
Updating Dynamic Random Hyperbolic Graphs
in Sublinear Time∗

Moritz von Looz Henning Meyerhenke

Abstract
Generative network models play an important role in algorithm development,

scaling studies, network analysis, and realistic system benchmarks for graph data
sets. A complex network model gaining considerable popularity builds random
hyperbolic graphs, generated by distributing points within a disk in the hyperbolic
plane and then adding edges between points with a probability depending on their
hyperbolic distance.

We present a dynamic extension to model gradual network change, while
preserving at each step the point position probabilities. To process the dynamic
changes efficiently, we formalize the concept of a probabilistic neighborhood: Let
P be a set of n points in Euclidean or hyperbolic space, q a query point, dist a
distance metric, and f : R+ → [0, 1] a monotonically decreasing function. Then,
the probabilistic neighborhood N(q, f) of q with respect to f is a random subset
of P and each point p ∈ P belongs to N(q, f) with probability f(dist(p, q)). We
present a fast, sublinear-time query algorithm to sample probabilistic neighborhoods
from planar point sets. For certain distributions of planar P , we prove that our
algorithm answers a query in O((|N(q, f)|+

√
n) logn) time with high probability.

This enables us to process a node movement in random hyperbolic graphs in
sublinear time, resulting in a speedup of about one order of magnitude in practice
compared to the fastest previous approach. Apart from that, our query algorithm is
also applicable to Euclidean geometry, making it of independent interest for other
sampling or probabilistic spreading scenarios.

1 Introduction
Relational data of complex relationships often take the form of complex networks, graphs
with heterogeneous and often hierarchical structure, low diameter, high clustering, and
a heavy-tailed degree distribution [10]. Examples include social networks, the graph of
hyperlinks between websites, protein interaction networks, and infrastructure routing
networks on the autonomous system level [22]. Frequently found properties in generative
models for complex networks are non-negligible clustering (ratio of triangles to triads),
a pronounced community structure, and a heavy-tailed degree distribution [10], such
as a power-law. Moreover, complex networks often have the small-world property, i. e.
the distance between any two vertices is surprisingly small, often even regardless of
network size.

∗This work is partially supported by German Research Foundation (DFG) grant ME 3619/3-1 (FINCA)
within the Priority Programme 1736 Algorithms for Big Data. It was carried out while the authors were
affiliated with the Institute of Theoretical Informatics at Karlsruhe Institute of Technology (KIT). Authors’
present addresses: M. von Looz and H. Meyerhenke, Institute of Computer Science, University of Cologne,
Weyertal 121, 50931 Cologne, Germany; emails: mloozcor@uni-koeln.de, h.meyerhenke@uni-koeln.de.

1

ar
X

iv
:1

80
2.

03
29

7v
1

 [
cs

.D
S]

 8
 F

eb
 2

01
8

1.1 Random Hyperbolic Graphs
Many properties of networks can be explained with a hidden underlying geometry [17].
While Euclidean geometry is a natural fit for mesh or unit-disk networks, Krioukov
et al. [20] show that properties of complex networks follow naturally from hyperbolic
geometry, which has negative curvature and is the basis for one of the three isotropic
spaces. (The other two are Euclidean (flat) and spherical geometry (positive curvature).)
Their proposed family of random hyperbolic graphs (RHG) thus gained considerable
interest as a generative network model [8, 12, 7]. These graphs offer a power-law degree
distribution with an adjustable exponent and a hierarchical community structure. In
addition, the clustering coefficient is stable with increasing graph size, in contrast to, for
example, the popular R-MAT model [18, 12, 30].

To sample a RHG, vertices are distributed randomly on a hyperbolic disk of given
radius R and each pair of vertices is connected by an edge with a probability that de-
creases with the hyperbolic distance between them. Papadopoulos et al. [24] argue that,
when given in polar coordinates, the angular and radial coordinates model popularity
and similarity of vertices in a network. Due to the hyperbolic geometry, vertices close
to the center of the disk have a higher degree than vertices on the outer rim of the
hyperbolic disk. If two nodes have similar angular coordinates, they are more likely to
be connected and have similar neighborhoods.

For the static model of RHGs, Bringmann et al. [9]. describe an algorithm to sample
graphs in expected linear time; it uses a cell data structure and iterates over pairs of cells
to generate the edges. This algorithm and the implementation of Bläsius et al. [6] are an
improvement over our previous work, which generated static RHGs with n vertices and
m edges in O((n3/2 +m) log n) [31]. Our previous work used a polar quadtree on the
Poincaré disk model of hyperbolic space to provide range queries for a restricted model
of RHGs, an idea we extend in this paper.

Many networks are not static but change over time, however, thus giving rise to
the field of dynamic network analysis and the need for dynamic generative models.
Similar to static generative models, they fulfill an analogous role in the development,
benchmarking, and scaling studies of dynamic graph algorithms. Papadopoulos et al.
[23] consider a dynamic model for RHGs in which vertices are deleted and reinserted
at random positions to model sudden site outages and additions in an infrastructure
network. In many complex networks, e. g., social networks, changes happen more
gradually, though.

We thus introduce a dynamic model with gradual node movement, which reflects for
example vertices becoming similar and their neighborhoods merging, or vertices waxing
and waning in popularity. The position probability distribution of points is kept; each
snapshot of the dynamic model is a random hyperbolic graph with the usual properties.

1.2 Probabilistic Neighborhood Queries
While efficient sampling algorithms for static RHGs exist [9], resampling the neighbor-
hood of a moved node in a dynamic model required linear time so far.

This task of sampling a neighborhood whose elements are probabilistic not only
occurs in dynamic random hyperbolic graphs. Connection probabilities depending on
the distance frequently happen in Euclidean applications as well: The probability that
a customer shops at a certain physical store shrinks with increasing distance to it. In
disease simulations, if the social interaction graph is unknown but locations are available,
disease transmission can be modeled as a random process with infection risk decreasing

2

with distance. Moreover, the wireless connections between units in an ad-hoc network
are fragile and collapse more frequently with higher distance.

To generalize these scenarios, we define the notion of a probabilistic neighborhood
in spatial data sets, both Euclidean and hyperbolic: Let a set P of n points in Rd, a
query point q ∈ Rd, a distance metric dist, and a monotonically decreasing function
f : R+ → [0, 1] be given. Then, the probabilistic neighborhood N(q, f) of q with
respect to f is a random subset of P and each point p ∈ P belongs to N(q, f) with
probability f(dist(p, q)). A straightforward query algorithm for sampling a probabilistic
neighborhood would iterate over each point p ∈ P and sample for each whether it is
included in N(q, f). This has a running time of Θ(n · d) per query point, which
is prohibitive for repeated queries in large data sets. Thus we are interested in a
faster algorithm for such a probabilistic neighborhood query (PNQ, spoken as “pink”).
We restrict ourselves to the planar case in this work, but the algorithmic principle is
generalizable to higher dimensions.

Since the neighborhood of a vertex in a random hyperbolic graph is an instance of
such a probabilistic neighborhood, we can use a fast PNQ query method to support a
faster dynamic generative model.

1.3 Outline and Contribution
After introducing notation and related work (both Section 2), we describe a dynamic
model for random hyperbolic graphs with gradual change (Section 3). We then develop,
analyze, implement, and evaluate a quadtree-based index structure (Section 4.1) and
query algorithm (Sections 4.2 and 5) that together provide sublinear probabilistic neigh-
borhood queries in the Euclidean and hyperbolic plane. These can be used to generate
updates to random hyperbolic graphs as described above, but can be of independent in-
terest for completely different application areas as well (for a simple disease simulation,
cf. the conference version [29]).

With some assumptions (which are fulfilled in random hyperbolic graph generation),
we show a time complexity ofO((|N(q, f)|+√n) log n) with high probability (whp)1 to
find a probabilistic neighborhood N(q, f) among n points (Section 5.1). We implement
the dynamic updates in both our data structure and the data structure of Bläsius et al. [6].
On our data structure, processing a node movement is up to two orders of magnitude
faster, in the order of milliseconds for graphs with hundreds of milllions of vertices.

Both the generator code and the network analysis modules are available in version
4.1 of the toolkit NetworKit [27], which is aimed at large-scale network analysis.

2 Preliminaries

2.1 Notation
We use the usual graph notation of a graph G consisting of a vertex set V consisting of
n points and an edge set E ⊆ V × V with m edges.

For the probabilistic neighborhood queries, let the input be given as set P of n
points. The points in P are distributed in a disk DR of radius R in the hyperbolic or
Euclidean plane, the distribution is given by a probability density function j(φ, r) for
an angle φ and a radius r. For our theoretical results to hold, we require j to be known,
continuous and integrable. Furthermore, j needs to be rotationally invariant – meaning

1With high probability denotes a probability ≥ 1− 1/n for n sufficiently large.

3

that j(φ1, r) = j(φ2, r) for any radius r and any two angles φ1 and φ2 – and positive
within DR, so that j(r) > 0⇔ r < R. Due to the rotational invariance, j(φ, r) is the
same for every φ and we can write j(r). Likewise, we define J(r) as the indefinite
integral of j(r) and normalize it so that J(R) = 1 (also implying J(0) = 0). The value
J(r) then gives the fraction of probability mass inside radius r.

For the distance between two points p1 and p2, we use distH (p1, p2) for the hyper-
bolic and distE (p1, p2) for the Euclidean case. We may omit the index if a distinction
is unnecessary. As mentioned, a point p is in the probabilistic neighborhood of query
point q with probability f(dist(p, q)). Thus, a query pair consists of a query point q and
a function f : R+ → [0, 1] that maps distances to probabilities. The function f needs to
be monotonically decreasing but may be discontinuous, requirements that are fulfilled
for the application of random hyperbolic graphs. (Note that f can be defined differently
for each query. This might be useful when applying PNQs to spatial data sets, where
after one preprocessing step queries of different types can be handled without changing
the data structure.) The query result, the probabilistic neighborhood of q w. r. t. f , is
denoted by the set N(q, f) ⊆ P . For the algorithm analysis, we use two additional sets
for each query (q, f):

• Candidates(q, f): neighbor candidates examined when executing such a query,

• Cells(q, f): quadtree cells examined during execution of the query.

Note that the sets N(q, f),Candidates(q, f) and Cells(q, f) are probabilistic, thus
theoretical results about their size are usually only with high probability.

2.2 Related Range Queries
Since PNQs are applicable to other problems in for example Euclidean spatial databases,
we discuss related query algorithms and data structures.

Fast Deterministic Range Queries Numerous index structures for fast range queries
on spatial data exist. Many such index structures are based on trees or variations
thereof, see Samet’s book [26] for a comprehensive overview. I/O efficient worst case
analysis is usually performed using the EM model, see e. g. [2]. In more applied settings,
average-case performance is of higher importance, which popularized R-trees or newer
variants thereof, e. g. [15]. Concerning (balanced) quadtrees and kd-trees for spatial
dimension d, it is known that queries require O(d · n1−1/d) time (thus O(

√
n) in the

planar case) [26, Ch. 1.4]. Regarding PNQs our algorithm matches this query complexity
up to a logarithmic factor. Yet note that, since for general f and dist in our scenario all
points in the set P could be neighbors, data structures for deterministic queries cannot
solve a PNQ efficiently without adaptations.

Hu et al. [14] give a query sampling algorithm for one-dimensional data that, given
a set P of n points in R, an interval q = [x, y] and an integer, t ≥ 1, returns t elements
uniformly sampled from P ∩ q. They describe a structure of O(n) space that answers a
query in O(log n+ t) time and supports updates in O(log n) time. While also offering
query sampling, PNQs differ from the problem considered by Hu et al. in two aspects:
We consider not only the 1-dimensional case, and our sampling probabilities (user-
defined with a distance-dependent function) are not necessarily uniform.

4

Range Queries on Uncertain Data During the previous decade probabilistic queries
different from PNQs have become popular. The main scenarios can be put into two
categories [25]: (i) Probabilistic databases contain entries that come with a specified
confidence (e. g. sensor data whose accuracy is uncertain) and (ii) objects with an
uncertain location, i. e. the location is specified by a probability distribution. Both
scenarios differ under typical and reasonable assumptions from ours: Queries for
uncertain data are usually formulated to return all points in the neighborhood whose
confidence/probability exceeds a certain threshold [19], or computing points that are
possibly nearest neighbors [1].

In our model, in turn, the choice of inclusion of a point p is a random choice for
every different p. In particular, depending on the probability distribution, all nodes in
the plane can have positive probability to be part of some other’s neighborhood. In the
related scenarios this would only be true with extremely small confidence values or
extremely large query circles.

2.3 Graphs in Hyperbolic Geometry
Krioukov et al. [20] relate complex networks with hierarchical structures to hyperbolic
geometry and introduce the family of random hyperbolic graphs, which develop a
power-law degree distribution, high clustering and other properties of complex networks
simply from their geometry. Numerous other generative graph models, including ones
for complex networks and not based on geometry, exist. For a short overview cf. [28].
All these models cover different aspects of network formation and the graphs generated
by them have systematically different properties. No model is widely accepted as
covering the majority of use cases.

In the RHG model by Krioukov et al. [20], vertices are generated as points in polar
coordinates (φ, r) on a disk of radius R in the hyperbolic plane with curvature −ζ2.
We denote this disk with DR. The angular coordinate φ is drawn from a uniform
distribution over [0, 2π], while the probability density for the radial coordinate r is given
by Krioukov et al. [20, Eq. (17)] and controlled by a dispersion parameter α:

f(r) = α
sinh(αr)

cosh(αR)− 1
(1)

For α = 1, this yields a uniform distribution on the hyperbolic plane within DR. For
lower values of α, vertices are more likely to be in the center, for higher values more
likely at the border of DR.

We denote the hyperbolic distance between two points p1 and p2 with distH(p1, p2).
In the model, any two vertices u and v are connected by an edge with a probability
depending on their distance, given by Eq. (2) and parametrized by a temperature T .

p({u, v} ∈ E) = (1 + e(1/T)·(distH(u,v)−R)/2)−1 (2)

For the limiting case of T = 0, the neighborhood of a point consists of exactly those
points within a hyperbolic circle of radius R, giving rise to the name threshold random
hyperbolic graphs. In the other extreme of T =∞, the geometry’s influence vanishes
and the resulting model resembles the Erdos-Reyni-model with a binomial degree
distribution. In this work, we consider the general case of 0 ≤ T <∞ unless otherwise
noted.

Several works have analyzed the properties of the resulting graphs theoretically.
Krioukov et al. [20, Eq. (29)] show that for α/ζ ≥ 1

2 , the degree distribution follows a

5

Figure 1: Graph in hyperbolic geometry with unit-disk neighborhood. Neighbors of the
bold blue vertex are in the hyperbolic circle, marked in blue. In this visualization, an
edge (u, v) is only added if distH (u, v) ≤ 0.2R.

power law with exponent γ := 2 · α/ζ + 1. Gugelmann et al. [12] prove non-vanishing
clustering and a low variation of the clustering coefficient. Bode et al. [7] discuss the
size of the giant component and the probability that the graph is connected [8]. They
also show [8] that the curvature parameter ζ can be fixed while retaining all degrees
of freedom, leading us to assume ζ = 1 from now on without loss of generality. For
2 < γ < 3, Kiwi and Mitsche [16] bound the diameter asymptotically almost surely
to O((log n)32/((5−γ)(3−γ))) and Friedrich and Krohmer [11] improve that bound to
O((log n)2/(3−γ)). The average degree k of a random hyperbolic graph is controlled
with the radius R, using an approximation given by Krioukov et al. [20, Eq. (22)]. This
radius is commonly set to R = 2 log n + C with a user-defined constant C, leading
to a stable average degree with changing graph size. Krioukov et al. [20] choose a
polar representation of the hyperbolic plane in which the radial coordinate rH of a point
pH = (φH, rH) is set to the hyperbolic distance to the origin: rH = distH(pH, (0, 0)).
They call this representation the native representation. An example graph with 500
vertices, R ≈ 5.08, T = 0 and α = 0.8 in this representation is shown in Figure 1. For
the purpose of illustration in the figure, we choose a vertex u (the bold blue vertex)
and an artificially small example neighborhood, adding edges (u, v) for all vertices v
where distH(u, v) ≤ 0.2 ·R2. The neighborhood of u then consists of vertices within a
hyperbolic circle (marked in blue).

2.4 Fast Graph Generation
As discussed in Section 1, one application for PNQs are dynamic updates for random
hyperbolic graphs.

In previous work we designed a static generator [31] for a restricted model; a query
also runs in O((n3/2 + N) log n) whp, leading to a time of O((n3/2 +m) log n) whp
for the whole graph with m edges. The range queries discussed there are facilitated by
a polar quadtree which supports only deterministic queries. Consequently, the queries

2Depicting neighborhoods as in the actual model of RHGs would result in graph too dense to be useful in
a visualization.

6

result in unit-disk graphs in the hyperbolic plane and can be considered as a special
case of the current work (a step function f with values 0 and 1 results in a deterministic
query).

Our major technical inspiration for enhancing the quadtree for probabilistic neigh-
borhoods is the work of Batagelj and Brandes [4]. They were the first to present a
random sampling method to generate Erdős-Rényi-graphs with n nodes and m edges
in O(n + m) time complexity. Faced with a similar problem of selecting each of n2

possible edges with a constant probability p, they designed an efficient algorithm with
the following idea: since the gaps between independently selected elements follow
a geometric distribution, it is possible to simply sample the gaps from the geometric
distribution directly and skip those elements that are not selected while attaining the
same probabilities.

2.5 Quadtree Specifics
Our key data structure for fast queries is a region quadtree in the Euclidean or hyperbolic
plane.3 While they are less suited to higher dimensions as for example k-d-trees, the
complexity is comparable in the plane. For the (circular) range queries we discuss,
quadtrees have the significant advantage of a bounded aspect ratio: A cell in a k-d-tree
might extend arbitrarily far in one direction, rendering theoretical guarantees about the
area affected by the query circle difficult. In contrast, the region covered by a quadtree
cell is determined by its position and level. We mostly reuse our previous definition [31]
of the quadtree: A node in the quadtree is defined as a tuple (minφ,maxφ,minr,maxr)
with minφ ≤ maxφ and minr ≤ maxr. It is responsible for a point p = (φp, rp) exactly
if (minφ ≤ φp < maxφ) and (minr ≤ rp < maxr). We call the region represented
by a particular quadtree node its quadtree cell. The quadtree is parametrized by its
radius R, the maxr of the root cell. If the probability distribution j is known (which we
assume for our theoretical results), we set the radius R to arg minr J(r) = 1, i. e. to the
minimum radius that contains the full probability mass. If only the points are known,
the radius is set to include all of them.

3 Dynamic Model
Papadopoulos et al. [23] examine greedy routing in random hyperbolic graphs and for
this purpose propose a dynamic model in which nodes join the network at the border
of a growing disk and depart randomly. While this is a suitable dynamic behavior for
modeling internet infrastructure with sudden site failures or additions, change in e. g.,
social networks happens more gradually; people hardly leave society completely and
rejoin it at a random position.

To model such a gradual change in networks, we design and implement a dynamic
version with node movement. Such a model should fulfill several objectives: First, it
should be consistent: After moving a node, the network may change, but properties
should stay the same in expectation. Since the properties emerge from the node positions,
the probability distribution of node positions needs to be preserved. Second, the
movement should be directed: If the movement direction of a node at time t is completely
independent from the direction at t+1, the result would be a simulated Brownian motion
with the same links vanishing and reappearing repeatedly.

3Driven by the requirements of random hyperbolic graphs, we use a polar quadtree.

7

0

R

⇒
1

cosh(R)

⇒
0

R

Figure 2: For each movement step, radial coordinates are mapped into the interval
[1, sinh(αR)), where the coordinate distribution is uniform. Adding τr and transforming
the coordinates back results in correctly scaled movements.

In our implementation, movement happens in discrete time steps. We attain the first
objective by scaling the movements along the radial axis, as given by Theorem 1. The
second objective is fulfilled by initially setting step values τφ and τr for each node and
using them in each movement step. As a result, if a node i moves in a certain direction
at time t, it will move in the same direction at t+ 1, except if the new position would
be outside the hyperbolic disk DR. In this case, the movement is inverted and the node
“bounces” off the boundary. The different probability densities in the center of the disk
and the outer regions are translated into movement speed: A node is less likely to be in
the center; thus it needs to spend less time there while traversing it, resulting in a higher
speed.

We implement this movement in two phases: In the initialization, step values τφ and
τr are assigned to each node according to the desired movement. Each movement step
of a node then consists of a rotation and a radial movement. This step is described in
Algorithm 1; a visualization of the radial movement is shown in Figure 2.

Algorithm 1: move(φ, r) - Movement step in dynamic model
Input: φ, r, τφ, τr, R, α.
Output: φnewrnew

1. x = sinh(r · α);

2. y = x+τr;

3. z = asinh(y)/α;

4. φnew = (φ+ τφ) mod 2π

5. Return (φnew, z)

If the new node position would be outside the boundary (r > R) or below the origin
(r < 0), the movement is reflected and τr set to −τr.

8

Theorem 1. Let fr,φ((pr, pφ)) be the probability density of point positions, given
in polar coordinates. Let move((pr, pφ)) (Algorithm 1) be a movement step. Then,
the node movement preserves the distribution of angular and radial distributions:
fr,φ(move((pr, pφ))) = fr,φ((pr, pφ)).

Proof. Since the distributions of angular and radial coordinates are independent, we
consider them separately: fr,φ(pr, pφ) = fr(pr) · fφ(pφ).

As introduced in Eq. (1), the radial coordinate r is sampled from a distribution with
density α sinh(αr)/(cosh(αR)− 1). We introduce random variables X,Y, Z for each
step concerning the radial coordinates in Algorithm 1, each is denoted with the upper
case letter of its equivalent. An additional random variable Q denotes the pre-movement
radial coordinate. The other variables are defined as X = sinh(Q · α), Y = X + τr
and Z = asinh(Y)/α.

Let fQ, fX , fY and fZ denote the density functions of these variables:

fQ(r) =
α sinh(αr)

cosh(αR)− 1
(3)

fX(r) = fQ

(
asinh(r)

α

)
=

αr

cosh(αR)− 1
(4)

fY (r) = fX(r − τr) =
αr − τr

cosh(αR)− 1
(5)

fZ(r) = fY (sinh(r · α)) =
α sinh(αr)− τr
cosh(αR)− 1

= fQ(r)− τr
cosh(αR)− 1

(6)

The distributions of Q and Z only differ in the constant addition of τr/(cosh(αR)−
1). Every (cosh(αR)− 1)/τr steps, the radial movement reaches a limit (0 or R) and is
reflected, causing τr to be multiplied with -1. On average, τr is thus zero and FQ(r) =
FZ(r).

A similar argument works for the rotational step: While the rotational direction
is unchanged, the change in coordinates is balanced by the addition or subtraction
of 2π whenever the interval [0, 2π) is left, leading to an average of zero in terms of
change.

Experiments supporting the consistency of properties after node movement can be
found in the extended preliminary version of von Looz et al. [32].

4 Baseline Query Algorithm
After moving a vertex, its edges need to be resampled to reflect its new position. As
discussed before, an algorithm to sample probabilistic neighborhood queries can be
used to process such an update. After detailing the construction of the quadtree data
structure for this purpose (Section 4.1) and several theoretical results, we describe a
baseline version of such a query algorithm (Section 4.2). This algorithm introduces the
main idea, but is asymptotically not faster than the straightforward approach of probing
every distance and throwing a biased coin. In Section 5, the query algorithm is refined
to support faster queries.

9

×

Figure 3: Query over 200 points in a polar hyperbolic quadtree, with f(d) :=
1/(e(d−7.78) + 1) and the query point q marked by a red cross. Points are colored
according to the probability that they are included in the result. Blue represents a high
probability, white a probability of zero.

4.1 Quadtree Construction
At each quadtree node v, we store the size of the subtree rooted there. We then generalize
the rule for node splitting to handle point distributions j as defined in Section 2.1: As
is usual for quadtrees, a leaf cell c is split into four children when it exceeds its fixed
capacity. Since our quadtree is polar, this split happens once in the angular and once
in the radial direction. Due to the rotational symmetry of j, splitting in the angular
direction is straightforward as the angle range is halved: midφ :=

maxφ+minφ
2 . For

the radial direction, we choose the splitting radius to result in an equal division of
probability mass. The total probability mass in a ring delimited by minr and maxr
is J(maxr) − J(minr). Since j(r) is positive for r between R and 0, the restricted
function J |[0,R] defined above is a bijection. The inverse (J |[0,R])

−1 thus exists and we

set the splitting radius midr to (J |[0,R])
−1
(
J(maxr)+J(minr)

2

)
.

Figure 3 visualizes a point distribution on a hyperbolic disk with 200 points and
Figure 4 its corresponding quadtree.

Three results on quadtree properties help to establish the time complexity of quadtree

200

48

9121314

57

1291818

53

11141513

42

149910

Figure 4: Visualization of the data structure used in Figure 3. Quadtree nodes are
colored according to the upper probability bound for points contained in them. The
color of a quadtree node c is the darkest possible shade (dark = high probability) of any
point contained in the subtree rooted at c. Each node is marked with the number of
points in its subtree.

10

operations. They are generalized versions of our previous work [31, Lemmas 1 and 2]
and state that (i) each quadtree cell contains the same expected number of points, that
(ii) the quadtree height is O(log n) whp and that (iii) the expected number of nodes in a
quadtree is in O(n).

Lemma 1. Let DR be a hyperbolic or Euclidean disk of radius R, j a probability
distribution on DR which fulfills the properties defined in Section 2.1, p a point in DR
which is sampled from j, and T be a polar quadtree on DR. Let C be a quadtree cell at
depth i. Then, the probability that p is in C is 4−i.

Proof. Due to the similarity of Lemma 1 to Lemma 1 of von Looz et al. [31], the proof
follows a similar structure. Let C be a quadtree cell at level k, delimited by minr, maxr,
minφ and maxφ. As stated in Section 2.1, we require the point probability distribution
to be rotationally invariant. The probability that a point p is in C is then given by

Pr(p ∈ C) =
maxφ−minφ

2π
· (J(maxr)− J(minr)). (7)

The boundaries of the children of C are given by the splitting rules in Section 4.1.

midφ :=
maxφ + minφ

2
(8)

midr := (J |[0,R])
−1
(
J(maxr) + J(minr)

2

)
(9)

We proceed with induction over the depth i of C. Start of induction (i = 0): At depth 0,
only the root cell exists and covers the whole disk. Since C = DR, Pr(p ∈ C) = 1 =
4−0.

Inductive step (i→ i+ 1): Let Ci be a node at depth i. Ci is delimited by the radial
boundaries minr and maxr, as well as the angular boundaries minφ and maxφ. It has
four children at depth i+ 1, separated by midr and midφ. Let SW be the south west
child of Ci. With Eq. (7), the probability of p ∈ SW is:

Pr(p ∈ SW) =
midφ −minφ

2π
· (J (midr)− J (minr)) (10)

.
Using Equations (8) and (9), this results in a probability of

Pr(p ∈ SW) =
maxφ +minφ

2 −minφ

2π
·
(
J

(
(J |[0,R])

−1
(
J(maxr) + J(minr)

2

))
− J(minr)

)
(11)

Pr(p ∈ SW) =
maxφ +minφ

2 −minφ

2π
·
(
J(maxr) + J(minr)

2
− J(minr)

)
(12)

Pr(p ∈ SW) =
maxφ−minφ

2

2π
·
(
J(maxr)− J(minr)

2

)
(13)

Pr(p ∈ SW) =
1

4

maxφ−minφ
2π

· (J(maxr)− J(minr)) (14)

As per the induction hypothesis, Pr(p ∈ Ci) is 4−i and Pr(p ∈ SW) is thus 1
4 · 4−i =

4−(i+1). Due to symmetry when selecting midφ, the same holds for the south east child
of Ci. Together, they contain half of the probability mass of Ci. Again due to symmetry,
the same proof then holds for the northern children as well.

11

Proposition 1. Let DR and j be as in Lemma 1. Let T be a polar quadtree on DR
constructed to fit j. Then, for n sufficiently large, height(T) ∈ O(log n) whp.

Proof. We proved a similar lemma in previous work [31], for hyperbolic geometry
only and a restricted family of probability distributions. The requirement for that proof
was that a given point p has a probability of 4−i to land in a given cell at depth i. In
Lemma 1, we show that this requirement is fulfilled for the quadtrees used in this paper
in both Euclidean and hyperbolic geometry. We can thus reuse the proof of Lemma 2
of von Looz et al. [31], which we include in Appendix A since it was omitted from the
conference version due to space constraints.

Lemma 2. Just as in Lemma 1, let DR be a hyperbolic or Euclidean disk of radius R,
j a probability distribution on DR which fulfills the properties defined in Section 2.1,
and T be a polar quadtree on DR. The expected number of nodes in T is then in O(n).

Proof. A quadtree T containing n points can have at most n non-empty leaf cells. We
can thus bound the total number of leaf cells in T by limiting the number of empty cells.

An empty leaf cell occurs when a previous leaf cell c is split. We consider two cases,
depending on how many of the children of c contain points:

Case 1: All but one of the children of c are empty and all points in c are concentrated
in one child. We call a split of this kind an excess split, since it did not result in dividing
the points in c.

Case 2: At least two children of c contain points.
The number of excess splits caused by a pair of points depends on the area they are

clustered in. Two sufficiently close points could cause a potentially unbounded number
of excess splits. However, due to Lemma 1, each child cell contains a quarter of the
probability mass of its parent cell. Given two points p, q in a cell which is split, they
end up in different child cells with probability 3/4.

The expected number of excess splits for a point p is thus at most4

∞∑
i=0

i · 4−i =
4

9
. (15)

Due to the linearity of expectations, the expected number of excess splits caused by
n points is then at most 4n/9. Each excess split causes four additional quadtree nodes,
three of them are empty leaf cells.

If we remove all quadtree nodes caused by excess splits and reconnect the tree by
connecting the remaining leaves to their lowest unremoved ancestor, every inner node
in the remaining tree T ′ has at least two non-empty subtrees. Since a binary tree with
n leaves has O(n) inner nodes and the branching factor in T ′ is at least two, T ′ also
contains at most O(n) inner nodes.

Together with the expected O(n) nodes caused by excess splits, this results in O(n)
nodes in T in expectation.

A direct consequence from the results above and our previous work [31] is the
preprocessing time for the quadtree construction. The generalized splitting rule and
storing the subtree sizes only change constant factors.

Corollary 1. Since a point insertion takes O(log n) time whp, constructing a quadtree
on n points distributed as in Section 2.1 takes O(n log n) time whp.

4Note that the real number of excess splits might be lower, since a split might separate another point from
p and q.

12

Algorithm 2: QuadNode.getProbabilisticNeighborhood
Input: query point q, prob. function f , quadtree node c
Output: probabilistic neighborhood of q

1 N = {};
2 b = dist(q, c);
/* Euclidean or hyperbolic distance between point and

cell, calculated by Algorithms 4 and 5. */

3 b=f(b);
/* Since f is monotonically decreasing, a lower bound

for the distance gives an upper bound b for the
probability. */

4 s = number of points in c;
5 if c is not leaf then

/* internal node: descend, add recursive result to
local set */

6 for child ∈ children(c) do
7 add getProbabilisticNeighborhood(q, f , child) to N;

8 else
/* leaf case: sample gaps from geometric

distribution */
9 for i=0; i < s ; i++ do

10 δ = ln(1− rand)/ ln(1− b);
11 i += δ;
12 if i ≥ s then
13 break;

14 prob = f(dist(q, c.points[i]))/b;
15 add c.points[i] to N with probability prob

16 return N

4.2 Algorithm
The baseline version of our query (Algorithm 2) has a time complexity of Θ(n), but
serves as a foundation for the fast version (Section 5). It takes as input a query point q, a
function f and a quadtree cell c. Initially, it is called with the root node of the quadtree
and recursively descends the tree. As we prove in Prop. 2, the algorithm returns a point
set N(q, f) ⊆ P with

Pr [p ∈ N(q, f)] = f(dist(q, p)). (16)

In the following discussion, line numbers refer to lines of pseudocode in Algorithm 2.
This query algorithm descends the quadtree recursively until it reaches the leaves. Once
a leaf l is reached, a lower bound b for the distance between the query point q and all the
points in l is computed (Line 2). Such distance calculations are detailed in Appendix B.
Since f is monotonically decreasing, this lower bound for the distance gives an upper
bound b for the probability that a given point in l is a member of the returned point
set (Line 3). This bound is used to select neighbor candidates in a similar manner as
Batagelj and Brandes [4]: In Line 10, a random number of vertices is skipped, so that

13

every vertex in l is selected as a neighbor candidate with probability b. The actual
distance dist(q, a) between a candidate a and the query point q is at least b and the
probability of a ∈ N(q, f) thus at most b. For each candidate, this actual distance
dist(q, a) is then calculated and a neighbor candidate is confirmed as a neighbor with
probability f(dist(q, a))/b in Line 14.

Regarding correctness of Algorithm 2, we can state:

Proposition 2. Let T be a quadtree as defined above, q be a query point and f : R+ →
[0, 1] a monotonically decreasing function which maps distances to probabilities. The
probability that a point p is returned by a PNQ (q, f) from Algorithm 2 is f(dist(q, p)),
independently from whether other points are returned.

Proof. Algorithm 2 traverses the whole quadtree with all of its leaves. Since each leaf
is examined, we can concentrate on whether the points are sampled correctly within a
leaf cell. Our proof thus consists of three steps: 1) The probability that the first point in
a leaf is a candidate is b. 2) Given two points pi and pj in the same leaf, the probability
that pi is a candidate is independent of whether pj is a candidate. 3) The probability
that a point pi is a neighbor of the query point q is given by Eq. (16).

Note that the hyperbolic [Euclidean] distances, which are mapped to probabilities
according to the function f , are calculated by Algorithm 4 [Algorithm 5], which are
presented in Appendix B (together with their correctness proofs). We continue the
current proof with details for all three main steps.

Step 1 Between two points, the jumping width δ is given by Line 10 of Algorithm 2.
The probability that exactly i points are skipped between two given candidates is
(1− b)i · b:

Pr(i ≤ δ < i+ 1) = Pr(i ≤ ln(1− r)/ ln(1− b) < i+ 1) = (17)

Pr(ln(1− r) ≤ i · ln(1− b) ∧ ln(1− r) > (i+ 1) · ln(1− b)) = (18)

Pr(1− (1− b)i ≤ r < (1− (1− b)i+1)) = 1− (1− b)i+1 − 1 + (1− b)i = (19)

(1− b)i(1− (1− b)) = (1− b)i · b (20)

Note that in Eq. (17) the denominator is negative, thus the direction of the inequality is
reversed in the transformation. The transformation in Eq. (19) works since r is uniformly
distributed.

Following from Eq. (20), the probability is b for i = 0, and if a point is selected as a
candidate, the subsequent point is selected with a probability of b.

Step 2 Let pi, pj and pl be points in a leaf, with i < j < l and let pi be a neighbor
candidate. For now we assume that no other points in the same leaf are candidates and
consider the probability that pl is selected as a candidate depending on whether the
intermediate point pj is a candidate.

Case 2.1: If point pj is a candidate, then point pl is selected if l − j points are
skipped after selecting pj . Due to Step 1, this probability is (1− b)l−j · b

Case 2.2: If point pj is not a candidate, then point pl is selected if l − i points are
skipped after selecting pi. Given that pj is not selected, at least j − i points are skipped.

14

The conditional probability is then:

Pr(l − i ≤ δ < l − i+ 1|δ > j − i) = (21)

Pr(1− (1− b)l−i < r < (1− (1− b)l−i+1)|δ > j − i) = (22)

(1− b)l−i · b/(1− b)j−i = (1− b)l−j · b (23)

As both cases yield the same result, the probability Pr(pl ∈ Candidates) is independent
of whether pj is a candidate.

Step 3 Let C be a leaf cell in which all points up to point pi are selected as candidates.
Due to Step 1, the probability that pi+1 is also a candidate, meaning no points are
skipped, is (1 − b)0 · b = b. Due to Step 2, the probability of pi+1 being a candidate
is independent of whether pi is a candidate. This can be applied iteratively until
the beginning of the leaf cell, yielding a probability of b for pi being a candidate,
independent of whether other points are selected.

A neighbor candidate pi is accepted as a neighbor with probability f(dist(pi, q))/b
in Line 14. Since b is an upper bound for the neighborhood probability, the acceptance
ratio is between 0 and 1. The probability for a point p to be in the probabilistic
neighborhood computed by Algorithm 2 is thus:

Pr(p ∈ N(q, f)) = Pr(p ∈ N(q, f) ∧ p ∈ Candidates(q, f)) = (24)
Pr(p ∈ N(q, f)|p ∈ Candidates(q, f)) · Pr(p ∈ Candidates(q, f)) = (25)

f(dist(p, q))/b · b = f(dist(p, q)) (26)

Since Algorithm 2 examines the complete quadtree, its time complexity is at least
linear. We omit a more thorough analysis until the next section, in which we show how
to accelerate the query process.

5 Queries in Sublinear Time by Subtree Aggregation
One reason for the linear time complexity of the baseline query is the fact that every
quadtree node is visited. To reach a sublinear time complexity, we thus aggregate
subtrees into virtual leaf cells whenever doing so reduces the number of examined cells
and does not increase the number of candidates too much.

To this end, let S be a subtree starting at depth l of a quadtree T . During the
execution of Algorithm 2, a lower bound b for the distance between S and the query
point q is calculated, yielding also an upper bound b for the neighbor probability of
each point in S. At this step, it is possible to treat S as a virtual leaf cell, sample
jumping widths using b as upper bound and use these widths to select candidates within
S. Algorithm 3 is used in a virtual leaf cell where the candidate confirmation (Line 14
of Algorithm 2) happens in an original leaf cell. Aggregating a subtree to a virtual
leaf cell allows skipping leaf cells which do not contain candidates, but uses a weaker
bound b and thus a potentially larger candidate set. Thus, a fast algorithm requires an
aggregation criterion which keeps both the number of candidates and the number of
examined quadtree cells low. 5 As stated before, we record the number of points in

5In the extreme case, candidates are selected directly at the root. In this case, the distance to the query
point is 0 and the probability bound b is f(0), resulting in linearly many candidates.

15

each subtree during quadtree construction. This information is now used for the query
algorithm: We aggregate a subtree S to a virtual leaf cell exactly if |S|, the number
of points contained in S, is below 1/f(dist(S, q)). This corresponds to less than one
expected candidate within S. The changes required in Algorithm 2 to use the subtree
aggregation are minor. Lines 5, 14 and 15 are changed to:

5 if c is inner node and |c| · b ≥ 1 then

14 neighbor = maybeGetKthElement(q, f , i, b, c);
15 add neighbor to N if not empty set

The main change consists in the use of the function maybeGetKthElement (Algo-
rithm 3):

Algorithm 3: maybeGetKthElement

Input: query point q, function f , index k, bound b, subtree S
Output: kth element of S or empty set

1 if k ≥ |S| then
2 return ∅;
3 if S.isLeaf() then
4 acceptance = f(dist(q,S.positions[k]))/b;
5 if 1 − rand() < acceptance then
6 return S.elements[k];

7 else
8 return ∅;

9 else
/* Recursive call */

10 offset := 0;
11 for child ∈ S.children do
12 if k − offset < |child| then

/* |child| is the number of points in child

*/
13 return maybeGetKthElement(q, f , k - offset, b, child);

14 offset += |child|;

Given a subtree S, an index k, q, f , and b, the algorithm descends S to the leaf
cell containing the kth element. This element pk is then accepted with probability
f(dist(q, pk))/b.

Since the upper bound calculated at the root of the aggregated subtree is not smaller
than the individual upper bounds at the original leaf cells, Proposition 2 also holds for
the virtual leaf cells. This establishes the correctness.

5.1 Query Time Complexity
Our main analytical result of this section concerns the time complexity of the faster
query algorithm. Its proof relies on several lemmas presented afterwards.

Theorem 2. Let T be a quadtree with n points and (q, f) a query pair. A query (q, f)
using subtree aggregation has time complexity O((|N(q, f)|+√n) log n) whp.

16

Proof. Similar to the baseline algorithm, the complexity of the faster query is determined
by the number of recursive calls and the total number of loop iterations across the calls.
The first corresponds to the number of examined quadtree cells, the second to the total
number of candidates. With subtree aggregation, we obtain improved bounds: Lemma 5
limits the number of candidates to O(|N(q, f)|+√n) whp, while Lemma 6 bounds the
number of examined quadtree cells to O((|N(q, f)|+√n) log n) whp. Together, this
results in a query complexity of O((|N(q, f)|+√n) log n) whp.

For the lemmas required in the proof of Theorem 2 we need to introduce some
notation: Let T be a quadtree with n points, S a subtree of T containing s points, q a
query point and f a function mapping distances to probabilities. The set of neighbors
(N(q, f)), candidates (Candidates(q, f)) and examined cells (Cells(q, f)) are defined
as in Section 2.1.

For the analysis we divide the space around the query point q into infinitely many
bands, based on the probabilities given by f . A point p ∈ P is in band i exactly if the
probability of it being a neighbor of q is between 2−(i+1) and 2−i:

p ∈ band i⇔ 2−(i+1) < f(dist(p, q)) ≤ 2−i

Based on these bands, we divide the previous sets into infinitely many subsets:

• P(q, f, i) := {v ∈ P|2−(i+1) < f(dist(v, q)) ≤ 2−i}

• N(q, f, i) := N(q, f) ∩ P(q, f, i)

• Candidates(q, f, i) := Candidates(q, f) ∩ P(q, f, i)

• Cells(q, f, i) := {c ∈ Cells(q, f)|2−(i+1) < f(dist(c, q)) ≤ 2−i}

Note that for fixed n, all but at most finitely many of these sets are empty. We call
the quadtree cells in Cells(q, f, i) to be anchored in band i. The region covered by a
quadtree cell is in general not aligned with the probability bands, thus a quadtree cell
anchored in band i (c ∈ Cells(q, f, i)) may contain points from higher bands (i.e. with
lower probabilities).

We continue with two auxiliary results used in Lemma 5.

Lemma 3. Let T be a polar hyperbolic [Euclidean] quadtree with n points and s < n
a natural number. Let Λ be a circle in the hyperbolic [Euclidean] plane and let 	 be
the disjoint set of subtrees of T that contain at most s points and are cut by Λ. Then, the
subtrees in 	 contain at most 24

√
n · s points with probability at least 1− 0.7

√
n for n

sufficiently large.

Proof. This proof is adapted from Lemma 3 of von Looz et al. [31]. Let k := blog4 n/sc
be the minimal depth at which cells have at least s points in expectation. At most 4k

cells exist at depth k, defined by at most 2k angular and 2k radial divisions. When
following the circumference of the query circle Λ, each newly cut cell requires the
crossing of an angular or radial division. Each radial and angular coordinate occurs
at most twice on the circle boundary, thus each division can be crossed at most twice.
With two types of divisions, Λ crosses at most 2 · 2 · 2k = 4 · 2blog4 n/sc cells at depth
k. Since the value of 4 · 2blog4 n/sc is at most 4 · 2log4 n/s, this yields ≤ 8 ·

√
n/s cut

cells. We denote the set of cut cells with ς . Since the cells in ς cover the circumference
of the circle Λ, a subtree S which is cut by Λ is either contained within one of the cells
in ς , corresponds to one of the cells or contains one. In the first two cases, all points in

17

S are within the cells of ς . In the second case, at least one cell of ς is contained in S.
As the subtrees are disjoint, this cell cannot be contained in any other of the considered
subtrees. Thus, there are no more subtrees containing points not in ς than there are cells
in ς , which are less than 8 ·

√
n/s many.

Due to Lemma 1, the probability that a given point is in a given cell at level k is
4−k. The number of points contained in cells of ς thus follows a binomial distribution
B(n, p). An upper bound for the probability p is given by 8·

√
ns
n , thus a tail bound

for a slightly different distribution B(n, 8·
√
ns
n) also holds for B(n, p). In the proof

of Lemma 7 of von Looz et al. [31] a similar distribution is considered. Setting the
variable c to 8

√
s, we see that the probability of ς containing more than 16 · √sn points

is smaller than 0.7
√
n.

The subtrees in 	 contain at most s points by definition, thus an upper bound for the
number of points in these subtrees is given by s · 8 ·

√
n/s (points not in ς) + 16 · √sn

(points in ς). This results in at most 24 · √sn points contained in 	 with probability at
least 1− 0.7

√
n.

Lemma 4. Let n be a natural number and let A, B be sets with A ⊆ B, |B| ≤ n and
the following property: Pr(b ∈ A) ≥ 0.5, ∀b ∈ B. Further, let the probabilities for
membership in A be independent. Then, the number of points in B is in O(|A|+ log n)
with probability at least 1− 1/n3.

Proof. Let X = |A| be a random variable denoting the size of A. Since the individual
probabilities for membership in A might be different, X does not necessarily follow a
binomial distribution. We define an auxiliary distribution Y := B(|B|, 0.5). Since all
membership probabilities for A are at least 0.5, lower tail bounds derived for Y also
hold for X .

The probability that Y is less than 0.1|B| is then [13]:

Pr(Y < 0.1|B|) ≤ exp

(
−2

(0.5|B| − 0.1|B|)2
|B|

)
= exp (−0.32|B|) (27)

(28)

If |B| ≤ 10 log n, then |B| is trivially in O(log n), otherwise the probability
Pr(|A| < 0.1|B|) is Pr(|A| < 0.1|B|) ≤ Pr(Y < 0.1|B|) ≤ exp (−3.2 log n) =
n−3.2 < 1/n3. Thus |B| ≤ 10|A| ∈ O(|A|) with probability at least 1− 1/n3.

The following Lemmas 5 and 6 bound the number of examined candidates and
examined quadtree cells, concluding this proof of Theorem 2.

Lemma 5. Let T be a quadtree with n points and (q, f) a query pair. The number of
candidates examined by a query using subtree aggregation is in O(|N(q, f)| + √n)
whp.

Proof. For the analysis we consider each probability band i separately. As defined
above, band i contains points with a neighbor probability of 2−(i+1) to 2−i. Among the
cells anchored in band i, some are original leaf cells and others are virtual leaf cells
created by subtree aggregation. The virtual leaf cells contain less than one expected
candidate and thus less than 2i+1 points. The capacity of the original leaf cells is
constant. All the points in cells anchored in band i have a probability between 2−(i+1)

and 2−i to be a candidate. Among the points in virtual or original leaf cells, some are in
the same band their cell is anchored in, others are in higher cells.

We divide the set of points within cells anchored in band i into four subsets:

18

1. points in band i and in original leaf cells

2. points in band i and in virtual leaf cells

3. points not in band i and in original leaf cells

4. points not in band i and in virtual leaf cells

The points in the first two sets are unproblematic. Since the probability that a point
in these sets is a neighbor is at least 2−(i+1), the probability for a given candidate to be
a neighbor is at least 1

2 . Due to Lemma 4, the number of candidates in these sets is in
O(|N(q, f)|+ log n) whp, which is in O(|N(q, f)|+√n) whp.

Points in the third set are in cells cut by the boundary between band i and band i+ 1.
Since the probabilities are determined by the distance, this boundary is a circle and we
can use Lemma 3 to bound the number of points to 24

√
n · capacity with probability at

least 1− 0.7
√
n for n sufficiently large. The mentioned capacity is the capacity of the

original leaf cells.
Likewise, points in the fourth set are in virtual leaf cells cut by the boundary between

bands i and i+ 1. A virtual leaf cell, which is an aggregated subtree, contains at most
2i+1 points, otherwise it would not have been aggregated. Again, using Lemma 3, we
can bound the number of points in these sets to 24

√
n · 2i+1 points with probability at

least 1− 0.7
√
n.

We denote the union of the third and fourth sets with Overhang(q, f, i). From the
individual bounds derived in the previous paragraphs, we obtain an upper bound for the
number of points in Overhang(q, f, i) of 24(

√
n · capacity +

√
n · 2i+1) with proba-

bility at least (1− 0.7
√
n)2. Simplifying the bound, we get that |Overhang(q, f, i)| ≤

24
√
n · (2(i+1)/2 +

√
capacity) with probability at least 1− 2 · 0.7

√
n.

Each of the points in Overhang(q, f, i) is a candidate with a probability between
2−i and 2−(i+1). The candidates are sampled independently (see Step 2 of Lemma 2).
While different points may have different probabilities of being a candidate and the
total number of candidates does not follow a binomial distribution, we can bound the
probabilities from above with 2−i.

We proceed towards a Chernoff bound for the total number of candidates across
all overhangs. Let Xi denote the random variable representing the candidates within
|Overhang(q, f, i)| and let X =

∑∞
i=0Xi denote the total number of candidates in

overhangs.
The expected value E(X) follows from the linearity of expectations:

E(X) =

∞∑
i=0

E(Xi) (29)

=

∞∑
i=0

24
√
n · (2(i+1)/2 +

√
capacity) · 2−i) (30)

= 24
√
n

∞∑
i=0

√
2 · 2−i/2 + 2−i

√
capacity)) (31)

= 24
√
n((2
√

2 + 2) + 2
√

capacity) (32)

(Cells anchored in the band∞, which has an upper bound b of zero for the neigh-
borhood probability, do not have any candidates and can be omitted here.)

19

Since the candidates are sampled independently with a probability of at most 2−i,
we can treat X as a sum of independent Bernoulli random variables without loosing
generality. This allows us to use a multiplicative Chernoff bound [21] and we can now
give an upper bound for the probability that the overhangs contain more than twice as
many candidates as expected:

Pr(X > 2E(X)) ≤
(e

22

)E(X)

(33)

=
(e

22

)24√n((2√2+2)+2
√
capacity)

(34)

≤
(e

22

)√n
(35)

≤ 0.7
√
n (36)

Including this last one, we have a chain of 2n+1 tail bounds, each with a probability
of at least (1−0.7

√
n). The event that any of these tail bounds is violated is a union over

each event that a specific tail bound is violated. With a union bound [21, Lemma 1.2],
the probability that any of the individual tail bounds is violated is at most (2n+1)0.7

√
n.

Since 1
(2n+1)0.7

√
n grows faster than n for n sufficiently large, we conclude that the

total number of candidates is thus bounded by O(|N(q, f)|) + 48
√
n((2
√

2 + 2) +
2
√

capacity) with probability at least (1 − 1/n) for n sufficiently large. The leaf
capacity is constant, thus the number of candidates evaluated during execution of a
query (q, f) is in O(|N(q, f, i)|+√n) whp.

We proceed with a lemma necessary for bounding the number of examined quadtree
cells in a query.

Lemma 6. Let T be a quadtree with n points and (q, f) a query pair. The number
of quadtree cells examined by a query using subtree aggregation is in O((|N(q, f)|+√
n) log n).

To prove Lemma 6, we first need to introduce another auxiliary lemma:

Lemma 7. Let DR be a hyperbolic or Euclidean disk of radius R and let T be a polar
quadtree on DR containing n points distributed according to Section 2.1. Let Υ(q,f)
be the set of unaggregated quadtree cells that have only (virtual) leaf cells as children.
With a query using subtree aggregation, |Υ(q, f)| is in O(|N(q, f)|+√n) whp.

Proof. Let c ∈ Υ(q, f, i) be such an unaggregated quadtree cell anchored in band i that
has only original or virtual leaf cells as children. It contains at least 2i points and has
four children, of which at least one is also anchored in band i. We denote this (virtual)
leaf anchored in band i with l. Since each child of c contains the same probability mass
(Lemma 1), each point of c is in l with probability 1/4:

Pr(p ∈ l|p ∈ c) =
1

4
. (37)

A point in l is a candidate (in l) with probability f(dist(q, l)), which is between
2−(i+1) and 2−i since l is anchored in band i. The probability that a given point p ∈ c
is a candidate in l is then

Pr(p ∈ l ∧ p ∈ Candidates(q, f, i)|p ∈ c) =
1

4
· f(dist(q, l)) ≥ 2−(i+3) (38)

20

Since the point positions and memberships in Candidates(q, f, i) are independent,
we can bound the number of candidates in l with a binomial distribution B(|c|, 2−(i+3)).
The probability that l contains no candidates is:

f

(
0, |c|, 1

8
· 2−i

)
=

(
1− 1

8
· 2−i

)|c|
≤
(

1− 1

8
· 1

2i

)2i

(39)

Considered as a function of i, this probability is monotonically ascending. In the
limit of 2i → ∞, it trends to exp(−1/8) ≈ 0.88, a value it never exceeds. The
probability that the cell c contains at least one candidate is then above 1− 1

8
√
e
> 0.1.

For each cell in Υ, the probability that it contains at least one candidate is > 0.1.
Let X be the random variable denoting the number of cells in Υthat contain at least one
candidate. We define an auxiliary binomial distribution B(|Υ|, 0.1) and use a tail bound
to estimate the number of cells in Υcontaining candidates. Let Y ∝ B(|Υ|, 0.1) be a
random variable distributed according to this auxiliary distribution.

We use a tail bound from Arratia and Gordon [3] to limit the probability that
Y < 0.05|Υ| to at most exp(−|Υ|/80). Since 0.1 was a lower bound for the probability
that a cell contains a candidate, this tail bound also holds for X . The probability that the
set of Υ contains at least 0.05|Υ| many candidates is then at least (1− exp(−|Υ|/80)).

If |Υ| ∈ o(√n), then |Υ| is trivially inO(
√
n), if |Υ| ∈ ω(

√
n), then the probability

(1−exp(−|Υ|/80)) is smaller than (1−exp(−√n/80)), which is< 1/n for sufficiently
large n. Thus the number of examined quadtree cells during a query is then linear in the
number of candidates. Due to Lemma 5, this is in O(|N(q, f)|+√n).

The proof of Lemma 6 then follows easily:

Proof. We split the set of examined quadtree cells into three categories:

• leaf cells and root nodes of aggregated subtrees (C1)

• parents of cells in the first category (C2)

• all other (C3)

The third category (C3) then exclusively consists of inner nodes in the quadtree. When
following a chain of nodes in category C3 from the root downwards, it ends with a node
in category C2. The size |C3| is thus at most O(|C2| log n) whp, since the number
of elements in a chain cannot exceed the height of the quadtree, which is O(log n) by
Proposition 1.

With a branching factor of 4, |C1| = 4|C2| holds.
The number of cells in categoryC2 can be bounded using Lemma 7 toO(|N(q, f)|+√

n) with high probability. The total number of examined cells is thus in O((|N(q, f)|+√
n) log n).

6 Experimental Evaluation
To evaluate the empirical performance of our probabilistic neighborhood query algo-
rithm, we use it to process dynamic updates to random hyperbolic graphs. We compare
the running times of our quadtree structure with those of the cell data structure of
Bringmann et al. [9], which gives the best performance in static generation.

21

[tb]
104 105 106 107 108 109

10−1

100

101

102

n

m
s

/i
te

ra
tio

n

PNQs
a · √n+ b

Bläsius et al. [6]
c · n+ d · √n+ e

Figure 5: Running time of dynamic node movements, values are averaged over 10000
movements. The quadtree operations are up to two orders of magnitude faster and
scale better with increasing graph size. Trend lines are fitted with a = 0.931, b = 840,
c = 0.00043, d = 0.02 and e = 76.

Implementations Our implementation of the quadtree data structure uses the Net-
worKit toolkit [27]. For the cell data structure of Bringmann et al., we use the imple-
mentation of Anton Krohmer6, developed for a hyperbolic embedding publication [6]
which won the Track B best paper award of ESA 2016. We implemented node addition
and removal as well as a dynamic generator on top of this cell data structure7.

Experimental Setup Both implementations are written in C++11 and compiled with
GCC 4.8.2. Our implementation is available as part of NetworKit 4.1. Running time
measurements were made on a single Intel Xeon E5-2680 core clocked at 2.70 GHz.

In each iteration of the benchmark, one point is deleted from the data structure,
moved to a random location consistent with the probability distribution and reinserted
into the data structure. The graph is then updated with the new position. For each graph,
we execute 10000 point movements and recreate the graph after each.

The temperature parameter T was set to 0.1, the dispersion parameter α to 0.75 and
the radius R to 2 · log n− 1, leading to an average degree of ≈ 9.3.

Results Figure 5 shows the experimental time measurements with sparse graphs of
varying sizes. Our method is faster for graphs of at least 105 nodes; the improvement
reaches two orders of magnitude for graphs with 2 · 108 nodes; a query on hundreds of
milllions of vertices returning about 10 neighbors runs in the order of milliseconds.

6https://bitbucket.org/HaiZhung/hyperbolic-embedder, changes based on commit
f83b46111c69819b7447fbd29fe8ed9bdb1fba3f

7A tree-based data structure available in the same implementation already offers node addition and removal,
but no constant-time random access to individual nodes, as it uses STL sets in leaf nodes. While it is in
principle possible to replace the sets with our tree data structure allowing logarithmic random access, it would
defeat the purpose of this comparison: Replacing another data structure, as a preparation to a comparison,
with the data structure it is being compared to, will not offer much insight.

22

https://bitbucket.org/HaiZhung/hyperbolic-embedder

105 106 107 108 109

103

104

105

106

n

no
de

m
ov

em
en

ts

Figure 6: Number of node movements needed to amortize overhead of quadtree con-
struction. Values are averaged over 10000 iterations.

The fastest way to obtain a static graph together with a sequence of dynamic updates
would be to generate the static graph first with the implementation of Bläsius et al. [6],
then the dynamic updates with our data structure. Moving data into a new data structure
takes at least linear time, Figure 6 shows the number of node movements needed until
the overhead of this preprocessing step is amortized by the faster queries. For graphs
with 105 to 108 vertices, the quadtree queries are faster if performing more than roughly
104 iterations, a value that grows only slowly with increasing graph size.

The expected degree of a vertex in a random hyperbolic graph depends on its radials
coordinate, a smaller radius leading to a higher degree. Since the edge probabilities are
symmetrical, vertices with small radius are more likely to be in the result set of a query.
Due to this effect, the central cells in the quadtree are examined much more often than
cells on the periphery, see Figure 7.

Probably due to this effect, the query time can be significantly improved by deliber-
ately imbalancing the polar quadtree and allocating less probability mass to the inner
children. The splitting radius splitH which divides the outer from the inner children of
T , originally given in Eq. (9), is then governed by a balance parameter b:

midrH = acosh((1− b) · cosh(α ·maxrH) + b · cosh(α ·minrH))/α (40)

The original behavior of Eq. (9) is equivalent to setting b to 0.5. Choosing instead
b = 0.001, which yields an allocation of 0.1% of the area to the inner two children and
99.9% to the outer children, decreases running time by more than an order of magnitude
compared to a balanced tree (Figure 8).

7 Conclusions
We described a new, gradual dynamic model for random hyperbolic graphs and proved
its consistency.

To process dynamic graph updates, we formally defined the notion of probabilistic
neighborhoods and presented a quadtree-based query algorithm for such neighborhoods

23

12 13 14 15 16 17

103

104

maxr

vi
si

ts
in

10
00

0
qu

er
ie

s

Figure 7: Probability that a given cell is examined in an update step, depending on
its maximum radial coordinate maxr. Cells in the center of the polar disk are visited
almost certainly, while cells in outer regions are visited rarely. Measurements are made
on a random hyperbolic graph with 213 vertices.

10−4 10−3 10−2 10−1 100

100

101

share of area in inner children

m
s

/q
ue

ry

Figure 8: Influence of balance parameter on running time. Measurements are for a
graph with 223 vertices and averaged over 10000 queries. Deliberately imbalancing the
quadtree improves running times by over one order of magnitude.

24

in the Euclidean and hyperbolic plane. Our analysis shows a time complexity of
O((|N(q, f)|+√n) log n) for n points and a result set |N(q, f)|. To our knowledge,
our algorithm is the first to solve the problem asymptotically faster than pairwise distance
probing. These queries can be used to sample fast updates in dynamic models for RHGs.
In our experiments, our query algorithm is faster by up to two orders of magnitude than
the data structure by Bläsius et al. [6]. The proposed dynamic model has already been
used in scaling experiments for dynamic network analysis algorithms [5].

The complexity results for probabilistic neighborhood queries hold for Euclidean
geometry as well, making the query algorithm applicable to other sampling problems in
spatial datasets and thus of independent interest.

References
[1] Pankaj K Agarwal, Boris Aronov, Sariel Har-Peled, Jeff M Phillips, Ke Yi, and

Wuzhou Zhang. Nearest neighbor searching under uncertainty II. In Proc. 32nd
symposium on Principles of database systems, PODS, pages 115–126. ACM, 2013.

[2] Lars Arge and Kasper Green Larsen. I/O-efficient spatial data structures for range
queries. In SIGSPATIAL Special, volume 4, pages 2–7. ACM, New York, NY,
USA, July 2012. doi: 10.1145/2367574.2367575. URL http://doi.acm.
org/10.1145/2367574.2367575.

[3] R. Arratia and L. Gordon. Tutorial on large deviations for the binomial distribution.
Bulletin of Mathematical Biology, 51(1):125–131, 1989. ISSN 0092-8240. doi: 10.
1007/BF02458840. URL http://dx.doi.org/10.1007/BF02458840.

[4] Vladimir Batagelj and Ulrik Brandes. Efficient generation of large random net-
works. Physical Review E, 71(3):036113, 2005.

[5] Elisabetta Bergamini and Henning Meyerhenke. Approximating betweenness cen-
trality in fully dynamic networks. Internet Mathematics, 12(5):281–314, 2016. doi:
10.1080/15427951.2016.1177802. URL http://dx.doi.org/10.1080/
15427951.2016.1177802.

[6] Thomas Bläsius, Tobias Friedrich, Anton Krohmer, and Sören Laue. Efficient
Embedding of Scale-Free Graphs in the Hyperbolic Plane. In Piotr Sankowski and
Christos Zaroliagis, editors, 24th Annual European Symposium on Algorithms (ESA
2016), volume 57 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 16:1–16:18, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. ISBN 978-3-95977-015-6. doi: http://dx.doi.org/10.4230/LIPIcs.
ESA.2016.16. URL http://drops.dagstuhl.de/opus/volltexte/
2016/6367.

[7] Michel Bode, Nikolaos Fountoulakis, and Tobias Müller. On the giant com-
ponent of random hyperbolic graphs. In The Seventh European Conference
on Combinatorics, Graph Theory and Applications, volume 16 of CRM Se-
ries, pages 425–429. Scuola Normale Superiore, 2013. ISBN 978-88-7642-474-
8. doi: 10.1007/978-88-7642-475-5 68. URL http://dx.doi.org/10.
1007/978-88-7642-475-5_68.

25

http://doi.acm.org/10.1145/2367574.2367575
http://doi.acm.org/10.1145/2367574.2367575
http://dx.doi.org/10.1007/BF02458840
http://dx.doi.org/10.1080/15427951.2016.1177802
http://dx.doi.org/10.1080/15427951.2016.1177802
http://drops.dagstuhl.de/opus/volltexte/2016/6367
http://drops.dagstuhl.de/opus/volltexte/2016/6367
http://dx.doi.org/10.1007/978-88-7642-475-5_68
http://dx.doi.org/10.1007/978-88-7642-475-5_68

[8] Michel Bode, Nikolaos Fountoulakis, and Tobias Müller. The probability that
the hyperbolic random graph is connected. 2014. Preprint available at http:
//www.staff.science.uu.nl/˜muell001/Papers/BFM.pdf.

[9] Karl Bringmann, Ralph Keusch, and Johannes Lengler. Geometric inhomogeneous
random graphs. arXiv preprint arXiv:1511.00576, 2015.

[10] Deepayan Chakrabarti and Christos Faloutsos. Graph mining: Laws, generators,
and algorithms. ACM Computing Surveys (CSUR), 38(1):2, 2006.

[11] Tobias Friedrich and Anton Krohmer. Automata, Languages, and Programming:
42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015,
Proceedings, Part II, chapter On the Diameter of Hyperbolic Random Graphs,
pages 614–625. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015. ISBN
978-3-662-47666-6. doi: 10.1007/978-3-662-47666-6 49. URL http://dx.
doi.org/10.1007/978-3-662-47666-6_49.

[12] Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. Random hyperbolic
graphs: Degree sequence and clustering - (extended abstract). In Automata,
Languages, and Programming - 39th International Colloquium, ICALP 2012,
Proceedings, Part II, 2012. doi: 10.1007/978-3-642-31585-5 51. URL http:
//dx.doi.org/10.1007/978-3-642-31585-5_51.

[13] W. Hoeffding. Probability inequalities for sums of bounded random variables. J.
American Statistical Association, 58(301):13–30, 1963.

[14] Xiaocheng Hu, Miao Qiao, and Yufei Tao. Independent range sampling. In Pro-
ceedings of the 33rd ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, PODS, pages 246–255. ACM, 2014.

[15] Ibrahim Kamel and Christos Faloutsos. Hilbert r-tree: An improved r-tree using
fractals. In Proceedings of the 20th International Conference on Very Large
Data Bases, VLDB ’94, pages 500–509, San Francisco, CA, USA, 1994. Morgan
Kaufmann Publishers Inc. ISBN 1-55860-153-8. URL http://dl.acm.org/
citation.cfm?id=645920.673001.

[16] Marcos Kiwi and Dieter Mitsche. A bound for the diameter of random hyper-
bolic graphs. In 2015 Proceedings of the Twelfth Workshop on Analytic Algo-
rithmics and Combinatorics (ANALCO), pages 26–39. SIAM, Jan 2015. doi:
10.1137/1.9781611973761.3. URL http://epubs.siam.org/doi/abs/
10.1137/1.9781611973761.3.

[17] Robert Kleinberg. Geographic routing using hyperbolic space. In INFOCOM,
pages 1902–1909, 2007.

[18] Tamara G. Kolda, Ali Pinar, Todd Plantenga, and C. Seshadhri. A scalable
generative graph model with community structure. SIAM J. Scientific Computing,
36(5):C424–C452, Sep 2014. doi: 10.1137/130914218.

[19] Hans-Peter Kriegel, Peter Kunath, and Matthias Renz. Probabilistic nearest-
neighbor query on uncertain objects. In Advances in databases: concepts, systems
and applications, pages 337–348. Springer, 2007.

26

http://www.staff.science.uu.nl/~muell001/Papers/BFM.pdf
http://www.staff.science.uu.nl/~muell001/Papers/BFM.pdf
http://dx.doi.org/10.1007/978-3-662-47666-6_49
http://dx.doi.org/10.1007/978-3-662-47666-6_49
http://dx.doi.org/10.1007/978-3-642-31585-5_51
http://dx.doi.org/10.1007/978-3-642-31585-5_51
http://dl.acm.org/citation.cfm?id=645920.673001
http://dl.acm.org/citation.cfm?id=645920.673001
http://epubs.siam.org/doi/abs/10.1137/1.9781611973761.3
http://epubs.siam.org/doi/abs/10.1137/1.9781611973761.3

[20] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and
Marián Boguñá. Hyperbolic geometry of complex networks. Physical Review
E, 82(3):036106, Sep 2010. doi: 10.1103/PhysRevE.82.036106. URL http:
//link.aps.org/doi/10.1103/PhysRevE.82.036106.

[21] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized
algorithms and probabilistic analysis. Cambridge University Press, 2005.

[22] Mark Newman. Networks: An Introduction. Oxford University Press, 2010.
ISBN 0199206651. URL http://books.google.de/books/about/
Networks.html?id=q7HVtpYVfC0C&pgis=1.

[23] Fragkiskos Papadopoulos, Dmitri Krioukov, Marián Boguñá, and Amin Vahdat.
Greedy forwarding in dynamic scale-free networks embedded in hyperbolic metric
spaces. In INFOCOM, 2010 Proceedings IEEE, pages 1–9. IEEE, 2010.

[24] Fragkiskos Papadopoulos, Maksim Kitsak, M Ángeles Serrano, Marián Boguná,
and Dmitri Krioukov. Popularity versus similarity in growing networks. Nature,
489(7417):537–540, 2012.

[25] Jian Pei, Ming Hua, Yufei Tao, and Xuemin Lin. Query answering techniques on
uncertain and probabilistic data: tutorial summary. In Proc. 2008 ACM SIGMOD
intl. conference on Management of data, pages 1357–1364. ACM, 2008.

[26] Hanan Samet. Foundations of Multidimensional and Metric Data Structures. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005. ISBN 0123694469.

[27] Christian L Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. NetworKit: A
tool suite for large-scale complex network analysis. Network Science, 2016.

[28] Christian L. Staudt, Michael Hamann, Ilya Safro, Alexander Gutfraind, and Hen-
ning Meyerhenke. Generating Scaled Replicas of Real-World Complex Networks,
pages 17–28. Springer International Publishing, Cham, 2017. ISBN 978-3-319-
50901-3. doi: 10.1007/978-3-319-50901-3 2. URL http://dx.doi.org/
10.1007/978-3-319-50901-3_2.

[29] Moritz von Looz and Henning Meyerhenke. Querying Probabilistic Neigh-
borhoods in Spatial Data Sets Efficiently, pages 449–460. Springer In-
ternational Publishing, Cham, 2016. ISBN 978-3-319-44543-4. doi:
10.1007/978-3-319-44543-4 35. URL http://dx.doi.org/10.1007/
978-3-319-44543-4_35. Extended preliminary version: https://
arxiv.org/abs/1509.01990.

[30] Moritz von Looz, Henning Meyerhenke, and Roman Prutkin. Generating Random
Hyperbolic Graphs in Subquadratic Time. ArXiv preprint arXiv:1501.03545,
September 2015. URL http://arxiv.org/abs/1501.03545.

[31] Moritz von Looz, Roman Prutkin, and Henning Meyerhenke. Generating ran-
dom hyperbolic graphs in subquadratic time. In Khaled Elbassioni and Kazuhisa
Makino, editors, ISAAC 2015: Proc. 26th Int’l Symp. on Algorithms and Com-
putation, volume 9472 of Lecture Notes in Computer Science, pages 467–478,
Berlin, Heidelberg, Nov 2015. doi: 10.1007/978-3-662-48971-0 40. URL
http://dx.doi.org/10.1007/978-3-662-48971-0_40. Extended
preliminary at https://arxiv.org/abs/1501.03545.

27

http://link.aps.org/doi/10.1103/PhysRevE.82.036106
http://link.aps.org/doi/10.1103/PhysRevE.82.036106
http://books.google.de/books/about/Networks.html?id=q7HVtpYVfC0C&pgis=1
http://books.google.de/books/about/Networks.html?id=q7HVtpYVfC0C&pgis=1
http://dx.doi.org/10.1007/978-3-319-50901-3_2
http://dx.doi.org/10.1007/978-3-319-50901-3_2
http://dx.doi.org/10.1007/978-3-319-44543-4_35
http://dx.doi.org/10.1007/978-3-319-44543-4_35
https://arxiv.org/abs/1509.01990
https://arxiv.org/abs/1509.01990
http://arxiv.org/abs/1501.03545
http://dx.doi.org/10.1007/978-3-662-48971-0_40
https://arxiv.org/abs/1501.03545

[32] Moritz von Looz, Mustafa Safa Özdayi, Sören Laue, and Henning Meyerhenke.
Generating massive complex networks with hyperbolic geometry faster in practice.
In 2016 IEEE High Performance Extreme Computing Conference, HPEC 2016,
Waltham, MA, USA, September 13-15, 2016, pages 1–6. IEEE, 2016. ISBN
978-1-5090-3525-0. doi: 10.1109/HPEC.2016.7761644. URL http://dx.
doi.org/10.1109/HPEC.2016.7761644. Extended preliminary version:
https://arxiv.org/abs/1606.09481.

28

http://dx.doi.org/10.1109/HPEC.2016.7761644
http://dx.doi.org/10.1109/HPEC.2016.7761644
https://arxiv.org/abs/1606.09481

A Proof of Lemma 2 of von Looz et al. [2015]
Proof. In a complete quadtree, 4i cells exist at depth i. For analysis purposes only,
we construct such a complete but initially empty quadtree of height k = 3 · dlog4(n)e,
which has at least n3 leaf cells. As seen in Lemma 1, a given point has an equal chance
to land in each leaf cell. Hence, we can apply Lemma 6 of von Looz et al. [31] with
each leaf cell being a bin and a point being a ball. (The fact that we can have more
than n3 leaf cells only helps in reducing the average load.) From this we can conclude
that, for n sufficiently large, no leaf cell of the current tree contains more than 1 point
with high probability (whp). Consequently, the total quadtree height does not exceed
k = 3 · dlog4(n)e ∈ O(log n) whp.

Let T ′ be the quadtree as constructed in the previous paragraph, starting with a
complete quadtree of height k and splitting leaves when their capacity is exceeded. Let
T be the quadtree created in our algorithm, starting with a root node, inserting points
and also splitting leaves when necessary, growing the tree downward.

Since both trees grow downward as necessary to accommodate all points, but T does
not start with a complete quadtree of height k, the set of quadtree nodes in T is a subset
of the quadtree nodes in T ′. Consequently, the height of T is bounded by O(log n) whp
as well.

B Distance between Quadtree Cell and Point
To calculate the upper bound b used in Algorithm 2, we need a lower bound for the
distance between the query point q and any point in a given quadtree cell. Since the
quadtree cells are polar, the distance calculations might be unfamiliar and we show
and prove them explicitly. For the hyperbolic case, the distance calculations are shown
in Algorithm 4 and proven in Lemma 8. The Euclidean calculations are shown in
Algorithm 5 and proven in Lemma 9.

Lemma 8. Let C be a quadtree cell and q a point in hyperbolic space. The first value
returned by Algorithm 4 is the distance of C to q.

Proof. When q is in C, the distance is trivially zero. Otherwise, the distance between q
and C can be reduced to the distance between q and the boundary of C, δC:

distH(C, q) = distH(δC, q) = inf
p∈δC

distH(p, q) (41)

Since the boundary is closed, this infimum is actually a minimum:

distH(C, q) = inf
p∈δC

distH(p, q) = min
p∈δC

distH(p, q) (42)

The boundary of a quadtree cell consists of four closed curves:

• left: {(minφ, r)|minr ≤ r ≤ maxr}

• right: {(maxφ, r)|minr ≤ r ≤ maxr}

• lower: {(φ,minr)|minφ ≤ φ ≤ maxφ}

• upper: {(φ,maxr)|minφ ≤ φ ≤ maxφ}

29

Algorithm 4: Infimum and supremum of distance in a hyperbolic polar quadtree
Input: quadtree cell C = (minr, maxr, minφ, maxφ), query point q = (φq, rq)
Output: infimum and supremum of hyperbolic distances q to interior of C
/* start with corners of cell as possible extrema */

1 cornerSet = {(minφ, minr), (minφ, maxr), (maxφ, minr), (maxφ, maxr)};
2 a = cosh(rq);
3 b = sinh rq · cos(φq −minφ);
/* Left/Right boundaries */

4 leftExtremum = 1
2 ln

(
a+b
a−b

)
;

5 if minr < leftExtremum < maxr then
6 add (minφ, leftExtremum) to cornerSet;

7 b = sinh rq · cos(φq −maxφ);

8 rightExtremum = 1
2 ln

(
a+b
a−b

)
;

/* Top/bottom boundaries */
9 if minr < rightExtremum < maxr then

10 add (maxφ, rightExtremum) to cornerSet;

11 if minφ < φqmaxφ then
12 add (φq,minr) and (φq,maxr) to cornerSet;

13 φmirrored = φq + π mod 2π;
14 if minφ < φmirrored < maxφ then
15 add (φmirrored,minr) and (φmirrored,maxr) to cornerSet;

/* If point is in cell, distance is zero: */
16 if minφ ≤ φq < maxφ AND minr ≤ rq < maxr then
17 infimum = 0;

18 else
19 infimum = mine∈cornerSet distH(q, e);

20 supremum = maxe∈cornerSet distH(q, e);
21 return infimum, supremum;

30

Algorithm 5: Infimum and supremum of distance in a Euclidean polar quadtree
Input: quadtree cell C = (minr, maxr, minφ, maxφ), query point q = (φq, rq)
Output: infimum and supremum of Euclidean distances q to interior of C
/* start with corners of cell as possible extrema */

1 cornerSet = {(minφ, minr), (minφ, maxr), (maxφ, minr), (maxφ, maxr)};
/* Left/Right boundaries */

2 leftExtremum= rq · cos(minφ − φq);
3 if minr < leftExtremum < maxr then
4 add (minφ, leftExtremum) to cornerSet;

5 rightExtremum= rq · cos(maxφ − φq);
6 if minr < rightExtremum < maxr then
7 add (maxφ, rightExtremum) to cornerSet;

/* Top/bottom boundaries */
8 if minφ < φq < maxφ then
9 add (φq,minr) and (φq,maxr) to cornerSet;

10 φmirrored = φq + π mod 2π;
11 if minφ < φmirrored < maxφ then
12 add (φmirrored,minr) and (φmirrored,maxr) to cornerSet;

/* If point is in cell, distance is zero: */
13 if minφ ≤ φq < maxφ AND minr ≤ rq < maxr then
14 infimum = 0;

15 else
16 infimum = mine∈cornerSet distH(q, e);

17 supremum = maxe∈cornerSet distH(q, e);
18 return infimum, supremum;

31

We write the distance to the whole boundary as a minimum over the distances to its
parts:

distH(δC, q) = min
A∈{left, right, lower, upper}

distH(A, q) (43)

All points on an angular boundary curve A have the same angular coordinate φA.
Let dA(r) = acosh(cosh(r) cosh(rq) − sinh(r) sinh(rq) cos(φq − φA)) for a fixed
point q. The distance distH(A, q) can then be reduced to:

distH(A, q) = min
minr≤r≤maxr

dA(r) (44)

(45)

The minimum of dA on A is the minimum of dA(minr), dA(maxr) and the value at
possible extrema. To find the extrema, we define a function g(r) = cosh(r) cosh(rq)−
sinh(r) sinh(rq) cos(φq − φA). Since acosh is strictly monotone, g(r) has the same
extrema as dA(r).

The factors cosh(rq) and sinh(rq) cos(φq − φA) do not depend on r, to increase
readability we substitute them with the constants a and b:

a = cosh(rq) (46)
b = sinh(rq) cos(φq − φA) (47)

dA(r) = acosh(cosh(r) · a− sinh(r) · b) (48)
g(r) = cosh(r) · a− sinh(r) · b (49)

The derivative of g is thus:

g′(r) = sinh(r) · a− cosh(r) · b =
er − e−r

2
· a− er + e−r

2
· b (50)

With some transformations, we get the roots of g′(r):

Case a = b:

g′(r) = 0⇔ (51)

er − e−r
2

· a =
er + e−r

2
· a (52)

er − e−r = er + e−r (53)

−e−r = e−r (54)

e−r = 0 (55)
(56)

For a = b, dA has no extrema in R.

32

a 6= b:

g′(r) = 0⇔ (57)

er − e−r
2

· a =
er + e−r

2
· b⇔ (58)

aer − ae−r = ber + be−r ⇔ (59)

(a− b)er − (a+ b)e−r = 0⇔ (60)

(a− b)er = (a+ b)e−r ⇔ (61)

er =
a+ b

a− be
−r ⇔ (62)

e2r =
a+ b

a− b ⇔ (63)

2r = ln

(
a+ b

a− b

)
⇔ (64)

r =
1

2
ln

(
a+ b

a− b

)
(65)

For a 6= b, dA has a single extremum at 1
2 ln

(
a+b
a−b

)
. This extremum is calculated for

both angular boundaries in Lines 4 and 8 of Algorithm 4.
If d(r) has an extremum x in A, the minimum of dA(r) on A is min{dA(minr),

dA(maxr), dA(x)}, otherwise it is min{dA(minr), dA(maxr)}.

A similar approach works for the radial boundary curves. LetB be a radial boundary
curve at radius rB and angular bounds minφ and maxφ. Let dB(φ) be the distance to q
restricted to radius rB .

dB : [0, 2π]→ R (66)
dB(φ) = acosh(cosh(rB) cosh(rq)− sinh(rB) sinh(rq) cos(φq − φ)) (67)

Similarly to the angular boundaries, we define some constants and a function g(φ) with
the same extrema as dB :

a = cosh(rB) cosh(rq) (68)
b = sinh(rB) sinh(rq) (69)

g(φ) = a− b cos(φq − φ) (70)

Case: b = 0:

b = sinh(rB) sinh(rq) = 0⇔ (71)
g(φ) = a (72)

Since g is constant, no extrema exist.

Case: b 6= 0: We obtain the extrema with some transformations:

g′(φ) = −b sin(φq − φ) (73)
g′(φ) = 0⇔ (74)

sin(φq − φ) = 0⇔ (75)
φ = φq mod π (76)

33

The distance function dB(φ) thus has two extrema.
The minimum of dB(r) on B is then:

min
r∈B

dB(r) = min{dB(minr), dB(maxr)}∪{dB(φ)|minφ ≤ φ ≤ maxφ∧φ = φq mod π}
(77)

The distance distH(C, q) can thus be written as the minimum of four to ten point-to-
point distances. Algorithm 4 collects the arguments for these distances in the variable
cornerSet and returns the distance minimum as the first return value.

Lemma 9. Let T be a polar quadtree in Euclidean space, c a quadtree cell of T and q
a point in Euclidean space. The first value returned by Algorithm 5 is the distance of c
to q.

Proof. The general distance equation for polar coordinates in Euclidean space is

f(rp, rq, φp, φq) =
√
r2p + r2q − 2rprq cos(φp − φq) (78)

If the query point q is withinC, the distance is zero. Otherwise, the distance between
q and C is equal to the distance between q and the boundary of C. We consider each
boundary component separately and derive the extrema of the distance function.

Radial Boundary. When considering the radial boundary, everything but one angle is
fixed:

f(φp) =
√
r2p + r2q − 2rprq cos(φp − φq) (79)

Since the distance is positive and the square root is a monotone function, the extrema of
the previous function are at the same values as the extrema of its square g(φ):

g(φp) = r2p + r2q − 2rprq cos(φp − φq) (80)

We set the derivative to zero to find the extrema:

g′(φp) = 0⇔ (81)
2rprq sin(φp − φq) · (φp − φq) = 0 (82)

φp = φq mod π (83)

Angular Boundary. Similar to the radial boundary, we fix everything but the radius:

f(rp) =
√
r2p + r2q − 2rprq cos(φp − φq) (84)

Again, we define a helper function with the same extrema:

g(rp) = r2p + r2q − 2rprq cos(φp − φq) (85)

We set the derivative to zero to find the extrema:

g′(rp) = 0⇔ (86)
2rp − 2rq cos(φp − φq) = 0⇔ (87)

rp = rq cos(φp − φq)⇒ (88)

g(rp) = r2p + r2q − 2r2p (89)

= r2q − r2p (90)

= r2q(1− cos(φp − φq)) (91)

34

An extremum of f on the boundary of cell c is either at one of its corners or at the
points derived in Eq. (83) or Eq. (91). If q 6∈ c, the minimum over these points and the
corners, as computed by Algorithm 5, is the minimal distance between q and any point
in c. If q is contained in c, the distance is trivially zero.

35

	1 Introduction
	1.1 Random Hyperbolic Graphs
	1.2 Probabilistic Neighborhood Queries
	1.3 Outline and Contribution

	2 Preliminaries
	2.1 Notation
	2.2 Related Range Queries
	2.3 Graphs in Hyperbolic Geometry
	2.4 Fast Graph Generation
	2.5 Quadtree Specifics

	3 Dynamic Model
	4 Baseline Query Algorithm
	4.1 Quadtree Construction
	4.2 Algorithm

	5 Queries in Sublinear Time by Subtree Aggregation
	5.1 Query Time Complexity

	6 Experimental Evaluation
	7 Conclusions
	A Proof of Lemma 2 of von Looz et al. [2015]
	B Distance between Quadtree Cell and Point

