: 
Access ORDERS by SUPPNO index. For each qualifying ORDERS 
record, access corresponding PARTS record by index on PARTNO. 

Cardinality of answer set: 7 

Operation 

Parsing 
Optimization 
Code generation 
Open cursor 
Fetch answer set (8.7 ms per answer rec- 

ord) 
Close cursor 
Total (including all of above plus format- 

ting answer set for display) 

CPU time Number 
(ms on 168) of I/OS 

20.7 0 
73.2 9 
19.3 0 
4.0 6 

61.1 
75 

5.3 
213.9 90 

Table III. Query 3 

English form: 
For each supplier that supplies part number 010907, list the minimum 
and maximum quoted price for that part number. 

SQL form: 
SELECT SUPPNO, MIN(PRICE), MAX(PRICE) 
FROM QUOTES WHERE PARTNO = ‘010097’ 
GROUP BY SUPPNO; 

Access path chosen by optimizer: 
Scan QUOTES by PARTNO index to get all quotes for part number 
019007. Then sort these into SUPPNO order and scan sorted list to 
compute minima and maxima. 

Cardinality of answer set: 3 

Operation 

Parsing 
Optimization 
Code generation 
Open cursor (includes finding relevant 

quotes and sorting the list) 

CPU time Number 
(ms on 168) of I/OS 

13.0 0 
40.3 9 
22.6 0 
11.2 9 

Fetch answer set (includes scanning sorted 
list for minima and maxima) (1.7 ms per 
answer record) 

Close cursor 
Total (including all of above plus format- 

ting answer set for display) 

5.1 

0 

0.3 
108.2 18 
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and 3 the total CPU times (measured in seconds) were 13.29,30.64, and 9.11 and 
the numbers of I/OS were 3201, 26070, and 3205, respectively. The significantly 
higher values result, of course, from scanning all the tuples of each table involved 
in the query. 

TRANSACTION MEASUREMENTS 

The second part of our experiment involved preparing a PL/I program with 
embedded SQL statements to implement three types of “canned transactions” 
against the sample database. The program, named ORDERS, is included in the 
appendix. The ORDERS program differs from traditional database transaction 
programs in that its terminal interactions are handled by PL/I I/O rather than 
by a data communication subsystem. The program reads a transaction-type code 
from a terminal and then performs one of the following types of transactions. 

Transaction Type N. 
(New order) 

Transaction Type A. 
(Arrival) 

Transaction Type Q. 
(Query) 

A new order has been placed. Enter the new order in 
the ORDERS table, and update the QOO field of the 
appropriate PARTS record. 
An existing order of parts has arrived. Access the 
ORDERS table to find the part number and quantity 
in the order, and update the appropriate PARTS rec- 
ord accordingly. Then delete the appropriate OR- 
DERS record from the database. 
Given a part number, look up the description, quantity 
on hand, and quantity on order of the given part and 
display them on a terminal. 

These three transactions represent simple processes which might be expected 
to occur repeatedly, and which are therefore included in a precompiled program 
for maximum efficiency. An actual inventory control application would probably 
include a much larger collection of these “canned transactions.” 

The CPU time required for precompilation of the ORDERS program on 
System R was measured to be 2.22 virtual seconds on a 370/168 (approximately 
half of the CPU time required for compilation of the same program using the 
PL/I Optimizing Compiler). 

After precompiling the ORDERS program, we examined the resulting access 
module to determine its size and the access paths which had been selected. The 
ORDERS program contains nine SQL statements. Therefore, its access module 
contains nine sections and a Section Location Table (SLT). The size of the access 
module is summarized in Table IV. 

Next, measurements were made of the CPU time and number of I/OS used in 
executing each of the three transaction types on System R in multiuser mode. 
When the first transaction of a user session is executed (independent of its type), 
an additional cost is incurred for loading the access module into virtual memory, 
and this cost was measured separately. For this part of the experiment, we desired 
to measure the sensitivity of transaction execution times to the size of the 
database. Therefore, we loaded five databases of different sizes and ran 100 
transactions of each type on each database. (Of course, the ORDERS program 
was separately precompiled in each database.) Each database was structurally 
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Table IV. Contents of Access Module 

Section 
number SQL statement 

Size of 
section 
(bytes) Access path selected 

(SLT) 
1 
2 
3 
4 
5 

BEGIN TRANSACTION 
INSERT INTO ORDERS 
UPDATE PARTS 
SELECT FROM ORDERS 
DELETE ORDERS WHERE CUR- 

RENT OF Cl 
UPDATE PARTS 
SELECT FROM PARTS 
END TRANSACTION 
RESTORE TRANSACTION 

254 
70 

751 
1321 Index on PARTNO 
1319 Index on ORDERNO 
648 Established cursor position 

1449 Index on PARTNO 
1423 Index on PARTNO 

68 
72 

Note. Total size of access module: 7375 bytes. 

Table V. Five Experimental Databases 

Database 

Number of Number of Number of 
PARTS ORDERS QUOTES 
records records records 

1 5,669 
2 20,009 
3 40,006 
4 70,606 
5 100,ooo 

Total size 
of database 

in megabytes 
(not including 

indexes) 

15,066 45,666 1.86 
60,066 180,ooO 7.43 

120,096 360,069 14.87 
210,060 630,000 26.02 
309,066 900,ooo 37.17 

identical to the one described above, the only difference being the total num- 
ber of records of each type. The sizes of the five databases are summarized in 
Table V. 

For each database, a “script” was created consisting of 300 part numbers 
randomly selected with a uniform distribution over all the part numbers in the 
database. Using the script, 100 transactions of each type were executed on the 
300 random part numbers (Type N = new order for a given part; Type A = arrival 
of order for a given part; Type Q = query on a given part). The three types of 
transactions were mixed together in random order. Since the records in the 
database are physically clustered by part number, the random sequence of part 
numbers in the script is uncorrelated with the physical placement of records. This 
precaution eliminates any spurious effects due to a transaction accessing pages 
which were left in the system buffers by previous transactions. 

For each transaction type, in each database, the average CPU time and average 
number of I/OS were measured over the 100 executions of the transaction. The 
CPU time measurement includes time spent in the PL/I portion of the ORDERS 
program, as well as time spent in System R. However, the I/O counts include 
only database accesses (not interactions with the terminal). The costs of the three 
transaction types are summarized in Table VI and in Figure 9. We observe that 
since all the transactions access the database directly via an index, they are 
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Table VI. Execution Cost of Transactions 

Database size (megabytes) 

Me 1.86 7.43 

A. Average CPU Time (ms on 168) 
N 17.0 17.4 

18.6 18.9 
12.3 12.3 

14.87 26.02 37.17 

18.4 19.7 21.4 
20.2 21.2 23.0 
12.8 12.1 12.8 

B. Average Number of I/Os 
N 10.0 10.5 11.7 16.0 18.3 
A 9.5 9.7 11.5 14.7 17.6 
Q 3.3 3.8 4.9 5.6 6.0 

24 

20 

16 t 
,* 

t 
l -•-• 

Q - Type 
0-9 

8 

4 

I I I I 
0 4 8 12 16 20 24 28 32 36 40 

Database Size (megabytes) 

16 

12 l --‘v’ 
P 
A - Type 

8 
Q - Type 

4 
0-0 /* 

I I I I I I I I I I I 
0 4 8 12 16 20 24 28 32 36 40 

Database Size (megabytes) 

Fig. 9. Execution cost of transactions. 

relatively insensitive to the size of the database (a twentyfold increase in database 
size causes only a 26 percent increase in CPU time and an 85 percent increase in 
number of I/OS). 

In addition to the transaction costs listed in Table VI, two other costs were 
measured. The cost of loading the access module, which occurs at the first 
transaction of a session, is 28.1 milliseconds of CPU time and 6 I/OS, indepen- 
dent of the size of the database. In addition, System R automatically takes a 
ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981. 



Repetitive Transactions and Ad Hoc Queries in System R - 91 

“checkpoint” after approximately every 7000 transactions (frequency of check- 
point is an adjustable parameter). Checkpoints involve certain internal system 
bookkeeping and are not visible to users. The cost of a checkpoint depends on 
the size of the database and on the activity since the last checkpoint. For our 
37.17-megabyte database, the cost of a checkpoint is approximately 117 millisec- 
onds of CPU time and 100 I/OS, representing an average cost per transaction of 
about 0.02 millisecond and 0.014 I/O. 

SUMMARY AND CONCLUSIONS 

We have described the architecture of System R, which supports a flexible 
spectrum of binding times, ranging from precompilation of “canned transactions” 
to on-line execution of ad hoc queries. The advantages of this approach may be 
summarized as follows. 

(1) For repetitive transactions, all the work of parsing, name binding, and access 
path selection is done once at precompilation time and need not be repeated. 

(2) Ad hoc queries are compiled on-line into a small, machine-language access 
module which executes more efficiently than an interpreter. 

(3) Users are given a single language, SQL, for use in ad hoc queries, as well as 
in writing PL/I and COBOL transaction programs. 

(4) The SQL parser, access path selection routines, and machine-language code 
generator are used in common between query processing and precompilation 
of transaction programs. 

(5) When an index used by a transaction program is dropped, a new access path 
is automatically selected for the transaction without user intervention. 

(6) The multiuser locking subsystem allows some users to be running transaction 
programs, others to be precompiling new programs, and others to be running 
ad hoc queries and updates, all on the same database at the same time. 

We have also described an example database and shown how it might be used 
both by ad hoc query users and by transaction programs. Some preliminary 
performance measurements were made on the database using an IBM 370 Model 
168 under the VM/370 operating system. The results of our measurements 
support the following conclusions. 

(1) Ad hoc queries, including joins of more than one table, can be parsed, 
optimized, and executed in substantially less than one virtual second if their 
answer sets are small and the appropriate indexes are available. 

(2) The process of generating machine-language code to execute a query adds a 
small increment (typically about one-third) to the cost of access path selection 
for the query. 

(3) The access modules resulting from compilation of simple transactions contain 
about 1000-1500 bytes of code and control blocks per SQL statement. 

(4) For simple transactions which are compiled in advance and which are 
supported by appropriate indexes, System R can process several transactions 
per second on a 370 Model 168. 

(5) When a query or transaction is supported by an index, its performance is 
relatively insensitive to the size of the database (e.g., in our transaction 
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experiment, a twentyfold increase in database size caused an average increase 
of only 26 percent in CPU time and 85 percent in I/O count). 

APPENDIX 

The following is a pseudocode form of the PL/I program which was used in the 
performance measurements described in this paper. 

ORDERS: PROCEDURE; 

/*********************************************************** 
* * 
* INTERACTIVE PROCESSING OF 3 TRANSACTION TYPES: * 
* 'N' = NEW ORDER * 
* 'A' = ARRIVAL OF ORDER * 
* 'Q' = QUERY SUPPLY OF .A GIVEN PART * 
* * 
*****************************************x*****************/ 

(A declaration of the System R return code structure, 
containing SYR-CODE and SYRJESSAGE, must be copied 
into the program from a macro library.) 

DECLARE 
DECLARE 
DECLARE 
DECLARE 
DECLARE 
DECLARE 
DECLARE 
DECLARE 
DECLARE 

PARTNO 
DESCRIP 
QOH 
QOO 
ORDERNO 
SUPPNO 
QTY 
DATE 
TRANTYPE 

CHARACTER(G); 
CHARACTER(SOI VARYING; 
BIN FIXED(31); 
BIN FIXED(31); 
CHARACTER(6); 
CHARACTER(31; 
BIN FIXED(31); 
CHARACTER(61; 
CHARACTER(l); 

GETNEXTTRANS: 

Read TRANTYPE from terminal: N I A 1 Q or 2 to quit; 

IF TRANTYPE = 'N' THEN 
Read ORDERNO, PARTNO, SUPPNO, DATE, QTY from terminal; 

ELSE IF TRANTYPE = 'A' THEN 
Read ORDERNO from terminal; 

ELSE IF TRANTYPE = 'Q' THEN 
Read PARTNO from terminal; 

ELSE IF TRANTYPE='Z' THEN STOP; 
ELSE 
DO; 

Write 'INVALID TRANSACTION TYPE' on terminal; 
GO TO GETNEXTTRANS; 

END; 

8BEGIN TRANSACTION; 
IF SYR-CODE-=0 THEN CALL TROUBLEC'BEGIN TRANS'I; 

IF TRANTYPE='N' THEN 
DO; 

/* NEW ORDER */ 
BINSERT INTO ORDERS:<80RDERNO,~PARTN0,8SUPPNO,gDRTEIBQTY>; 
IF SYR-CODE-=0 THEN CALL TROUBLE('INSERT'); 
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BUPDATE PARTS SET QOO=Q00+9QTY WHERE PARTNO=$PARTNO; 
IF SYR-CODE-=0 THEN CALL TROUBLE('UPDATE'); 

END ; 
ELSE IF TRANTYPE='A' THEN 
DO; 

/* ARRIVAL */ 
$LET Cl BE SELECT PARTNOtQTY INTO $PARTNO,%QTY 

FROM ORDERS WHERE ORDERNO=%ORDERNO; 
BOPEN Cl; 
IF SYR-CODE-=0 THEN CALL TROUBLE('OPEN CURSOR'); 
BFETCH Cl; 
IF SYR-CODE-=0 THEN CALL TROUBLE('FETCH'); 
BDELETE ORDERS WHERE CURRENT OF cl; 
IF SYR-CODE-=0 THEN CALL TROUBLE('DELETE'); 
BCLOSE Cl; 
IF SYR-CODE-=0 THEN CALL TROUBLE('CLOSE'); 
3UPDATE PARTS SET QOH=QOH+$QTY, QOO=QOO-SQTY 

WHERE PARTNO=BPARTNO; 
IF SYR-CODE-=0 THEN CALL TROUBLE('UPDATE'); 

END; 
ELSE IF TRANTYPE='Q' THEN 
DO; 

I* QUERY */ 
BSELECT DESCRIP,QOH,QOO INTO $DESCRIP,$QOH,~QOO 

FROM PARTS WHERE PARTNO=$PARTNO; 
IF SYR-CODE = 0 THEN 

Write DESCRIP, QOH, QOO on terminal; 
ELSE IF SYR-CODE = 100 THEN 

Write 'THERE IS NO SUCH PART' on terminal; 
ELSE CALL TROUBLE ('SELECT'); 

END; 

SEND TRANSACTION; 
IF SYR-CODE-=0 THEN CALL TROUBLEC’END TRANS’); 

GO TO GETNEXTTRANS; 
TROUBLE: PROCEDURE(STMT); 

DECLARE STMT CHARACTER(12) VARYING; 

Write 'TROUBLE ENCOUNTERED' on terminal; 

Write TRANTYPE, STMT, ORDERNO, PARTNO, SYR-CODE, 
SYR-MESSAGE on terminal; 

4RESTORE TRANSACTION; 
GO TO GETNEXTTRANS; 

END TROUBLE; 

END ORDERS; 
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