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Three-dimensional data are increasingly prevalent across biomedical and social domains. Notable examples
are gene-sample-time, individual-feature-time, or node-node-time data, generally referred to as observation-
attribute-context data. The unsupervised analysis of three-dimensional data can be pursued to discover puta-
tive biological modules, disease progression profiles, and communities of individuals with coherent behavior,
among other patterns of interest. It is thus key to enhance the understanding of complex biological, individual,
and societal systems. In this context, although clustering can be applied to group observations, its relevance
is limited since observations in three-dimensional data domains are typically only meaningfully correlated on
subspaces of the overall space. Biclustering tackles this challenge but disregards the third dimension. In this
scenario, triclustering—the discovery of coherent subspaces within three-dimensional data—has been largely
researched to tackle these problems. Despite the diversity of contributions in this field, there still lacks a struc-
tured view on the major requirements of triclustering, desirable forms of homogeneity (including coherency,
structure, quality, locality, and orthonormality criteria), and algorithmic approaches. This work formalizes
the triclustering task and its scope, introduces a taxonomy to categorize the contributions in the field, pro-
vides a comprehensive comparison of state-of-the-art triclustering algorithms according to their behavior
and output, and lists relevant real-world applications. Finally, it highlights challenges and opportunities to
advance the field of triclustering and its applicability to complex three-dimensional data analysis.
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1 INTRODUCTION

Three-dimensional data—also referred as tridiac, three-way, tensor, or cubic data—are increas-
ingly prevalent in several domains (Mankad and Michailidis 2014). In biomedical domains, the
periodic profiling of biological entities and clinical monitoring of individuals are giving rise to
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multivariate time series (Amar et al. 2015). Here, the analysis of gene-sample-time expression data,
compound-sample-time concentration data, and patient-record-time data (as well as other forms of
three-dimensional data, such as residues-position-time protein data, entity-entity-time interaction
data, and drug-gene-dose expression data) is essential to understand complex biological and phys-
iological processes underlying disease progression, development, and responses to stimuli, drugs,
or therapy (Tchagang et al. 2012; Bhar et al. 2015; Heylen et al. 2016). Two-dimensional biomedi-
cal data also have been augmented into three-dimensional (3D) data by combining heterogeneous
data sources (such as specie-metabolite-condition concentration (Hu and Bhatnagar 2010)) or by
decomposing the observed values against knowledge-driven annotations (such as gene-sample-

term or gene-sample-regulator expression data (Alqadah and Bhatnagar 2008; Li and Tuck 2009)).
In social domains, understanding consumerism, web usage, work performance, and social activity
can be reliably done using individual-feature-time behavioral data or node-node-time interaction
data. Moreover, financial decisions can be supported by the analysis of stock-ratio-time data or
society-society-trade data (Sim et al. 2010a; Mankad and Michailidis 2014; Guigourès et al. 2015). In
this work, the aforementioned forms of 3D data are generally referred to as observation-attribute-

context data, and the term object is used to indistinctly denote an observation, attribute, or context.
Due to the inherent complexity of biomedical and social 3D data analysis, a natural first step

is to identify potentially relevant subspaces (subsets of objects). Clustering can be used to group
objects from one dimension at a time. However, this is usually performed globally considering
all the attributes describing a given object, an undesirable restriction in 3D data spaces with
locally correlated values. Illustrating, groups of biological entities or individuals are often only
meaningfully correlated on a specific subset of conditions/records and time points (Zhao and Zaki
2005). Subspace clustering was originally proposed to address this problem. In the context of two-
dimensional data, subspace clustering is known as biclustering (Madeira and Oliveira 2004). In the
context of 3D data, subspace clustering is termed triclustering (Zhao and Zaki 2005). Given a (real-
valued or symbolic) 3D dataset, the triclustering task aims to discover subsets of observations,
attributes, and contexts—referred to as triclusters—satisfying certain homogeneity and statisti-
cal significance criteria. Triclustering has been applied to unravel putative regulatory modules,
disease patterns, communities with shared behavior, or profitable financial profiles (Amar et al.
2015; Mankad and Michailidis 2014), thus being key to study complex biological, individual, and
societal systems. Furthermore, when observations are labeled, triclustering can be applied with
additional discriminative criteria to differentiate classes and support real-world decisions (Li and
Ngom 2010).

The aforementioned points explain the increasing attention given to triclustering (Narmadha
and Rathipriya 2016), an emerging research topic with algorithmic proposals nearly duplicating
every year (see Table 1) since the first algorithm proposal by Zhao and Zaki (2005). Despite its
relevance, triclustering faces major challenges:

(1) Efficiency: triclustering, similar to biclustering, is an NP-hard problem (Zhao and Zaki
2005) involving heavy combinatorial optimization to group subsets of objects against all
possible subspaces.

(2) Homogeneity: coherence criteria need to be placed in accordance with the target prob-
lem and desirable outputs (Gutiérrez-Avilés and Rubio-Escudero 2014b). In this context,
agreement on what is an adequate merit function has not yet been reached (Amar et al.
2015)

(3) Avoidance of biases: triclustering should prevent forms of dimension dominance (biases
toward one or more dimensions) and guarantee coherence between objects from each
pair of dimensions (Mahanta et al. 2011).
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(4) Robustness: triclustering should be able to handle varying types (and degrees) of noise and
missing values inherent to real-world 3D biomedical and social data (Jiang et al. 2006).

(5) Flexibility: the ability to discover a nonfixed number of triclusters with arbitrary size,
shape, and positioning should be pursued to guarantee that all relevant subspaces are
found. Eventually, data can be described according to the cumulative effects of overlapping
triclusters (Mankad and Michailidis 2014).

(6) Statistical significance: by definition, triclusters should be statistically significant; i.e., their
probability to occur should be unexpectedly low. In this context, optimizing or testing their
homogeneity and/or size is insufficient (Sim et al. 2010a).

(7) Temporality (when applicable): triclustering observation-attribute-time data requires ad-
equate homogeneity criteria to capture coherent progression patterns and the ability to
accommodate meaningful time lags on observations (Xu et al. 2009).

(8) Data specificities: the inherent aspects of 3D data should not be disregarded. Illustrating,
the analysis of heterogeneous 3D data (data combined from multiple sources) should con-
sider source-specific forms of coherence and noise (Supper et al. 2007), while the analysis
of spatial 3D data depends on meaningful contiguity and distance criteria (Guigourès et al.
2015). Complementarily, 3D data attributes might be symbolic, real-valued, or a (non-i.i.d.)
combination of them.

(9) Others: additional challenges include the need to guarantee that triclustering algorithms
are not overly dependent on parameterizations (Guigourès et al. 2015) and that the learned
triclustering models are actionable (Sim et al. 2010b).

In this context, this work proposes the first comprehensive survey on triclustering, providing
six major contributions:

—Formalization of the triclustering task and its major properties
—Comparison of triclustering against peer tasks for multidimensional data analysis
—Taxonomy for a structured and critical assessment of existing/future contributions
—Principles to support the design and unbiased evaluation of triclustering algorithms
—Comparison of the state-of-the-art triclustering algorithms according to their behavior, out-

put, strengths, and limitations
—Overview of real-world applications, together with insights to understand the intrinsic po-

tential of triclustering across domains

Accordingly, this survey is organized as follows. Section 2 provides the formal ground on tricluster-
ing and introduces peer tasks for 3D data analysis. Section 3 proposes a taxonomy for the compre-
hensive understanding and guided development of triclustering algorithms. Section 4 formalizes
the properties of triclustering solutions, Section 5 categorizes and describes the behavior of state-
of-the-art triclustering algorithms, and Section 6 establishes principles for their adequate evalua-
tion. Section 7 lists relevant triclustering applications. Section 8 summarizes the contributions in
the literature against the introduced taxonomy. Finally, the implications of this work are described
together with key directions for future work.

2 PROBLEM FORMULATION

Definition 2.1. Given a dataset with n observations, X = {x1, . . . , xn }, the clustering task aims
to find subsets of observations (clusters), {I1, . . . , Ir }, where Ii ⊆ X satisfies certain intracluster and
intercluster criteria of (dis)similarity over the whole space.

Despite the relevance of the clustering task, the (dis)similarity between observations becomes
blurred in the presence of a high number of attributes per observation. A way to tackle this
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Fig. 1. Biclusters with varying homogeneity criteria. B1 = (I1 = {x2, x4}, J1 = {y1, y3, y4, y5}), B2 =

(I2 = {x1, x2, x4}, J2 = {y1, y3, y5}), B3 = (I3 = {x2, x3, x4}, J3 = {y3, y4, y5}), and B4 = (I4 = {x3, x5}, J4 =

{y1, y2, y3, y4, y5}) respectively satisfy a constant, multiplicative, additive, and order-preserving coherence

without noise.

problem is to perform clustering in data subspaces (Madeira and Oliveira 2004) so that a group
of observations needs only to be similar on a subset of attributes.

Definition 2.2. Let a two-dimensional dataset (matrix), A, be defined by n observations (rows)
X = {x1, . . . , x1}, m attributes (columns) Y = {y1, . . . , ym }, and n ×m elements (values) ai j . Given
a real-valued or symbolic matrix A, a bicluster B = (I, J) is a subspace given by a subset of rows,
I ⊆ X, and a subset of columns, J ⊆ Y. The biclustering task aims to find a set of biclusters
{B1, . . . ,Bq }, such that each bicluster Bi satisfies specific criteria of homogeneity (Henriques et al.
2015b) and statistical significance (Henriques and Madeira 2018).

Figure 1 provides a matrix (with reordered rows and columns) with biclusters satisfying con-
stant, multiplicative, additive, and order-preserving homogeneities on rows for an unexpectedly
large area (statistical significance). Henriques et al. (2015b) and Henriques and Madeira (2018)
survey available criteria of homogeneity and statistical significance. In the presence of temporal
two-dimensional data, contiguity can be assumed on attributes (time points) (Madeira et al. 2010)
and lags accommodated (Gonçalves and Madeira 2014). Definitions 2.3 and 2.4 extend this formu-
lation to 3D data.

Definition 2.3. A three-dimensional dataset A (also referred as tridiac data, cube data, or 3D
data in short) is defined by n observations X = {x1, . . . , xn }, m attributes Y = {y1, . . . , ym }, and
p contexts Z = {z1, . . . , zp }. Elements ai jk relate observation xi , attribute yj , and context zk . 3D
data can be real-valued (ai jk ∈ R), symbolic (ai jk ∈ Σ, where Σ is a set of nominal or ordinal sym-
bols), integer (ai jk ∈ R), or non-identically distributed (ai jk ∈ Aj , where Aj is the domain of yj ’s
attribute). Sparse 3D data are 3D data with an arbitrary number of missing elements, ai jk ∈ Aj ∪ ∅.

When contexts correspond to time points, we are in the presence of a temporal 3D dataset (also
referred as three-way time series), where each observation is a multivariate time series withm or-
der. A temporal network is a sparse temporal 3D dataset given by a sequence of adjacency matrices
derived from (directed or undirected) weighted graphs.

The values of an object (whether an observation, attribute, or context) from a 3D dataset define
a matrix, referred to in this survey as a slice. For instance, xi defines an observation slice, also
referred as an attribute-context plane (Xu et al. 2009).

Definition 2.4. Given a 3D dataset A with n observations X, m attributes Y, and p contexts Z,
a tricluster B = (I, J,K) is a subspace of the original space, where I ⊆ X, J ⊆ Y, and K ⊆ Z are
subsets of observations, attributes, and contexts, respectively.

Given A, the triclustering task aims to find a set of triclusters {B1, . . . ,Bl } such that each
tricluster Bi satisfies specific criteria of homogeneity and statistical significance.

Figure 2 illustrates some of the aforementioned concepts. A tricluster is defined by subsets of
objects in each of the three data dimensions. Definitions 2.5 and 2.6 extend matured concepts on
biclustering homogeneity and statistical significance (Madeira and Oliveira 2004; Henriques and
Madeira 2018) toward triclustering.
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Fig. 2. 3D data analysis: basic concepts.

Fig. 3. Triclustering solution: flexible structure of triclusters with different coherencies.

Definition 2.5. The homogeneity criterion determines the structure, coherence, and quality of
a triclustering solution, where

—the structure is described by the number, size, shape, and position of triclusters;
—the coherence of a tricluster is defined by the observed correlation of values (coherence

assumption) and the allowed deviation from expectations (coherence strength); and
—the quality of a tricluster is defined by the type and amount of tolerated noise.

Flexible structures of triclusters are characterized by an arbitrary number of (possibly overlap-
ping) triclusters. Figure 3 illustrates a flexible structure of triclusters with different coherencies
and perfect quality (no noise allowed).

Definition 2.6. A tricluster is statistically significant if its probability to occur deviates from
expectations (i.e., is unexpectedly low against a null data model).
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Definition 2.7. Let B be the set of triclusters that satisfy a given homogeneity and statistical
significance criteria; (I, J,K) ∈ B is a maximal tricluster if and only if there is no other tricluster
(I′, J′,K′) such that I⊆I′ ∧ J⊆J′ ∧ K⊆K′ satisfies the given criteria.

Although an optimal triclustering solution is one containing all maximal triclusters satisfying
predefined homogeneity and statistical significance criteria, the high number of (possibly redun-
dant) maximal triclusters is often undesirable and thus the formulation of triclustering can be
augmented to satisfy dissimilarity criteria.

Definition 2.8. Let the priority of a tricluster be defined by specific criteria of interest, such as
size, statistical significance, and/or homogeneity. Given a 3D dataset, B set of triclusters, a specific
priority criterion, and a subspace similarity function (e.g., the fraction of overlapping elements),
dissimilarity criteria can be placed to guarantee that any tricluster similar to another tricluster
with higher priority is removed from B and (possibly) used to refine similar triclusters in B.

Triclustering involves non-trivial combinatorial optimization of higher complexity than the NP-
hard biclustering task (Zhao and Zaki 2005). As such, triclustering is similarly NP-hard, a property
that can be proven by mapping the triclustering task into the problem of finding maximal hyper-
cliques (constant triclusters) in graphs with multiwise interactions (Lin et al. 2009). The complex-
ity increases when considering non-trivial forms of coherence, flexible structures, and tolerance
to noise. As a result, most triclustering algorithms are based on greedy or stochastic searches (pro-
ducing suboptimal solutions) (Mahanta et al. 2011) and place restrictions on the allowed structure,
coherence, and quality of triclusters (Sim et al. 2010a).

2.1 Merit Functions

As aforementioned, the triclustering task is primarily guided by the placed homogeneity and statis-
tical significance criteria (Definitions 2.5 and 2.6), and possibly combined with dissimilarity criteria
(Definition 2.8). These criteria are essentially defined by the selected merit functions and how they
are applied. A merit function is a function that evaluates how good a tricluster is based on the
values of its elements. The variance of values in a tricluster is an illustrative merit function, which
when minimized leads to the discovery of subspaces with approximately constant values. Merit
functions vary according to

— the way they are applied: to guide greedy iterative searches (Bhar et al. 2012), optimize mul-
tiple objectives (Liu et al. 2008), or learn parametric models describing the target solution
(Amar et al. 2015)), for example;

— their scope: whether they are used to assess a single tricluster or the overall triclustering
solution (Mankad and Michailidis 2014); and

— the correlation extent: whether they (1) jointly assess the three dimensions (Sim et al. 2010a),
(2) concern two dimensions at a time followed by consensus (Greco et al. 2010), or (3) target
maximal triclusters with (symbolic) patterns (Liu et al. 2010).

Definition 2.9. The homogeneity criteria of a triclustering task is determined by the placed merit
functions: 3D merit functions correlate all values or slices of a tricluster within a single func-
tion; 2D merit functions correlate values within a slice of a tricluster and are often followed by
the search for consensus among slices; pattern-based merit functions assess the maximality of
triclusters with well-defined patterns.

To facilitate the understanding of existing merit functions, some relevant notation follows.
Given a real-valued 3D dataset (X,Y,Z) and a tricluster (I⊆X, J⊆Y,K⊆Z), ai J K =

1
|J |× |K |

∑
j ∈J
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∑
k ∈K ai jk is the mean of values for the xi observation. Similarly, aI J k is the mean of values for

the zk context. Following this notation, ai jK is the mean of values associated with the xi ob-
servation and yj attribute, while aI J K=

1
|I | |J | |K |

∑
i ∈I
∑

j ∈J
∑

k ∈K ai jk is the mean of all values of a
tricluster.

Given a symbolic 3D dataset, prior notation is also applicable by replacing the mean calculus
with either the mode (symbolic data) or median (integer data) operators.

3D Merit Functions. Examples of 3D merit functions include algebraic distances, correlation co-
efficients, and residue-based functions, among others (Gutiérrez-Avilés and Rubio-Escudero 2014b;
Sim et al. 2010a).

A perfect constant tricluster is a subspace (I, J,K) with ai jk = c , where c is a symbol or expected
numeric value. Although constant triclusters are common in symbolic 3D data, they are often
masked by noise in real-valued 3D data.

Given a real-valued 3D dataset, a constant tricluster (I, J,K) has ai jk = c + ηi jk , where c ∈ R is
the expected value and ηi jk ∈ R is the noise factor.

An illustrative merit function to find constant triclusters in real-valued data is the variance of
their values,

σ 2
(I,J,K) =

1

|I| |J| |K|
∑
i ∈I

∑
j ∈J

∑
k ∈K

(ai jk − aI J K )2. (1)

The allowed level of variance can be calibrated to find larger triclusters, σ 2
(I,J,K)

< δ , where δ is

the coherence strength (controlling deviations from expected values).
Residue-based functions can be used to guarantee more flexible forms of homogeneity, including

coherence assumptions that can accommodate shifts and scales on one, two, or three dimensions.
In this context, the mean squared residue (MSR), originally proposed for the biclustering task
(Cheng and Church 2000), was extended to guide triclustering algorithms (Bhar et al. 2012; Dede
and Oğul 2013). Given a real-valued 3D dataset, the elements of a tricluster can be described by

ai jk = c + αi + βj + γk + ηi jk , (2)

where c ∈ R is the background value of the tricluster; αi , βj , and γk are contributions from the xi

observation, yj attribute, and zk context, respectively; and ηi jk is the noise factor (residue).
The residue is an indicator of the correlation of the values in the tricluster. Hence, the

difference between expectations, ai jk = c + αi + βj + γk + ηi jk = aI J K + (ai J K − aI J K ) + (aI jK −
aI J K ) + (aI J k − aI J K ), leads to a residue given by ηi jk = ai jk − (ai J K + aI jK + aI J k − 2aI J K ). The
3D MSR of a subspace is the average of the squared residues,

MSR (I,J,K) =
1

|I| |J| |K|
∑
i ∈I

∑
j ∈J

∑
k ∈K

ηi jk , ηi jk = ai jk − (ai J K + aI jK + aI J k − 2aI J K ). (3)

A tricluster is a subspace with MSR below a given coherence strength δ (Gutiérrez-Avilés and
Rubio-Escudero 2014b). A perfect tricluster exhibits no bias (MSR= 0), with each ai jk value defined
by dimension-wise means (αi = ai J K , βj = aI jK , γk = aI J k ) and overall mean (c = aI J K ).

The previous merit functions do not take into consideration the relationships between triclus-
ters. However, the valuesai jk can be seen as a sum of the contributions of the different triclusters to
which they belong. Mankad and Michailidis (2014) extend the plaid model proposed by Lazzeroni
and Owen (2002), originally prepared to consider cumulative contributions in real-valued matri-
ces, toward 3D data. In this context, real-valued 3D data can be described as a sum of q layers
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(triclusters),

ai jk = μ0 +

q∑
t=0

θi jkt ρitκjtτkt + ηi jk | θi jkt = μt + αit + βjt + γkt + ηi jkt , (4)

where θi jkt specifies the contribution of each tricluster. The Boolean ρik , κjk , and τjk variables
define the membership of observation xi , attribute yj , and context zk in tricluster Bt . When as-
suming ηi jk is approximately Gaussian, the triclusters can be obtained by minimizing a merit
function based on the quadratic error,

n∑
i=1

m∑
j=1

p∑
k=1

�
�
âi jk − θi jk0 −

T∑
t=1

θi jkt ρitκjtτkt
�
�

2

. (5)

Some works consider the possibility to specify multiple (possibly conflicting) merit functions
(Bhar et al. 2015; Gutiérrez-Avilés et al. 2014). Liu et al. (2008) define triclustering as a multiob-
jective optimization problem with three merit functions: triclusters with 3D MSR below δ , high
volume, and high variance.

Complementary works combine merit functions with additional criteria to handle further chal-
lenges, such as high imbalance on the number of objects per dimension (e.g., thousands of genes for
dozens of samples and time points in gene-sample-time data) (Bhar et al. 2012) or arbitrarily high
overlapping areas (Xu et al. 2009). Gutiérrez-Avilés and Rubio-Escudero (2014b) extended the 3D
MSR to incorporate two new terms controlling both the imbalance on the size of each dimension
and the overlapping degree between triclusters.

In the context of symbolic 3D data analysis, most 3D merit functions were proposed for binary
3D data (Ignatov et al. 2015). An illustrative 3D function is the product of the fraction and number
of ones in the tricluster to maximize both its density and size.

In the context of temporal 3D data analysis, a tricluster may show temporal lags on observations.
A wide multiplicity of similarity metrics to compare time series have been proposed (Ding et al.
2008; Gonçalves and Madeira 2014). However, only a few are prepared to compare multivariate time
series. Planar mean residue similarity (PMRS) was proposed in Ahmed et al. (2011) to compare two
observations (each given by a multivariate time series). A tricluster in this context is a subspace
with pairs of observations, xi1 and xi2 , strongly correlated on a subset of attributes, J, and time
points, K:

∀
xi1 ∈I,xi2 ∈I

�
�

∑
j ∈J
∑p

k=1 |(ai1 jk − ai1JK) − (ai2 jk − ai2JK) |
2 ×max (

∑m
j=1
∑p

k=1 |ai1 jk − ai1JK |,
∑m

j=1
∑p

k=1 |ai2 jk − ai2JK |)
> δ�

�
. (6)

Sim et al. (2010a) proposed a mutual information score to correlate real-valued matrices that
are able to accommodate time lags. Unlike PRMS, this score correlates time points (contexts) in-
stead of observations. In Sim et al. (2010b), the similarity between two observations is not directly
computed on their values but rather on the set of k-nearest neighbors from each observation. An
observation is seen as a set of Gaussian distributions (one per attribute yj ∈ J) inferred from the
k-nearest observations. The correlation between two observations is then measured using their
covariances. The proposed merit function further measures distances between observations and
the centroid of triclusters, (ai J K ,aI jK ,aI J k ), promoting dissimilarity between triclusters.

Alternative merit functions were proposed to focus on the coherent variation of values within
a tricluster (independently of their amplitude) (Gutiérrez-Avilés and Rubio-Escudero 2014a, 2015),
being also adequate to deal with temporal misalignments. Least Square Lines (LSL) and Multis-
lope Measure (MSL) compute the similarity by averaging differences on the angles of the plane
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slopes for all pairs of observations, attributes, and contexts in a given subspace. In LSL, this simi-
larity is inferred from a least square calculus. MSL further considers the influence of neighboring
objects.

2D Merit Functions with Consensus. An alternative is to specify a homogeneity criterion for
two-dimensional slices of a 3D dataset in order to find subspaces on each slice, and then search for
consensus (also referred as agreements) between the identified subspaces across the third dimen-
sion (Tchagang et al. 2012). The extensive research on biclustering merit functions (Madeira and
Oliveira 2004; Henriques et al. 2015b) can be considered for this aim, including Euclidean distances,
pattern support, correlation coefficients, permutation consistency, and residue-based functions.

Zhao and Zaki (2005) proposed the use of the Pearson correlation coefficient (PCC) to identify
subspaces per context slice (observation-attribute plane) together with a consensus based on the
extent of the overlapping objects to infer the final triclusters. Although PCC is flexible enough to
accommodate shifts and scales, it disregards alternative (possibly relevant) forms of homogeneity.
To address this challenge, Jiang et al. (2006) proposed Spearman rank correlation (SRC) as the
target 2D merit function.

When a slice is given by a multivariate time series, 2D merit functions can enforce contiguity of
time points and accommodate temporal misalignments. Xu et al. (2009) placed an order-preserving
assumption on attribute slices (observation-time planes) to guarantee that observations follow
similar variations along time (independently of their amplitude or change ratio), thus elegantly
handling time-related misalignments.

Complementarily, a dedicated portion of literature is focused on consensus measures to infer
triclusters from (two-dimensional) subspaces (Greco et al. 2010), ranging from simple Jaccard-
based indexes to more complex forms of correlations (able to guarantee that coherence is also
preserved between slices) (Xu et al. 2009). The inferred triclusters might be further assessed to
verify whether they preserve the desirable homogeneity and statistical significance criteria (Supper
et al. 2007).

Pattern-based merit functions. Pattern-based merit functions are typically applied on symbolic
or integer 3D data in order to find triclusters with well-defined patterns (Liu et al. 2010). Ji et al.
(2006) introduced the concept of frequent closed cube, where a pattern is a set of symbols on a
subset of objects from one dimension and repeated across the subsets of objects from the remaining
dimensions. In this context, merit functions generally aim to maximize the volume of a tricluster
while still respecting a given pattern. Noisy elements can be further accommodated (Ignatov et al.
2015). Pattern-based functions can also rely on the widely researched principles from pattern-
based biclustering (Henriques et al. 2015b; Henriques and Madeira 2014; Madeira and Oliveira
2009; Gonçalves and Madeira 2014) in order to handle non-constant patterns, lags in temporal
data, sparse data, and the drawbacks of discretization procedures.

2.2 Related Tasks

Variants of the triclustering task can be found in the literature, including (1) revised formula-
tions prepared to handle deviant observations, specify alternative criteria of interest, or retrieve
triclusters with non-fixed objects on some dimensions; (2) peer tasks, such as coclustering or mo-
tif discovery, or alternative tasks to discover subspaces within different data structures; and (3)
generalized formulations to identify subspaces within N -dimensional data where N ∈ N+.

Hu and Bhatnagar (2010) generalized the triclustering task for the analysis of heterogeneous 3D
data with attributes shared by all observations as well as attributes specific to a single observation.
Observations correspond to data sources, with some sources having unique attributes (e.g., genes
pertaining to a specific species).
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The work of Sim et al. (2010b) extended the definition of a tricluster—referred as an actionable
subspace—to further guarantee that it respects prespecified utility criteria.

Amar et al. (2015) further extended the tricluster definition (I, J,K) to accommodate observation-
specific augmentations on attributes {J}i |xi ∈I, contexts {K}i |xi ∈I, or both.

In addition, triclustering should not be confused with the peer clustering tasks for the unsuper-
vised analysis of 3D data, such as coclustering or motif discovery.

Definition 2.10. The task of coclustering 3D data aims to partition each dimension, (I =
{I1, . . . , Ir }, J = {J1, . . . , Js }, K = {K1, . . . ,Kt }), so that either (1) the partitions on each dimen-
sion optimize some criteria of (dis)similarity or (2) the I × J × K subspaces from the intersecting
partitions optimize some homogeneity criteria.

3D coclustering requires all data elements to belong to a subspace (exhaustive condition) and to a
single subspace only (exclusive condition), thus limiting the inherent flexibility of the triclustering
task (Schepers et al. 2006; Sim et al. 2010b).

Definition 2.11. Given temporal 3D data, motif discovery aims to find subspaces (where |J| ≈
|Y|) that are frequent either within an observation or across observations.

Motif discovery can be seen as a specialization of the triclustering task since motifs generally
span all the attributes and most contributions are only able to handle multivariate time series with
lowm order (Vahdatpour et al. 2009; Minnen et al. 2007).

Subspace clustering also can be applied on alternative data structures: (1) relational data (Long
et al. 2006; Banerjee et al. 2007; Bekkerman et al. 2005; Gao et al. 2006; Chiaravalloti et al. 2006;
Balasubramanian et al. 2016), (2) vertical partitioned data (Alqadah and Bhatnagar 2008), and (3)
time-annotated graphs (Guigourès et al. 2015).

Subspace clustering can be generalized for spaces with arbitrary N dimensionality order, of-
ten referred as N -way clustering or simply N -clustering (Definition 2.12). Appendix A extends the
proposed triclustering taxonomy for data contexts where N > 3.

Definition 2.12. Given an N -dimensional dataset, the N -way clustering task aims to find
subspaces—subsets of objects on each N dimensions—satisfying certain input criteria of interest.

3 TRICLUSTERING TAXONOMY

Figure 4 specifies the proposed taxonomy of concepts to offer a structured understanding of the
diverse aspects of triclustering problems, as well as to guide the development or adaptation of
triclustering algorithms. The gathered concepts—expanded throughout Sections 4, 5, and 6—offer
principles to:

(1) characterize triclustering solutions in accordance with their locality, homogeneity, statis-
tical significance, and data-specific aspects (Section 4);

(2) design algorithms according to state-of-the-art triclustering approaches (Section 5); and
(3) assess the quality and relevance of the triclustering outputs (Section 6).

4 PROPERTIES OF TRICLUSTERING SOLUTIONS

A primary step when tackling a triclustering problem is to determine the desired locality degree
(Section 4.1), homogeneity criteria (Section 4.2), and statistical significance guarantees (Section 4.3)
of triclustering solutions, as well as to identify the data-specific challenges to address (Section 4.4).
These topics are expanded below, thus completing the formal ground on triclustering started in
Section 2.

ACM Computing Surveys, Vol. 51, No. 5, Article 95. Publication date: September 2018.



Triclustering Algorithms for Three-Dimensional Data Analysis 95:11

Fig. 4. Taxonomy of triclustering concepts: structured view on the aspects affecting the behavior of triclus-

tering algorithms.

4.1 Locality

According to Definition 2.4, triclusters are subspaces defined by subsets of objects on all dimensions
of a 3D dataset. Restrictions on the locality of subspaces can nevertheless be placed.

Definition 4.1. A full cluster is a subspace defined by a subset of objects from one dimension
that (implicitly) contains all the objects from the remaining dimensions. A partial cluster is a
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Fig. 5. Subspace clustering of 3D data with varying locality criteria: full, partial, and triclustering.

subspace defined by subsets of objects from two dimensions that (implicitly) contain all the objects
from the remaining dimension.

Given a 3D dataset, the discovery of full clusters and partial clusters is here thus termed full

clustering and partial clustering, respectively.

Given I ⊆ X, J ⊆ Y, and K ⊆ Z, then (I,Y,Z), (X, J,Z), and (X,Y,K) are illustrative full clusters,
typically referred to as clusters, while (I, J,Z), (I,Y,K), and (X, J,K) are illustrative partial clusters.

Contrasting to full clustering, the traditional task of clustering 3D data imposes all objects of
the dimension under partitioning to belong to one and only one cluster.

While some partial-clustering algorithms consider the overall values along the context dimen-
sion (Jiang et al. 2004; Supper et al. 2007), others collapse this dimension into a compact set of
metrics (Sim et al. 2013). Partial clustering is useful in the following cases: (1) one dimension has
a significantly low number of objects (e.g., gene-sample-time with few time points), and (2) one
dimension can be meaningfully collapsed.

Still, the assumption made by full and partial clustering that subspaces should contain all objects
from at least one dimension is restrictive for real-world scenarios, where meaningful correlations
can only be observed for subsets of objects on all dimensions. In this context, and according to
Definition 2.4, a tricluster is a subspace with locality on all dimensions, (I, J,K). Figure 5 shows
subspaces with varying locality criteria.

4.2 Homogeneity

The placed homogeneity defines the coherence, structure, and quality of triclusters.

4.2.1 Coherence. The coherence criterion of a tricluster is defined by the observed correlation
of its values, being essentially determined by the underlying merit function. The coherence can be
divided according to assumption, strength, and orientation.

Coherence Assumption. Coherence can be observed either among all the values of a tricluster
or within and between the slices of a tricluster.

Definition 4.2.1. The coherence assumption determines the type of correlation between the
values of a tricluster: (1) cubic when established among all values in a tricluster, f (I, J,K); (2)
intraplane if established for each slice of a tricluster, e.g., ∀xi ∈I f (J,K|xi ); and (3) interplane when
established between the slices of a tricluster.

1. Cubic Coherence. In accordance with the 3D merit functions surveyed in Section 2.1, different
forms of cubic coherence can be considered.

Definition 4.2.2. Let B = (I, J,K) be a tricluster with ai jk values. If B has categoric values,
ai jk ∈ Σ, then ai jk = c and ai jk = c j (or ci or ck ) correspond respectively to triclusters with a con-

stant symbol and a constant pattern. If B has real values, ai jk ∈ R, then unexpected ai jk values
and ai jk = c + ηi jk correspond to triclusters with differential and low-variance (constant) as-
sumptions. A real-valued tricluster B with values respecting ai jk = c + αi + βj + γk + ηi jk (where
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c ∈ R and αi , βj , and γk in R are contributions from xi observation, yj attribute, and zk context) is
said to follow a fully additive assumption whenαi � 0, βj � 0, andγk � 0, and partially additive

otherwise. When the values of a tricluster are better described by ai jk = c × αi × βj × γk + ηi jk ,
then the tricluster is said to follow a (either fully or partial) multiplicative assumption. A
tricluster considering the cumulative effects from other triclusters follows a plaid asumption:
ai jk = μ0 +

∑q
t=0 θi jkt ρitκjtτkt , where θi jkt defines the contribution from tricluster Bt = (It , Jt ,Kt )

to ai jk when ρit , κjt , and τkt are true, i.e., xi ∈ It , yj ∈ Jt and zk ∈ Kt .

A real-valued tricluster with a differential assumption has unexpectedly high or low values. Sim
et al. (2010a) replaced the differential condition by random shaking noise profiles, where the values
in a tricluster follow an unexpected distribution (e.g., Gaussian with unexpected mean). In the
context of binary 3D data, this assumption is often termed dense assumption (tricluster with high
degree of ones) (Ignatov et al. 2015).

A generalization of these assumptions is the constant overall assumption, where most elements
in the tricluster either have the same symbol (discrete 3D data) or are approximately constant (real-
valued data), also referred to as low -variance triclusters (Hu and Bhatnagar 2010). The generalized
constant assumption considers different values along the objects of a given dimension, typically
the attribute dimension (ai jk ≈ c j ).

Given a real-valued or integer 3D dataset, the elements of a fully additive (multiplicative) tri-
cluster with a constant assumption can accommodate shifting (scaling) factors per observation,
attribute, or context in accordance with Definition 4.2.2. Partially additive (multiplicative) triclus-
ters have shifting (scaling) factors on two dimensions. Alternative formulations combining shifting
and scaling factors on different dimensions can be envisioned.

A plaid assumption can be alternatively placed according to Definition 4.2.2 to account for mean-
ingful overlapping effects between triclusters.

Figure 3 illustrates triclusters with constant, plaid, and additive cubic coherencies.

2. Intraplane Coherence. In accordance with the surveyed 2D merit functions, alternative forms of
coherence can be formulated using the largely researched contributions in biclustering (Madeira
and Oliveira 2004; Henriques and Madeira 2016). Similarly to cubic forms of coherence, differential,
constant, additive, and plaid coherencies can be observed within the slices of a tricluster. In addi-
tion, the order-preserving assumption can be placed to guarantee a coherent variation of values,
tolerant to misalignments. Figure 1 provides illustrative examples of these intraplane coherence
assumptions.

Definition 4.2.3. Consider a slice (matrix) of a real-valued or integer 3D data space defined by the
(X,Y) dimensions and let the elements in a bicluster ai j ∈ (I, J) have coherence across rows ai j =

c j + γi + ηi j , where c j is the expected value on column yj , γi is the adjustment on row xi , and ηi j is
the noise factor of ai j . The γ factors define the intraplane coherence assumption: constant when
γ = 0; multiplicative if ai j is better described by ciγj + ηi j (or c jγi + ηi j ); and additive otherwise.
Symmetries can be further allowed on rows, ai j × si , where si ∈ {1,−1}. A plaid assumption is
sensitive to the cumulative effect of contributions from multiple biclusters on areas where their
columns and rows overlap. The order-preserving assumption is verified when the values for each
row have the same relative order on the J columns.

Intraplane coherence can be enforced for the slices along a single dimension, pair of dimensions,
or all dimensions. For instance, LagMiner (Xu et al. 2009) imposes that the triclusters found in
gene-sample-time data have intraplane coherence on each gene slice, sample slice (given by an
order-preserving coherence), and time slice.
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3. Interplane Coherence. This type of coherence guarantees that the different slices that compose
a tricluster are correlated. By solely placing an intraplane form of coherence, dissimilar slices can
be included as part of a tricluster.

Definition 4.2.4. Given a tricluster B described by a set of slices with intraplane coherence on
one (or more) dimensions, B has interplane coherence if its slices satisfy some similarity criteria.

Ahmed et al. (2011) enforces interplane coherence based on the distance between each slice of
a candidate tricluster and its planar mean representative.

Coherence Strength. Coherence strength is the criterion that guarantees whether the correlation
of values within a tricluster is sufficiently strong (|ηi jk | < δ in accordance with Definition 4.2.5).
Coherence strength can only be placed in convex domains and is thus not applicable to symbolic
and integer 3D data analysis.

Definition 4.2.5. Given a real-valued 3D dataset, A, let Ā be the amplitude of a finite range of
domain values. Given triclusters with values ai jk described by a form of coherence plus an uncer-
tainty/noise factor ηi jk , the coherence strength of a tricluster in A is a real value δ ∈ [0, Ā], such
that ηi jk ∈ [−δ/2,δ/2].

The coherence strength is applicable to both (1) greedy searches (addition of objects to a sub-
space if δ -inequality is preserved or removal of objects until δ -inequality becomes satisfied) and
(2) stochastic searches (as a stopping criterion for convergence).

The possibility to parameterize the coherence strength can be useful for some triclustering
problems (Mahanta et al. 2011). For instance, when considering gene-sample-time expression data
ai jk ∈ [−1, 1] (where Ā = 2), δ = 2/3 = 0.(6) is able to distinguish three expression levels (pre-
served, activated, and repressed), while δ = 2/5 = 0.4 is able to recognize five expression levels
(further separating strong from soft regulation).

Coherence Orientation. Most cubic coherence assumptions are applied without dimension-
specific considerations. An illustrative exception is the constant coherence, where the orienta-
tion is determined by the dimension with constant values (e.g., orientation on attributes when
ai jk ≈ c j ). Contrasting, all forms of intra- and interplane coherence have a well-defined orienta-
tion. When considering observation slices, an intraplane coherence can be applied with orientation
on attributes, contexts, or both dimensions. An interplane coherence between context slices is ori-
ented along the context dimension.

4.2.2 Structure. In accordance with the proposed taxonomy, the structure of a triclustering
solution is defined by the number, size, shape, and positioning of triclusters.

Number, size, and shape. The triclustering task can be applied either (1) with a fixed number
of triclusters that maximize homogeneity, significance, and dissimilarity criteria (Gutiérrez-Avilés
and Rubio-Escudero 2014b) or (2) without restrictions on the number of triclusters in an attempt
to discover all triclusters satisfying the input criteria (Jiang et al. 2006).

The triclustering task may require the found triclusters to cover a minimum τ portion of data
elements, | ∪Bi ∈B Bi |/(nmp)>τ , and can be guided by minimum size expectations, such as min|I|,
min|J|, min|K|, min|I|×|J|, min|I|×|K|, min|J|×|K|, or min|I|×|J|×|K|.

The size and shape of triclusters are highly dependent on the given (1) coherence assumption,
strength, and orientation; (2) tolerance to noise; and (3) dimension-specific biases of the searches.
Larger triclusters are associated with flexible coherence assumptions, loose coherence strength,
and/or high noise tolerance.
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Positioning (overlapping properties). Triclustering algorithms generally place constraints on
the allowed positioning of triclusters in order to reduce the search space. These constraints deter-
mine whether the resulting structure is flexible, plaid, dimension-exclusive or exhaustive, hierar-
chical, or non-overlapping, among other possibilities.

Definition 4.2.6. A triclustering structure is determined by the constraints placed on the posi-

tioning of triclusters:

—No constraints (flexible structure): arbitrarily positioned triclusters
—Plaid constraint: triclusters with well-defined cumulative effects on overlapping areas

(Mankad and Michailidis 2014)
—Dimension-specific exclusivity constraint: each object from a given dimension is assigned to

at most one tricluster (e.g., ∀B1∈B∧B2∈B∧B1�B2 I1 ∩ I2 = ∅)
—Dimension-specific exhaustive constraint: each object from a given dimension belongs to at

least one tricluster (e.g., (
⋃ |B |

k=1 Ik ) = X)
—Hierarchical constraint: triclusters totally contained in a larger tricluster/3D space
—Nonoverlapping constraint on all dimensions (∀B1∈B∧B2∈B∧B1�B2 B1 ∩ B2 = ∅) or pair of di-

mensions (e.g., ∀B1∈B∧B2∈B∧B1�B2 (I1, J1) ∩ (I2, J2) = ∅)

These constraints are useful to categorize 3D subspace clustering algorithms. Illustrating, the
structures targeted by the coclustering task are both exclusive and exhaustive in all three dimen-
sions (also referred to as a chessboard structure) (Sim et al. 2010a). The hierarchical constraint is
generally placed by hierarchical subspace clustering algorithms (Achtert et al. 2006).

The pursuit of an exhaustive structure should not be confused with the possible exhaustive
nature of a triclustering search. In addition, the non-overlapping constraint differs from dimension
exclusivity since a triclustering solution might be composed of nonoverlapping triclusters and
break the exclusivity constraint on all dimensions.

Although non-overlapping and exclusivity constraints are restrictive, they can be found among
different triclustering approaches, including (1) algorithms that find one tricluster at a time and
remove or mask its area with random noise for subsequent discoveries (Waltman et al. 2010); (2)
most algorithms relying on reoderings of objects or covariance matrices (Schepers et al. 2006); and
(3) stochastic algorithms that parametrically model triclusters disregarding their interdependen-
cies (Gerber et al. 2007).

Flexible structures, such as those produced by algorithms with pattern-based merit functions (Ji
et al. 2006), are non-exhaustive, are non-exclusive, and allow for overlaps.

Plaid constraints define the overlapping properties of a triclustering solution. These constraints
are often placed to model biological or social entities that simultaneously participate in multiple
modules or communities (triclusters). A triclustering structure with plaid constraints is character-
ized by the:

—overlapping degree per dimension (degree of overlapping objects), slice (degree of overlap-
ping areas), or all dimensions (degree of overlapping volume);

—composition functions that explain the cumulative contributions, such as the additive
plaid formulation (Equation (4)) or alternative formulations sensitive to nonlinear effects
(Henriques and Madeira 2015); and

—distribution of overlaps (whether explained by pairwise or multiwise contributions).

4.2.3 Quality. In symbolic and integer 3D data, a tricluster might have symbols that differ from
the expected pattern. In real-valued 3D data, although the natural oscillation of values within a
tricluster is bounded by the placed coherence strength (|ηi jk | ≤ δ ), some values in a tricluster might
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deviate from expectations (|ηijk | > δ ). Understandably, the presence of a few noisy elements can
lead to the undesirable exclusion of relevant observations, attributes, and contexts from a tricluster.
In this context, the triclustering task can further place robustness considerations.

Definition 4.2.7. The quality of a tricluster is defined by the tolerated type and amount
of noisy and missing elements. Given a noisy real-valued 3D dataset, (1) deviations on ηi jk

can be bounded, |ηi jk | < ϵ − δ
2 ; (2) the average error of a single tricluster can be bounded,

( 1
|I | |J | |K |

∑
xi ∈I
∑

yj ∈J
∑

zk ∈K |ηi jk |) < ϵ − δ
2 ; and/or (3) the average error of a set of triclusters can

be bounded to allow deviations while still establishing a delineate desirable level of coherence
strength.

Robustness to noise. Given a real-valued or integer tricluster, two major forms of robustness
to noise can be considered: (1) sensitivity to values in a tricluster showing slight deviations from
the expected coherence (Sim et al. 2010a) and (2) ability to accommodate a certain distribution of
noisy elements independently of their noise factor (Ignatov et al. 2015). In the context of symbolic
3D data, the first criterion is not applicable. The quality of a tricluster is determined not only by
the criteria placed on the search but also by preprocessing and postprocessing stages. Normal-
ization and discretization are common preprocessing steps impacting quality (Supper et al. 2007;
Tchagang et al. 2012; Sim et al. 2013). The possibility to postprocess triclusters by merging, filter-
ing, extending, and/or reducing triclusters is often considered to calibrate their quality (Zhao and
Zaki 2005; Xu et al. 2009).

The desirable quality might not be enforced per tricluster but assessed for a group of triclusters,
thus allowing some triclusters to deviate from quality expectations.

Robustness to missing elements. Although most state-of-the-art triclustering algorithms are
not able to learn from sparse 3D data (Zhou et al. 2014; Henriques 2016), different strategies can
be established based on the locality and amount of missings:

(1) Imputation procedures for 3D data (Donders et al. 2006) (considering the values of the
closest observations, attributes, and contexts from the missing element)

(2) Accommodation of missing elements within triclusters (with bounded tolerance) using a
dedicated interpretation, similarly to mature biclustering algorithms prepared for sparse
data analysis (Henriques and Madeira 2016)

(3) Within pattern mining-based approaches by replacing a missing value by a range of values
or multiple symbols, in accordance with principles in Henriques and Madeira (2014).

4.3 Statistical Significance

The triclustering problem is further challenged by the need to guarantee that the retrieved triclus-
ters deviate from expectations. In other words, ensure that the probability of a tricluster to occur
against a null data model is unexpectedly low.

In this context, statistical assessments are necessary to measure and minimize the risk of false-

positive triclusters (retrieving triclusters that appear by chance on the sample data) without in-
creasing the risk of false-negative triclusters (excluding relevant triclusters).

Despite the relevance of this criterion, there is not yet an agreed ground truth on how to verify
and promote the statistical significance of triclustering solutions. In fact, most triclustering algo-
rithms are guided by merit functions that explore the homogeneity of triclusters but do not subject
them to a sound statistical assessment (Moise and Sander 2008a; Henriques 2016) (see Table 2).
Understandably, optimizing homogeneity is of limited use since good homogeneity levels can ap-
pear by chance in the observed data (common for small triclusters).

In what follows, we survey some of the few contributions toward this goal.
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Moise and Sander (2008a) defined a tricluster as statistically significant when the distribution of
its values ai jk diverges from the Gaussian distribution approximated for the overall 3D data space.
This statistical test is only able to assess specific types of triclusters and is only suited for 3D data
well approximated by (a possibly multivariate) Gaussian distribution.

Sim et al. (2010a) proposed a correlation information metric to find triclusters with unexpected
values yet independent of the data distribution. To this aim, a probability density function (pdf)
for the 3D space is approximated using kernel density estimation (shown to be able to converge
to the true pdf). Integral calculus is then used to test the probability of the values in a tricluster to
deviate from the expected pdf.

Inspired by the statistical principles proposed by Moise and Sander (2008b), significance thresh-
olds are dynamically adjusted in Sim et al. (2010b). Similarly, Li and Tuck (2009) relied on automatic
boundary searches to detect the boundary between non-significant and significant triclusters by
iteratively correcting thresholds.

Tchagang et al. (2012) extended the statistical tests originally proposed by Ben-Dor et al. (2003)
to assess order-preserving biclusters. Assuming 3D data to have i.i.d. Z contexts (time points) ac-
cording to a uniform distribution, the probability that a tricluster contains an order-preserving
slice with n ≥ |I| observations is given by P (x ≥ p) < α/n!, where x ∼ Bin(1/n!, |Z|) and α is the
significance threshold. In this context, a tricluster is statistically significant if its slices are statisti-
cally significant.

Finally, Mankad and Michailidis (2014) proposed a resampling procedure on the input 3D data
to obtain a null data model to statistically test triclusters. The size of the candidate tricluster is
compared against the size of triclusters found in randomized data, being considered statistically
significant if its size deviates from expectations.

As the aforementioned statistical tests are deemed for triclusters with very specific forms of
coherence, additional statistical views are expected in upcoming research.

4.4 Data-Driven Aspects

Real-world 3D data is abundant and diverse. We now pinpoint data-related specificities with impact
on the triclustering task: size, regularities, temporality, spatiality, heterogeneity, contiguity, and
orthonormality.

4.4.1 Size and Regularities. In terms of size, 3D data can vary with regard to volume (determined
by the number of observations, attributes, and contexts) as well as by the ratio between each
pair of dimensions (|X|/|Y|, |X|/|Z|, and |Y|/|Z|). In this context, triclustering algorithms should
pursue scalability principles to mine very large subspaces while preventing biases toward specific
dimensions when 3D data have imbalances on the number of objects per dimension (Gutiérrez-
Avilés and Rubio-Escudero 2014b). In the presence of temporal 3D data, Tchagang et al. (2012)
further categorize triclustering algorithms based on whether they are deemed for short or long
multivariate time series according to the number of time points (contexts).

The data regularities are defined by the domain of attributes (whether real-valued, symbolic,
or nonidentically distributed) and by the distribution of values. 3D data values may be well de-
scribed by a single univariate distribution or object-conditional distributions. Understandably, the
desirable homogeneity and statistical significance criteria should depend on the regularities of the
input data.

4.4.2 Temporality. A large portion of currently available 3D data results from the periodic mon-
itoring of biological, individual, and societal systems. The intrinsic temporal nature of such 3D
data presents unique challenges, including the need to (1) place adequate homogeneity criteria
to capture meaningful forms of temporal progression, (2) handle arbitrarily high temporal lags
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on observations, (3) place proper contiguity criteria, and (4) deal with the complex stochasticity
inherent to temporal 3D data.

First, triclusters are only properly captured when coherence is both verified within and between
the time slices. Although algorithms based on 3D merit functions satisfy this requirement, only a
few of the remaining algorithms address this issue (Xu et al. 2009). Illustrating, the first triclustering
algorithm disregards coherence between time slices (Zhao and Zaki 2005), offering no guarantees
of meaningful temporal progression.

Second, shifts and scales can be observed on observations. For instance, when analyzing gene-
sample-time data, the responsiveness of a set of coregulated genes may differ (both in starting time
and duration). Observations in the context of patient-record-time data may show arbitrarily high
time shifts in accordance with the health profile of the individual. Individual-individual-time data
often capture arbitrary delayed behavioral responses to a social event. In this context, triclustering
searches might break the orthonormality constraints.

Third, contiguity can be optionally pursued on the time dimension given the high probability of
homogeneous subspaces to be verified along time intervals. Nevertheless, gap-based relaxations
or the removal of contiguity constraints can be considered for a more flexible exploration of noise-
susceptible data contexts.

Finally, the inherent stochasticity of complex evolving systems are associated with misalign-
ments that should be properly handled. In this context, triclustering tasks should place flexible
coherence assumptions (Ahmed et al. 2011), such as order preserving, and adequate merit func-
tions based on largely surveyed similarity functions between multivariate time series, in particular
similarity criteria sensitive to frequency, temporal, or geometric misalignments (Ding et al. 2008).

4.4.3 Spatiality. 3D data can be further categorized according to whether they are spatial or not.
Examples of spatial 3D data candidates for triclustering include video data (coordinate-coordinate-
time), structural molecular data (residues-position-time), imaging data (observations-space-space),
geophysical data, or location data (observations-contiguous locations-time) (Guigourès et al. 2015;
Achtert et al. 2006). Triclustering-related tasks have been abundantly researched in the context
of computer vision, primarily propelled by image and video segmentation (Fu and Mui 1981;
McInerney and Terzopoulos 1996; Tremeau and Borel 1997; Zhu et al. 2016). In this context, tri-
clustering is applied with the aim of finding homogeneous regions in the 3D space. As such, it
often imposes the discovery of contiguous objects on the spatial dimensions. In the presence of
a time dimension, shifts might be additionally observed with the purpose of detecting moving or
adaptive regions.

4.4.4 Heterogeneity. Heterogeneous 3D data are 3D data with observations extracted from dif-
ferent sources or collected under different experimental settings. Species-gene-sample expression
data, patient-record-time data for patients monitored in different hospitals, or biological networks
from different knowledge bases are notable cases. In this context, two major tasks can be envi-
sioned: integrative and contrast analysis.

Definition 4.4.5. Given a heterogeneous 3D dataset, integrative triclustering aims to find tri-
clusters with observations xi satisfying specific (xi , J,K)-plane coherence and similarity criteria,
∀xi1,xi2 ∈I (xi1 , J,K) ≈ (xi2 , J,K), while contrast triclustering aims to find triclusters with coherent
observations satisfying specific deviating/dissimilarity criteria,∀xi ∈I∀xl ∈X∧l�i (xi , J,K) � (xl , J,K).

Integrative analysis can be applied using traditional triclustering principles, with particular at-
tention on the placed homogeneity to tolerate differences explained by biases pertaining to the
data source or collection procedure. Preprocessing options can be further considered to mini-
mize source-specific biases. In the context of contrast analysis, the coherence of each observation
from a given tricluster necessarily differs from remaining observations. In previous work (Hu and
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Fig. 6. 3D subspaces with orthonormality constraints.

Bhatnagar 2010), a tricluster is seen as a composition of slices differing with regard to their average
value.

Additional variants for triclustering heterogeneous data can be found in the literature. Supper
et al. (2007) define three types of triclusters: (1) general responses where similarity between obser-
vations is enforced, (2) independent responses where observations are not required to be similar
or dissimilar as long as the intracoherence of each observation is guaranteed, and (3) specific re-
sponses where dissimilarity between observations is enforced. These options offer a compromise
between integrative analysis and contrast analysis of heterogeneous 3D data.

4.4.5 Contiguity. Contiguity constraints are often applied on time and spatial dimensions,
meaning that the selected subset of time points or coordinates per tricluster forms a convex set
(Jiang et al. 2006). Contiguity is used to enhance the consistency and interpretability of the results
and reduce the complexity of the triclustering task. The contiguity condition can be relaxed or
even disregarded since triclusters can be also meaningfully described by non-contiguous objects
as long as the underlying homogeneity captures some form of temporal progression or spatial
meaning (Bhar et al. 2012; Amar et al. 2015). The allowance of gaps between contiguous objects
(Ji et al. 2007) is a common relaxation to contiguity constraints that can be placed to tolerate local
inconsistencies while still preserving desirable homogeneity criteria.

4.4.6 Orthonormality. Orthonormality is by default considered within the triclustering task to
guarantee that a tricluster is well defined by a triplet (I, J,K). A tricluster is thus fully orthonor-
mal by default. However, full orthonormality may be undesirable for specific data contexts. For
instance, temporal 3D data characterized by arbitrarily high temporal lags is better described by
the pair (I, J) since the time points where coherence is observed vary for each observation.

Definition 4.4.8. A tricluster is fully orthonormal (also referred as axis parallel) when the sub-
set of objects for a given dimension (either I, J, or K) is preserved across the remaining dimensions,
and it is partially orthonormal when the previous condition is not preserved in one dimension
(e.g., B = ∪xi ∈I (xi , J,Ki )).

Partially orthonormal triclusters are proposed in Xu et al. (2009) for gene-sample-time expres-
sion data analysis, where a tricluster is described by coherent time-sample curves orthonormal
to the gene axis, coherent gene-time curves orthonormal to the sample axis, and coherent gene-
sample curves nonorthonormal to the time axis due to temporal lags. Partial orthonormality also
can be observed for movie data (position-position-time) analysis to capture a sliding object (e.g.,
aircraft) in a subset of contiguous frames. Figure 6 illustrates triclusters with varying degrees of
orthonormality.

5 TRICLUSTERING ALGORITHMS

Given the numerous aspects of the triclustering task (diversity of data inputs, behavioral options,
desirable homogeneity criteria), a high number of triclustering algorithms have been proposed in
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the last decade. These algorithmic efforts can be divided according to (1) whether their behav-
ior is based on iterative searches (greedy; Section 5.1) or on distribution parameter identification
(stochastic; Section 5.2) and (2) whether they are able to offer guarantees of optimality (exhaustive;

Section 5.3) or not. Each approach can be further categorized according to whether the behavior
relies on biclustering algorithms (Section 5.4), pattern mining procedures (Section 5.5), or evolu-
tionary multiobjective optimization (Section 5.6), among other possibilities.

Triclustering algorithms can also be classified according to whether they aim to identify one or
multiple triclusters, and in this latter case whether they identify a tricluster at a time (Ahmed et al.
2011; Waltman et al. 2010), a subset of all triclusters at a time (Amar et al. 2015), or all triclusters
at a time (common case). Finding one or a subset of triclusters at a time implies that the algorithm
is able to either (1) shift the focus into new subspaces or (2) mask previous discoveries.

The way homogeneity criteria are pursued further determines the susceptibility of triclustering
searches to different biases, explaining why the found triclusters might differ from the desirable
set of statistically significant and dissimilar triclusters. Often, these biases lead to imbalance in the
number of selected objects per dimension, creating forms of dimension dominance. For instance,
the first triclustering algorithm (Zhao and Zaki 2005) finds large 2D subspaces per context slice
without considering their impact on candidate triclusters, thus being prone to context dominance.
It can thus miss smaller 2D subspaces of observations and attributes that are part of triclusters
with a number of contexts above average.

5.1 Greedy Approaches

Cubic forms of coherence can be used within iterative schemes where objects are incrementally
added and removed from candidate subspaces in order to (locally) maximize/satisfy a predefined
3D merit function (Section 2.1). We discuss two major classes of these greedy approaches: divide-
and-conquer and seed growth.

5.1.1 Divide and Conquer. Bhar et al. (2012) proposed the use of the 3D mean-squared residue
(MSR) within a greedy approach, termed δ -TRIMAX, to find triclusters with low MSR (according
to (3)) in temporal 3D data. This is performed in two steps: (1) starting from the whole 3D space,
objects (observations, attributes, and contexts) are iteratively deleted from the tricluster until its
MSR becomes lower than a prespecified threshold δ , and (2) new objects are attemptively added to
the tricluster if they are able to preserve MSR < δ . Following similar principles, the TriWClustering

(Three-Way Clustering) algorithm (Dede and Oğul 2013) and the subsequent TriClust tool (Dede
and Oğul 2014) were proposed to find triclusters with low 3D MSR.

Li and Tuck (2009) proposed TRI-Clustering (3D Regulated expression Iterative Clustering) to
analyze gene-sample-regulator data. TRI-Clustering uses a divide-and-conquer procedure with
an Automatic Boundary Search (ABS) to discover statistically significant triclusters with a 2D
differential coherence on all object slices of a candidate subspace. To this end, it starts with a fixed
number of randomly generated seeds and iteratively trims triclusters (according to their merit)
until convergence. Contrasting with δ -dependent approaches, ABS is able to preserve flexibility
(by iteratively adjusting the percentage of candidate differential elements until no changes are
observed between two iterations). Despite its merits, the differential coherence is restrictive for
most triclustering applications and the number of triclusters needs to be prespecified.

5.1.2 Seed Growth. An alternative schema is to find relevant seeds (building blocks) within
3D data and greedily merge and extend them to build candidate triclusters. Sim et al. (2010a) pro-
posed MIC (MIning 3D subspace Clusters) to find statistically significant triclusters in temporal 3D
data with an approximate constant coherence. These triclusters, referred to as Correlated 3D Sub-
space Clusters (CSCs), show high correlation within each context slice and between each pair of
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contiguous slices. To this end, MIC first generates seeds (pairs of correlated objects) with residual
p-values. Then it grows CSCs from these seeds by greedily extending and merging seeds that max-
imize the proposed correlation scores. Unlike most triclustering algorithms, MIC is parameter-free
and enforces statistical significance criteria (Section 4.3).

Xu et al. (2009) proposed LagMiner to find S2D3-Clusters (shift-and-scale correlated triclus-
ters) in gene-sample-time expression data. Given a coherence strength δ , LagMiner aims to
find triclusters that satisfy (1) a shifting-and-scaling intraplane coherence for each time point
(gene-sample plane) and observation (time-gene plane) using the S2Score in Equation (7) –
∀zk ∈KS

2Score (I , J , zk ) ≤ δ and ∀xi ∈IS
2Score (K , J ,xi ) ≤ δ –, and (2) an order-preserving intra-

plane coherence within each sample (gene-time plane). Given an ordered triplet of attributes
ρ (yj ) = yj1 ≺ yj2 ≺ yj3 for a slice:

S2Score (I, J, zk ) =maxxi ∈Iρ (yj )⊆J

ai j2k − ai j1k

ai j3k − ai j1k
−minxi ∈I,ρ (yj )⊆J

ai j2k − ai j1k

ai j3k − ai j1k
. (7)

LagMiner starts by discovering subspaces described by a triplet of samples with as many genes as
possible. Then, it proceeds by including more samples and time points that satisfy the introduced
forms of coherence. Triclusters are thus enforced to have coherent time-sample objects per gene
slice (orthonormal to the gene axis), coherent gene-time objects per sample slice (orthonormal to
the sample axis), and coherent gene-sample objects per time slice (not necessarily orthonormal to
the time axis due to the allowed time lags). Nevertheless, by enforcing three forms of intraplane
coherence, S2D3-Clusters are often small and are susceptible to the risk of being described by
simplistic forms of correlation such as low variance.

5.2 Stochastic Approaches

Amar et al. (2015) proposed TWIGS (Three-Way module Inference via Gibbs Sampling) to find large
triclusters in temporal 3D data, where observations may be temporally misaligned. Due to the pres-
ence of arbitrarily high time lags, a tricluster (referred to as a core module) is primarily defined by
subsets of observations and attributes, ∀xi ∈I (xi , J,Ki ). TWIGS uses a hierarchical Bayesian model
with a Bernoulli-β assumption for binary 3D data and a Normal-γ assumption for real-valued
3D data. A biclustering solution is found per observation slice as a starting point and then itera-
tive improvements are performed in accordance with the Bayesian model. Gibbs sampling is then
applied to infer the candidate triclusters from the learned membership vectors. TWIGS is further
able to detect observation-specific augmentations of a tricluster to capture additional attributes for
some observations as long as coherence is preserved. Despite being a pioneer in its probabilistic
formulation, TWIGS imposes the homogeneity of triclusters to be characterized by two Gaussian
distributions and can thus miss large overlapping subspaces within the 3D data space.

Gerber et al. (2007) proposed a different stochastic approach, GeneProgram, consisting of three
major steps: (1) discretization of real-valued 3D data, (2) Markov Chain Monte Carlo sampling to
estimate the model posterior probability distribution of subspaces (accomplished with a three-level
hierarchy of Dirichlet processes), and (3) summarization of the learned posterior distributions to
infer the final triclusters.

Mankad and Michailidis (2014) proposed the triclustering plaid model introduced in Section 2.1,
here termed 3D-Plaid. The goal is to model the entire data structure as a set of overlapping
triclusters (according to Equation (4)). The algorithm detects subspaces exhibiting strong devi-
ations and estimates their dependence with an iterative procedure aiming to minimize the sum of
squares of the 3D data values. To this end, a background layer is first fitted and triclusters are then
added one at a time until no more statistically significant triclusters can be found under a given
permutation test.
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MultiFacTV (Li et al. 2013) is an alternative stochastic triclustering algorithm for temporal 3D
data under a plaid assumption. MultiFacTV uses a tensor factorization objective function (holding
an approximate constant coherence assumption with plaid effects), together with a time-axis reg-
ularization (enforcing subspaces to have objects as contiguous as possible in the time dimension).
Triclusters are then derived from the factorized tensors. Although pioneer on bridging tensor fac-
torization and triclustering views, MultiFacTV requires the specification of the target number of
triclusters and thresholding parameters per dimension. Pacifier (PAtient reCord densIFIER) (Zhou
et al. 2014) combines low-rank factorization with block coordinate descent optimization to explore
the latent structure of sparse 3D data. An alternative tensor factorization method for tricluster-
ing image-tag-user data analysis, named TTC (triclustered tensor completion), was more recently
proposed (Tang et al. 2017). TTC relies on three novel principles to (1) minimize the computa-
tional challenges of large-scale tensor factorization, (2) allow assumptions on the independence
among subtensors, and (3) solve the tensor completion problem by selecting and postrefining the
discovered subspaces.

Recently, Wu et al. (2018) developed the Bregman cuboid average triclustering algorithm with
I-divergence (BCAT_I) for the analysis of 3D georeferenced time series. BCAT_I partitions the
3D space in a set of coclusters by optimizing the loss of mutual information using I-divergence
and subsequently refines the gathered subspaces using k-means to capture triclusters unraveling
spatiotemporal patterns of interest.

In the context of coclustering tasks, Heylen et al. (2016) proposed 2M-KSC (two-mode K-Spectral
Centroid) for patient-symptom-time data. 2M-KSC clusters individuals I = {I1, . . . , In } and symp-
toms J = {J1, . . . , Jm } for all time points K = Z, such that the resulting subspaces show coher-
ent time profiles (same pattern but eventually varying in amplitude). The 3D data values are de-
scribed by

∑
c1∈I
∑

c2∈J pic1c2pjc1c2 f ({ai j1, . . . ,ai jp }) + ηi jK , where f ({ai j1, . . . ,ai jp }) defines the
time profile, and pic1c2 and pjc1c2 are respectively the probability of patient xi and symptom yj to
belong to the subspace given by partitions c1 and c2. The final subspaces are inferred from the
membership vectors obtained by minimizing the error ηi jK using a least squares loss function.
The Three-Mode Partitioning algorithm (Schepers et al. 2006) also minimizes a least squares loss
function between 3D data values and a parametric coclustering model. Contrasting with 2M-KSC,
it is able to simultaneously partition the three dimensions.

An alternative class of stochastic algorithms maps triclustering algorithms into the task of clus-
tering tripartite graphs. Guigourès et al. (2015) proposed a maximum a posteriori algorithm for
coclustering temporal 3D data, referred to as MAP, where the distributions of values on the edges
of the graph show similar connectivity patterns. The learned coclusters can be postprocessed to
attemptively answer triclustering tasks.

Lin et al. (2009) proposed MetaFac (Meta-graph Factorization) to extract communities (partial
clusters) from hypergraphs able to capture multiwise interactions between sets of objects along
time using non-negative multitensor factorization.

5.3 Exhaustive Approaches

Contrasting with previously surveyed approaches, some triclustering algorithms rely on the ex-
haustive exploration of the 3D search space. Restrictive homogeneity criteria are commonly placed
to guarantee a tractable computational complexity. As such, these algorithms could be better
referred as quasi-exhaustive. Jiang et al. (2004) proposed an algorithm, here referred to as GST-

Miner, to find subspaces from temporal 3D data spanning all time points. Pearson correlation co-
efficient is used in GST-Miner to discover either the maximal coherent sample subset per gene or
maximal coherent gene subset per sample. This coherence is applied within a recursive depth-first
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search that relies on an enumeration tree of maximal coherent subsets of samples and gene slices
to infer the candidate triclusters.

The discovery of triclusters in binary 3D data, termed triadic formal concepts (closed ternary
sets), was first proposed by Krolak-Schwerdt et al. (1994) and Lehmann and Wille (1995), a decade
before the first wave of triclustering algorithms for real-valued 3D data analysis. The discovery of
triclusters is here guided by quality scores based on the density, cardinality, coverage, and diversity
of the subspaces. The work by Ignatov et al. (2015) formalizes and experimentally compares five
triclustering algorithms for binary 3D data using principles from formal concept analysis. All these
algorithms have polynomial computational time on data volume. The Trias algorithm was initially
proposed to search for dense triclusters without noise (Jäschke et al. 2006), and OAC-triclustering

(based on box operators) as a noise-tolerant extension (Ignatov and Kuznetsov 2009). More re-
cently, Tribox, SpecTric, OAC-triclustering (based on primes of pairs), and Krimp-triclustering were
proposed to overcome some of the drawbacks of previous algorithms, such as pattern explosion
and quality (Ignatov et al. 2015; Mirkin and Kramarenko 2011; Yurov and Ignatov 2017). As prime-
based operators satisfy single-pass and linearity search conditions, OAC-triclustering was recently
extended within a new algorithm, here referred to as Online OAC, that further explores efficiency
gains and can be parallelized (Gnatyshak 2015). A generalization of this task for the discovery
of n-ary formal concepts from n-dimensional data was proposed by Cerf et al. (2009) with the
Data-Peeler algorithm and later extended to tolerate noise (Cerf et al. 2013).

Graph-based approaches have been alternatively proposed for the exhaustive discovery of sub-
spaces. Palla et al. (2007) proposed a clique percolation search for 3D data given by temporal
networks by exploiting the overlap of nodes in contiguous snapshots to study their evolution.
Sun et al. (2007) proposed an information-theoretic approach, termed Graphscope, to segment
snapshots using the minimum description length framework within an agglomerative process.
Hopcroft et al. (2004) proposed a two-stage triclustering algorithm, originally deemed for the anal-
ysis of evolving nodes within a temporal network (sequence of graphs), where similarity is given
by the cosine of vectors. Patterns of node progression across snapshots are investigated by com-
paring similar subspaces in different snapshots.

5.4 Biclustering-Based Approaches

2D merit functions can be applied to discover a set of biclusters for each slice of a 3D data space,
from which a set of triclusters (satisfying some form of intraplane coherence) can be inferred. These
approaches, here referred to as biclustering-based approaches, can either be greedy, stochastic,
or quasi-exhaustive depending on the underlying algorithms used for the discovery of biclusters
and consensus. Intraplane coherence can be placed for more than one dimension and optionally
complemented with a form of interplane coherence to further promote the correlation between
the slices of a subspace.

5.4.1 Quasi-Exhaustive. Zhao and Zaki (2005) proposed the first triclustering algorithm, termed
TriCluster, for gene-sample-time data analysis. TriCluster uses Pearson correlation to place intra-
plane coherence on context slices and guarantee tolerance to value shifts. To this end, TriCluster
(1) slices the 3D space along the time dimension and for each time point constructs a multigraph
to store similar value ranges between all pairs of samples, (2) exhaustively searches for maximal
cliques in these multigraphs to find a set of biclusters per time point (boosted by a symmetry
constraint), and (3) composes triclusters by merging similar biclusters from different time points
by finding maximal cliques in a new graph (where nodes correspond to biclusters). Despite being
pioneer, it disregards intertemporal coherence (genes or samples may not coherently vary across
time yet appear in sequent slices of a tricluster) and is sensitive to parameterizations.
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Shortly after, Jiang et al. (2006) proposed gTricluster to guarantee intertemporal coherence and
parameter insensitivity. gTricluster slices the 3D space into observation/gene slices and uses the
Spearman correlation coefficient across time points to capture more flexible forms of intraplane co-
herence than Pearson correlation. Similarly to TriCluster, gTricluster searches for maximal cliques
using dedicated data structures (set enumeration trees) to identify candidate biclusters, from which
triclusters are exhaustively inferred. Despite its strengths, gTricluter neglects intergene coherence
and triclusters can be biased due to sample and gene size dominance.

Hu and Bhatnagar (2010) proposed low-variance 3clustering to find all maximal 2D subspaces
with variance below an upper bound. These 2D subspaces are maintained within a prefix-tree
structure to detect maximum overlapping areas for the subsequent inference of triclusters. Data
subspaces with significant value differences across observations are removed to minimize the com-
putational complexity of the search.

Wang et al. (2010) proposed the TD-Clustering algorithm to find time-delayed scaling, shifting
or inverting triclusters in temporal 3D data. The algorithm is a depth-first algorithm (classified as
quasi-exhaustive due to the presence of pruning strategies) that constructs and traverses a tree
structure to mine all maximal biclusters (referred to as bi-td-clusters) for each attribute slice that
satisfies all the given thresholds: minimum number of observations and time points and coherence
strength δ . Merging procedures are used with sliding and jumping windows to accommodate time
delays. A tree structure is then used to infer all maximal tri-td-clusters above a prespecified number
of attributes with delineated interplane coherence.

5.4.2 Approximate. Ahmed et al. (2011) proposed SubCubeMiner to discover triclusters by per-
forming order-preserving biclustering per context slice (approximate search) and extending these
biclusters along the time dimension using the planar mean residue similarity (Equation (6)). A
connectivity-based approach with dynamic ranges is then applied to infer the final triclusters.

Contrasting, OPTricluster (Tchagang et al. 2012) aims to find triclusters where the order-
preserving coherence is verified on attribute slices. OPTricluster consists of five main steps:
(1) data quantization, (2) ranking of gene expression along time, (3) order-preserving biclustering,
(4) graph-based inference of triclusters (using TriCluster’s procedures), and (5) statistical signifi-
cance assessment (using the order-preserving statistical tests in Section 4.3). OPTricluster further
removes the contiguity constraint on the time dimension and the placed coherence guarantees less
susceptibility to variations caused by measurement procedures and gene responsiveness. Depend-
ing on the goal, OPTricluster can be applied with swapped dimensions. Illustrating, by swapping
the time and sample dimensions, OPTricluster is able to capture groups of genes with expression
coherently varying on a subset of samples for specific time points.

Multi-Species C-Monkey (MSCM) (Waltman et al. 2010) was proposed for triclustering species-
gene-time data. Each tricluster is discovered at a time, where a tricluster is a composition of
species-specific biclusters greedily grown from (semi)random seeds (given by orthologous genes)
using an optimization algorithm. Changes to the tricluster are applied by iteratively adding or
removing objects according to a conservation score until convergence (no improvements can be
applied). When a tricluster converges, new triclusters are randomly seeded and built until no tri-
clusters are discoverable or a prespecified maximum number of triclusters is found. In this context,
a tricluster is termed perfectly conserved if all its orthologous genes are likely to be coherently
found in all the related species.

Supper et al. (2007) proposed EDISA (Extended Dimension Iterative Signature Algorithm), a
greedy algorithm to find partial clusters (I, J,K = Z) in gene-sample-time data. Three criteria of
homogeneity are considered: (1) triclusters with independent response profiles (genes coregulated
under a set of conditions yet with possibly different response patterns under each condition),
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(2) triclusters with similar responses under a set of conditions (a subset of previous ones), and
(3) condition-specific response (a more rare subset of the first set of triclusters). These types of tri-
clusters are respectively termed response-independent, coherent, and response-specific modules.
Pearson correlation is considered to quantify the similarity between the profiles of two genes. The
EDISA algorithm is inspired in the ISA biclustering algorithm (Ihmels et al. 2004): initial modules
of samples and genes are greedily formed according to their overall time responses and then re-
fined by removing genes and samples until the subspaces respect a criterion of homogeneity. An
extension step is then applied to ensure gene and sample maximality.

Similarly, Meng et al. (2009) proposed a new triclustering algorithm based on the ISA
biclustering algorithm—ECTDISA (enrichment-constrained time-dependent iterative signature
algorithm)—to identify temporal transcription modules in gene-sample-time data. Contrasting
with EDISA, ECTDISA applies a sliding time window to capture temporal dependencies and im-
poses an enrichment constraint to guarantee the biological significance of the discovered triclus-
ters (TTMs).

More recently, Kakati et al. (2016) proposed a distributed triclustering algorithm, here termed SS-

SimTri (Shifting-and-Scaling Similarity Triclustering), to identify coexpressed patterns with shifts
and/or scales in gene-sample-time expression data. A seed-growth algorithm is proposed to ex-
tract biclusters from each time slice in parallel. A “shared nothing” client-server architecture is
then proposed to guarantee a cost-effective distribution of the computational load, opening new
considerations on the development of scalable triclustering algorithms.

5.5 Pattern-Based Approaches

Pattern-based triclustering approaches have been alternatively proposed to discover subspaces
with well-defined patterns on a subset of objects. Ji et al. (2006) introduced the notion of Frequent
Closed Cube (FCC), generalizing the concept of 2D frequent closed patterns. An FCC is a maximal
tricluster in a symbolic (or discretized) 3D dataset. RSM and CubeMiner algorithms (Ji et al. 2006)
were proposed to find FCCs in 3D data. RSM (Representative Slice Mining) mines each slice using
frequent closed pattern mining, infers frequent cubes (similarly to biclustering-based approaches),
and prunes cubes that are not closed. Contrasting, CubeMiner operates on the 3D space directly
by exhaustively and recursively splitting the space according to well-defined monotonic support
constraints.

Liu et al. (2010) proposed the 3D-TDAR-Mine algorithm to identify triclusters given by Tem-
poral Dependency Association Rules in gene-sample-time data, revealing regulatory relations be-
tween genes. Contrasting with peer pattern-based algorithms, 3D-TDAR-Mine does not require
discretization and the placed coherence is able to accommodate shifts, scales, and trends. To this
end, a novel merit function was proposed by ranking differences over min-max normalized val-
ues. First, patterns are computed per gene, where a pattern is given by a continuous time segment
coherent for at least two samples. Sliding windows are used to accommodate time lags up to a pre-
specified length. Then, frequent pattern mining is applied to exhaustively find patterns supported
by multiple genes. Finally, association rule mining is applied to discover dependencies between
patterns (using contributions from Tatavarty et al. (2007)). Merging procedures are considered for
largely overlapping TDARs.

TimesVector (Jung et al. 2017) has been recently proposed to find similarly and differentially
expressed patterns in gene-sample-time data. To this end, the sample and time dimensions are
first concatenated into a single dimension and spherical k-means applied to measure the similarity
between observations under a silhouette score. Then, knowledge regarding the expression of genes
on different samples is reintroduced to recognize delineated patterns of interest.
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Hu and Bhatnagar (2011) proposed Versatile Temporal Subspace discovery for temporal 3D data
analysis. A tricluster is described by a clear temporal pattern given by the longest possible smooth
sections of nonoverlapping waveforms using the LOESS residue (computed from the lowest-order
polynomial fitting the observed values). An exhaustive prefix-based search algorithm is then pro-
posed with Pearson correlation (parameterized with the LOESS residue) to discover all maximal
triclusters from closed temporal patterns. Due to the possible high number of triclusters, the top
k-triclusters can be alternatively outputted.

In the context of coclustering tasks, Sim et al. (2013) proposed CATSeeker, combining background
knowledge (preferred objects/centroids) with numerical optimization (score objects in subspaces
with regard to each centroid) and 3D frequent itemset mining to find coclusters satisfying ho-
mogeneity, significance, and actionability criteria. The peer MASC (Mining Actionable Subspace
Clusters) (Sim et al. 2010b) algorithm bypasses the need to prespecify the (generally unknown)
preferred objects.

5.6 Multiobjective Optimization Approaches

Multiple objectives conflicting with each other, such as the volume and homogeneity of the tri-
clusters, can be jointly optimized. In this context, multiobjective optimization is suitable to answer
triclustering tasks.

Gutiérrez-Avilés et al. (2014) proposed TriGen (Triclustering Genetic-based algorithm), a multi-
objective algorithm that maximizes volume and minimizes 3D mean square residue (fitness criteria
according to Equation (3)). TriGen identifies a set of triclusters at a time, where each candidate
tricluster corresponds to an individual from a population subjected to well-defined operators (ex-
changes, mutations, and selections of objects).

TriGen was extended in more recent works with two alternative merit functions: MSL

(Gutiérrez-Avilés and Rubio-Escudero 2015) and LSL (Gutiérrez-Avilés and Rubio-Escudero 2014a)
(discussed in Section 2.1). As these functions measure angle differences of the slopes between ob-
servation slices, they provide a sufficiently flexible form of coherence to accommodate time lags
on observations.

Bhar et al. (2015) developed an evolutionary multiobjective optimization search for δ -TriMax,
termed EMOA-δ -TriMax, sensitive to overlapping subspaces that prevents local optima by max-
imizing volume while minimizing 3D MSR using a non-dominated sorting genetic algorithm
(NSGA-II (Deb et al. 2002)).

Despite these recent contributions, the initial multiobjective evolutionary algorithm, MOGA3C

(Multi-Objective Genetic Algorithm for 3D Clustering) (Liu et al. 2008), is still considered state of
the art. Three objectives—triclusters’ volume, homogeneity, and gene-dimension variance—are si-
multaneously satisfied/optimized. In particular, MOGA3C focuses on finding triclusters with maxi-
mum volume, bounded 3D MSR, and high gene-dimension variance. These criteria guide selection,
crossover, and mutation until stabilization or a prespecified number of generations is reached.

6 TRICLUSTERING EVALUATION

Section 2.1 introduced diverse merit functions to guide the discovery of triclusters. The assessment
of the found triclusters should rely on independent metrics to produce unbiased performance
views. However, evaluating triclustering algorithms is challenged by two issues. First, although
synthetic data with planted triclusters can be generated, there are no consensual similarity met-
rics, and generation procedures are typically biased toward specific forms of homogeneity. Second,
there is no ground truth to describe triclusters present in real 3D data. Accordingly, triclustering
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solutions can be assessed in the presence of hidden triclusters (accuracy-based views) and in their
absence (homogeneity and significance views).

Accuracy-based views. In synthetic data, a set of triclustersH = {H1, . . .Hr } (referred to as true
or hidden triclusters) can be planted. Objective metrics can be formulated since the true solution
is known. These include similarity metrics to assess one dimension at a time, two dimensions at
a time, or the overall dimensions. Clustering similarity metrics can then be used to evaluate one
dimension at a time, including measures of intracluster similarity, entropy, or the F-measure (and
its precision and recall components) (Assent et al. 2008). The principle is that triclusters should
cover most objects of a specific hidden tricluster but few objects from remaining hidden triclusters.

Similarity metrics from biclustering can be applied to evaluate two dimensions at a time (Padilha
and Campello 2017), including relative nonintersecting area (RNAI) (Bozdağ et al. 2010), subspace
clustering error (Patrikainen and Meila 2006), and Jaccard-based scores (MS) (Prelić et al. 2006).
Jaccard-based scores typically assess the similarity between the learned and planted triclusters
(B and H ) on observation and attribute dimensions: MS (B,H ) defines the extent to which the
found triclusters cover the hidden triclusters (completeness), while MS (H ,B) defines how well the
hidden triclusters are recovered (precision).

Jaccard-based scores can also be extended to assess all dimensions at a time. Ignatov et al. (2015)
define coverage as a fraction of the elements of the found tricluster included in at least one of the
hidden triclusters. However, this measure cannot distinguish if a found tricluster is covered by
one or multiple hidden triclusters. Alternative similarity metrics have been proposed (Gonçalves
2013), including an extension of the clustering F-measure (referred to as the E4SC metric) and their
recall-precision components. Below, we propose a new score, the 3D revised match score (RMS3),
to offer an adequate penalization of non-matched volume between triclusters:

RMS3(B,H ) =
1

|B|
∑

B1∈B,maxarg{J ac (B1,B2 ) |B2∈H }

3

√
|I1 ∩ I2 |
|I1 ∪ I2 |

|J1 ∩ J2 |
|J1 ∪ J2 |

|K1 ∩ K2 |
|K1 ∪ K2 |

. (8)

Sim et al. (2013) proposed three measures: recoverability (a measure of completeness), spuri-
ousness (a measure of precision), and a significance indicator that trades off recoverability and
spuriousness. Bhar et al. (2012) estimated similarity using the product of a similarity score per
dimension: MSI (B1,B2) ×MSJ (B1,B2) ×MSK (B1,B2).

Amar et al. (2015) proposed a weighted maximum of all pairwise Jaccard-based scores:

1

|B| + |H |
��
�

∑
B1∈B

maxB2∈HMS (B1,B2) +
∑

B2∈H
maxB1∈BMS (B2,B1)��

�
. (9)

Homogeneity views. Merit functions can be used not only to guide the triclustering task but also
to evaluate the quality of triclustering solutions. Diverse merit functions were listed in Section 2.1

to be used in the mining process. Despite their relevance, the application of these functions to
evaluate triclustering solutions is biased toward specific homogeneity criteria. For this reason,
and since different merit functions can provide radically distinct views, multiple functions can
be combined for fair assessments. Ahmed et al. (2011) proposed the joint analysis of two merit
functions, respectively prepared to assess intra- and interplane coherence. Merit functions may
also benefit small triclusters due to their greater chance of having high homogeneity. Liu et al.
(2008) and Gutiérrez-Avilés and Rubio-Escudero (2014b) proposed functions that minimize this
effect by weighting merits according to the size of triclusters.
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Statistical significance views. Statistical tests should alternatively be considered to assess the
statistical significance of triclusters and bound the propensity of triclustering algorithms toward
false-positive and false-negative risks. Section 4.3 surveyed statistical views based on deviations
between the observed and (either expected or unknown) underlying data distributions (Moise
and Sander 2008a; Sim et al. 2010a), thresholding methods (Li and Tuck 2009), exact calculations
(Tchagang et al. 2012), and size expectations collected from randomized data (Mankad and
Michailidis 2014). However, the applicability of previous methods is limited by the placed assump-
tions either on the 3D data distributions or the homogeneity of triclusters, hence the open need
for flexible and robust statistical tests, possibly extending the statistical views recently proposed
in the context of biclustering tasks (Henriques and Madeira 2018).

Domain significance views. Despite the relevance of using real data to assess the performance of
triclustering algorithms, there is no ground truth that describes the true triclusters in real datasets.
In this context, it is essential to complement previous performance views with indicators gathered
from assessing triclustering solutions against background knowledge. For this purpose, annota-
tions L associated with groups of objects can be extracted from knowledge bases, semantic sources,
or bibliographic databases. Illustrating, in biological domains, gene ontology terms, transcription
factors, molecular associations, or metabolic pathways provide well-established annotations. En-
richment measures can then be computed by, for instance, testing hypergeometric hypotheses for
the subsets of objects per tricluster against these annotations.

Complementary performance views. The aforementioned performance views primarily assess
the effectiveness of triclustering algorithms. Given the diversity of available metrics, it is important
to find consensual views. Recent work on consensus have been conducted by Gutiérrez-Avilés
and Rubio-Escudero (2016). In their work, a new measure combining correlation scores, graphic
validation, and enrichment tests was proposed.

In addition to effectiveness views, six alternative performance views are suggested for an in-
depth assessment of triclustering algorithms:

—Scalability (Kakati et al. 2016) together with measures of optimality guarantees
—Dissimilarity between triclusters and their distribution in the 3D space (Ignatov et al. 2015)
—Robustness to different forms and degrees of noise and missings on generated data
—Flexibility: ability to customize coherence, structure, and quality of triclusters
—Actionability: ability to find triclusters suggesting concrete actions/profitable decisions
—Sensitivity to parameters and numerosity of parameters

7 TRICLUSTERING APPLICATIONS

This section lists prominent real-world problems across biomedical and social domains where tri-
clustering has been shown to be an essential tool.

7.1 Biological Data Analysis

The following biological applications are found in the literature: analysis of 3D omic, augmented,
network, multispecious, chemical, drug, and sample-by-sample data.

First, triclustering has been largely applied over omic data, including gene expression time series
(gene-sample-time data) or the concentration of molecular compounds (such as proteins, protein
complexes, and metabolites) along time (Gutiérrez-Avilés and Rubio-Escudero 2014b; Bhar et al.
2015). Samples are taken either from the same tissue under varying conditions (e.g. yeast responses
to abiotic stress (Supper et al. 2007) or human responses to septic shock (Parnell et al. 2013)) or

ACM Computing Surveys, Vol. 51, No. 5, Article 95. Publication date: September 2018.



Triclustering Algorithms for Three-Dimensional Data Analysis 95:29

from multiple individuals (e.g., individuals after drug intake (Li et al. 2013) or extended wakefulness
(Möller-Levet et al. 2013)). Triclustering offers the opportunity to enhance the understanding of
functional genomics (coregulated entities on specific processes and pathways), improve diagnoses,
and support the creation of new drug targets (Tchagang et al. 2012). To this end, triclustering
has been applied with additive, order-preserving, and plaid assumptions (Hu and Bhatnagar 2011;
Ahmed et al. 2011; Mankad and Michailidis 2014) to detect putative modules with flexible yet
meaningful coherence.

Second, 2D biological data have been augmented into 3D data by distributing the observed val-
ues along a third dimension given by annotations from knowledge bases. Alqadah and Bhatnagar
(2008) applied triclustering over disease-gene-GO term expression data to unravel associations be-
tween diseases and the regulated biological processes, cellular components, and molecular func-
tions. Li and Tuck (2009) analyzed gene-sample-regulator expression data, where binding informa-
tion was incorporated to create the third dimension. The understanding of which transcription
factors coherently regulate groups of genes is unraveled in the found triclusters.

Third, triclustering has been applied over dynamic biological networks (node-node-time data) (Li
et al. 2013) to discover coherent modules of biological entities along time. Triclusters can capture
relevant cellular signaling events, thus holding the potential to unravel the organization and dy-
namics of cell functions. Triclustering has been alternatively considered for the integrative analysis
of biological networks from heterogeneous data sources (source-node-node data) (Li et al. 2011).

Fourth, triclustering also has been applied over heterogeneous 3D data from different sources
or distinct species. Hu and Bhatnagar (2010) placed the focus on coherent expression modules
within each species followed by cross-species consensus, while Dede and Oğul (2014, 2013) an-
alyzed all gene-sample-organism dimensions simultaneously. Waltman et al. (2010) analyzed ex-
pression data for all species closely related to Firmicutes, addressing the fact that orthology is not
in many cases a one-to-one mapping, as well as the fact that modules within a tricluster may dif-
fer regarding their regulation or function and suffer from species-specific nuances that mask their
discovery.

Fifth, triclustering also holds intrinsic opportunities for the analysis of chemical 3D data, such
as protein structure in the form of residues-position-time (Sim et al. 2013).

Triclustering has been additionally suggested (yet not comprehensively applied) for the analysis
of drug, genome-wide, and sample-by-sample 3D data. Triclustering drug 3D data, where the third
dimension indexes dose levels, can be used to support pharmacological decisions (understand the
impact of drug compounds and concentrations on biological systems) and personalized oncology
(defined as “getting the right treatment to the right patient at the right dose and time” (Hayes
2013)). Triclusters from genome-wide and translational 3D data can disclose groups of mutations,
conserved functional subsequences (alignments), or transcription factor binding sites correlated
for a group of individuals on a subset of all chromosomes (Wang et al. 2007; Fang et al. 2012).
Sample-by-sample 3D data records similarities between samples (first and second dimension) with
a third dimension given by biological entities, similarity criteria, or time. Triclustering sample-by-
sample 3D data was suggested to find coherent biological indicators from individuals with identical
pathologies (Fan et al. 2010).

7.2 3D Medical Data Analysis

In medical domains, we highlight three major triclustering applications: (1) multivariate physio-
logical signal (individual-feature-time signal data) analysis, where triclusters can capture coherent
physiological responses for a group of individuals; (2) neuroimaging data analysis, where triclus-
ters can capture hemodynamic response functions and connectivity between brain regions; and
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(3) clinical records analysis, where triclusters correspond to groups of patients with correlated
clinical features along time.

Balasubramanian et al. (2016) applied a variant of the triclustering task over e-mobile phys-
iological data periodically monitored through multiple body sensors. Triclusters correspond to
statistically significant deviations from healthy indicators for subsets of patients sharing a spe-
cific risk profile. Fan et al. (2010) analyzed patient-electrode-time EEG data to guide the design of
electrical stimulation protocols (by parameterizing the location, intensity, duration, pulse width,
and frequency of stimulation based on locally correlated brain activity). Amar et al. (2015) and
Vaisvaser et al. (2013) triclustered three-dimensional fMRI data (patient-brain parcel-time blood
flow intensity data) to localize regions with properties of interest and characterize functional con-
nectivity. Triclustering also has been suggested for the analysis of local field potentials (LFPs) and
spiking activity (Pourahmadi and Noorbaloochi 2016).

Contrasting to signal and spatial 3D data analysis, only few triclustering algorithms are pre-
pared for the analysis of clinical record data since clinical attributes are typically nonidentically
distributed. In Zhou et al. (2014), the goal was to infer phenotypic patterns (given by triclusters)
from noisy and sparse 3D data (given by electronic medical records for a monitored population
of individuals) to support the prediction of heart and renal failure. Henriques et al. (2015a) fo-
cused on subspaces from integrative healthcare databases (sparse patient-record-time data given
by a sequence of events), where a subspace is mapped from arrangements of events learned using
generative and deterministic views. In Heylen et al. (2016), 3D clinical data is given by period-
ically measuring the severity of a set of symptoms for a population of patients with the aim of
understanding the effects of an intervention or prescription. In this work, triclusters are given
by subsets of patients and symptoms with coherent time profiles that allow both amplitude and
temporal misalignments.

7.3 3D Social Data Analysis

Triclustering has been applied over social networks (individual-individual-time data) (Mankad and
Michailidis 2014; Gnatyshak et al. 2012) to either discover communities of individuals with cor-
related activity and interaction (often referred to as coherently evolving communities) or group
contents according to the accessors’ profile (Banerjee et al. 2007; Mankad and Michailidis 2014).
Temporal network data analysis is challenging since changes along time can profoundly affect
the network topology. Lin et al. (2009) tackled the problem of discovering community structure
over rich media social networks (individual-media object-time data) through the analysis of time-
varying user actions and their social context. The community structure in these networks cap-
tures the social scope of user actions, thus having relevant applications in multiple tasks such
as description and recommendation. Triclustering is also relevant for the analysis of alternative
types of networks, such as transportation or communication networks (Guigourès et al. 2015). For
instance, in a subway network (where interactions correspond to journeys from an origin to a
destination station for a specific time window), triclustering can reveal local patterns that explain
the evolving distribution of journeys along time to support planning decisions (Guigourès et al.
2015).

In the context of web usage, triclustering has also been applied to group users with coher-
ent patterns of navigation (Zhou et al. 2009). Zudin et al. (2015) triclustered user-tag-bookmark

data to find groups of users coherently assigning similar tags on shared bookmarks. Alqadah and
Bhatnagar (2008) applied triclustering over sparse keyword-ad campaign-site data. The same au-
thors also introduced the problem of finding static communities from context-conditional social
networks (individual-individual-issue data) to gain insight on consensual or disjoint views within
a community on certain issues (such as Republican-Democrat views on political issues).
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Social image tag refinement is another application (Tang et al. 2017) where triclustering patterns
from image-user attributes-tag data are used to complete missing tags and rectify noise-corrupted
ones, an essential component for image search.

Triclustering has also been applied for the analysis of (1) e-commerce data to find hidden brows-
ing patterns from correlated sets of (web) users, visited (web) pages, and operations along time
(Cerf et al. 2008); (2) marketing research data to study the perceived utility of diverse products for
different ends as judged by different age groups (Schepers et al. 2006); and (3) collaborative filter-
ing data (user-item/action-time/region data) to discover actionable correlations for recommendation
systems (Bobadilla et al. 2013) or group users with similar preferences (or similar behavior) on a
subset of items (or available actions) (Banerjee et al. 2007; Zudin et al. 2015).

7.4 Other Applications

Triclustering has also been applied over financial and trading data (Sim et al. 2010a) to identify
indicators that produce consistent profitability profiles for specific trading decisions (buy, hold,
and sell) in the stock market, as well as to understand deviant economic patterns. In this context,
stock-ratio-time data has been considered to discover triclusters, groups of stocks with similar in-
dicators across time, for investment decisions (Sim et al. 2010b). Financial ratios (and performance
indicators) are seen as indicative of future price movements (and company behavior).

In econometrics, resource allocation or policy decisions can be supported by studying responses
to the ebbs and flows of the economy. Mankad and Michailidis (2014) applied triclustering to
indicator-covariate-time data. In addition, the same authors analyzed country-country-time world
trade data given by the annual total bilateral trade flows between countries. Here, triclustering
provided an alternative to traditional growth curves of global trade trends over time, promoting
the understanding of economic strategies in the context of specific groups of countries.

Triclustering has been recently applied for the analysis of folksonomies, text, or unstructured
(web) data (Gnatyshak 2015; Ignatov et al. 2015) to identify user-sensitive consensus in source-

user-tag data and correlated content cubes measuring the frequency of categories/words across
text segments.

Finally, triclustering has been additionally applied for geophysical data analysis, including
(1) seismic data (such as latitude-longitude-attribute data) to capture geophysical patterns from
cubes capturing the number of occurring earthquakes at different magnitudes (Martínez-Álvarez
et al. 2015) and (2) atmospheric time-series data (location-attribute-time data) to identify spatiotem-
poral patterns, such as the annual regional variability of meteorological conditions (Wu et al. 2018,
2017).

8 SUMMARY

Tables 1 and 2 synthesize the properties of the surveyed triclustering algorithms in accordance
with the proposed taxonomy (Figure 4). The triclustering algorithms are chronologically ordered
and characterized according to their (1) locality (whether local or partial, and when local whether
aimed at triclustering or coclustering), (2) homogeneity criteria, (3) algorithmic approach, (4) guar-
antees of statistical significance, (5) susceptibility to forms of dimension dominance, (6) ability to
tackle time-related challenges, and (7) targeted type of 3D data.

As can be observed, state-of-the-art algorithms fail to satisfy relevant requirements: either ho-
mogeneity is restrictive, optimality guarantees are not pursued, statistical significance is disre-
garded, triclustering structures are constrained, efficiency rapidly degrades with data size, applica-
bility is constrained to binary data, or unintended biases toward specific dimensions are observed.

In this context, numerous synergies remain to be explored. As such, and given the contradic-
tory goals of triclustering tasks, the promises of upcoming contributions might instead reside in
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Table 1. State-of-the-Art Triclustering Algorithms: Locality, Placed Homogeneity

Criteria, and Algorithmic Approach

Name Year Locality Homogeneity Algorithmic Approach

GST-Miner 2004 partial Pearson on X-Y plane with all time points Biclustering based (quasi-exhaustive)

TriCluster 2005 tricluster Pearson on Z slices (no interplane
coherence)

Biclustering based (quasi-exhaustive) with
graph consensus

gTriCluster 2006 tricluster Spearman on X slices (no interplane
coherence)

Biclustering based (quasi-exhaustive) with
graph consensus

CubeMiner 2006 tricluster Constant pattern Pattern based (exhaustive)

RSM 2006 tricluster Constant (multiwise intraplane coherence) Pattern based (quasi-exhaustive) with
closed-form pruning

TRIAS 2006 tricluster Dense (binary and no noise) Exhaustive (formal concept analysis)

Three-mode
partitioning

2006 cocluster Approximately constant Stochastic (minimization of least squares)

EDISA 2007 partial Pearson on X-Y plane with all time points Greedy (seed growth and reduction)

Gene Program 2007 tricluster Approximately constant patterns on X Stochastic (hierarchical Bayesian model)

MOGA3C 2008 tricluster Fully additive (3D MSR) Multiobjective optimization
(quasi-exhaustive)

TRI-Clustering 2009 tricluster Differential values Greedy (divide-and-conquer)

ECTDISA 2009 tricluster Pearson on Z slices along time windows Greedy (seed growth and removal within
sliding windows)

LagMiner 2009 tricluster Shifts/scales on X and Z slices;
order-preserving on Y

Greedy (seed growth with multiwise
intraplane coherence)

Box OAC 2009 tricluster Dense (binary) Exhaustive (formal concept analysis)

Data-Peeler 2009 tricluster Dense (binary) Exhaustive (formal concept analysis)

MSCM 2010 tricluster Conservation and elaboration on X slices Biclustering based (greedy)

Low-variance
3clustering

2010 tricluster Approx. constant (low variance) Biclustering based (quasi-exhaustive)

MASC 2010 cocluster Constant patterns with shifts Pattern based (quasi-exhaustive)

TD-Clustering 2010 tricluster Shifts, scales, or symmetries on Y slices Biclustering based (quasi-exhaustive) with
sliding windows

MIC 2010 tricluster Approximately constant (3D correlation
information)

Greedy (seed growth)

3D-TDAR-Mine 2010 tricluster Associative subspaces with shifts, scales,
and trends on X

Pattern based (quasi-exhaustive)

SubCubeMiner 2011 tricluster Order-preserving on Z slices and
planar-based coherence

Biclustering based (greedy)

Versatile T. Subspace 2011 tricluster LOESS-based Pearson on X slices Pattern based (quasi-exhaustive)

Tribox 2011 tricluster Dense (binary) Exhaustive (formal concept analysis)

OPTricluster 2012 tricluster Order-preserving on X slices and constant
interplane

Biclustering-based (greedy)

δ -TRIMAX 2012 tricluster Fully additive (3D MSR) Greedy (divide-and-conquer)

TriWClustering 2013 tricluster Fully additive (3D MSR) Greedy (divide-and-conquer)

SpecTric 2013 tricluster Dense (binary) Exhaustive (formal concept analysis)

MultiFacTV 2013 tricluster Plaid assumption Stochastic (tensor factorization objective)

CATSeeker 2013 cocluster Constant patterns with shifts Pattern based (quasi-exhaustive)

TriGen 2014 tricluster Fully additive (3D MSR) Multiobjective optimization
(quasi-exhaustive)

LSL-TriGen 2014 tricluster Slope-based variation on Z slices Multiobjective optimization
(quasi-exhaustive)

3D-Plaid 2014 tricluster Plaid assumption Stochastic (kernel-based fitting)

(Continued)
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Table 1. Continued

Name Year Locality Homogeneity Algorithmic Approach

MSL-TriGen 2015 tricluster Slope-based variation on Z slices Multiobjective optimization (quasi-exhaustive)

EMOA-δ -TRIMAX 2015 tricluster Fully additive (3D MSR) Multiobjective optimization (quasi-exhaustive)

TWIGS 2015 tricluster X slices explained by 2 Gaussians Stochastic (hierarchical Bayesian model)

MAP 2015 cocluster Temporal patterns on a denormalized
X×Y plane

Stochastic (graph-based maximum a posteriori
estimation)

Prime OAC 2015 tricluster Dense (binary) Exhaustive (formal concept analysis)

Online OAC 2015 tricluster Dense (binary) Exhaustive (formal concept analysis)

2M-KSC 2016 cocluster Additive on Z slices Stochastic (minimization of least squares)

SSSimTri 2016 tricluster Shifts and/or scales on Z slices Parallelized biclustering based (greedy)

Krimp-triclustering 2017 tricluster Dense (binary) Exhaustive (frequent itemset mining)

TimesVector 2017 tricluster Similar and differential patterns (cosine
distance)

Pattern based (approximate searches on
clustered data)

TTC 2017 tricluster Low-rank/variance patterns Stochastic (tensor factorization) and
postcompletion

BCAT_I 2018 tricluster I-divergence patterns Stochastic (tensor factorization) followed by
k -means

exploring the right balance between three major requirements: (1) quality (ability to offer guaran-
tees of optimality and ensure noise robustness), (2) scalability (ability to handle the increasingly
large, complete, and precise 3D datasets), and (3) flexibility (ability to find unconstrained struc-
tures and customize the desirable homogeneity and dissimilarity criteria in accordance with the
targeted application).

9 CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

This work provides a structured view on the problem of triclustering three-dimensional data and
surveys the existing contributions in the field. We first introduced a formal ground to understand
triclustering and contrast it against alternative tasks. We further proposed a taxonomy to catego-
rize the contributions in the field, assess the pros and cons of existing algorithms, and facilitate
the design and adaptation of triclustering algorithms. The proposed taxonomy covered relevant re-
quirements pertaining to the desirable forms of locality, homogeneity (including the need to place
adequate coherence assumptions, guarantee robustness to noise, and allow for flexible structures
of triclusters), statistical significance, and data-specific aspects. State-of-the-art triclustering algo-
rithms were then comprehensively compared against this taxonomy. Finally, we listed relevant
applications, together with insights to understand the intrinsic potential of the triclustering task
to tackle real-world problems.

This survey stresses the need for upcoming contributions on different areas, including (1) the
quantitative comparison of the state-of-the-art triclustering algorithms, (2) the development of
scalable triclustering searches, (3) the incorporation of statistical tests to effectively guarantee the
statistical significance of triclusters, (4) the development of integrative approaches able to combine
the dispersed potentialities of the surveyed algorithms, (5) superior ways to handle temporal mis-
alignments, (6) triclustering searches for sparse 3D data, (7) the discovery of triclustering solutions
where triclusters may show varying homogeneity criteria, (8) the possibility to specify the degree
of tolerance to different types of noise, (9) the incorporation of background knowledge into the
triclustering task to guide the search according to domain knowledge and user expectations, and
(10) new (associative) classifiers based on discriminative triclusters to label 3D data.
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APPENDIX

A STRUCTURED VIEW ON N -WAY SUBSPACE CLUSTERING

An N -dimensional dataset is defined by N sets of objects or dimensions, {Oi | i = 1..N }, with real-
valued or categorical elements ai1, ...,iN

associated with one object per dimension: (oi1 , . . . , oiN
),

where N > 1. Paradigmatic examples include individual-gene-sample-time expression data (where
the sample dimension is given by replicas or samples extracted from different tissues or under
different conditions; genes can be further replaced by any other molecular compound), user-user-

attribute-time interaction data, or location-depth-attribute-time geophysical data.
Given an N -dimensional dataset, the N -way subspace clustering task, or simply theN -clustering

task, aims to find subspaces satisfying certain input criteria. In this context, an N -way cluster is
given by a subset of objects on each dimension, {Si ⊆ Oi | i = 1..N }.

Similarly to biclustering (N = 2) and triclustering (N = 3) tasks, the input criteria for N -
clustering tasks with N > 3 can be a composition of homogeneity, statistical significance, and
dissimilarity criteria.

Regarding homogeneity criteria, the cubic merit functions surveyed in Section 2.1 can be gener-
alized for an arbitrary number of dimensions. Illustrating, constant, fully additive, and plaid N -
clusters can be respectively given by Equations (10), (11), and (12). In addition, 2D and 3D functions
can be applied on permutations of the N -dimensional space to assess the correlation of a subspace
with regard to a subset of overall dimensions at a given time. Inspired by the contributions by Ji
et al. (2006), frequent closed hypercubes can be specified for the application of pattern-based merit
functions.

σ 2
{Si }i=1. .N

=
1∏N

i=1 |Si |
×

∑
i1 = 1.. |S1 |

...
iN = 1.. |SN |

(ai1 ..iN
− μS)2, with μS =

∑
i1=1.. |Sj |, ...,iN =1.. |SN | (ai1 ..iN

)∏N
i=1 |Si |

(10)

MSR {Si }i=1. .N =
1∏N

i=1 |Si |

∑
i1 = 1.. |S1 |

...
iN = 1.. |SN |

ηi1 ..iN
, with ai1 ..iN

= c + α (1)
i1
+ · · · + α (N )

iN
+ ηi1 ..iN

(11)

plaid {Si }i=1. .N =
∑

i1=1.. |S1 |, ...,iN =1.. |SN |

�
�
âi1 ..iN

− μ0 −
T∑

t=1

θt i1 ..iN
ρ (1)

t i1
..ρ (N )

t iN

�
�

2

, with

ai1 ..iN
= μ0 +

T∑
t=0

θt i1 ..iN
ρ (1)

t i1
..ρ (N )

t iN
+ ηt i1 ..iN

and θt i1 ..iN
= μt + α

(1)
t i1
+ · · · + α (N )

t iN
+ ηt i1 ..iN

(12)

Similarly to N = 3, a statistically significant N -way cluster is a subspace with unexpectedly
low probability to be observed. Here, the statistical significance criteria essentially depend on (1)
the null data model (whether given by randomization procedures or by the observed multivariate
regularities) and (2) the applied statistical tests (whether testing size against subspaces found in
randomized data or occurrence probability against the approximated data distributions).

An N -way cluster {Si }i=1..N is maximal if and only if there is no other subspace {S′i }i=1..N satis-
fying the input criteria and {Si ⊆ S′i }i=1..N . In this context, dissimilarity criteria can be placed with
regard to maximality or be more properly defined in terms of subspace similarity (such as frac-
tion of shared elements) and priority criteria (such as hypervolume, statistical significance, and/or
homogeneity) to select removal candidates.
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The proposed triclustering taxonomic view throughout Sections 3 to 5 can also be generalized
for N � 3. Regarding locality, a partial cluster is a subspace defined by subsets of objects from
N−1 or fewer dimensions and all objects from the remaining dimensions. Contrasting with N -
way clustering, the subspaces found by N -way full and partial clustering tasks contain all objects
from at least one dimension.

Regarding coherence, different coherence assumptions (with parameterizable coherence
strength) can be pursued by correlating all the values within an N -way cluster at a time or by
guaranteeing the intra- and intercorrelation of the values from a subset of dimensions of the orig-
inal N -dimensional subspace.

Regarding the structure of N -way clustering solutions, constraints can be placed to affect the
number, size, shape, and position of N -way clusters. For instance, N -way clustering tasks might
pursue N -way clusters with preferred shapes, such as flattened subspaces with intentional bi-
ases toward the most relevant dimensions. In the context of the allowed positioning, plaid, non-
overlapping, dimension-exclusive, dimension-exhaustive, and hierarchical constraints also might
be incorporated.

Regarding quality, N -way clustering similarly needs to be robust to varying types and amounts
of noise and missings, possibly bounding ηi1, ...,iN

deviations or the number of noisy and missing
elements, (

∏N
i=1

1
|Si |
∑

i j=1.. |Sj |, j=1..N |ηi1 ..iN
|) < ϵ− δ

2 , per subspace.
The inherent aspects of the input N -dimensional dataset, such as temporality, spatiality, or het-

erogeneity, can be further considered to place decisions on the pursued homogeneity, as well as
on orthonormality and contiguity constraints per dimension.

The assessment of N -way clustering solutions can follow a similar evaluation methodology.
In the presence of synthetic N -dimensional data, accuracy-based views given by similarity met-
rics between the found and true N -way clusters (targeting either all dimensions or a subset of
dimensions) offer objective quality criteria. Illustrating, by parameterizing Equation (9) with hy-
pervolume match scores, this accuracy view becomes able to assess the recall and precision of
an N -way clustering solution over a prespecified set of dimensions. In the presence of real data,
homogeneity-based views given by merit functions (such as Equations (10), (11), and (12)) and
domain significance views given by statistical tests against domain knowledge offer subjective
yet important quality criteria to measure the homogeneity and relevance of N -way clustering so-
lutions. Statistical significance views can be further formulated to measure the false-positive and
false-negative risks of triclustering algorithms. In addition, efficiency, robustness, dissimilarity, pa-
rameter sensitivity, and actionability views offer complementary performance criteria. Qualitative
assessments can be further applied to measure the time and space complexity of the algorithms,
the adequacy of a given homogeneity criterion in the context of a specific application domain, the
biases observed toward specific dimensions, and the flexibility of the targeted N -way clustering
structures.

Finally, following the diversity of algorithmic approaches observed for biclustering and tri-
clustering tasks, similar approaches for N -way clustering tasks with N > 3 can be envisioned:
(1) greedy algorithms based on insertion and removal of objects from different dimensions, (2)
stochastic approaches from multiway distributions, (3) (quasi-)exhaustive algorithms for the dis-
covery of dense subspaces, (4) algorithms based on the application of subspace clustering algo-
rithms with lower dimensionality followed by consensus, (5) pattern-mining algorithms applied
with denormalization procedures, and (6) evolutionary multiobjective optimization, among other
possibilities.

Despite the numerous possibilities, the state-of-the-art research on the unsupervised analysis
of N -dimensional data when N > 3 is scarce and mostly driven by N -way full-clustering algo-
rithms based on tensor factorization (Shashua et al. 2006), algebraic theory (He et al. 2010), and
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top-down decomposition and bottom-up composition of variable relations (Bekkerman et al. 2005).
Papalexakis et al. (2013) proposed a new class of N -way coclustering algorithms using multilinear
decomposition with sparse latent factors to exhaustively partition the objects on each dimension.
Contrasting with N -dimensional data analysis (N > 3), there is abundant research on the sub-
space clustering of alternative multidimensional data structures. In the context of star-structured
relational data, a dataset is defined by multiple entries, where each entry associates a subset of ob-
jects from each one of theN dimensions. In this context, subspace clustering relational data is often
mapped into the task of discovering hypercliques (subspaces) in an N -partite graph (where each
entry defines multiple interactions between a set of objects) (Long et al. 2006; Banerjee et al. 2007).
N -partite graphs also have been referred as N -dimensional networks due to the possible presence
of multiway interactions (Lin et al. 2009). In a concluding note, contributions from the fields of
triclustering and N -way full-clustering—as well as from relational learning (to study probabilis-
tic forms of dependency among objects), heterogeneous graph mining, and tensor factorization
(Long et al. 2006, 2007)—provide key principles to develop the long-awaited generation of N -way
clustering algorithms with N > 3.

COMPETING INTERESTS

The authors declare that they have no competing interests.

REFERENCES

Elke Achtert, Christian Böhm, Hans-Peter Kriegel, Peer Kröger, Ina Müller-Gorman, and Arthur Zimek. 2006. Finding
hierarchies of subspace clusters. In European Conference on Principles of Data Mining and Knowledge Discovery. Springer,
446–453.

H. A. Ahmed, P. Mahanta, D. K. Bhattacharyya, J. K. Kalita, and A. Ghosh. 2011. Intersected coexpressed subcube miner:
An effective triclustering algorithm. In 2011 World Congress on Information and Communication Technologies (WICT’11).
IEEE, 846–851.

Faris Alqadah and Raj Bhatnagar. 2008. An effective algorithm for mining 3-clusters in vertically partitioned data. In IC on

Information and Knowledge Management. ACM, 1103–1112.
David Amar, Daniel Yekutieli, Adi Maron-Katz, Talma Hendler, and Ron Shamir. 2015. A hierarchical Bayesian model for

flexible module discovery in three-way time-series data. Bioinformatics 31, 12 (2015), i17–i26.
Ira Assent, Emmanuel Müller, Ralph Krieger, Timm Jansen, and Thomas Seidl. 2008. Pleiades: Subspace clustering and

evaluation. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 666–
671.

Arvind Balasubramanian, Jun Wang, and Balakrishnan Prabhakaran. 2016. Discovering multidimensional motifs in physi-
ological signals for personalized healthcare. IEEE Journal of Selected Topics in Signal Processing 10, 5 (2016), 832–841.

Arindam Banerjee, Sugato Basu, and Srujana Merugu. 2007. Multi-way clustering on relation graphs. In SDM, Vol. 7. SIAM,
225–334.

Ron Bekkerman, Ran El-Yaniv, and Andrew McCallum. 2005. Multi-way distributional clustering via pairwise interactions.
In Proceedings of the 22nd International Conference on Machine Learning. ACM, 41–48.

Amir Ben-Dor, Benny Chor, Richard Karp, and Zohar Yakhini. 2003. Discovering local structure in gene expression data:
The order-preserving submatrix problem. Journal of Computational Biology 10, 3–4 (2003), 373–384.

Anirban Bhar, Martin Haubrock, Anirban Mukhopadhyay, Ujjwal Maulik, Sanghamitra Bandyopadhyay, and Edgar
Wingender. 2012. δ -TRIMAX: Extracting triclusters and analysing coregulation in time series gene expression data.
In International Workshop on Algorithms in Bioinformatics. Springer, 165–177.

Anirban Bhar, Martin Haubrock, Anirban Mukhopadhyay, and Edgar Wingender. 2015. Multiobjective triclustering of time-
series transcriptome data reveals key genes of biological processes. BMC Bioinformatics 16, 1 (2015), 1.

Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez. 2013. Recommender systems survey.
Knowledge-Based systems 46 (2013), 109–132.

Doruk Bozdağ, Ashwin S. Kumar, and Umit V. Catalyurek. 2010. Comparative analysis of biclustering algorithms. In BCB.
ACM, New York, 265–274. DOI:http://dx.doi.org/10.1145/1854776.1854814

Loïc Cerf, Jérémy Besson, Kim-Ngan T. Nguyen, and Jean-François Boulicaut. 2013. Closed and noise-tolerant patterns in
n-ary relations. Data Mining and Knowledge Discovery 26, 3 (2013), 574–619.

ACM Computing Surveys, Vol. 51, No. 5, Article 95. Publication date: September 2018.

http://dx.doi.org/10.1145/1854776.1854814


Triclustering Algorithms for Three-Dimensional Data Analysis 95:39

Loïc Cerf, Jérémy Besson, Céline Robardet, and Jean-François Boulicaut. 2008. Data peeler: Contraint-based closed pattern
mining in n-ary relations.. In SDM, Vol. 8. SIAM, 37–48.

Loïc Cerf, Jérémy Besson, Céline Robardet, and Jean-François Boulicaut. 2009. Closed patterns meet n-ary relations. ACM

Transactions on Knowledge Discovery from Data (TKDD) 3, 1 (2009), 3.
Yizong Cheng and George M. Church. 2000. Biclustering of expression data. In Intelligent Systems for Molecular Biology.

AAAI Press, 93–103.
Antonio D. Chiaravalloti, Gianluigi Greco, Antonella Guzzo, and Luigi Pontieri. 2006. An information-theoretic framework

for high-order co-clustering of heterogeneous objects. In European Conference on Machine Learning. Springer, 598–605.
Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 2 (2002), 182–197.
Duygu Dede and Hasan Oğul. 2013. A three-way clustering approach to cross-species gene regulation analysis. In Sympo-

sium on Innovations in Intelligent Systems and Applications (INISTA’13). IEEE, 1–5.
Duygu Dede and Hasan Oğul. 2014. TriClust: A tool for cross-species analysis of gene regulation. Molecular Informatics 33,

5 (2014), 382–387.
Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn J. Keogh. 2008. Querying and mining of time

series data: Experimental comparison of representations and distance measures. Proceedings of the VLDB Endowment 1,
2 (2008), 1542–1552.

A. Donders, G. van der Heijden, T. Stijnen, and K. Moons. 2006. Review: A gentle introduction to imputation of missing
values.Clinical Epidemiology 59, 10 (2006), 1087–1091.

Neng Fan, Nikita Boyko, and Panos M. Pardalos. 2010. Recent advances of data biclustering with application in computa-
tional neuroscience. In Computational Neuroscience. Springer, 85–112.

Gang Fang, Majda Haznadar, Wen Wang, Haoyu Yu, Michael Steinbach, Timothy R. Church, William S. Oetting, Brian
Van Ness, and Vipin Kumar. 2012. High-order SNP combinations associated with complex diseases: Efficient discovery,
statistical power and functional interactions. Plos One 7, 4 (2012), 1–15. Retrieved from http://dx.doi.org/10.1371/journal.
pone.0033531.

King-Sun Fu and J. K. Mui. 1981. A survey on image segmentation. Pattern Recognition 13, 1 (1981), 3–16.
Bin Gao, Tie-Yan Liu, and Wei-Ying Ma. 2006. Star-structured high-order heterogeneous data co-clustering based on con-

sistent information theory. In 6th International Conference on Data Mining (ICDM’06). IEEE, 880–884.
Georg K. Gerber, Robin D. Dowell, Tommi S. Jaakkola, and David K. Gifford. 2007. Automated discovery of functional

generality of human gene expression programs. PLoS Computational Biology 3, 8 (2007), e148.
D. V. Gnatyshak. 2015. A single-pass triclustering algorithm. Automatic Documentation and Mathematical Linguistics 49, 1

(2015), 27–41.
Dmitry Gnatyshak, Dmitry I. Ignatov, Alexander Semenov, and Jonas Poelmans. 2012. Gaining insight in social networks

with biclustering and triclustering. In International Conference on Business Informatics Research. Springer, 162–171.
Joana Gonçalves. 2013. Integrative Mining of Gene Regulation and Its Perturbations. Ph.D. Dissertation. Instituto Superior

Técnico, Universidade de Lisboa, Lisboa.
Joana P. Gonçalves and Sara C. Madeira. 2014. LateBiclustering: Efficient heuristic algorithm for time-lagged bicluster

identification. IEEE/ACM Transactions on Computational Biology and Bioinformatics 11, 5 (2014), 801–813. DOI:http://
dx.doi.org/10.1109/TCBB.2014.2312007

Gianluigi Greco, Antonella Guzzo, and Luigi Pontieri. 2010. Coclustering multiple heterogeneous domains: Linear combi-
nations and agreements. IEEE Transactions on Knowledge and Data Engineering 22, 12 (2010), 1649–1663.

Romain Guigourès, Marc Boullé, and Fabrice Rossi. 2015. Discovering patterns in time-varying graphs: A triclustering
approach. Advances in Data Analysis and Classification 1 (2015), 1–28.

David Gutiérrez-Avilés and Cristina Rubio-Escudero. 2014a. LSL: A new measure to evaluate triclusters. In 2014 IEEE IC on

Bioinformatics and Biomedicine (BIBM’14). IEEE, 30–37.
David Gutiérrez-Avilés and Cristina Rubio-Escudero. 2014b. Mining 3D patterns from gene expression temporal data: A

new tricluster evaluation measure. Scientific World Journal 2014 (2014), 1–16.
David Gutiérrez-Avilés and Cristina Rubio-Escudero. 2015. MSL: A measure to evaluate three-dimensional patterns in gene

expression data. Evolutionary Bioinformation Online 11 (2015), 121.
David Gutiérrez-Avilés and Cristina Rubio-Escudero. 2016. TRIQ: A Comprehensive Evaluation Measure for Triclustering

Algorithms. Springer International Publishing, Cham, 673–684. DOI:http://dx.doi.org/10.1007/978-3-319-32034-2_56
David Gutiérrez-Avilés, Cristina Rubio-Escudero, Francisco Martínez-Álvarez, and José C. Riquelme. 2014. TriGen: A ge-

netic algorithm to mine triclusters in temporal gene expression data. Neurocomputing 132 (2014), 42–53.
Daniel F. Hayes. 2013. OMICS-based personalized oncology: If it is worth doing, it is worth doing well! BMC Medicine 11,

1 (2013), 221.
Zhaoshui He, Andrzej Cichocki, Shengli Xie, and Kyuwan Choi. 2010. Detecting the number of clusters in n-way proba-

bilistic clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 11 (2010), 2006–2021.

ACM Computing Surveys, Vol. 51, No. 5, Article 95. Publication date: September 2018.

http://dx.doi.org/10.1371/journal.pone.0033531
http://dx.doi.org/10.1371/journal.pone.0033531
http://dx.doi.org/10.1109/TCBB.2014.2312007
http://dx.doi.org/10.1109/TCBB.2014.2312007
http://dx.doi.org/10.1007/978-3-319-32034-2_56


95:40 R. Henriques and S. C. Madeira

Rui Henriques. 2016. Learning from High-Dimensional Data Using Local Descriptive Models. Ph.D. Dissertation. Instituto
Superior Tecnico, Universidade de Lisboa, Lisboa.

Rui Henriques, Cláudia Antunes, and Sara C. Madeira. 2015a. Generative modeling of repositories of health records
for predictive tasks. Data Mining and Knowledge Discovery 29, 4 (2015), 999–1032. DOI:http://dx.doi.org/10.1007/
s10618-014-0385-7

Rui Henriques, Claudia Antunes, and Sara C. Madeira. 2015b. A structured view on pattern mining-based biclustering.
Pattern Recognition 48, 12 (2015), 3941–3958. DOI:https://doi.org/10.1016/j.patcog.2015.06.018

Rui Henriques and Sara C. Madeira. 2014. BicPAM: Pattern-based biclustering for biomedical data analysis. Algorithms for

Molecular Biology 9, 1 (2014), 27. DOI:http://dx.doi.org/10.1186/s13015-014-0027-z
Rui Henriques and Sara C. Madeira. 2015. Biclustering with flexible plaid models to unravel interactions between biological

processes. IEEE/ACM Transactions on Computational Biology and Bioinformatics 12, 4 (2015), 738–752. DOI:http://dx.doi.
org/10.1109/TCBB.2014.2388206

Rui Henriques and Sara C. Madeira. 2016. BicNET: Flexible module discovery in large-scale biological networks using
biclustering. Algorithms for Molecular Biology 11, 1 (2016), 1–30. DOI:http://dx.doi.org/10.1186/s13015-016-0074-8

Rui Henriques and Sara C. Madeira. 2018. BSig: Evaluating the statistical significance of biclustering solutions. Data Mining

and Knowledge Discovery 32, 1 (2018), 124–161. DOI:http://dx.doi.org/10.1007/s10618-017-0521-2
Joke Heylen, Iven Van Mechelen, Eiko I. Fried, and Eva Ceulemans. 2016. Two-mode K-spectral centroid analysis for study-

ing multivariate longitudinal profiles. Chemometrics and Intelligent Laboratory Systems 154 (2016), 194–206.
John Hopcroft, Omar Khan, Brian Kulis, and Bart Selman. 2004. Tracking evolving communities in large linked networks.

Proceedings of the National Academy of Sciences 101, Suppl 1 (2004), 5249–5253.
Zhen Hu and Raj Bhatnagar. 2010. Algorithm for discovering low-variance 3-clusters from real-valued datasets. In 2010

IEEE International Conference on Data Mining. IEEE, 236–245.
Zhen Hu and Raj Bhatnagar. 2011. Discovery of versatile temporal subspace patterns in 3-D datasets. In 2011 IEEE 11th

International Conference on Data Mining. IEEE, 1092–1097.
Dmitry I. Ignatov, D. V. Gnatyshak, S. O. Kuznetsov, and Boris G. Mirkin. 2015. Triadic formal concept analysis and triclus-

tering: Searching for optimal patterns. Machine Learning 101, 1–3 (2015), 271–302.
Dmitry I. Ignatov and Sergei O. Kuznetsov. 2009. Frequent itemset mining for clustering near duplicate web documents. In

IC on Conceptual Structures. Springer, 185–200.
J. Ihmels, S. Bergmann, and N. Barkai. 2004. Defining transcription modules using large-scale gene expression data. Bioin-

formatics 20, 13 (2004), 1993–2003.
Robert Jäschke, Andreas Hotho, Christoph Schmitz, Bernhard Ganter, and Gerd Stumme. 2006. TRIAS-An algorithm for

mining iceberg tri-lattices. In ICDM, Vol. 6. 907–911.
Liping Ji, Kian-Lee Tan, and Anthony K. H. Tung. 2006. Mining frequent closed cubes in 3D datasets. In Proceedings of the

32nd International Conference on Very Large Data Bases. VLDB Endowment, 811–822.
Xiaonan Ji, James Bailey, and Guozhu Dong. 2007. Mining minimal distinguishing subsequence patterns with gap con-

straints. Knowledge and Information Systems 11, 3 (2007), 259–286.
Daxin Jiang, Jian Pei, Murali Ramanathan, Chun Tang, and Aidong Zhang. 2004. Mining coherent gene clusters from gene-

sample-time microarray data. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD’04). ACM, Seattle, WA, USA, 430–439.
Haoliang Jiang, Shuigeng Zhou, Jihong Guan, and Ying Zheng. 2006. gTRICLUSTER: A more general and effective 3d

clustering algorithm for gene-sample-time microarray data. In International Workshop on Data Mining for Biomedical

Applications. Springer, 48–59.
Inuk Jung, Kyuri Jo, Hyejin Kang, Hongryul Ahn, Youngjae Yu, and Sun Kim. 2017. TimesVector: A vectorized clustering

approach to the analysis of time series transcriptome data from multiple phenotypes. Bioinformatics 33, 23 (2017), 3827–
3835.

Tulika Kakati, Hasin A. Ahmed, Dhruba K. Bhattacharyya, and Jugal K. Kalita. 2016. A fast gene expression analysis using
parallel biclustering and distributed triclustering approach. In ICTCS. ACM, New York, Article 122, 6 pages. Retrieved
from http://doi.acm.org/10.1145/2905055.2905182.

Sabine Krolak-Schwerdt, Peter Orlik, and Bernhard Ganter. 1994. TRIPAT: A model for analyzing three-mode binary data.
In Information Systems and Data Analysis. Springer, 298–307.

L. Lazzeroni and A. Owen. 2002. Plaid models for gene expression data. Statistica Sinica 12 (2002), 61–86.
Fritz Lehmann and Rudolf Wille. 1995. A triadic approach to formal concept analysis. In International Conference on Con-

ceptual Structures. Springer, 32–43.
Ao Li and David Tuck. 2009. An effective tri-clustering algorithm combining expression data with gene regulation infor-

mation. Gene Regulation and Systems Biology 3 (2009), 49.
Wenyuan Li, Chun-Chi Liu, Tong Zhang, Haifeng Li, Michael S. Waterman, and Xianghong Jasmine Zhou. 2011. Integrative

analysis of many weighted co-expression networks using tensor computation. PLoS Computational Biology 7, 6 (2011),
e1001106.

ACM Computing Surveys, Vol. 51, No. 5, Article 95. Publication date: September 2018.

http://dx.doi.org/10.1007/s10618-014-0385-7
http://dx.doi.org/10.1007/s10618-014-0385-7
https://doi.org/10.1016/j.patcog.2015.06.018
http://dx.doi.org/10.1186/s13015-014-0027-z
http://dx.doi.org/10.1109/TCBB.2014.2388206
http://dx.doi.org/10.1109/TCBB.2014.2388206
http://dx.doi.org/10.1186/s13015-016-0074-8
http://dx.doi.org/10.1007/s10618-017-0521-2
http://doi.acm.org/10.1145/2905055.2905182


Triclustering Algorithms for Three-Dimensional Data Analysis 95:41

Xutao Li, Yunming Ye, Michael Ng, and Qingyao Wu. 2013. MultiFacTV: Module detection from higher-order time series
biological data. BMC Genomics 14, Suppl 4 (2013), S2.

Yifeng Li and Alioune Ngom. 2010. Classification of clinical gene-sample-time microarray expression data via tensor de-
composition methods. In CIBB. Springer, 275–286.

Yu-Ru Lin, Jimeng Sun, Paul Castro, Ravi Konuru, Hari Sundaram, and Aisling Kelliher. 2009. Metafac: Community dis-
covery via relational hypergraph factorization. In Proceedings of the 15th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. ACM, 527–536.
Junwan Liu, Zhoujun Li, Xiaohua Hu, and Yiming Chen. 2008. Multi-objective evolutionary algorithm for mining 3D clus-

ters in gene-sample-time microarray data. In IEEE International Conference on Granular Computing (GrC’08). IEEE, 442–
447.

Yu-Cheng Liu, Chao-Hui Lee, Wei-Chung Chen, J. W. Shin, Hui-Huang Hsu, and Vincent S. Tseng. 2010. A novel method
for mining temporally dependent association rules in three-dimensional microarray datasets. In 2010 International Com-

puter Symposium (ICS’10). IEEE, 759–764.
Bo Long, Xiaoyun Wu, Zhongfei Mark Zhang, and Philip S. Yu. 2006. Unsupervised learning on k-partite graphs. In Pro-

ceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 317–326.
Bo Long, Zhongfei Mark Zhang, Xiaoyun Wu, and Philip S. Yu. 2006. Spectral clustering for multi-type relational data. In

IC Conference on Machine Learning. ACM, 585–592.
Bo Long, Zhongfei Mark Zhang, and Philip S. Yu. 2007. A probabilistic framework for relational clustering. In Proceedings

of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 470–479.
Sara C. Madeira and Arlindo L. Oliveira. 2004. Biclustering algorithms for biological data analysis: A survey. IEEE/ACM

Transactions on Computational Biology and Bioinformatics 1, 1 (2004), 24–45.
Sara C. Madeira and Arlindo L. Oliveira. 2009. A polynomial time biclustering algorithm for finding approximate expression

patterns in gene expression time series. Algorithms for Molecular Biology 4, 1 (2009), 8. DOI:http://dx.doi.org/10.1186/
1748-7188-4-8

Sara C. Madeira, Miguel Nobre Parreira Cacho Teixeira, Isabel Sá-Correia, and Arlindo Oliveira. 2010. Identification of reg-
ulatory modules in time series gene expression data using a linear time biclustering algorithm. IEEE/ACM Transactions

on Computational Biology and Bioinformatics 1 (2010), 153–165.
P. Mahanta, H. A. Ahmed, D. K. Bhattacharyya, and Jugal K. Kalita. 2011. Triclustering in gene expression data analysis: A

selected survey. In 2011 2nd National Conference on Emerging Trends and Applications in Computer Science (NCETACS’11).
IEEE, 1–6.

Shawn Mankad and George Michailidis. 2014. Biclustering three-dimensional data arrays with plaid models. Journal of

Computational and Graphical Statistics 23, 4 (2014), 943–965.
Francisco Martínez-Álvarez, David Gutiérrez-Avilés, Antonio Morales-Esteban, Jorge Reyes, José L. Amaro-Mellado, and

Cristina Rubio-Escudero. 2015. A novel method for seismogenic zoning based on triclustering: Application to the iberian
peninsula. Entropy 17, 7 (2015), 5000–5021.

Tim McInerney and Demetri Terzopoulos. 1996. Deformable models in medical image analysis: A survey. Medical Image

Analysis 1, 2 (1996), 91–108. DOI:http://dx.doi.org/https://doi.org/10.1016/S1361-8415(96)80007-7
Jia Meng, Shou-Jiang Gao, and Yufei Huang. 2009. Enrichment constrained time-dependent clustering analysis for finding

meaningful temporal transcription modules. Bioinformatics 25, 12 (2009), 1521–1527.
David Minnen, Charles Isbell, Irfan Essa, and Thad Starner. 2007. Detecting subdimensional motifs: An efficient algorithm

for generalized multivariate pattern discovery. In 7th IEEE International Conference on Data Mining (ICDM’07). IEEE,
601–606.

Boris G. Mirkin and Andrey V. Kramarenko. 2011. Approximate bicluster and tricluster boxes in the analysis of binary data.
In International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing. Springer, 248–256.

Gabriela Moise and Jörg Sander. 2008a. Finding non-redundant, statistically significant regions in high dimensional data: A
novel approach to projected and subspace clustering. In Proceedings of the 14th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining. ACM, 533–541.
Gabriela Moise and Jörg Sander. 2008b. Finding non-redundant, statistically significant regions in high dimensional data: A

novel approach to projected and subspace clustering. In Proceedings of the 14th ACM SIGKDD IC on Knowledge Discovery

and Data Mining. ACM, New York, 533–541. Retrieved from http://doi.acm.org/10.1145/1401890.1401956.
Carla S. Möller-Levet, Simon N. Archer, Giselda Bucca, Emma E. Laing, Ana Slak, Renata Kabiljo, June C. Y. Lo, Nayan-

tara Santhi, Malcolm von Schantz, Colin P. Smith, and Derk-Jan Dijk. 2013. Effects of insufficient sleep on circadian
rhythmicity and expression amplitude of the human blood transcriptome. National Academy of Sciences 110, 12 (2013),
E1132–E1141.

N. Narmadha and R. Rathipriya. 2016. Triclustering: An evolution of clustering. In 2016 Online IC on Green Engineering and

Technologies (IC-GET’16). 1–4.

ACM Computing Surveys, Vol. 51, No. 5, Article 95. Publication date: September 2018.

http://dx.doi.org/10.1186/1748-7188-4-8
http://dx.doi.org/10.1186/1748-7188-4-8
http://dx.doi.org/https://doi.org/10.1016/S1361-8415(96)80007-7
http://doi.acm.org/10.1145/1401890.1401956


95:42 R. Henriques and S. C. Madeira

Victor A. Padilha and Ricardo J. G. B. Campello. 2017. A systematic comparative evaluation of biclustering techniques. BMC

Bioinformatics 18, 1 (2017), 55.
Gergely Palla, Albert-László Barabási, and Tamás Vicsek. 2007. Quantifying social group evolution. Nature 446, 7136 (2007),

664–667.
Evangelos E. Papalexakis, Nicholas D. Sidiropoulos, and Rasmus Bro. 2013. From k-means to higher-way co-clustering:

Multilinear decomposition with sparse latent factors. IEEE Transactions on Signal Processing 61, 2 (2013), 493–506.
Grant P. Parnell, Benjamin M. Tang, Marek Nalos, Nicola J. Armstrong, Stephen J. Huang, David R. Booth, and Anthony

S. McLean. 2013. Identifying key regulatory genes in the whole blood of septic patients to monitor underlying immune
dysfunctions. Shock 40, 3 (2013), 166–174.

Anne Patrikainen and Marina Meila. 2006. Comparing subspace clusterings. IEEE TKDE 18, 7 (2006), 902–916. DOI:http://
dx.doi.org/10.1109/TKDE.2006.106

Mohsen Pourahmadi and Siamak Noorbaloochi. 2016. Multivariate time series analysis of neuroscience data: Some chal-
lenges and opportunities. Current Opinion in Neurobiology 37 (2016), 12–15.

Amela Prelić, Stefan Bleuler, Philip Zimmermann, Anja Wille, Peter Bühlmann, Wilhelm Gruissem, Lars Hennig, Lothar
Thiele, and Eckart Zitzler. 2006. A systematic comparison and evaluation of biclustering methods for gene expression
data. Bioinformatics 22, 9 (2006), 1122–1129.

Jan Schepers, Iven Van Mechelen, and Eva Ceulemans. 2006. Three-mode partitioning. Computational Statistics & Data

Analysis 51, 3 (2006), 1623–1642.
Amnon Shashua, Ron Zass, and Tamir Hazan. 2006. Multi-way Clustering Using Super-Symmetric Non-negative Tensor Fac-

torization. Springer, Berlin, 595–608. DOI:http://dx.doi.org/10.1007/11744085_46
Kelvin Sim, Zeyar Aung, and Vivekanand Gopalkrishnan. 2010a. Discovering correlated subspace clusters in 3D continuous-

valued data. In 2010 IEEE International Conference on Data Mining. IEEE, 471–480.
Kelvin Sim, Ardian Kristanto Poernomo, and Vivekanand Gopalkrishnan. 2010b. MininG actionable subspace clusters in

sequential data. In SDM. SIAM, 442–453.
Kelvin Sim, Ghim-Eng Yap, David R. Hardoon, Vivekanand Gopalkrishnan, Gao Cong, and Suryani Lukman. 2013. Centroid-

based actionable 3D subspace clustering. IEEE Transactions on Knowledge and Data Engineering 25, 6 (2013), 1213–1226.
Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S. Yu. 2007. Graphscope: Parameter-free mining of large

time-evolving graphs. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 687–
696.

Jochen Supper, Martin Strauch, Dierk Wanke, Klaus Harter, and Andreas Zell. 2007. EDISA: Extracting biclusters from
multiple time-series of gene expression profiles. BMC Bioinformatics 8, 1 (2007), 334.

Jinhui Tang, Xiangbo Shu, Guo-Jun Qi, Zechao Li, Meng Wang, Shuicheng Yan, and Ramesh Jain. 2017. Tri-clustered tensor
completion for social-aware image tag refinement. IEEE Transactions on Pattern Analysis and Machine Intelligence 39, 8
(2017), 1662–1674.

Giridhar Tatavarty, Raj Bhatnagar, and Barrington Young. 2007. Discovery of temporal dependencies between frequent
patterns in multivariate time series. In IEEE Symposium on Computational Intelligence and Data Mining, 2007 (CIDM’07).

IEEE, 688–696.
Alain B. Tchagang, Sieu Phan, Fazel Famili, Heather Shearer, Pierre Fobert, Yi Huang, Jitao Zou, Daiqing Huang, Adrian

Cutler, Ziying Liu, and Youlian Pan. 2012. Mining biological information from 3D short time-series gene expression
data: The OPTricluster algorithm. BMC Bioinformatics 13, 1 (2012), 1.

Alain Tremeau and Nathalie Borel. 1997. A region growing and merging algorithm to color segmentation. Pattern Recog-

nition 30, 7 (1997), 1191–1203.
Alireza Vahdatpour, Navid Amini, and Majid Sarrafzadeh. 2009. Toward unsupervised activity discovery using multi-

dimensional motif detection in time series. In IJCAI, Vol. 9. 1261–1266.
Sharon Vaisvaser, Tamar Lin, Roee Admon, Ilana Podlipsky, Yona Greenman, Naftali Stern, Eyal Fruchter, Ilan Wald, Daniel

Pine, Ricardo Tarrasch, Yair Bar-Haim, and Talma Hendler. 2013. Neural traces of stress: Cortisol related sustained
enhancement of amygdala-hippocampal functional connectivity.

Peter Waltman, Thadeous Kacmarczyk, A. Bate, D. Kearns, D. Reiss, P. Eichenberger, and Richard Bonneau. 2010. Multi-
species integrative biclustering. Genome Biology 11, 9 (2010), 1.

Guoren Wang, Linjun Yin, Yuhai Zhao, and Keming Mao. 2010. Efficiently mining time-delayed gene expression patterns.
IEEE Transactions on Systems, Man, and Cybernetics, Part B 40, 2 (2010), 400–411.

Shu Wang, Robin R. Gutell, and Daniel P. Miranker. 2007. Biclustering as a method for RNA local multiple sequence align-
ment. Bioinformatics 23, 24 (2007), 3289–3296.

Xiaojing Wu, Raul Zurita-Milla, Menno-Jan Kraak, and Emma Izquierdo-Verdiguier. 2017. Clustering-based approaches
to the exploration of spatio-temporal data. International Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences (ISPRS’17), 1387–1391.

ACM Computing Surveys, Vol. 51, No. 5, Article 95. Publication date: September 2018.

http://dx.doi.org/10.1109/TKDE.2006.106
http://dx.doi.org/10.1109/TKDE.2006.106
http://dx.doi.org/10.1007/11744085_46


Triclustering Algorithms for Three-Dimensional Data Analysis 95:43

Xiaojing Wu, Raul Zurita-Milla, Emma Izquierdo Verdiguier, and Menno-Jan Kraak. 2018. Triclustering georeferenced time
series for analyzing patterns of intra-annual variability in temperature. Annals of the American Association of Geogra-

phers 108, 1 (2018), 71–87.
Xin Xu, Ying Lu, Kian-Lee Tan, and Anthony K. H. Tung. 2009. Finding time-lagged 3D clusters. In 2009 IEEE 25th Interna-

tional Conference on Data Engineering. IEEE, 445–456.
Maxim Yurov and Dmitry I. Ignatov. 2017. Turning krimp into a triclustering technique on sets of attribute-condition pairs

that compress. In International Joint Conference on Rough Sets. Springer, 558–569.
Lizhuang Zhao and Mohammed J. Zaki. 2005. Tricluster: An effective algorithm for mining coherent clusters in 3d microar-

ray data. In ACM SIGMOD International Conf. on Management of Data. ACM, 694–705.
Jiayu Zhou, Fei Wang, Jianying Hu, and Jieping Ye. 2014. From micro to macro: Data driven phenotyping by densification

of longitudinal electronic medical records. In Proceedings of the 20th ACM SIGKDD IC on Knowledge Discovery and Data

Mining. ACM, 135–144.
Qingbiao Zhou, Guangdong Xu, and Yu Zong. 2009. Web co-clustering of usage network using tensor decomposition. In

IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies (WI-IAT’09), Vol.
3. IEEE, 311–314.

Hongyuan Zhu, Fanman Meng, Jianfei Cai, and Shijian Lu. 2016. Beyond pixels: A comprehensive survey from bottom-up
to semantic image segmentation and cosegmentation. Journal of Visual Communication and Image Representation 34,
Suppl. C (2016), 12–27.

Sergey Zudin, Dmitry V. Gnatyshak, and Dmitry I. Ignatov. 2015. Putting OAC-triclustering on MapReduce. In Proceedings

of the 12th IC on Concept Lattices and Their Applications. CEUR Workshop Proceedings, 47–58.

Received September 2017; revised January 2018; accepted March 2018

ACM Computing Surveys, Vol. 51, No. 5, Article 95. Publication date: September 2018.


