
Why We Engage in FLOSS: Answers from Core Developers
Jailton Coelho, Marco Tulio

Valente
Federal University of Minas Gerais,

Brazil
{jailtoncoelho,mtov}@dcc.ufmg.br

Luciana L. Silva
Federal Institute of Minas Gerais,

Brazil
luciana.lourdes.silva@ifmg.edu.br

André Hora
Federal University of Mato Grosso

do Sul, Brazil
hora@facom.ufms.br

ABSTRACT
The maintenance and evolution of Free/Libre Open Source
Software (FLOSS) projects demand the constant attraction of
core developers. In this paper, we report the results of a survey
with 52 developers, who recently became core contributors of
popular GitHub projects. We reveal their motivations to as-
sume a key role in FLOSS projects (e.g., improving the projects
because they are also using it), the project characteristics that
most helped in their engagement process (e.g., a friendly
community), and the barriers faced by the surveyed core de-
velopers (e.g., lack of time of the project leaders). We also
compare our results with related studies about others kinds of
open source contributors (casual, one-time, and newcomers).

KEYWORDS
Core Developers, GitHub, Open Source Software.

1 INTRODUCTION
Free/Libre and Open Source Software (FLOSS) projects have
an increasing impact on our daily lives. For example, many
companies depend nowadays on open source operating sys-
tems, databases, and web servers to run their basic operations.
Similarly, most commercial software produced today depend
on a variety of open source libraries and frameworks. However,
there is a growing concern on the long term sustainability of
FLOSS projects [8, 12]. For example, in a recent study, Avelino
et al. [1] looked at a sample of 133 popular GitHub projects
and concluded that nearly two-thirds depend on just one or
two developers to survive [1]. For this reason, FLOSS projects
must continuously attract new core developers to mitigate the
risks of failing.

Core developers are the ones responsible for the design, im-
plementation, and maintenance of the most important features
in a project. They are also responsible to manage the project
and to plan and drive its evolution [14, 19, 21]. By contrast,
peripheral contributors are those who occasionally contribute
to the projects, mostly by fixing bugs and implementing minor

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
CHASE’18, May 27, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5725-8/18/05. . . $15.00
https://doi.org/10.1145/3195836.3195848

features [20, 24, 26]. Usually, core developers represent just a
small fraction of the project contributors. For example, d3/d3—
a very popular JavaScript visualization library, with over 73K
stars on GitHub—has 121 contributors. However, the system
is maintained and evolved by just one core developer [1].

Since core developers are the heart and brain of FLOSS
projects, we report in this paper a survey with 52 developers
who, in the last year, contributed to popular GitHub systems
to the point of becoming core developers in these projects.
By surveying these developers, our goal is to reveal their
motivations for joining an open source project. We also asked
them about the project characteristics that most helped in this
process and about the main barriers they faced. The survey
results can help FLOSS developers to improve some of the
management practices followed in their projects, aiming to
possibly expand the base of core developers.

We make the following contributions in this paper:

∙ We provide a list of motivations that led recent core
developers to contribute to open source projects. We
found that 60% of the survey participants contribute
because they are also using the projects.

∙ We reveal a list of project characteristics and practices
that helped recent core contributors to join a FLOSS
project. We found they are most attracted by non-
technical characteristics, especially the ones related to a
friendly and available FLOSS community.

∙ We provide a list of the main barriers faced by recent
core contributors when joining a FLOSS project. We
found that non-technical barriers are the most relevant
impediment they face to contribute, as the lack of time
of the project leaders.

We organize the remainder of the paper as follows. Section 2
presents the study design, how we selected the studied projects
and the heuristic we used to identify core developers. Section 3
discusses the main findings of the survey. Section 4 presents a
segmented analysis of the survey answers. Section 5 discuss
threats to validity and Section 6 presents related work. Sec-
tion 7 presents the main implications of our study, including
implications to practitioners and researchers. Finally, Section 8
concludes the paper.

2 STUDY DESIGN
We start by considering the top-5,000 most popular GitHub
projects, ranked by number of stars. Stars are similar to likes in
popular social networks and therefore are a common measure
of the popularity of GitHub projects [2]. Then, we apply four

ar
X

iv
:1

80
3.

05
74

1v
1

 [
cs

.S
E

]
 1

5
M

ar
 2

01
8

https://doi.org/10.1145/3195836.3195848

CHASE’18, May 27, 2018, Gothenburg, Sweden Jailton Coelho, Marco Tulio Valente, Luciana L. Silva, and André Hora

59

25

50

75

100

125

A
ge

 (
m

on
th

s)

(a) Age

50

0

50

100

150

200

250

C
on

tr
ib

ut
or

s

(b) Contributors

826

0

2000

4000

6000

C
om

m
its

(c) Commits

3.1

2,5K

5K

7,5K

10K

S
ta

rs

(d) Stars

Figure 1: Distribution of the (a) age, (b) contributors, (c) commits, and (d) stars of the selected projects, without outliers.

strategies to discard projects from this initial selection, as
follows:

(1) Non-Software Projects: We discarded 61 repositories that
are not software projects, including books (e.g., vhf/free-
programming-books andgetify/You-Dont-Know-JS) and
awesome-lists (e.g., sindresorhus/awesome). To remove
these projects we relied on their GitHub topics. Specif-
ically, we discarded projects with the topics book or
awesome-list.1

(2) Projects with no lines of code in a set of programming lan-
guages: First, we used the tool AlDanial/cloc2 to com-
pute the size of the projects, in lines of code (LOC). We
configured this tool to only consider code in the top-100
most popular programming languages in the TIOBE
list.3 As a result, we discarded 397 projects, which are
implemented in languages like HTML, CSS, and Mark-
down (i.e., in non-programming languages). For these
projects, the size in LOC (counting only source code im-
plemented in major programming languages) is equal to
zero. As examples, we removed the following projects:
github/gitignore (which is a collection of textual .git-
ignore templates), jlevy/the-art-of-command-line (a
selection of notes and tips on using Linux command-
line tools), and necolas/normalize.css (a collection of
HTML element and attribute style-normalization).

(3) Inactive projects: We are interested in projects under active
development. Therefore, we discarded 830 repositories
without commits in the last six months.

(4) Non-mature projects: Our central goal is to survey recent
core developers of mature FLOSS projects. Particularly,
it is important the projects have a minimal age in order
to provide enough development time to compute new
core developers. For this reason, we discarded 1,450
repositories with less than three years.

We ended up with 2,262 open source systems, including
well-known projects, as facebook/react, angular/angular,

1This step represents just a first attempt to remove non-software repositories;
step (2) is also used to this purpose.

2https://github.com/AlDanial/cloc
3https://www.tiobe.com/tiobe-index

and rails/rails. Figure 1 shows violin plots with the distribu-
tion of age (in months), number of contributors, number of
commits, and number of stars of the selected projects, without
considering outliers. The median measures are 59 months, 50
contributors, 826 commits, and 3.1K stars, respectively. 1,256
projects (55%) are owned by organizations and 1,006 repos-
itories (45%) by individual users. These projects are mainly
implemented in JavaScript (696 projects, 31%), followed by
Ruby (232 projects, 10%), and Python (230 projects, 10%).

2.1 Core Developer Identification
To identify the core developers of each project, we use a
Commit-Based Heuristic, which is commonly adopted in
other studies [15, 19, 21, 25]. This heuristic is centered on the
number of commits by the project contributors, which usually
follows a heavy-tailed distribution [15, 19], i.e., a minority of
developers accounts for most contributions. According to this
heuristic, the core team are those who produce 80% of the
overall amount of commits in a project. However, as usually
defined, this heuristic accepts developers with few contribu-
tions, regarding the total number of commits. For this reason,
we customized the heuristic after some initial experiments
to require core developers to have at least 5% of the total
number of commits; candidates who have fewer commits
are excluded. For example, to achieve 80% of the commits
in moment/moment, the core team initially identified by the
heuristic consists of 41 contributors. However, 38 contributors
have less than 5% of the overall amount of commits. Thus,
only three developers are classified as core by our customized
heuristic. These developers represent 35%, 25% and 7% of the
project’s commits, respectively. In favor of using this second
threshold, the literature reports that even in complex projects,
the core team is no bigger than 10-15 developers [19].

Despite the adoption of this second threshold, we observe
in Figure 2a that the median percentage of commits by the
selected core teams is 81%. Figure 2b shows the core team size
per project considering the minimal threshold of 5%. We can
see that more than half of the selected projects have only one
or two core developers. Finally, as presented in Figure 2c, the

Why We Engage in FLOSS: Answers from Core Developers CHASE’18, May 27, 2018, Gothenburg, Sweden

81

40

60

80

100

%
 o

f c
om

m
its

(a) Core team contributions

2

0

2

4

6

C
or

e
te

am
 s

iz
e

(b) Core team size

19

0

25

50

75

100

%
 o

f c
om

m
its

(c) Core developer contributions

Figure 2: (a) Total percentage of commits by the selected core teams, (b) number of core developers per project, and (c)
percentage of commits by the selected core developers. Outliers are omitted in these plots.

median percentage of commits by the selected core developers
is 19%, in contrast to 0.5% using the original strategy.

Finally, we follow three steps to select developers who
became core contributors in the last year of each project (see an
illustration in Figure 3): (a) we apply the proposed heuristic on
all commits of the project (set A); (b) we remove the last year
of commits and recalculate the core team (set B); and (c) the
selected set of core developers is formed by developers in the set
A, but who are not in set B. In other words, this group includes
developers who entered in the core team in the last year. We
ended up with a list of 380 core developers, distributed over
331 projects.

Years

1 yearSet B

Set A

Figure 3: Set A= core developers computed considering the
complete commit history; Set B= core developers computed
considering the commits until the year before the study;
New Core Developers = Set A - Set B

2.2 Survey Design
To some extent, our survey can be seen as a firehouse study,
i.e., one that is conducted right after the event of interest
has happened [4, 23]. Essentially, we surveyed recent core
developers, to reveal their motivations to engage in FLOSS
projects and the main barriers they faced during this process.
After removing the core developers who do not have a public
email address on GitHub, we obtained a list of 151 potential
survey participants. We sent an email to these participants
with two parts. First, we include the developer’s name and
data on his/her percentage of commits in the project. Then,
the second part includes three open-ended questions about
his/her contributions to the project: (1) What motivated you to

contribute to this project? (2) What project characteristics and
practices helped you to contribute? (3) What were the main
barriers you faced to contribute?

We received 52 answers (covering distinct projects), which
corresponds to a response rate of 34% (and a confidence
interval of 11.04 for a confidence level of 95%). Finally, we use
Thematic Analysis [7] to interpret the survey answers. This
technique is used for identifying and recording themes (i.e.,
patterns) in textual documents. Thematic Analysis consists
of: (1) identifying themes from the answers, (2) reviewing
the themes to find patterns for merging, and (3) defining and
naming the final themes. The initial theme identification and
merge steps were performed independently by the first two
authors of this paper. Then, we had several meetings to resolve
conflicts and define the final themes. In the first question,
both authors suggested semantically equivalent themes for
32 answers (62%). These themes were then rephrased and
standardized to compose the final theme set. As the remaining
20 answers had divergent themes, they were discussed by
both authors to reach a consensus. For the last two questions,
an initial agreement was reached in 36 (69%) and 38 (73%)
answers, respectively.

3 SURVEY RESULTS
The presentation and discussion of the survey results are
organized around the survey questions. To preserve the re-
spondents’ anonymity, we use labels D1 to D52 to identify
them. Furthermore, when quoting their answers we replace
mentions to GitHub repositories, owners, and organizations
by [Project-Name], [Project-Owner], and [Organization-Name],
respectively. This is important because some answers include
sensitive comments about developers or organizations. It is
also important to note that a question could have received two
or more themes during the thematic analysis process.

3.1 Motivations
In the next paragraphs, we present the reasons that emerged
for the first survey question (What motivated you to contribute?)
We discuss each reason and also give examples of answers.

CHASE’18, May 27, 2018, Gothenburg, Sweden Jailton Coelho, Marco Tulio Valente, Luciana L. Silva, and André Hora

To improve the project because I am using it: According to
31 new core developers, they increased their contributions
primarily to fulfill their own needs. As examples, we have the
following answers:

I started using it, I ran into minor issues or opportunities to improve,
or things that were blocking me from making progress. Since it was
an open source project, I was able to contribute improvements and
make the project better for my needs, and everyone else’s. (D50)

First, I was a very active user of this project at the time. However,
I felt that this software could be better. I believed I had enough
experience to contribute, so I stepped in. (D15)

I was using [Project-Name] for my startup in our internal dash-
boards and I needed a couple of features. (D43)

To have a volunteer work: 10 developers answered they con-
tributed to take part in an open source community. As exam-
ples, we have the following answers:

I’m also in love with the idea of people sharing tools for free in order
to help build a better world and promote scientific development and
improving people’s lives. (D48)

I think that the fact that I was helping a lot of people, immediate
feedback, motivated me to contribute more at the difficult time. (D15)

I have interest or expertise on the project domain: According
to seven respondents, they were motivated by their interest
or expertise on the project domain or programming language.
As examples, we have these answers:

I’ve always had an interest in optimizing things, which I definitely
did a lot of in this case. (D06)

I’m well acquainted with the Ruby open source world... (D10)

I am a paid developer: Five new core developers mentioned
they were paid to contribute, as in the following answer:

To be honest I’m paid for contributing to [Project-Name]... (D23)

To contribute to a widely used or relevant project: According
to four developers, they were motivated by the fact the project
is widely used or supported by well-known organizations. As
examples, we have the following answer:

Working on a project as large as [Project-Name], and knowing that
any work I contribute may be used by thousands of developers, was
a pretty good motivator. (D06)

The remaining motivations are as follows: because I know
the maintainer (3 answers), to improve my programming skills (2
answers), to improve my CV (2 answers), because the project has a
nice design and implementation (1 answer), and to train developers
to contribute to FLOSS (1 answer).

Table 1 summarizes the motivations reported by the par-
ticipants for the first question. Among the 10 motivations
mentioned by the developers, only two can be viewed as tech-
nical ones (e.g., because I have interest or expertise on the project
domain and because the project has a nice design and implementa-
tion). The other motivations are non-technical and related to
the interests of the developers or the project environment.

Table 1: What motivated you to contribute?

Motivations Dev.

To improve the project because I am using it 31
To have a volunteer work 10
I have interest or expertise on the project domain 7
I am a paid developer 5
To contribute to a widely used or relevant project 4
Other motivations (≤ 3 answers each) 9

3.2 Project Characteristics and Practices
In the next paragraphs, we present the themes that emerged
for the second survey question (What project characteristics and
practices helped you to contribute?). We describe each reason and
also provide examples of answers.
Friendly community: According to 13 developers, they de-
cided to increase their contributions due to the friendly com-
munity of project maintainers, who helped with issues and
provided detailed feedback when revising pull requests. As
examples, we have the following answers:

The main thing that helped me contribute was the friendliness of
maintainers and the instructions they’ve left in the issues they
answered. (D48)

The [Project-Name] community gave very detailed feedback during
pull requests (sometimes quite strict feedback!) which I found really
helpful, and learned a lot about Git in the process. (D27)

Availability of the project leaders: According to 11 devel-
opers, the availability of the project leaders helped them to
contribute, as in the following example:

In order for people to become contributors, in any kind of open source
project, the most important thing is communication and availability
of the owner/maintainer. (D07)

Unit tests: According to 9 respondents, the presence of unit
tests helped them to increase the number of contributions. As
example, we have the following answer:

Unit tests also helped a lot, allowed me to make changes freely with
the comfort that I most likely haven’t broken anything. (D25)

Documentation: This characteristic, as indicated by eight de-
velopers, refers to a clear and complete documentation. As
examples, we have:

Extended documentation that helped to keep an idea of what it was
all about: which things belongs to the project and which do not. (D26)

Documentation for the whole code, especially documentation for
setting up development environments of the project, I would really
have struggled without that. (D25)

Table 2 summarizes the answers for the second question.
In addition to the previously mentioned characteristics, we
received answers citing well-structured design (4 answers), code
review (3 answers), continuous integration (3 answers), program-
ming language (3 answers), open source license (3 answers), small

Why We Engage in FLOSS: Answers from Core Developers CHASE’18, May 27, 2018, Gothenburg, Sweden

Table 2: What project characteristics/practices helped you?

Type Characteristics/Practices Dev.

Technical

Unit tests 9
Documentation 8
Well-structured design 4
Code review 3
Continuous integration 3
Programming language 3
Open source license 3
Small project 3
Coding guidelines 2
Clear code 2
Contribution guidelines 2
Other technical characteristics 8

Non-Technical

Friendly community 13
Availability of the project leaders 11
Financial support by a company 1
Open and meritocratic culture 1
Small number of core developers 1

project (3 answers), coding guidelines (2 answers), clear code (2
answers), contribution guidelines (2 answers), financial support
by private company (1 answer), large scale tests (1 answer), and
small number of core developers (1 answer). In Table 2, we also
provide a classification of the developers answers in two major
groups: technical and non-technical characteristics.

3.3 Barriers
In this section, we present and discuss the themes that emerged
for the third survey question (What were the main barriers you
faced to contribute?).
Lack of time of the project leaders: According to eight devel-
opers, the main barrier was the absence of the project leaders.
As examples, we have the following answers:

Sometimes there were very slow replies to Issues/PRs as there were
very few project leaders who could merge them. (D20)

The original developer basically stopped working on it years ago.
Many of us were still using the plugin, but bug reports and pull
requests built up for years without attention. (D38)

Large and complex project: Seven developers answered that
project complexity and size were the main barriers they faced
to increase their contributions, as in the example:

The project as a whole is complex and requires specialized knowledge
or skill sets that I don’t always have. (D45)

Non-clear, complex or buggy codebase: According to five
respondents, the main barrier concerns a non-clear, complex
or buggy codebase. As example, we have the following answer:

The code was plagued with race conditions, code smells, bad practices
and ugly workarounds. This made it very hard for me to quickly
make changes. (D41)

Table 3: What were the barriers you faced to contribute?

Type Barriers Dev.

Technical

Large and complex project 7
Non-clear, complex or buggy codebase 5
Inappropriate design or architecture 4
Lack or incompleted documentation 3
Programming language 3
Lack of tests 3
Other technical barriers 8

Non-Technical

Lack of time of the project leaders 8
Lack of time of the own contributor 4
Conflicts among developers 3
Inexperience of the own contributor 3
Hostile attitude 1
Unpaid work 1
Other non-technical barriers 7

Inappropriate design or architecture: This barrier, mentioned
by four respondents, refers to inappropriate design or archi-
tecture. As example, we have the following answer:

Less than optimal project structure or release structures. (D07)

Table 3 summarizes the responses for the third question. In
addition to the previously mentioned barriers, we received
answers citing inexperience of the own contributor (3 answers),
lack of time of the own contributor (3 answers), lack or incompleted
documentation (3 answers), programming language (3 answers),
lack of tests (3 answers), and conflicts among developers (3 an-
swers). Furthermore, English language, decisions must be approved
by a committee, old coding styles, hostile attitudes, lack of build
tools, project requires specialized knowledge are other mentioned
barriers, all of them with a single answer. Finally, six (11%)
participants answered they faced no barriers at all. As we
can see, there in this case a balance between technical and
non-technical barriers, which received 33 and 27 answers,
respectively.

4 ANALYSIS BY PROJECT CATEGORIES
In this section, we provide results grouped by the follow-
ing categories of projects: small-to-medium vs medium-to-large
projects and individual vs organizational projects.

Project Categories: We classify the 52 projects according to
their size, considering the distribution of LOC of the 2,262
projects. The projects in the first and second quartiles are
classified as Small-to-Medium projects (LOC ≤ 4,894); the ones
in the third and fourth quartiles are named Medium-to-Large
projects (LOC > 4,894). We ended up with a list of 17 Small-to-
Medium and 35 Medium-to-Large projects.

We also group the 52 projects considering the type of the
account on GitHub: 18 projects are developed using individ-
ual accounts (e.g., javan/whenever) and 34 projects using an
organizational account (e.g., google/guava).

Results: Figure 4a shows the results for project characteristics
and practices. The figure shows the percentage of technical,

CHASE’18, May 27, 2018, Gothenburg, Sweden Jailton Coelho, Marco Tulio Valente, Luciana L. Silva, and André Hora

Organizational

Individual

Medium−to−Large

Small−to−Medium

0 25 50 75 100
Percentage

Technical Non−Technical Both technical and non−technical

(a) Project characteristics and practices

Organizational

Individual

Medium−to−Large

Small−to−Medium

0 25 50 75 100
Percentage

Technical Non−Technical Both technical and non−technical No barriers

(b) Barriers

Figure 4: Results grouped by project categories (Small-to-Medium, Medium-to-Large, Individual, and Organizational)

non-technical and both technical and non-technical charac-
teristics. For example, developers contributed to individual
projects exclusively due to their technical (39%), non-technical
(23%), and both technical and non-technical characteristics
(38%). According to the results in Figure 4a, technical char-
acteristics are the most important factor in small-to-medium
projects (64%). By contrast, they are exclusively responsible to
the engagement of core developers in only 27% of the medium-
to-large projects. In these projects, most answers include a
combination of technical and non-technical factors (43%). Fi-
nally, there is no major difference in the results for individual
and organizational projects. For example, technical factors
are the only factors responsible by the engagement of core
developers in 39% of the individual projects and 36% of the
organizational ones.

Figure 4b shows the breakdown results for the barriers faced
by the surveyed developers. First, the percentage of projects
presenting no barrier at all ranges from 10% (organizational
projects) to 20% (individual projects). The most common barri-
ers in small-to-medium projects are exclusively non-technical
ones (57%). In other words, developers contribute to small-to-
medium projects due their technical characteristics, but often
face non-technical barriers. As example, we have this answer
from a core developer about the technical characteristics and
practices of a small-to-medium project:

Proper coding guidelines and documentations do help a lot. (D05)

But he also complained about non-technical barriers:

Not all contributors have a consistent and equivalent share of time
to invest in the project. This sometimes stalls the progress . . . (D05)

Regarding medium-to-large projects, we found a balance
among technical barriers (32%), non-technical barriers (29%)
and both types of barriers (26%). As in the case of project
characteristics, there is no major difference in the results for
individual and organizational projects.

In summary, we found that core developers are engaged
in small-to-medium projects mostly due to their technical
characteristics (e.g., unit tests), but often face non-technical
barriers (e.g., lack of time of the project leaders). In medium-
to-large projects, the surveyed core developers increased their
contributions due to a combination of both technical and non-
technical characteristics; they also faced both technical and

non-technical barriers. Finally, we found that there is no major
difference between individual and organizational projects,
regarding their characteristics and offered barriers.

5 THREATS TO VALIDITY
The threats to validity of this work are as follows:

External Validity: The dataset used in this study is restricted
to popular open source projects on GitHub. We acknowledge
that there are popular projects in other platforms (e.g., Bit-
bucket and GitLab) or projects that have their own version
control infrastructure.

Internal Validity: This threat relates to the themes denoting
the survey answers. We acknowledge that the selection of these
themes is to some extent subjective. For example, it is possible
that different researchers reach a different set of motivations,
practices and barriers, than the ones proposed in Section 3. To
mitigate this threat, the initial theme selection was performed
independently by the first two authors of this paper. After this
initial proposal, several meetings were performed to refine
and improve the initial selection.

Construct Validity: A construct validity threat relates to the
commit-based heuristic for core developer identification. How-
ever, we decided to use a traditional heuristic to this purpose,
widely used in other studies [15, 19, 25]. Furthermore, we cus-
tomized this heuristic to exclude developers with few commits
(less than 5% of the total number of commits).

6 RELATED WORK
In this section, we first compare our results with related studies
which focused on three profiles of open source contributors:

∙ One-Time Code Contributors (OTC) are developers who
have exactly one accepted patch. Lee et al. [16] conduct
a survey with OTCs to comprehend their impressions,
motivations, and barriers, when contributing to FLOSS.
∙ Casual Contributors are those with few contributions (e.g.,

less than 2% of the total number of commits) and who
do not want to become active project members.4 Pinto
et al. [20] conduct surveys with (1) casual contributors
to understand what motivates them to contribute and

4To clarify, OTCs have just one contribution, while casual contributions can
have more than one contribution.

Why We Engage in FLOSS: Answers from Core Developers CHASE’18, May 27, 2018, Gothenburg, Sweden

Table 4: Comparison of our findings with related studies.

Topic Our study Lee et al. [16] Pinto et al. [20] Steinmacher et al. [24]

Contributors Core developers One-Time code Contributors Casual contributors Newcomers

Motivations

To improve the project because I
am using it
To have a volunteer work
I have interest or expertise on the
project domain

To fix bugs

To give back to the community

I am a paid developer

To fix bugs

To improve documentation

To add new features

-

Project
characteristics

Friendly community
Availability of the project leaders
Unit tests

Skilled project members
Friendly project members
Helpful project members

- -

Barriers
Lack of time of project leaders
Large and complex project
Unclear, complex or buggy code

Lack of time of own contributor
Complex submission process
Complex project

Lack of time of own contributor
Limited skills or knowledge
Complex project

Technical barriers
Lack of contribution guidelines
Lack of documentation

(2) with project maintainers to understand how they
perceive casual contributions.
∙ Newcomers are those contributors who attempted to con-

clude their first contribution to an open source project.
Steinmacher et al. [24] elicit 58 barriers that may hinder
newcomers onboarding to open source projects.

Table 4 contrasts our results with the aforementioned studies.
The most common motivation for OTCs and casual contribu-
tors is bug fixing because it can affect their work. In contrast,
the most common motivation for core developers engagement,
as revealed in our survey, is improving the project because I am
using it. Therefore, their motivation include not only bug fixing
tasks, but also adding new features. Lee et al. [16] investigate
impressions that increase the chances of a potential developer
to contribute to a project. The most common positive impres-
sion reported by OTCs is the presence of skilled, friendly,
and helpful project members. Similarly, we found that core
developers are also attracted by a friendly community and by
the availability of the project leaders. However, the third charac-
teristic cited by core developers is the presence of unit tests,
while on the case of OTCs are helpful project members. The
most common barrier faced by OTCs and casual contributors
is lack of time of the own contributor. By contrast, only three core
developers reported this fact as a main impediment.

In a previous work [6], we conduct an investigation with
maintainers of 104 open source projects that failed to under-
stand the reasons of such failures. The most common reasons
are projects that were usurped by competitors (27 projects),
obsolete projects (20 projects), lack of time of the main contrib-
utors (18 projects), and lack of interest of the main contributors
(17 projects). Robles et al. [22] describe a curated dataset with
data from over 2,000 FLOSS contributors. Among the collected
data, this dataset includes the contributors motivations for
joining FLOSS. However, these answers can be seen as general
motivations; in our survey, we decided to ask specific devel-
opers (core developers) about their motivations for recently
joining well-defined open source projects.

In a recent survey promoted by GitHub with thousands of
open source developers, documentation was indicated as a per-
vasive problem when contributing to open source, according to

93% of the respondents (see http://opensourcesurvey.org/2017).
However, in our survey, restricted to core developers, docu-
mentation is mentioned as barrier by only three participants.

Eghbal [8] reports on the risks and challenges to maintain
open source projects. Ye and Kishida [26] describe a study
to understand what motivates developers to engage in open
source development. Other studies on open source have fo-
cused on how to attract and retain contributors [3, 5, 27].
Gousios et al. [9, 10, 11] provide insights on the pull-based
development model as implemented in GitHub from the inte-
grator and contributors’ perspective. Mirhosseini and Parnin
[18] investigate the use of pull request notifications in GitHub
projects. Jiang et al. [13] examine why and how developers fork
repositories on GitHub. They found that developers fork repos-
itories to submit pull requests, fix bugs, add new features, and
keep copies. Joblin et al. [14] categorized core and peripheral
developers based on social and technical perspectives.

7 IMPLICATIONS
Our study has implications both to practitioners and re-
searchers, as follows:

Implications to Practitioners: First, core contributors should
strive to provide an interesting and high-quality software
product, which can attract a large base of users. Then, some
of these users will decide to improve the product to fulfill
their own needs. Finally, they will share the improvements
with the project community, which can trigger a new cycle
of improvements. Second, two non-technical practices are im-
portant to engage core developers in open source projects:
nurturing a friendly community and being always available.
However, technical factors—specially, the availability of unit
tests and documentation—are also important. Third, the main
barrier faced by new core contributors is also non-technical,
the lack of time of project leaders, followed by two technical
ones: project complexity and low quality code.

Implications to Researchers: First, open source projects are
increasingly important elements of the digital infrastructure
that supports our modern societies [8]. We also know that

CHASE’18, May 27, 2018, Gothenburg, Sweden Jailton Coelho, Marco Tulio Valente, Luciana L. Silva, and André Hora

these projects depend on a small number of core develop-
ers [1, 19]. Thus, researchers should continue to investigate
strategies to improve open source practices and communities.
Particularly, our findings might contribute to current efforts
to develop health and analytics models and tools to open
source projects, as proposed for example by the CHAOSS5

and SECOHealth [17] projects. Second, we also showed the
importance of requiring a minimal percentage of commits
when identifying core developers. When this threshold is not
applied, the traditional heuristic can select core developers
with very few commits, which are included just to reach the
total amount of 80% of the commits of a system.

8 CONCLUSION
In this paper, we reported the main reasons that led recent
core developers to contribute to open source projects. We also
reveal the most common project characteristics and practices
that motivated them to engage in FLOSS and the barriers
they faced to contribute. As future work, we plan to conduct
interviews with selected project contributors, to validate and
extend our findings. We are also working on a tool to assess
the “health” of FLOSS projects.

ACKNOWLEDGMENTS
Our research is supported by CAPES, FAPEMIG, and CNPq.

REFERENCES
[1] Guilherme Avelino, Leonardo Passos, Andre Hora, and Marco Tulio Valente.

2016. A Novel Approach for Estimating Truck Factors. In 24th International
Conference on Program Comprehension (ICPC). 1–10.

[2] Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Understand-
ing the Factors that Impact the Popularity of GitHub Repositories. In 32nd
IEEE International Conference on Software Maintenance and Evolution (ICSME).
334–344.

[3] Amiangshu Bosu, Jeffrey Carver, Rosanna Guadagno, Blake Bassett, Debra
McCallum, and Lorin Hochstein. 2014. Peer impressions in open source
organizations: a survey. Journal of Systems and Software 94, 1 (2014), 4–15.

[4] Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. 2018.
Why and How Java Developers Break APIs. In 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER). 1–11.

[5] Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano
Panichella. 2012. Who is going to mentor newcomers in open source
projects?. In 20th International Symposium on the Foundations of Software
Engineering (FSE). 44–54.

[6] Jailton Coelho and Marco Tulio Valente. 2017. Why Modern Open Source
Projects Fail. In 11th Symposium on the Foundations of Software Engineering
(FSE). 186–196.

[7] Daniela S. Cruzes and Tore Dyba. 2011. Recommended steps for the-
matic synthesis in software engineering. In 5th International Symposium on
Empirical Software Engineering and Measurement (ESEM). 275–284.

[8] Nadia Eghbal. 2016. Roads and Bridges: The Unseen Labor Behind Our Digital
Infrastructure. Technical Report. Ford Foundation.

[9] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An
exploratory study of the pull-based software development model. In 36th
International Conference on Software Engineering (ICSE). 345–355.

[10] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. 2016. Work
practices and challenges in pull-based development: The contributor’s
perspective. In 38th International Conference on Software Engineering (ICSE).
285–296.

[11] Georgios Gousios, Andy Zaidman, Margaret Storey, and Arie Deursen. 2015.
Work practices and challenges in pull-based development: the integrator’s
perspective. In 37th International Conference on Software Engineering (ICSE).
358–368.

[12] Hideaki Hata, Taiki Todo, Saya Onoue, and Kenichi Matsumoto. 2015.
Characteristics of Sustainable OSS Projects: A Theoretical and Empirical

5https://chaoss.community/

Study. In 8th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE). 15–21.

[13] Jing Jiang, David Lo, Jiahuan He, Xin Xia, Pavneet Singh Kochhar, and Li
Zhang. 2016. Why and how developers fork what from whom in GitHub.
Empirical Software Engineering 22, 1 (2016), 547–578.

[14] Mitchell Joblin, Sven Apel, Claus Hunsen, and Wolfgang Mauerer. 2017.
Classifying Developers Into Core and Peripheral: An Empirical Study on
Count and Network Metrics. In 39th International Conference on Software
Engineering (ICSE). 164–174.

[15] Stefan Koch and Georg Schneider. 2002. Effort, co-operation and co-
ordination in an open source software project: GNOME. Information
Systems Journal 12, 1 (2002), 27–42.

[16] Amanda Lee, Jeffrey C. Carver, and Amiangshu Bosu. 2017. Understanding
the Impressions, Motivations, and Barriers of One Time Code Contributors
to FLOSS Projects: A Survey. In 39th International Conference on Software
Engineering (ICSE). 1–11.

[17] Tom Mens, Bram Adams, and Josianne Marsan. 2017. Towards an Interdis-
ciplinary, Socio-technical Analysis of Software Ecosystems Health. In 16th
Belgian-Netherlands Software Evolution Symposium (BENEVOL). 7–9.

[18] Samim Mirhosseini and Chris Parnin. 2017. Can automated pull requests
encourage software developers to upgrade out-of-date dependencies?.
In 32nd International Conference on Automated Software Engineering (ASE).
84–94.

[19] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. 2002. Two case
studies of open source software development: Apache and Mozilla. ACM
Transactions on Software Engineering and Methodology (TOSEM) 11, 3 (2002),
309–346.

[20] Gustavo Pinto, Igor Steinmacher, and Marco A. Gerosa. 2016. More
common than you think: An in-depth study of casual contributors. In 23th
International Conference on Software Analysis, Evolution, and Reengineering
(SANER). 112–123.

[21] Gregorio Robles, Jesus M. Gonzalez-Barahona, and Israel Herraiz. 2009.
Evolution of the core team of developers in libre software projects. In
6th International Working Conference on Mining Software Repositories (MSR).
167–170.

[22] Gregorio Robles, Laura Arjona Reina, Alexander Serebrenik, Bogdan
Vasilescu, and Jesús M. González-Barahona. 2014. FLOSS 2013: A survey
dataset about free software contributors: challenges for curating, sharing,
and combining. In 11th Working Conference on Mining Software Repositories
(MSR). 396–399.

[23] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016. Why
We Refactor? Confessions of GitHub Contributors. In 24th International
Symposium on the Foundations of Software Engineering (FSE). 858–870.

[24] Igor Steinmacher, Tayana U. Conte, Christoph Treude, and Marco A. Gerosa.
2016. Overcoming open source project entry barriers with a portal for
newcomers. In 38th International Conference on Software Engineering (ICSE).
273–284.

[25] Trung T. Trong and James M. Bieman. 2005. The FreeBSD project: A
replication case study of open source development. IEEE Transactions on
Software Engineering 31, 6 (2005), 481–494.

[26] Yunwen Ye and Kouichi Kishida. 2003. Toward an understanding of
the motivation Open Source Software developers. In 25th International
Conference on Software Engineering (ICSE). 419–429.

[27] Minghui Zhou and Audris Mockus. 2015. Who will stay in the FLOSS
community? modeling participant’s initial behavior. Transactions on Software
Engineering 41, 1 (2015), 82–99.

	Abstract
	1 Introduction
	2 Study Design
	2.1 Core Developer Identification
	2.2 Survey Design

	3 Survey Results
	3.1 Motivations
	3.2 Project Characteristics and Practices
	3.3 Barriers

	4 Analysis by Project Categories
	5 Threats To Validity
	6 Related Work
	7 Implications
	8 Conclusion
	References

