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The security problem of a statistical database is to limit the use of the database so that no sequence 
of statistical queries is sufficient to deduce confidential or private information. In this paper it is 
suggested that the problem be investigated at the conceptual data model level. The design of a 
statistical database should utilize a statistical security management facility to enforce the security 
constraints at the conceptual model level. Information revealed to users is well defined in the sense 
that it can at most be reduced to nondecomposable information involving a group of individuals. In 
addition, the design also takes into consideration means of storing the query information for auditing 
purposes, changes in the database, users’ knowledge, and some security measures. 
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1. INTRODUCTION 

The problem of enhancing the security of statistical databases (SDB) has been of 
growing concern in recent years. The security problem for a statistical database 
is to limit its use so that only statistical information is available and no sequence 
of queries is sufficient to deduce private or confidential information about any 
individual. When such information is obtained, the database is said to be com- 
promised (or disclosure has occurred). 

Several theoretical and practical studies of the security of statistical databases 
have been reported [lo, 12, 13, 23, 27, 281 using different models and different 
statistical information such as COUNT, MAX, MIN, MEAN, MEDIAN, or SUM. 
In this paper we discuss some of the problems with these studies. 

Problem 1. Statistical databases provide statistical information about groups 
of individuals in the real world. The assumption is that statistical information 
about a group of individuals conveys a meaningful aspect of that group of 
individuals. However, statistical information about an arbitrarily chosen group of 
individuals may not have a useful meaning attached to it. Some studies have set 
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forth questions (and given answers) with assumptions like “every possible com- 
bination of records can be requested” or “all possible medians of any sets of 
records are queriable” [16, 17, 271. These types of assumptions quite naturally 
cause an explosion in the complexity of the problem. However, once a proper 
definition of the “statistical information” is used, and an analysis of the portion 
of the real world represented by an SDB is made for determining its statistical 
information, these combinatorially explosive possibilities usually can be reduced 
or even eliminated. 

Problem 2. Although previous researchers have used the term “statistical 
database,” they in fact meant “statistical files” and worked with records, record 
fields, etc. [4, 16, 311. Databases are more than collections of records, and the 
information in databases may be highly complex. Databases contain a model of 
some portion of the real world, the security problem must be treated at that level. 
In all previous studies the SDB models used were closer to the physical than to 
the conceptual level of the database. Thus they encountered the problem of 
security at a very low level, that of physical records. Although these studies have 
contributed to our understanding of the problem, their SDB models were incom- 
plete, and the results were usually negative in tone. 

Problem 3. All previous studies (except [5, 351) considered static databases in 
order to simplify the problem. The problem of SDB security should also be 
investigated for dynamic databases to capture the dynamics of the real world. 

Problem 4. In the real world, users may be equipped with information other 
than what is explicit in records. If the database administrator (DBA) is aware of 
this information, effective security measures can be imposed easily. Example 1 
illustrates this situation. 

Example 1. Consider a database of employees of a certain computer manufac- 
turing company in which the sum of salaries of employees is queriable. Assume 
the following information (which is not represented in the database and hence 
unknown to the database system) exists. 

(a) Salary range of a new systems analyst with BS is $[lOK, 12K]. 
(b) Salary range of a new systems analyst with MS is $[12K, 14KJ 

Now assume two new systems analysts are hired and information about them is 
inserted into the database. If the change in the sum of salaries of systems analysts 
is $27K, then users can conclude that the new employees have MS degrees. 

Most problems in SDB security can be removed by a good model of the real- 
world environment so that the DBA can take effective measures. Thus existing 
relationships and semantics of the information should always be considered for 
an effective SDB design. 

Problem 5. Some database users may have access to some private or confiden- 
tial information. When this happens, some mechanisms are needed for the DBA 
to decide (a) what other information has been disclosed by users, and (b) what 
protective measures should be taken. In other words, exact information revealed 
to users should be kept for auditing purposes. Some previous studies proposed 
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investigation of log trails for auditing [17, 21, 221. However, for very large 
databases, the enormous amount of information in log trails is of little help for 
checking security (not to mention the “masking” of queries by users 115, 291). 

Let us now investigate previously suggested protection policies. In general, 
these protection policies impose restrictions on the database system. A “good” 
protection scheme should be effective (it should provide security to a reasonable 
extent), feasible (there should exist a way to enforce restrictions), and efficient 
and at the same time maintain the richness of the information revealed to users 
of the database [6]. 

(a) Suppressing queries with very large and very small counts. This policy does 
not mention the statistical information (Problem 1) and is shown to be 
ineffective [15, 301. 

(b) Limiting excessive overlap between queries [16, 21,271. The same comment 
as (a) applies. Moreover, this policy is highly expensive (if feasible at all), and 
there is no systematic form of assurance that it guarantees security. Another 
drawback is that before the user gets to the necessary statistical information, 
he may be cut off from further access. In other words, the richness of the 
SDB is dependent on the users’ queries. 

(c) Perturbing outputs, changing data records slightly, and replacing the 
database by a randomly chosen subset, Although none of these policies really 
deal with Problems l-4, they are mechanisms which make the job of the 
intruder harder. Perturbing outputs is proposed for manual off-line protec- 
tion; the other two policies are not really investigated but briefly described in 
[l, 18, 201. When properly tailored, these mechanisms may be effective. 
Recently, random sampling of records covered by the statistical query was 
proposed [14]. However, the proposed policy does not consider Problems 
3-5. 

(d) Partitioning the records in the database [5, 351. This policy suffers from 
Problems 1,2, and 4, and thereby has limited richness and effectiveness. 

2. STATISTICAL DATABASE DESIGN 

This section discusses the design of an SDB which employs several security 
constraints at the conceptual data model level. We list the desirable features of 
the SDB design in terms of the “goodness” criteria introduced in Section 1. 

(1) Effectiveness of the protection. In order for the SDB system to be effective, 
the database should be equipped with the following information. 

(a) A “good”conceptua1 model. As a response to Problem 2 in Section 1, the 
SDB security should be elevated to the conceptual model level. 

(b) Well-defined statistical information. Statistical information must be well 
defined, and an analysis of the specific information and its statistical 
constituents should be made. This will help to reduce the size of the 
security problem (crystallize the complex relationships, define the infor- 
mation to be secured, etc.) and thus eliminate Problem 1 mentioned 
previously. 
For the real-world model, the statistical information revealed to users 
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will be only about predefmed groups of individuals. The intersection of 
these groups of individuals will give a set of indivisible groups of individ- 
uals, and any statistical information about these indivisible groups of 
individuals will constitute atomic information. Thus we are no longer 
interested in giving out uncontrolled, random statistical information to 
users, which may easily be exploited, but rather well-defined information 
that can at most be reduced to atomic information. 

(c) Controlled changes in the database. Dynamics, as well as statics, of the 
real world should be revealed to users (Problem 3). However, this should 
be done in a controlled manner, and the information revealed due to the 
changes in the environment should be recorded for auditing. (Note that 
the 1974 U.S. Privacy Act [34] necessitates the inclusion of changing 
aspects of the environment.) 

(d) Information about users’ additional knowledge. Users’ additional knowl- 
edge should be maintained and kept up-to-date in the SDB. We assume 
that the DBA is correctly informed about users’ additional knowledge of 
protected information. 

(2) Efficiency of the protection. We now describe features of the SDB to improve 
the efficiency of the protection. 

(a) Disjoint user groups are defined to utilize the fact that their initial 
knowledge may be substantially different from each other or that they 
may not necessarily have the same access authorization to different parts 
of the database. 

(b) Different levels of statistical information should be revealed to different 
users. For example, some users may not be allowed to access certain 
detailed statistical information. 

(c) For each group of individuals about which statistical information is to be 
revealed, allowable statistical query types are defined. This leads to 
different security constructs and mechanisms for different types of statis- 
tical information. 

(3) Richness of the information revealed to users. Clearly, investigating the 
security problem at the conceptual model level provides the database design- 
ers with more control over the richness and usefulness of the SDB. However, 
atomic information should not be further decomposable by templates or by 
queries such as join, select, and project operators in a relational model 
[7, 81. We also assume that the DBA should confirm the security and 
compatibility of any new view before granting access to it. 

2.1 Constituents of Statistical Information 

Statistics studies specific aspects of individuals in a population which may be 
conceptual or physical. The individuals in the population have something in 
common so that they altogether form the population. Most statistical methods 
can be viewed as ways of making inferences about a population. Such inferences 
are made after the examination of a “sample” from the population. A database 
may contain the whole population or a sample of the population. The user may 
or may not use the statistical information for statistical inferences. In any case 
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the central concept is the population concept. For the specific environment at 
hand, once the populations to be studied are found, then the individuals are no 
longer important, and two individuals with nothing in common will never be 
included in the answer of the same statistical query. 

We should also differentiate the quantitative properties of individuals for which 
statistical information is to be revealed and the defining characteristics of a 
population. For example, “sum of salaries of employees” is a quantity related 
with the employee population, but “sum of salaries of employees where salary 
>$12K” gives information about a different population. Not distinguishing this 
difference may cause protection problems. Similarly, for example, “number of 
employees” and “number of employees convicted of felony” give information 
about two different populations. 

2.2 Conceptual Data Model for SDB Design 

Although we propose that only aggregate information be revealed to users, this 
does not imply that there is only aggregate information in the database. On the 
contrary, the conceptual model of the SDB should be similar to the conceptual 
model of any other general-purpose database. There are several reasons for this 
requirement besides effectiveness of the protection and the richness of the SDB. 

(1) For some users and at least for the DBA, the SDB is just a normal database, 
and these users should have access to all information in the database (not 
just aggregates). 

(2) It is necessary to have total information about the environment in order to 
enforce integrity and validity in the database. 

Thus the design of a secure SDB should be investigated with a conceptual data 
model. With the recently renewed interest in conceptual data models, over 30 
different data models are mentioned in [24,25]. From the security viewpoint, our 
concern is twofold. We are concerned about the structure of the conceptual model 
in order to define atomic information and to give out controlled statistical 
information. We are also concerned about the semantics of the conceptual model 
in order to successfully mirror the real-world environment so that (a) the security 
measures can easily and naturally be provided and (b) the database is still a 
highly rich and useful one for users. Thus we require a structured, semantic, and 
redundant conceptual model for the SDB. In this paper, the data abstraction 
model (D-A model) [32, 331 is used in the design of the SDB. The choice of the 
D-A model from among other structured, semantic, and redundant data models 
is motivated by the ease in applying protection measures without bringing many 
extra constructs and restrictions to the conceptual model. However, the SDB 
design may easily be modified for any other structured, redundant, and semantic 
data model, and Appendix A discusses two other data models, namely, the entity- 
relationship model [3] and the extended relational model [9], for their suitability 
as a conceptual model of the SDB. In this section, we summarize and modify the 
D-A model for SDB design. Our ultimate goals are to augment the conceptual 
data model with the population concept, to identify atomic information, and 
finally to propose a statistical security management facility. 

Smith and Smith [32] introduce two kinds of database abstractions. Aggrega- 
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Computer - Scientist 

A 

Systems- 
Prog.- 
With BS 

Systems- Systems- Prog.- Prog.- Systems- Systems- Syste s- 
Prog.- Prog.- With With Analyst- Analyst- Anal J- 
With MS With PhD BS MS With BS With MS With PhD 

Fig. 1. Decomposition of the generic object Computer Scientist. 

tion (naming relationships) is an abstraction which turns a relationship between 
objects into an aggregate object. Generalization (naming classes) is an abstraction 
which turns a class of objects into a generic object. All objects (individual, 
aggregate, generic) are given uniform treatment in the D-A model. The real world 
is modeled as a set of aggregation hierarchies intersecting with a set of general- 
ization hierarchies. Abstract objects (i.e., generic and aggregate objects) occur 
only at the points of intersection. In the context of the relational model [7,8], the 
D-A model is proposed as a conceptual model. Our aim is to modify the 
generalization hierarchy in such a way that all populations are identified in a 
systematic manner and a generic object in the hierarchy consists of a (group of) 
population(s). No modifications are proposed for the aggregation hierarchy. 

Consider the same example of employees of a certain computer manufacturing 
company as used in Section 1. Figure 1 illustrates one particular decomposition 
of Computer Scientist into lower level generic objects. Notice that there are two 
mutually exclusive groups of partitions (also called clusters) of Computer Scien- 
tist; one group is {Programmer, Systems Programmer, Systems Analyst} and the 
other is based on the degree obtained. Now assume that we also have the “country 
in which PhD was obtained” information about Computer Scientists. Clearly, one 
may ask about the “population of U.S.-educated systems analysts with PhD.” In 
[33] this information is kept as an attribute of objects in the generalization 
hierarchy, and there is no provision for further partitioning. The reason for this 
is that each abstract object is required to be explicitly named using natural- 
language nouns (e.g., Programmer, Systems Analyst), and these names help us 
to relate our understanding of the real world with its intended reflection in the 
relation definition. However, the generic object “U.S.-educated systems analyst 
with PhD” is certainly described by a phrase, not by a natural-language noun, 
and yet we are interested in this particular object and it has to exist in the 
hierarchy. Thus for statistical database design purposes we take more freedom at 
this point and use phrases to describe populations. Figure 2 contains the parti- 
tioning of Systems Programmer with PhD and Systems Analyst with PhD 
according to the attribute “country in which PhD is obtained.” 
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Computer - Scientist With PhD 

Systems- Systems< 
Proarammer ,Analvst / 

Canada 
Educated 
Computer- 
Scientist 

‘With PhD 

U.S. U.S. 
Educated Educated 
Systems Systems- 
Programmer Analyst 
With PhD With PhD 

Canada 
Educated 
Systems- 
Programmer 
With PhD 

Canada 
Educated 
Systems- 
Analyst 
With PhD 

Fig. 2. Decomposition of the generic object Computer Scientist with PhD. 

Now assume that we also have the “years of programming experience” infor- 
mation for Programmers. Populations using this information may be formed, 
such as “programmers with 5 years of programming experience” or “programmers 
with MS and 2 months of programming experience.“At this stage a design decision 
problem appears. If the “years of experience in the company” information 
uniquely identifies many individuals by creating large numbers of populations 
with single individuals, the security is endangered. We assume that statistical 
database designers make the decomposition decisions using their knowledge of 
users’ needs, i.e., if there are very many populations each with few individuals, 
then the designers will cut down the number of populations and still preserve a 
good model of the real world. However, this does not mean that initial design 
decisions cannot be changed; indeed, if a need arises, some mechanisms will be 
available to the DBA so that, with an assessment of the security of protected 
information, the decomposition of objects may be changed some time later. 
Figure 3 shows one particular design decision about the usage of “years of 
programming experience” information for decomposing the object Programmer. 

In the SDB, statistical information about individuals in a population is made 
available to users. Clearly, each abstract object in the D-A model forms a 
population of individual objects. We call the smallest nondecomposable group of 
individuals an atomic population (A-population). For example, in Figure 3, 
SYSTEMS-PROGRAMMER-WITH-BS and CANADA-EDUCATED-SYS- 
TEMS-PROGRAMMER-WITH-PhD are A-populations. In order to preserve 
the indivisibility property of A-populations, the following rule is applied. 

Rule 1. Any population corresponding to any abstract object in the model is 
composed of mutually exclusive A-populations that explicitly exist in the model. 

The restriction that A-populations explicitly exist in the conceptual model may 
bring limitations to the richness of the SDB. However, this restriction is needed 
to provide systematic assurance of the security of protected information in the 
SDB. 
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2.3 Statistical Information Related to Each Population 

For each population we should define the following: 

(a) the properties of the population1 for which statistical information is to be 
revealed, e.g., SALARY or ABSENT-DAYS for the population EMPLOYEE; 

(b) whether COUNT queries requesting the number of individuals in the popu- 
lation are permitted; and 

(c) the allowable types of statistical information for each property of the popu- 
lation which may be one or more of MEAN, SUM, MAX, MIN, MEDIAN, 
K-LARGEST (order statistics), VARIANCE, STANDARD DEVIATION, 
k-MOMENT, k = 2,3, . . . . 

Clearly, if, in Figure 3, SUM query for the SALARY property of PROGRAM- 
MER and SYSTEMS-PROGRAMMER is allowed, then SUM information for 
the SALARY of SYSTEMS-ANALYST is deducible. Thus, unless individual 
security needs of populations require otherwise, we find the following two rules 
necessary for the uniformity of the revealed statistical information and richness 
of the database. 

Rule 2. The allowable set of statistical query types should be identical for the 
same property of all populations in the same cluster. (Subpopulations created by 
a mutually exclusive decomposition of a population in the generalization hierarchy 
form a cluster.) 

Consider Figure 3. Assume that SALARY is an attribute of all the objects in 
the hierarchy and SUM query is allowed for SALARY of Programmer. SUM 
query should also be allowed for SALARY of Systems Programmer and Systems 
Analyst. 

Rule 3. The allowable set of statistical query types for a property of any 
population should be the subset of the allowable set of query types for the same 
property (if it exists) of its father population in the generalization hierarchy. 

Consider Figure 3. Assume the statistical query SUM of SALARY is allowed 
in populations Programmer, Systems Programmer, and Systems Analyst and 
statistical query MEDIAN of SALARY is allowed in populations Computer 
Scientist with BS, MS, and PhD. Statistical queries SUM and MEDIAN are 
allowed for the population of Computer Scientist. 

Since COUNT queries do not directly reveal information about protected 
properties of populations, applying protection measures down to A-populations 
may unnecessarily restrict the richness of the SDB. Thus a security atom 
population @A-population) is defined to be the largest population such that no 
statistical information about any property of any of its proper subsets can be 
revealed to users. Notice that an SA-population contains one or more A-popula- 
tions. The set of values to be protected for each property in an SA-population is 
called a security atom value set @A-value set). The following example illustrates 
SA-populations. 

’ By “the property of a population” we mean “the property of individuals in the population.” 
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Example 2. Consider Figure 3. Assume there are only two protected properties, 
SALARY and ABSENT-DAYS, and 

(a) for all populations, COUNT query is allowed. 
(b) SUM query for SALARY and ABSENT-DAYS is allowed for populations 

al, a2, a3, and a4. MEDIAN query for SALARY is allowed for populations al, 
as, as, and a7. Also, SUM query for ABSENT-DAYS is allowed for popula- 
tions alO, all, and an!. Clearly, populations a8, as, a13, al+ a15, ale, a23, and a24 
contain nondecomposable SALARY information revealed to users. Similarly, 
populations alo, alI, a12, a3, and a4 contain nondecomposable ABSENT- 
DAYS information revealed to users. The intersections of these populations 
will give SA-populations a17, a18, a19, a20, a21, a22, a13, a14, a15, a16, a23, and a24. 
Notice that an SA-population may contain one or more A-populations. 

2.4 Security Constraints 

Dynamics of the real world or the existence of complex relationships between 
populations may lead the DBA to impose constraints on the security-related 
information in populations. The DBA should be able to state the conditions 
under which any statistical query about any protected property of a population 
may be reported to users. Since our aim is only to provide the DBA with the 
power to do so, we will in general distinguish three types of constraints. (Defining 
these constraints is very much dependent on the specific environment, and we 
are unable to give more detailed analysis and structural specifications of the 
constraints as done by [19] for semantic integrity constraints.) 

(1) Security atom constraints (SA-constraints) apply to the SA-value set in an 
SA-population A and all populations that contain A. An example is: sum 
salary information must not include the salary x: of employee a in SA-value 
set w until there is another employee hired or fired. 

(2) Global constraints (type 1) apply to the individuals in a population A and 
individuals of all or some of the populations in the hierarchy that contain A. 
Consider Figure 3 and Example 1 given in the introduction. Assume user 
group u is allowed to access down to Systems Analyst in the hierarchy. Now 
the hiring of two new Systems Analysts with MS and with total salary $27K 
should not be incorporated into the population Systems Analyst. However, if 
the range of salaries of Computer Scientists with MS include $14K due to its 
other child populations, then the new change may be incorporated into the 
populations Computer Scientist with MS and Computer Scientist (if other 
constraints are also satisfied). 

(3) Gbbal constraints (type 2) apply to the individuals of a population A and to 
individuals of another population B in a different part of the hierarchy. 

Example 3. Consider the database of employees, projects, and assignments in 
Figure 4. It is known that at least 10 programmers and 1 systems analyst with 
more than 10 years working experience are involved in the database development 
project. Assume we also know that a project leader must be a systems 
analyst with a PhD. Now if COUNT queries of SYSTEMS-ANALYST-WITH- 
MORE-THAN-lo-YEARS-EXPERIENCE and ASSIGNMENT-IN-DATA- 
BASE-PROJECT return 1 and 11, respectively, and if we know a systems analyst 
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Employee 

Secretary /(\S\ienti: 

Systems- Systems- Systems- 
Analyst Analyst Analyst 
With O-4 With 5-10 With More \ 
Years 
ExDerience 

Years Than 10 
Experience Years 

Experience 

Fig. 4. Database of employees, projects, and assignments. 

with more than 10 years experience, then we disclose that he is the project leader 
of the database development project and also has a PhD. To prevent this 
disclosure, type 2 global constraints applied to SYSTEMS-ANALYST-WITH- 
MORE-THAN-lo-YEARS-EXPERIENCE and ASSIGNMENT-IN-DATA- 
BASE-PROJECT may state that if COUNT information of these two populations 
are smaller than al and 10 + ~42, respectively, where al and u2 are properly chosen 
small integer constants, then COUNT information of both of the populations are 
not revealed to users. 
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Example 4. Consider Figure 4. Assume two programmers are hired. Now if 
COUNT information of both PROGRAMMER and ASSIGNMENT-IN-DATA- 
BASE-PROJECT increase by two then the new programmers are assigned to the 
database development project. If this information is to be protected, then type 2 
global constraints applied to child populations of ASSIGNMENT may state that 
new assignments in child populations of ASSIGNMENT are reported only when 
there are new assignments in two or more projects. 

3. A STATISTICAL SECURITY MANAGEMENT FACILITY 

We now propose a statistical security management facility (SSMF) with three 
principal components. 

(1) A population definition construct (PDC). 
(2) A user knowledge construct (UKC). 
(3) A constraint enforcer and checker (CEC). 

The PDC of a population contains information about the population, related 
constraints, changes of population, etc., in order to achieve effective protection. 
The UKC of a user group is designed to record users’ additional knowledge and 
SA-constraints. Finally, the CEC consists of several algorithms designed to keep 
the PDCs and UKCs up-to-date, to enforce the security constraints, and to help 
the DBA in security-related decision problems. 

3.1 Population Definition Construct 

For each population P, there is one PDC which contains the following informa- 
tion: 

(a) description of the population and its parent, child, and sibling populations; 
(b) lowest permissible user group level; 
(c) information as to how changes are included in P; 
(d) allowable statistical query types for each property of P; 
(e) global constraints of P; 
(f) if P is an SA-population, then description of SA-constraints for each SA- 

value set of P. 

(a), (d), and (f) are self-explanatory. 
(b) Assume user groups are classified by numbers such that user groups with 

higher numbers have more access power to the database than the user groups 
with lower numbers. The lowest permissible user group level is a number n such 
that user groups with number m > n can access that population. 

(c) Changes due to the dynamics of the real world may be processed in many 
ways. How these changes are handled is described in (c) and (f). 

(e) Global constraints may be static or dynamic. They may evolve and change 
as the DBA modifies them, for example, a manager changes companies and thus 
extends his knowledge, and the DBA should take necessary action. For each 
global constraint, the PDC contains the description of the constraint and a call 
for a routine in the case of violation of the constraint. Figure 5 contains the PDC 
of Programmer in the generic hierarchy described in Figure 3. 
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Population PROGRAMMER 
description [Phrase], 
parent populations [COMPUTER-SCIENTIST], 
child populations [(PROGRAMMER-WITH-BS, PROGRAMMER-WITH-MS), 

(PROGRAMMER-WITH-0-4-YEARS-EXPERIENCE, PROGRAMMER- 
WITH-5-lo-YEARS-EXPERIENCE, PROGRAMMEk-WITH-ll-OR- 
MORE-YEARS-EXPERIENCE)],- 

other populations in the same cluster [SYSTEMS-PROGRAMMER, 
SYSTEMS-ANALYST]. 

lowest permissible user group level 2, 
allowable query COUNT, 
changes processed in PAIRS, 
protected property SALARY, 

allowable tauerv SUM. 
protected prcpakty-ABSEtiT-DAYS, 

allowable auerv MEDIAN. 
global constrai’nts- 

constraint 1 
description [Phrase], 
call VIOL-CSl, 

constraint 2 
description [Phrase], 
call VIOL-CS2, 

end. 

Fig. 5. The PDC of Programmer. 

3.2 User Knowledge Construct 

For each user group u, the UKC records the users’ additional knowledge about 
individuals in the SDB. Figure 6 contains the UKC of user group u for the generic 
hierarchy described in Figure 3. 

Assume user group u is at the third level, which can access all populations in 
the hierarchy. 

Users in user group u can identify the individuals that are updated, inserted, or 
deleted from the population PROGRAMMER (e.g., the newly inserted, deleted, 
or updated programmer in the population PROGRAMMER is known by the user 
group u). For each population, this information is defined after the keyword 
“identifiable dynamics” in the UKC. Clearly, protection measures to be applied 
should be different for a user group which identifies only inserted individuals of 
a population and a user group which identifies both inserted and deleted individ- 
uals of the same population. (There may be other variations; for example, users 
in user group w may identify updated individuals when the update is from 
Systems Programmer to Systems Programmer, etc.) 

Each SA-population contains one SA-value set for each of its properties. 
Dynamics of an SA-population (i.e., inserted, deleted, updated individuals) are 
recorded in a list called the change sequence in the order of occurrences of 
changes. (This list may be kept separately if the expected number of changes is 
large.) Depending on the type of statistical information revealed, the change 
sequence is used in several procedures to decide whether the security of individ- 
uals and the protected information are in danger. 

For security purposes, changes may be processed in groups, say triplets. In such 
cases some individuals may be waiting to be processed, these individuals are 
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GROUP U [user-id, user-id,...,user-idl, 
user group level 3; 
population COMPUTER-SCIENTIST, 

identifiable dynamics INSERTION, DELETION, UPDATE, 
population PROGRAMMER, 

identifiable dynamics INSERTION, DELETION, UPDATE, 
population PROGRAMMER-WITH-0-4-YEARS-EXPERIENCE 

ISA-POPULATION], 
identifiable dynamics INSERTION, DELETION, UPDATE, 
protected property SALARY, 

securitmg;ronstraint: {JOHN DOE} is not 

change sequence’parameters 
active individuals set {(STEVE HART, 

ROCK H0,20),...,IJOHN GRAY,,3)}, 
reachability constant 0.1, 
largest reachability set size 20, 

known value set {(JOHN SO),...,(ALAN POE)}, 
known global upper bound $34K, 
known global lower bound $8K, 
known upper bounds set {(IAN MUNROE,$l8K),..., 

(GEORGE H0,$20K11, 
known lower bounds set {0}, 
change sequence {[(JIM JOE,INSERT), 

(JACK YU,DELETE),(OLD MEDIAN,$~~K), 
(NEW MEDIAN,$14K)],..., 
[(PHILIP HO,DELETE),(JACK FU,DELETE), 
(NEW MEDIAN,$18K111, 

protected property ABSENT-DAYS, 
securityi;;;dTstraint: {STEVE HUDSON} is not 

change sequence parameters 
active individuals set {(STEVE HART,,15),... 

,(JOHN GRAY,,7)}, 
reachability constant 0.2, 
largest reachable set size 15, 

known value set IO}, 
known global upper bound 90, 
known global lower bound 0, 
known upper bounds set {O}, 
known lower bounds set {B}, 
change sequence {[(JIM JOE,INSERT)], 

[(JACK YU,DELETE),(CHEN TU,DELETE), 
(OLD SUM,450),(NEW SUM,34511,...1, 

population PROGRAMMER-WITH-5-lo-YEARS-EXPERIENCE 
ISA-POPULATION], 

6. The UKC of user group u for the generic hierarchy described in Figure 3. 

and maintained in SA-constraints. For each SA-value set, users may 
know global upper or lower bounds of the property values of individuals, and 
upper or lower bounds for some specific individuals. For example, in Figure 6, 
users in user group u know that the salary of programmer Ian Mumoe is less 
than $lBK. Several parameters related to the change sequence are defined and 
described in Section 4.2. 

3.3 Constraint Enforcer and Checker 

The CEC is composed of several algorithms. It utilizes PDCs and UKCs to 
perform the following two basic tasks: 
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(a) For each statistical query, it is invoked to find the global and SA-constraints 
by tracing the related PDC and the UKC, and to enforce these constraints by 
executing the related procedures (thus altering the answer to the user’s 
statistical query, if necessary). 

(b) For each change (i.e., insertion, deletion, or update of individuals) in the 
populations of the D-A model, it is invoked to modify the constraints, to 
decide whether to process (i.e., to include into users’ statistical queries) the 
change for each SA-value set, and (if the change is processed) to modify the 
related change sequence and its parameters for each user group u. 

In addition to the above, the CEC helps the DBA in several security-related 
decision problems by providing lists of individuals whose security is threatened 
under events described below. 

(1) Changes in user groups. User groups may join or decompose, or users may 
move from one user group to another. In these cases additional knowledge of 
a user group may increase, and further disclosed information is then decided 
by the CEC using the UKC of the user group and change sequences. 

(2) Changes in the conceptual model such as decomposing a population or 
repartitioning a population. In these cases the CEC finds the SA- and A- 
populations, rearranges UKCs, modifies security measures, and reports dis- 
closures. 

(3) Changes in users’ additional knowledge such as a modified known value set 
or an updated known upper bounds set. In these cases further disclosures are 
decided by tracing the change sequences and considering possible inferences 
discussed in Section 4. 

Another job of the CEC is to modify and maintain several security measures 
related to the change of sequence of each SA-value set in order to give the DBA 
a measure of how secure the system really is at a particular time. Some of these 
measures are discussed in Section 4.2.2. 

The general scheme of the SSMF is depicted in Figure 7. The CEC utilizes the 
conceptual model, PDCs, and UKCs to enforce security constraints and modify 
statistical queries. Individual insertions, deletions, and updates into populations 
in the conceptual model are intercepted, and modifications of security constraints 
and change sequences and their parameters are carried out by the CEC. In the 
case of disclosures, the DBA is notified, and security-related reports such as the 
values of security measures, the number of constraints in effect, the number of 
individuals not included in statistical queries, and the introduced error are 
reported by the CEC. 

4. PROTECTION REQUIREMENTS FOR DIFFERENT 
STATISTICAL QUERIES 

In this section we investigate the possible security constraints for different 
statistical queries. First, inferences available to users are identified, and then 
related security constraints to enforce security are briefly described. We distin- 
guish three different inferences by users. 

(a) Type S inferences due to the hierarchical structure of the conceptual model. 
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Conceptual 
Model 

SSMF t 
Security 
Reports P 

Fig. 7. Statistical database model. 

(b) Type D inferences due to the dynamics of the real world. 
(c) Type R inferences due to existing relationships between individuals in differ- 

ent populations or in the same population. 

Disclosures in Examples 1, 3, and 4 are due to type R inferences. Type R 
inferences are dependent on the specific environment. In this paper we assume 
that global constraints are defined by the DBA to prevent disclosures due to type 
R inferences. That is, the DBA is responsible for identifying type R inferences 
and applying protection measures to prevent compromise. This decision is moti- 
vated by the simplicity and efficiency of SDB design. Another approach may be 
to define formally type R inferences and use a theorem prover to decide about 
the inferred knowledge and the disclosed information. In [26], this approach 

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981. 



Statistical Database Design ’ 129 

q 

which uses a question-answering system to enhance the security of the SDB, is 
outlined. 

In what follows we consider only type S and type D inferences. The following 
are suggested schemes for a sample of different types of statistical queries; the 
others can be derived similarly. 

4.1 Cdunt Queries 

Assume only COUNT queries are allowed and individuals in populations are 
identifiable. Assume Systems Analyst with BS is decomposed into two subpop- 
ulations as “Systems Analyst with BS and convicted of felony” and “Systems 
Analyst with BS and not convicted of felony.” It is well known [22] that 

COUNT(Systems Analyst) = COUNT(Systems Analyst with BS) 

; 

with BS and convicted of felony 
John Doe is a Systems Analyst with BS I 

+ John Doe is convicted of felony.’ 

Similarly, 

COUNT(Systems Analyst with BS and not 
convicted of a felony) = 0 

I 

John Doe is convicted of fe- 

John Doe is a Systems Analyst with BS 
+ lony. 

Thus for type S inferences we need the following global constraints 

(a) in population SYST-ANALYST-BS-CONV-FELONY, 

if COUNT(any superpopulation of SYST-ANALYST-BS-CONV-FELONY) 
- COUNT(SYST-ANALYST-BS-CONV-FELONY) 5 a 

then individuals creating above difference are not reported in COUNT 
queries. 

(b) in population SYST-ANALYST-BS-NOT-CONV-FELONY, 

if COUNT(SYST-ANALYST-BS-NOT-CONV-FELONY) 5 a 
then COUNT(SYST-ANALYST-BS-NOT-CONV-FELONY) is not an- 

swered. 

The above disclosure type and constraint have been proposed and discussed 
widely in recent studies [15, 28, 291. If introduced in a controlled environment, 
they constitute a viable protection procedure. 

The constraints described above can be easily modified to consider the users’ 
knowledge described in the UKC by changing a to (a + 3~) where x is the size of 
the user group’s knowledge in the population. 

Type D inferences may be similarly avoided; for example, only when there 
are (al + X) insertions or ( cz2 + 3~) deletions from either populations of SYST- 
ANALYST-BS-CONV-FELONY or SYST-ANALYST-BS-NOT-CONV-FE- 
LONY are changes reported to user group u, where insertion and deletion of 
SYST-ANALYST-BS are identifiable. 

’ + means “implies” or “imply.” 
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4.2 Sum and Count Queries 

Assume only SUM and COUNT queries are allowed for all populations (i.e., each 
SA-population contains only one A-population), and consider Figure 3. Assume 
users in user group u cannot identify if a systems programmer or a systems 
analyst is hired or fired, but they can always identify if a programmer is hired or 
fired. Now any changes in populations Systems Analyst or Systems Programmer 
can be reported to user group u immediately, but care must be taken in reporting 
changes in the population Programmer. In what follows we assume insertions 
and deletions into a population are identifiable and consider only type D infer- 
ences. Later we discuss type S inferences. 

Assume a new programmer with salary x is hired. Querying the population 
Programmer immediately before and after the change reveals the salary x of the 
new programmer. On the other hand, if changes are processed in large batches, 
the error introduced in SUM queries may reduce the usefulness of the statistical 
information. (In general, changes in a partition can be processed in batches with 
size t L 3 for better security. This policy however introduces an error in statistical 
queries, which is dependent on the values of records with changes, and for large 
t it may reduce the usefulness of the statistical information.) Thus we assume 
that changes are processed in pairs. 

We assume that the individuals deleted from a population are not normally 
reinserted into the same population, or if they are reinserted, they have indepen- 
dent protected property values. This assumption is realistic since every change is 
approved by the DBA and any continuous insertion and deletion of the same 
individual by a malicious user cau be detected by the DBA. 

If updates are not identifiable, then an update operation can be replaced by a 
pair of insertion and deletion operations. In what follows we assume that updates 
are not identifiable, and later we mention identifiable updates. 

4.2.1 The Information Graph. Assume two individuals with protected property 
values x and y are both to be inserted into or both to be deleted from the 
population A. Querying A before and after the change, one can obtain the 
information x + y = cl where cl is a constant. Similarly, when one individual with 
property value u and another with property value u are deleted and inserted, 
respectively, into A, then the information u - u = c2 is obtained, where cz is a 
constant. In [5], this information is characterized by an undirected labeled graph 
called the information graph such that vertices correspond to individuals and s- 
and d-edges represent equations with sums and differences, respectively. 

Using the information graph, it is proved [5] that if no protected property value 
is known by users and if each population starts with an even number of individ- 
uals, the SDB is secure for COUNT and SUh4 queries. Clearly, this result should 
incorporate users’ knowledge in order to be meaningful. If individuals with known 
(or suspected) property values are processed in pairs only with known individuals, 
then the SDB will still be secure, since unknown values wiIl be separated from 
known values in the equations in pair s. Thus in order to prevent disclosures due 
to type D inferences, we have 

(a) populations with an even number of individuals, and 
(b) for each SA-value set in each UKC, there is an SA-constraint which delays 
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the processing of (known and/or unknown) individuals with recent changes 
until another change occurs (see SA-constraint in Figure 6). 

Clearly, if each population has an even number of individuals, then the size 
difference between a population and any of its parent populations must be either 
zero or at least two. Thus type S inferences cannot cause any disclosure. 

A population A may contain several SA-populations, and thus several individ- 
uals may be waiting for inclusion in statistical answers of A. To prevent that, 
when t unknown (known) individuals are waiting, they may be included in the 
statistical answers of A. This can be specified by global constraints in A and its 
parent populations. The bound t must be large enough so that the information 
revealed to users will be practically useless for all disclosure purposes. 

However, the above-described model has the following restrictions: (a) there is 
an even number of individuals in each population; (b) changes in a population 
must wait for some time until there is another change; and (c) updates are 
assumed to be unidentifiable. In [5], incorporation of dummy individuals is 
suggested to remove these restrictions. 

4.2.2 Security Measures Related to the Information Graph. The information 
grapb has another usage. As more and more changes are made, the users get 
more and more information. Moreover, there is always a danger of being unable 
to assess what users know; and users’ knowledge of one property value of an 
individual x is sufficient to disclose all other property values of individuals that 
are in the same connected component with x in the related information graph. 
Thus a measure of security may be defined in terms of the number of connected 
components of the information graph. The reachability set Rs is defined as a 
subset of the individuals in population A such that they are in the same connected 
component. We also define 

reachability constant w 
number of reachability sets in the information graph 

= 
number of vertices in the information graph 

Clearly 0 < w 5 1, and w = 1 implies relatively “more” security (more connected 
components in the information graph) and w = 0 implies relatively “less” security. 
Another security measure may be largest reachable set size z, i.e., z = max 1 Rs ] 
for all reachability sets Rs. The two described measures of security, w and z, are 
not controllable in the model described in Section 4.2.1. However, there are ways 
that dummy mdividuals may be used to control and change the sizes of reacha- 
bility sets and, thus, to control the security measures w and z [5]. 

Change sequence parameters (see Figure 6) are described as reachability 
constant w and largest reachable set size z. For each change sequence, an active 
individuals set is also maintained. (A vertex is inactive if it corresponds to an 
individual deleted from the population; it is called active if it corresponds to an 
individual previously inserted but not yet deleted from the population.) An active 
individuals set contains one set element for each connected component which 
has one or two active individuals. Each set element contains the names of the 
active individuals and the number of vertices in that connected component (i.e., 
the reachability set size). For example, in Figure 6, the information graph of the 
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population of Programmer with O-4 years of experience contains a connected 
component with two active vertices for individuals Steve Hart and Rock Ho, and 
the number of vertices in that connected component is 20. 

4.3 Median and Count Queries 

Assume only MEDIAN and COUNT queries are allowable for all populations in 
the conceptual data model. Both type S and type D inferences may lead users to 
obtain upper or lower bounds for protected property values if insertions, deletions, 
or updates are identifiable. The following examples illustrate the possible infer- 
ences. 

Example 5. (Type S Inference). Consider Figure 3. Assume individuals are 
identifiable and there is only one Programmer with MS whose salary is X. Thus 
queries about Programmer with MS are not permitted. However, the following 
information is obtainable. 

Now 

MEDIAN(PROGRAMMER-WITH-BS, SALARY) = a 
MEDIAN(PROGRAMMER, SALARY) = al 
COUNT(PROGRAMMER-WITH-BS) = n 
COUNT(PROGRAMMER) = n + 1. 

al>a+x>a and al<a+x<a. 

Thus we have an inference about the salary x of the only programmer with MS. 

Example 6. (Type D Inference). Consider Figure 3 and assume changes are 
identifiable. 

MEDIAN(SYSTEMS-ANALYST-WITH-BS, SALARY) = a 
COUNT(SYSTEMS-ANALYST-WITH-BS) = m. 

Assume a new Systems Analyst with BS and salary x is hired 

MEDIAN(SYSTEMS-ANALYST-WITH-BS, SALARY) = al 
COUNT(SYSTEMS-ANALYST-WITH-BS) = m + 1. 

Now 

al>a+x>a and al<a+x<a. 

We would like to avoid the above inferences. 

4.3.1 Processing Changes in Pairs. We first consider type D and then discuss 
type S inferences. Consider population A with protected property B, and assume 
all changes are processed in pairs. 

MEDIAN(A, B) = a COUNT(A) = n. 

Two individuals with property B values x and y are added to A; then 

MEDIAN(A, B) = al COUNT(A)=n+2. 
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Now 

(a) n is odd: 

a1 < a + x, y I a1 

a1 > u+x,yr al. 

(b) n is even: 

ul<u+atleastoneofx,y5ul 
ul>a+atleastoneofx,y~c~~. 

Clearly, (b) is better than (a) in the sense that it does not allow an upper or lower 
bound inference for any of the property values x, y. 

Now consider 

MEDIAN(A,B) = a an individual with property MEDIAN(A,B) = al 

1 

x is added to A 
COUNT(A) = n, an individual with property 

1 
COUNT(A) = n 

y is deleted from A 

and we have the following inferences. 

(a) n is odd: 

ul<u+(x5ul)&(yru) 
a1 > a + (x 2 u1)&(y 5 a). 

(b) n is even: 

u1<u+x<y 

u1>a+x>y. 

Thus if every population always has an even number of individuals, processing 
changes in pairs prevents any direct inference of the property values of individ- 
uals. We can also use this result for type S inferences by having the global 
constraint that the difference in size between any population and its parent 
population should at least be 2. Actually this requirement is always satisfied if all 
populations start with an even number of individuals. 

43.2 Processing Changes in Triplets. Having populations with an even num- 
ber of individuals and processing changes in pairs still have the following defi- 
ciency. Let the median value a be the average of two protected property values 
u and u, u I v; and two individuals with protected property values x and y are 
added into the population. Then 

x, y sf [u, v]&(ul < a) + x, y < al or x, y e [u, V]&(Ul > a) + x, y > Ul. 

Thus for large population size n and al < a, it is highly probable that x, y < al, 
or similarly for large n and al > a, we have x, y > al with high probability. If this 
deficiency and the requirement of even population size are not tolerable, then 
changes are processed in triplets. The following inferences are possible. Assume 
MEDIAN(A, B) = a and COUNT(A) = n. 

(a) Individuals with property values x, y, z are added to population A 

MEDIAN(A, B) = al COUNT(A) = n + 3. 
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For even or odd n: 

al<a+atleasttwoofx,y,z5al 
al > a + at least two of x, y, z 2 al. 

(b) An individual with property value x is deleted from A and individuals with 
property values y, .a are added to A 

MEDIAN(A, B) = al COUNT(A) = n + 1. 

For even or odd n: 

al<a~atleastoneofy,zsa~ 
al > a + at least one of y, z 5 a~. 

Other changes (i.e., one addition and two deletions or three deletions) result in 
similar inferences. 

Similarly, to prevent disclosures due to type S inferences, we can have a global 
constraint that the size difference between any population and its parent popu- 
lation should be at least 3, or the individuals creating this difference are not 
reported. The hierarchical structure of the conceptual model should also be taken 
into account for type D inferences. Consider Figure 3. Assume three Systems 
Analysts with BS and with salaries x, y, z are hired and median salaries of 
populations Systems Analyst with BS, Systems Analyst, and Computer Scientist 
have changed from al, ~2, a3 to bl , bz, b3 where bl < al, bz < ~2, bs < a3. Now if 
the DBA learns that user group u had in fact known the value of z > max{al, UZ, 
a~}, then X, y 5 min{bl, bz, b3) is revealed. Thus this inference should be 
recorded into the UKC of user group u. 

Changes (whether processed in pairs or triplets) should be recorded into the 
related change sequence for auditing and for other tasks of the CEC described in 
Section 3.3. Also individuals with known (or suspected) property values should 
be processed only with known individuals to avoid direct inferences about 
protected property values. 

5. CONCLUSION 

We have considered the design of a statistical database which utilizes a statistical 
security management facility to enforce several security constraints at the con- 
ceptual data model level. Users are allowed to query the database with different 
statistical queries such as COUNT, MEDIAN, or SUM. Changes in the database 
are verified by the DBA. Any information involving few individuals (therefore 
risking disclosure of confidential or private information) is recorded. Several 
security measures are also described to help the DBA assess how secure the 
database is. 

APPENDIX A. SUITABILITY OF TWO OTHER DATA MODELS 
FOR SDB DESIGN 

In this appendix we briefly consider two other data models for their suitability as 
a conceptual model of the SDB, namely, the entity-relationship model [3] and 
the extended relational model [9]. It should be noted that our aim is to investigate 
the needed modifications (i.e., rules and constructs) in order to define populations 
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clearly and to analyze and control inferences. Thus the data models are only 
briefly described, and other issues such as expressive power, semantics, and 
naturalness of the data models are not discussed. 

Al. The Entity-Relationship (E-R) Model 

The E-R model adopts the view that the real world consists of entities and 
relationships. An entity is a thing that can be distinctly identified. A relationship 
is an association among entities. Entities are classified into different entity sets, 
such as EMPLOYEE, PROJECT, and DEPARTMENT. Similarly, relationships 
are classified into relationship sets, such as PROJECT-WORKER and DEPART- 
MENT-EMPLOYEE. 

In the SDB, entities and relationships correspond to individuals, and each 
entity set or relationship set is a population. Statistical information about values 
in attribute-value pairs of entities or relationships are revealed to users. However, 
in order to define A-populations and to enforce security constraints, we need 
additional rules and constructs as described in what follows. 

(1) Some means are needed to identify the A-populations that a population 
contains. For example, the fact that entity set MALE-PERSON is a subset of 
the entity set PERSON should be easily accessible to the SDB. This is 
needed, for example, when constraints applied to individuals in an A-popu- 
lation are also applied to all populations that include the same A-population 
(e.g., SA-constraints). 

(2) For the richness of the SDB and systematic application of security con- 
straints, Rule 1 of the D-A model should also be used: Each entity set or 
relationship set must be composed of some mutually exclusive entity sets or 
relationship sets. 

(3) The protection mechanism of the SDB should easily locate all populations 
that contain a given A-population. This may be needed, for example, while 
processing insertions, deletions, or updates of individuals. In the E-R model, 
locating all populations containing a given A-population requires additional 
structures or rules. 

Finally, in the E-R model, the job of defining the allowable types of statistical 
queries in a systematic manner relies on the DBA. 

A2. The Extended Relational Model (RM/T) 

In RM/T, there are entities and entity types classified by whether they 

(1) fill a subordinate role in describing entities of some other type, in which case 
they are called characteristic; 

(2) fill a superordinate role in interrelating entities of other types, in which case 
they are called associative; 

(3) neither of the above, in which case they are called kernel. 

Using these entity types, the semantic structures defined are characteristic 
tree, association graph, Cartesian aggregation, generalization, and cover aggre- 
gation. Cartesian aggregation is the aggregation abstraction of the D-A model. 
In what follows we look at each of the new semantic structures of RM/T and 
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discuss related SDB issues as to how to obtain populations and indivisible A- 
populations, control inferences, and employ security constraints. 

(a) Characteristic Tree. The characteristic entity types that provide descrip- 
tion of a given kernel entity type form a characteristic tree. Example 7 is from 

PI. 
Example 7. EMPLOYEES (a kernel entity type) have a JOB-HISTORY 

(characteristic entity type subordinate to EMPLOYEE) whose immediate prop- 
erties are DATE-ATTAINED-POSITION and NAME-OF-POSITION (see Fig- 
ure 8). This information is augmented by SALARY-HISTORY (characteristic 
entity type subordinate to JOB-HISTORY) whose immediate properties are 
DATE-OF-SALARY-CHANGE and NEW-SALARY. The mapping between ent- 
ities in the parent and child nodes is one-to-many, for example, one EMPLOYEE 
has many JOB-HISTORY entities and one JOB-HISTORY entity has many 
SALARY-HISTORY entities. 

Each of EMPLOYEE, JOB-HISTORY, and SALARY-HISTORY nodes forms 
a population. A-populations of these populations may be formed by decomposing 
them (as generalization abstractions) using their properties, their mapping to the 
parent nodes, etc. For example, SALARY-HISORY may be decomposed using 
(a) EMPLOYEE individuals, (b) NAME-OF-POSITION of JOB-HISTORY, (c) 
date, and (d) salary ranges. 

Type S inferences in the characteristic tree may occur when the decomposition 
of a population is effected by its parent node(s). These inferences may identify 
the existence of entities in parent populations as described in Example 8. 

Example 8. Assume SALARY-HISTORY is decomposed using employee job 
types. Then 

COUNT (SALARY-HISTORY-OF-TECHNICIAN) = 1 
+ There is only one technician in the company. 

Type S inferences may be avoided by constraints which consider the size of A- 
populations, decomposition rules, and one-to-many mappings of parent popula- 
tions in the characteristic tree. 

Type D inferences in the characteristic tree may occur owing to the fact that 
any new entity in node u-creates new entities in all the characteristic entity type 
nodes of the subtree with root u. For example, new EMPLOYEE individual 
creates new JOB-HISTORY and SALARY-HISTORY individuals. This fact 
brings extra limitations in processing changes. Otherwise processing changes may 
be achieved by methods discussed in Section 4, i.e., processing changes in pairs 
or triplets, even-size populations, dummy individuals, etc. 

(b) Association Graph. An associative entity interrelates entities of other 
types, and this interrelation is represented by the association graph in the 
RM/T. If the association among individual entities is to be protected, then type 
2 global constraints can be applied to the associative entities or the entities that 
they interrelate. 

(c) Generalization. Codd [9] renames the generalization abstraction of the 
D-A model as unconditional generalization inclusion (UGI), and also describes 
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Position 

Date Of 
Salary 
Change 

‘New Salary 

Fig. 8. A characteristic tree. 

an abstraction called alternative generalization inclusion (AGI), which is an 
alternative or conditional inclusion of entities of an entity type into some other 
entity types. Clearly, the only structural difference between the UGI and the AGI 
is that the AGI decomposes a population P into mutually exclusive populations 
that are one level above P in the hierarchy. Thus controlling inferences for the 
AGI are the same as the UGI. 

(d) Cover Aggregation. Cover aggregation is an aggregation in which a subset 
of entities of the same type forms another entity with a different entity type. For 
example, a CONVOY-OF-SHIPS is a cover entity of entity type SHIP; a CLUB 
that some people belong to forms a cover aggregate of PEOPLE. 

For the SDB design, cover aggregate entity types partition the group of entities 
resulting in smaller populations. Intersection of these smaller populations gives 
A-populations of covered individuals. 

APPENDIX 6. IMPLEMENTATION CONSIDERATIONS 

In this appendix we comment on implementation and maintenance issues of 
security-related structures. 

To answer a statistical query, conventional database query processing is per- 
formed to obtain the answer, and then related security constraints (i.e., global 
and SA-constraints) are enforced. To retrieve SA-constraints, the user group of 
the user is determined and the related UKC is accessed. To retrieve global 
constraints, the PDC of the population described in the user’s query is accessed. 
Thus the additional time overhead to the conventional database query processing 
involves two accesses and the processing of security constraint routines. 

To process changes (i.e., insertion, deletion, or updates of individuals), in 
addition to the conventional database query processing, the related PDC is 
accessed to modify global constraints, and then, for each user group, the UKC is 
retrieved to update SA-constraints, and the user group’s knowledge and change 
sequence and its parameters. 

In what follows we discuss possible operations on the known value set (KVS), 
the known upper bounds set (KUBS), and change sequences and their parameters. 

The operations on the KVS are set membership check, insertion, and deletion. 
Clearly, the KVS is a dictionary [2]. Thus a balanced tree (a 2-3 tree or an AVL 
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tree) may be used to process an operation of the KVS in O(log m)3 time, where 
m is the number of individuals in the population. 

The KUBS of a property of an SA-population for the user group u is maintained 
for the following operations: 

(1) search for 

(a) a known upper bound value of a given individual in the population; 
(b) all individuals in the population such that the difference between their 

property values and the known upper bound values are less than a certain 
constant. 

(2) Insertion of a known upper bound value into the KUBS; 
(3) deletion of a known upper bound value from the KUBS; 
(4) update of a known upper bound value in the KUBS. 

Operation (lb) may be required to assess how “accurate” the user’s knowledge is. 
All of these operations can be processed in 0 (log m) time, where m is the number 
of individuals in the population, using techniques described in [2]. 

The change sequence is consulted during checking for disclosure, and modified 
during a change in the population. The operations on the change sequence are: 

(I) inserting a new change into the change sequence and modifying the change 
sequence parameters; 

(2) finding a certain reachability set from the change sequence; 
(3) finding all reachability sets from the change sequence. 

Operations 1, 3, and 2 can be processed in O(log k), O(K + t log s), and 
O(t log s) time, respectively, where k is the size of the active individuals set, t is 
the number of tuples in the change sequence, and s is the maximum number of 
active individuals at any time during the construction of the change sequence. 
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