
Analysis of a Heuristic for Full Trie
Minimization

DOUGLAS COMER

Purdue University

A trie is a distributed-key search tree in which records from a file correspond to leaves in the tree.
Retrieval consists of following a path from the root to a leaf, where the choice of edge at each node
is determined by attribute values of the key. For full tries, those in which all leaves lie at the same
depth, the problem of finding an ordering of attributes which yields a minimum size trie is NP-
complete.

This paper considers a “greedy” heuristic for constructing low-cost tries. It presents simulation
experiments which show that the greedy method tends to produce tries with small size, and analysis
leading to a worst case bound on approximations produced by the heuristic. It also shows a class of
files for which the greedy method may perform badly, producing tries of high cost.

Key Words and Phrases: trie index, trie size, heuristic
CR Categories: 3.74,4.33, 4.34

1. INTRODUCTION

A trie, defined by Fredkin [6], is an implementation of a distributed-key search
tree in which records from a file correspond to leaves in the tree. Retrieval is
carried out by following a path from the root of the trie to a leaf, the choice of a
new edge at each node being determined by an attribute value of the key. If all
records in the file have the same number of attributes, then each path in the trie
will be of the same length, and all leaves will lie at the same depth. Such tries are
called full tries and have the property that the size of the trie is determined by
the order in which attribute values are tested. Full tries are useful for storing
information when there is a high probability of unsuccessful search because the
entire key can be checked in the trie index without searching the file.

Comer and Sethi [4] show that the problem of finding an ordering of the
attributes which produces a minimum size trie to be difficult in a precise sense.
More formally, the problem is shown to be NP-complete.’ Since, at present, there
is no known efficient algorithm for problems in this class, optimum solutions take
exponential time. Even for a small file, such solutions are often too expensive to
be feasible. Yet, the problem of trie minimization is of practical interest. DeMaine
’ Aho, Hopcroft, and Ulhnan [l] provide a reasonable reference to NP-complete problems.

Permission to copy without fee ah or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and ita date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or speci&
permission.
Author’s address: Department of Computer Science, Purdue Unversity, West Lafayette, IN 47907.
0 1981 ACM 0362-5915/81/0900-0513 $00.75

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1961, Pages 513537.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319587.319618&domain=pdf&date_stamp=1981-09-01

514 * D. Comer

and Rotwitt [5] and Yao [7] consider an alternative: procedures which are
computationally efficient but which yield solutions that are close to optimal in
some sense. Such procedures are often derived from “rule of thumb” practices
and are called heuristics.

Comer [3] presents and analyzes heuristics for the class of tries in which leaf
chains are removed; such tries are useful only as indexes because not all infor-
mation is present in the trie itself. This work analyzes tries in which all infor-
mation from a file is kept in the trie. It focuses on one method of minimizing
space, called the greedy heuristic, providing experimental evidence that it per-
forms well on the average, and a bound on the worst case tries produced. While
a bound provides an absolute limit on the size of the tries produced, it also gives
a warning about how far from optimum they could be. The paper goes on to
exhibit a class of files for which the greedy heuristic may produce high cost tries.
Fortunately, the type of files on which greedy misbehaves seldom occur in
practical applications.

To measure the performance of a heuristic, let S, denote the size of a trie
produced by the heuristic, and let S,, denote the size of an optimum (smallest)
trie for the same file. The cost of the heuristic is

sh
cost = -

SO
Heuristics which have minimum cost are desirable. Although the cost does not
include the computation requirements of the heuristic itself, we assume that it is
the sole criterion for judging the performance. Only efficient heuristic procedures,
those for which the running time is a low-degree polynomial in the size of the file,
will be considered and the difference in the amount of work required between
any two heuristic procedures will be ignored.

Heuristics for full trie minimization are intended to produce low cost tries by
minimizing the breadth of the trie. Figure 1 shows the best and worst possible
tries for a file of r records and k attributes. Intuitively, the best trie consists of a
long, thin spine with all branching just before the leaves, while the worst trie
branches as wide as possible just below the root.

One way to produce a small trie, then, is to choose attributes in an order which
minimizes the number of nodes at each level. This optimizes the trie locally by
restricting growth on a level-by-level basis as the trie is grown. Of course, local
optimization does not guarantee a minimum trie; the global optimum may require
some levels to branch more than the minimum amount to reduce branching later.
The idea of local minimization is formalized in the following:

Definition. The greedy heuristic for full trie minimization is given by the
following procedure. While building the trie from the root down, select at each
level an attribute which adds the smallest number of nodes to the next level.

Note that the greedy heuristic requires at most 0 (rk2) to compute, so it meets
the criteria for an efficient procedure defined above.

This paper characterizes the best and worst possible full tries for a reasonable
class of files, deriving a bound on the ratio of the size of the largest trie to the size
of the smallest trie for any file in the class. It examines tries produced by the
greedy heuristic to see how well the heuristic performs, While simulation exper-

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1961.

Heuristic for Full Trie Minimization * 515

iments indicate that the greedy method does well on typical files, a class of files
is described for which the heuristic may produce high cost tries.

The rest of the paper is organized as follows. Section 2 gives the necessary
definitions; Section 3 presents the simulation results and some interpretation;
Section 4 defines an (r, k)-FAT tree and shows it to be as large as any trie for a
binary restricted file; Section 5 defines an (r, k)-THIN tree and shows it to be as
small as any trie for a binary restricted file. Finally, Section 6 defines a modified
(r, k)-FAT tree and shows a class of files for which the greedy heuristic can
produce tries as large as the modified trees.

2. DEFINITIONS

Definition. Let A,, AZ, . . . , Ak be a finite set of attributes, where attribute Ai
takes on values from the finite set Vi, 1 5 i 5 k. A file F is a subset of
VI x vz x +. .X Vk and a record is an element of F. The alphabet size of F is
givenbymax(IV~(,(V2(,...,(Vk(},where(V(p re resents the number of elements
in V. Files with alphabet size 2 will be referred to as binary files.

In the sequel it will be convenient to think of a file as a two-dimensional array
with r rows, one for each record, and k columns, one for each attribute. Thus we
may refer to the value of the jth attribute in the ith record of F as Fi,;. Likewise,
it will be convenient to think of elements of F as integers.

Definition. Let F be a file of r records and k attributes, and let V = { 1, 2, . . . ,
a}, where a is the alphabet size of F. Attribute m is trivial in F iff Vi, 1 5 i I r,
Fi,, = v, where u is some fixed value from V. Attribute m is isomorphic to
attribute n iff 3 an automorphism S: V+ Vsuch that Vi, 15 i 5 r, Fi,m = S(Fi,,).
F is a restricted file iff F contains no trivial attributes and no distinct pair of
isomorphic attributes.

Graph definitions used throughout the paper are standard (see [l]).

Definition. A full trie for a file F is a tree with all leaves at depth’ k such that
the following hold:

(1) Let A,, AZ, . . . , Ak be the attributes of F, and let 7 be a permutation of 1,2,
. . . , k. All edges leaving a node at depth i - 1 have distinct labels chosen
from V,ci, for all i, 1 I i 5 k.

(2) The labels encountered on each path from the root to a leaf correspond to an
element of F, and, for each element of F there is such a path.

The size of a trie is the number of nonleaf nodes in it.

3. SIMULATION RESULTS FOR THE GREEDY HEURISTIC

The analysis in [5] shows that the greedy heuristic produces optimum tries for a
file with a record for each possible attribute combination, and summarizes
experiments that indicate a wide class of heuristics including greedy perform well
on randomly generated files. This paper extends the experiments to include small
files and peaked (nonuniform) distributions.

Tables I-IV present a sample of simulation studies for randomly generated files

2The root of a tree lies at depth 0; children of a node at depth i - 1 lie at depth i.

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

516 * D. Comer

Table I

Uniform Distribution
Overal 1 Greedy Heuristic % Gr. % opt.

Size Degrees
TO

Best Worst >iean Best Morst Mean Opt. Greedy
12 14 16 149 157 153 149 149 149 100.0 100.0

50 20 22 24 26 162 170 166 162 166
50 10 15 20 25 1.54 167 161 154 154
50 10 10 30 30 152 173 162 152 155
50 20 20 20 21 162 168 165 162 162
50 30 30 30 31 170 175 173 170 170
50 30 30 30 34 169 175 173 169 169
50 15 15 15 15 154 161 158 154 159
50 20 20 20 20 158 168 164 158 158
50 26 26 26 26 163 172 169 163 163
50 30 30 30 30 172 174 173 172 172
50 31 31 31 31 170 175 173 170 172
50 32 32 32 32 171 176 174 171 174
50 33 33 33 33 170 178 174 170 170
50 34 34 34 34 167 176 172 167 167

Normal Distribution p = 25, u 12.5

164 33.3 100.0
154 100.0 100.0
153 33.3 100.0
162 100.0 100.0
170 100.0 100.0
169 100.0 100.0
155 50.0 100.0
158 100.0 100.0
163 100.0 100.0
172 100.0 100.0
171 50.0 100.0
172 25.0 100.0
170 100.0 100.0
167 100.0 100.0

50 10 12 14 16 103 124 113 103 103
50 20 22 24 26 143 157 149 143 143
50 10 15 20 2s 112 146 129 112 112
50 10 10 30 30 115 154 135 115 115
50 20 20 20 21 139 147 143 141 141
50 30 30 30 31 150 161 155 150 150
50 30 30 30 34 152 161 155 152 152
50 15 15 15 15 103 110 106 103 103
50 20 20 20 20 139 147 143 141 141
50 26 26 26 26 150 161 155 150 150
50 30 30 30 30 150 161 155 150 150
50 31 31 31 31 150 161 155 150 150
50 32 32 32 32 159 165 162 159 161
50 33 33 33 33 159 165 162 159 161
50 34 34 34 34 159 165 162 159 161

Normal Distribution p = 25, u 6.25

103 100.0 100.0
143 100.0 100.0
112 100.0 100.0
115 100.0 100.0
141 0.0 0.0
150 100.0 100.0
152 100.0 25.0
103 100.0 100.0
141 0.0 0.0
150 100.0 100.0
150 100.0 100.0
150 100.0 100.0
160 50.0 100.0
160 50.0 100.0
160 50.0 100.0

50 10 12 14 16 103 110 106 103 103 103 100.0 100.0
50 20 22 24 26 103 110 106 103 103 103 100.0 100.0
50 10 15 20 25 103 110 106 103 103 103 100.0 100.0
50 10 10 30 30 103 110 106 103 103 103 100.0 100.0
50 20 20 ?O 21 103 110 106 103 103 103 100.0 100.0
50 30 30 30 31 103 110 106 103 103 103 100.0 100.0
50 30 30 30 34 103 124 113 103 103 103 100.0 100.0
50 15 15 15 15 103 110 106 103 103 103 100.0 100.0
50 20 20 20 20 103 110 106 103 103 103 100.0 100.0
50 26 26 26 26 103 110 106 103 103 103 100.0 100.0
50 30 30 30 30 103 110 106 103 103 103 100.0 100.0
50 31 31 31 31 103 110 106 103 103 103 100.0 100.0
50 32 32 32 32 139 147 143 141 141 141 0.0 0.0
50 33 33 33 33 139 147 143 141 141 141 0.0 0.0
50 34 34 34 34 139 147 143 141 141 141 0.0 0.0

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

Heuristic for Full Trie Minimization - 517

Table II

Uniform Distribution Overal 1 Greedy Heuristic % Gr. % Opt.

Size Degrees Best Worst Mean Best Worst Mean Opt. Greedy
100 10 12 14 16 278 295 286 278 278 278 100.0 100.0
100 20 22 24 26 308 318 313
100 10 15 20 25 284 313 299
100 10 10 30 30 275 323 300
100 20 20 20 21 304 314 308
100 30 30 30 31 319 325 322
100 30 30 30 34 322 330 324
100 15 15 15 15 290 296 293
100 20 20 20 20 304 313 306
100 26 26 26 26 313 320 316
100 30 30 30 30 321 325 323
100 31 31 31 31 322 325 323
100 32 32 32 32 325 330 326
100 33 33 33 33 324 331 327
100 34 34 34 34 323 330 326

Normal Distribution 1-1 = 50,~ = 25

308 308 308 100.0 100.0
284 284 284 100.0 100.0
275 275 275 100.0 100.0
304 304 304 100.0 100.0
319 319 319 100.0 100.0
322 322 322 100.0 50.0
290 294 291 50.0 100.0
304 304 304 100.0 100.0
314 314 314 0.0 0.0
321 321 321 100.0 100.0
322 323 322 66.7 100.0
325 325 325 100.0 100.0
324 324 324 100.0 66.7
323 324 323 33.3 100.0

100 10 12 14 16 178 215 198
100 20 22 24 26 260 282 271
100 10 1s 20 2s 198 261 230
100 10 10 30 30 201 275 239
100 20 20 20 21 249 260 255
100 30 30 30 31 279 288 284
100 30 30 30 34 279 301 288
100 1s 15 15 15 170 175 172
lb0 20 20 20 20 249 260 255
100 26 26 26 26 279 288 284
100 30 30 30 30 279 288 284
100 31 31 31 31 279 288 284
100 32 32 32 32 299 307 302
100 33 33 33 33 299 307 302
100 34 34 34 34 299 307 302

Normal Distribution 1~ = SO,0 = 12.5

178 178 178 100.0 100.0
260 260 260 100.0 100.0
198 198 198 100.0 100.0
201 201 201 100.0 100.0
249 251 250 50.0 100.0
279 283 281 50.0 100.0
279 283 281 50.0 100.0
170 171 170 57.1 100.0
249 251 250 50.0 100.0
279 283 281 50.0 100.0
279 283 281 50.0 100.0
279 293 281 50.0 100.0
299 301 300 50.0 100.0
299 301 300 50.0 100.0
299 301 300 50.0 100.0

100 10 12 14 16 170 175 172 170 171 170 57.1 100.0
100 20 22 24 26 170 175 172 170 171 170 57.1 100.0
100 10 15 20 25 170 175 172 170 171 170 57.1 100.0
100 10 10 30 30 170 175 172 170 171 170 57.1 100.0
100 20 20 20 21 170 175 172 170 171 170 57.1 100.0
100 30 30 30 31 170 175 172 170 171 170 57.1 100.0
100 30 30 30 34 178 215 198 178 178 178 100.0 100.0
100 15 1s 15 1s 170 175 172 170 171 170 57.1 100.0
100 20 20 20 20 170 175 172 170 171 170 57.1 100.0
100 26 26 26 26 170 175 172 170 171 170 57.1 100.0
100 30 30 30 30 170 175 172 170 171 170 57.1 100.0
100 31 31 31 31 170 175 172 170 171 170 57.1 100.0
100 32 32 32 32 249 260 255 249 251 250 50.0 100.0
100 33 33 33 33 249 260 255 249 251 250 50.0 100.0
100 34 34 34 34 249 260 255 249 251 250 50.0 100.0

ACM TransactionsonDatabase Systems, Vol. 6, No.3, September 1981.

518 * D. Comer

Table III

Uniform Distribution
Overall Greedy Heuristic % Gr. % Opt.

Size Degrees Best Worst Mean Best Worst Mean Opt. Greedy
500 10 12 14 16 1058 1164 1107 1058 1058 1058 100.0 100.0
500 20 22 24 26 1309 1366
500 10 15 20 25 1115 1309
500 10 10 30 30 1056 1391
500 20 20 20 21 1282 1311
500 30 30 30 31 1402 1425
500 30 30 30 34 1402 1428
500 15 15 15 15 1177 1191
500 20 20 20 20 1274 1290
500 26 26 26 26 1351 1382
500 30 30 30 30 1401 1425
500 31 31 31 31 1406 1428
500 32 32 32 32 1411 1438
500 33 33 33 33 1432 1449
500 34 34 34 34 1421 1456

Normal Distribution p = 250, 3

500 10 12 14 16 458 551
500 20 22 24 26 931 1062
500 10 15 20 25 614 844
500 10 10 30 30 672 953
500 20 20 20 21 856 873
500 30 30 30 31 1071 1096
500 30 30 30 34 1073 1137
500 15 15 15 15 382 392
500 20 20 20 20 856 873
500 26 26 26 26 1071 1096
500 30 30 30 30 1071 1096
500 31 31 31 31 1071 1096
500 32 32 32 32 1180 1200
500 33 33 33 33 1180 1200
500 34 34 34 34 1180 1200

Normal Distribution p = 250,~

500 10 12 14 16 382 392
500 20 22 24 26 382 392
500 10 15 20 25 382 392
500 10 10 30 30 382 392
500 20 20 20 21 382 392
500 30 30 30 31 382 392
500 30 30 30 34 458 551
500 15 15 15 15 382 392
500 20 20 20 20 382 392
500 26 26 26 26 382 392
500 30 30 30 30 382 392
500 31 31 31 31 382 392
500 32 32 32 32 856 873
500 33 33 33 33 856 873
500 34 34 34 34 856 873

1335 1309 1309 1309 100.0 100.0
1209 1115 1115 1115 100 .o 100 .o
1226 1056 1056 1056 100 .o 100 .o
1295 1282 1287 1283 66.7 100.0
1414 1402 1415 1406 50.0 100.0
1418 1402 1421 1408 66.7 100.0
1181 1177 1177 1177 100.0 83.3
1284 1274 1287 1279 40.0 100.0
1369 1351 1366 1357 50.0 100.0
1410 1401 1404 1402 50.0 100.0
1418 1406 1417 1411 40.0 100.0
1423 1411 1424 1414 80.0 100.0
1438 1432 1437 1433 40.0 100.0
1435 1421 1437 1426 50.0 100.0

= 12.5

514 458 458 458 100 .o 100 .o
993 931 931 931 100 .o 100 .o
729 614 614 614 100 .o 100 .o
794 672 672 672 100.0 100.0
865 856 862 858 66.7 100.0

1081 1071 1071 1071 100.0 100.0
1108 1073 1073 1073 100 .o 100 .o

385 382 382 382 100 .o 100 .o
865 856 862 858 66.7 100.0

1081 1071 1071 1071 100 .o 100 .o
1081 1071 1071 1071 100.0 100.0
1081 1071 1071 1071 100 .o 100 .o
1193 1180 1180 1180 100.0 100.0
1193 1180 1180 1180 100 .o 100 .o
1193 1180 1180 1180 100 .o 100 .o

= 62.5

185 382 382 382 100.0 100 .o
385 382 382 382 100.0 100.0
385 382 382 382 100.0 100 .o
385 382 382 382 100 .o 100 .o
385 382 382 382 100.0 100.0
385 382 382 382 100 .o 100 .o
514 458 458 458 100 .o 100 .o
385 382 382 382 100.0 100.0
385 382 382 382 100 .o 100.0
385 382 382 382 100.0 100.0
385 382 382 382 100.0 100.0
385 382 382 382 100 .o 100 .o
865 856 862 858 66.7 100.0
865 856 862 858 66.7 100.0
865 856 862 858 66.7 100.0

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

Heuristic for Full Trie Minimization * 519

Table IV

Uniform Distribution Overall Greed)
Size Degrees Best Worst Mean Best
%i%j 10 12 14 16 6274 7069 6643 6274
5000 20 22 24 26 9389 9795 9583 9389
5000 10 1.5 20 25 7446 8956 8130 7446
5000 10 10 30 30 7383 9623 8367 7383
5000 20 20 20 21 9081 9176 9115 9081
5000 30 30 30 31 10467 10543 10505 10467
5000 30 30 30 34 10484 10676 10583 10484
5000 15 15 15 15 7565 7615 7595 7565
5000 20 20 20 20 9053 9088 9069 9053
5000 26 26 26 26 10013 10063 10042 10013
5000 30 30 30 30 10454 10491 10477 10454
5000 31 31 31 31 10560 10579 10570 10560
5000 32 32 32 32 10645 10680 10661 10645
5000 33 33 33 33 10760 10794 10781 10760
5000 34 34 34 34 10823 10883 10855 10823

Normal Distribution lo = 2500,~ = 1250

' Heuristic % Gr. % Opt.
Worst Mean Opt. Greedy

6274 6274 100.0 100.0
9389 9389 100.0 100.0
7446 7446 100.0 100.0
7383 7383 100.0 100.0
9081 9081 100.0 100.0

10488 10481 33.3 50.0
10486 10484 66.7 100.0
7604 7582 50.0 100.0
9074 9060 50.0 100.0

10051 10028 50.0 100.0

10476 10460 50.0 100.0

10573 10565 40.0 100.0

10662 10651 33.3 100.0

10781 10770 50.0 100.0

10870 10850 25.0 50.0

5000 10 12 14 16 1277 1464 1400 1277
5000 20 22 24 26 4879 5386 5115 4879
5000 10 15 20 25 2234 2818 2530 2234
5000 10 10 30 30 2736 3508 3085 2736
5000 20 20 20 21 3835 3877 3850 3835
5000 30 30 30 31 6365 6416 6389 6365
5000 30 30 30 34 6545 6975 6829 6545
5000 15 15 15 15 916 928 921 916
5000 20 20 20 20 3835 3877 3850 3835
5000 26 26 26 26 6365 6416 6389 6365
5000 30 30 30 30 6365 6416 6389 6365
5000 31 31 31 31 6365 6416 6389 6365
5000 32 32 32 32 7947 7987 7965 7947
5000 33 33 33 33 7947 7987 7965 7947
5000 34 34 34 34 7947 7987 7965 7947

Normal Distribution u = 2500,a= 625

1277 1277 100.0 100.0
4879 4879 100.0 100.0
2234 2234 100.0 100.0
2736 2736 100.0 100.0
3835 3835 100.0 100.0
6365 6365 100.0 100.0
6545 6545 100.0 100.0

921 917 40.0 100.0
3835 3835 100.0 100.0
6365 6365 100.0 100.0
6365 6365 100.0 100.0
6365 6365 100.0 100.0
7947 7947 100.0 100.0
7947 7947 100.0 100.0
7947 7947 100.0 100.0

5000 10 12 14 16 916 928 921 916 921 917 40.0 100.0

5000 20 22 24 26 916 928 921 916 921 917 40.0 100.0
5000 10 15 20 25 916 928 921 916 921 917 40.0 100.0
5000 10 10 30 30 916 928 921 916 921 917 40.0 100.0
5000 20 20 20 21 916 928 921 916 921 917 40.0 100.0

5000 30 30 30 31 916 928 921 916 921 917 40.0 100.0

5000 30 30 30 34 1277 1464 1400 1277 1277 1277 100.0 100.0

5000 1s 15 15 15 916 928 921 916 921 917 40.0 100.0
5000 20 20 20 20 916 928 921 916 921 917 40.0 100.0

5000 26 26 26 26 916 928 921 916 921 917 40.0 100.0
5000 30 30 30 30 916 928 921 916 921 917 40.0 100.0
5000 31 31 31 31 916 928 921 916 921 917 40.0 100.0
5000 32 32 32 32 3835 3877 3850 3835 3835 3835 100 .o 100 .o
5000 33 33 33 33 3835 3877 3850 383.5 3835 3835 100 .o 100 .o

5000 34 34 34 34 3835 3877 3850 3835 3835 3835 100 .o 100 .o

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

520 * D. Comer

of 50, 100, 500, and 5000 records. In each table, the columns labeled “degrees”
give the size of the sets from which attribute values were chosen. Thus, the first
file in Table I contains 50 records, each with 4 attributes, where the first attribute
takes on values between 1 and 10, the second between 1 and 12, the third between
1 and 14, and the fourth between 1 and 16. For the uniform distribution
experiments, the values in a particular attribute were selected with equal proba-
bility from the entire range. For a skewed distribution, values were generated to
approximate a normal distribution with mean and standard deviation as shown.

One must remember that while a particular implementation of the greedy
heuristic will choose one single attribute at each stage, there may be two or more
attributes which both produce the minimal branching at that stage. Thus Tables
I-IV compare the best, worst, and average tries that could be produced by greedy
with the best, worst, and average tries for all possible attribute orders.

The data support several observations.

(1) The greedy heuristic tends to produce low cost tries. In all experiments, the
mean size of tries produced by the greedy heuristic was smaller than the
mean size of all possible tries. Furthermore, the size of the worst trie produced
by the greedy heuristic was seldom as large as the size of the worst possible
trie.

(2) The greedy heuristic sometimes fails to produce an optimum trie. In some
simulations only a portion of the possible greedy tries were nonoptimum; in
other cases all possible greedy tries were nonoptimum. Failure occurred
relatively infrequently, however, and even when it did, the average greedy
trie was smaller than the average overall trie.

(3) The percentage of optimum tries which are also greedy tries is usually larger
than the percentage of greedy tries which are optimum. Thus, while the set
of all greedy tries tends to be larger than the set of all optimum tries, it tends
to include most of the optimum ones.

The experiments suggest that the greedy heuristic performs well on typical
tiles; the next sections analyze its performance in more detail.

4. LARGEST TRIES FOR BINARY RESTRICTED FILES

The smallest and largest full tries for a file of r records and k attributes are shown
in Figure 1. The best trie has k internal nodes while the worst trie has r(k - 1)
+ 1 internal nodes. The ratio of sizes of worst to best, SW/S, is

SW k-l 1
-=
SO rK+zi

which results in a factor of r for most k.
Files which allow tries as small as k nodes are not realistic, however, because

they have k - 1 trivial attributes, attributes which contain no information. Since
we seek to model the files one might encounter in practice, we consider only
restricted files, that is, those with no trivial or isomorphic attributes. In the rest
of this paper, the term “file” wilI mean restricted file.

The analysis which follows characterizes the smallest and largest tries indexing
a binary restricted file. Attention to the binary case is motivated by two factors.

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

Heuristic for Full Trie Minimization l 521

On one hand, since information is represented in binary in most computers, one
can view operations on a binary fiie as operations on the binary representation of
a more general case. On the other hand, it is desirable to obtain information about
the simple binary case as a prelude to understanding files of higher degree.
Observe, for example, that if one attribute of a file has a ternary value set while
all others are binary, the file has alphabet size 3, even though analysis of the
binary case applies directly.

The following simple property of binary restricted files is used extensively.

LEMMA 1. Let F be a binary restricted file of r records and k attributes such
that there exists a full trie indexing F. Then

[Zg r-1 5 k c 2’-‘. (1)

PROOF

a. (iz 2 rig rl).3 Suppose k < [lg rl. Let t be an integer such that 2l-l < r 5 2t.
Then Ilg rl = t. Recall that a binary tree with maximum depth k can have at
most 2k leaves. So any trie indexing F can have at most 2t-1 leaves. This is a
contradiction since r > 2t-’ and therefore k 2 lg r.

b. (h < 2’-I). Suppose k 2 2’-‘. Think of a file as a two-dimensional array, and
view the binary values in each column as a binary number of r bits. Clearly, one-
half of the possible numbers are isomorphic up to a renaming of bits. Of the 2’-’
remaining values, one of them is ah zeros (or all ones). Therefore, there are
2r-1 - 1 nonisomorphic, nontrivial values. Since by assumption k: 2 2”-l, at least
one of the values must be repeated. This is a contradiction and it must hold that
k-=2’-‘. 0

Since two positive integers r and k which satisfy eq. (1) appear so often
throughout the paper, this condition is given a name.

Definition. A pair of integers (r, k) is valid iff

(1) r, k > 0, and
(2) rig r-1 5 k < 2’-l.

An (r, k)-file is a valid file iff (r, k) is a valid pair of integers and the file has r
records and k attributes.

The tries shown in Figure 1 are the best and worst tries for an unrestricted file.
For a binary restricted file, tries of the shape in Figure 1 are prohibited because
a node may have at most two direct descendants. In the worst case trie for a
binary restricted file, rapid branching occurs as early as possible but will be
slightly slower due to the binary constraint.

Consider the trie shown in Figure 2 for a binary file of eight records and seven
attributes. The first three levels form a complete binary tree, distinguishing all
records as early as possible. The remaining levels contain only chains as in the
worst case trie for an unrestricted file. Of course, this examph shows a tree where
the number of leaves is a power of two. Rapidly branching trees with an arbitrary
number of leaves are defined by the following.

3 lg is used throughout this paper to indicate log*,

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

522 * D. Comer

k

Smallest Largest

Fig. 1. The smallest and largest tries for an unrestricted file of
r records and k attributes.

Definition. Let (I^, K) be valid integers and let t be an integer such that 2t < r
5 2’+‘. An (r, k)-FAT tree is a binary tree such that

(1) each node at depth d, 0 5 d < t, has two children;
(2) r - 2’ nodes at depth t have two children and the remaining 2t+’ - r nodes

have one child; and
(3) each node at depth d, t + 1 5 d 5 k - 1, has exactly one child.

The following lemma shows that an (r, k)-FAT tree is as large as any trie
indexing a binary restricted file of r records and k attributes.

LEMMA 2. Let F be a valid (r, k) binary restricted fi.?e and let T be a full trie
indexing F. If A is an (r, k)-FAT tree then

lAIrIT

where 1 T 1 denotes the size of T.

PROOF. Suppose that 1 T I > I A 1. S ince both trees have all leaves at the same
depth, there must be a first depth, d, at which T has more nodes than A. Let t be
an integer such that 2’ < r I 2”‘. Two cases arise.

Case 1. d < t. Since each node in A at depth less than t has two children, T
cannot have more nodes than A and still be a binary tree. Now consider case 2.

Case 2. d L t. By the definition of A there are r nodes at depth t. Moreover,
each node at depth d has one child for all d, t c d I k - 1. Therefore, if T has
more nodes than A it must have more than r leaves. This is a contradiction, and
the lemma holds. Cl

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

Heuristic for Full Trie Minimization * 523

Complete

Binary

Tree

I

Leaf

Chains

Fig. 2. The largest trie indexing a binary restricted file of eight records
and seven attributes.

5. SMALLEST TRIES FOR BINARY RESTRICTED FILES

This section defines a class of binary trees which are as small as any trie indexing
a binary restricted file, and identifies the shape of tries for which the ratio of sizes
of the largest to smallest trie is maximized. It begins by characterizing the most
slowly growing trie for a binary restricted file.

The smallest trie for an unrestricted file exhibits no splitting until the level just
before the leaves as shown in Figure 1. A binary restricted file has no trivial
attributes, however, so tries indexing binary restricted files cannot consist of a
single chain of nodes. The absence of trivial or isomorphic attributes implies that
only a finite number of attributes may be tested before a binary branch must
appear in the trie. In fact, a minimum growth trie for a binary restricted file has
the shape shown in Figure 3. This trie exhibits an exponentially increasing
number of levels between the appearance of a binary branch.

The following gives a formal definition of the slowly growing trees described
above. We show that tries indexing a binary restricted file cannot have fewer
nodes at any depth than these trees.

Definition. Let i be a nonnegative integer, and let t be an integer such that
2t 5 i -c 2’+‘. An i-STEM is a binary tree such that

(1) all leaves lie at depth i;
(2) the rightmost node at depth 2’ - 1,O 5 j I t, has two children and all other

nonleaf nodes have exactly one child.

Examples of i-STEMS are shown in Figure 4.

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

524 l D. Comer

101010101 1

011001100 1

000111100 1

000000011...1

000000000 1

000000000 1

000000000 0

I I

(a)

lb)

Fig. 3. (a) A binary restricted fde. (b) The minimum growth full trie indexing it.

To understand the shape of an i-STEM, consider a binary restricted file.
Because there are no trivial attributes, the first attribute tested must split the
records into two groups. The second attribute must subdivide at least one of these
groups into two or it would be isomorphic to the first. The third selection,
however, could be such that it did not further divide the sets of records and yet
still not be isomorphic to either of the first two attributes; Figure 5 shows an
example. In Figure 5, testing the attributes from left to right distinguishes the
first set of records at depth one, the second set at depth two, but no set at depth
three. Following the first three selections, at least one more set must be distin-
guished no matter which attribute is tested. Using these ideas we show that an
i-STEM is as small as the slowest growing trie indexing a binary restricted file.

LEMMA 3. Let F be a valid (r, k) binary restricted file and let T be a full trie
indexing F. T must have at least [lg i] + 2 nodes at depth i.

PROOF

CLAIM. If A is a k-STEM then T has at least as many nodes as A at depths
d,Qrdlk.

PROOF OF CLAIM. From the above discussion, there is only one level possible
in T with no binary branching after the second set of records is distinguished.
ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

Heuristic for Full Trie Minimization . 525

2 3

5 6 7

Fig. 4. Examples of i-STEMS for 1 5 i c 7.

Now assume that there are 2’-’ - 1 levels possible with no branching nodes after
the jth set of records has been distinguished, for 2 5 j < p. Suppose that the p th
set of records is distinguished. Think of the assignment of values to sets of records
as assigning bit values to ap-bit number. There are only 2p possible assignments,
and one-half of these were used after thep - 1st set was distinguished. Therefore,
only 2p-1 additional levels can appear in the trie before another set of records
must be distinguished. Thus T must have an attribute tested at depth 2’-’ which
distinguishes the p + 1st set. Since A meets this criterion, the size of A is less
than or equal to the size of T. •i (Claim).

Since the growth of A is a lower bound on the growth of any full trie, T, the
number of nodes at depth i in A is a lower bound on the number of nodes in T at
that depth. We show that A has [lg i] + 2 nodes at depth i.

For depths one, two, and three A has two, three, and three nodes, respectively.
Let t be a positive integer such that 2t 5 i < 2t+‘, and assume that for all j, 0 5
j < t, A has [lg 2’J + 2 nodes at depths 2; to 2;+’ - 1. Consider i in the range 2t
to 2t+’ - 1. Since only one node at depth 2t - 1 has an additional child, there

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

526 * D. Comer

set

set

set

r

I’
se;

1 0

0 h

1 0

1 1 0

/' I \ : \
\

1 dt sit 2 3

(a) 09

Fig. 5. (a) Part of a binary restricted file. (b) A slowest growing full trie for that file obtained by
testing the attributes left to right.

must be (llg 2’ - 11 + 2) + 1 nodes at each depth. But

[lg 2t - 1J + 3 = t - 1 + 3 = t + 2 = [lg i] + 2.

Therefore, the lemma holds by induction. 0

Since an i-STEM is the most slowly growing full trie, one might think that the
ratio of the size of an (r, k)-FAT tree to the size of a k-STEM would provide a
bound on the ratio of the sizes of the worst case to best case tries for a binary
restricted fne with a given number r of records. Figure 6 shows, however, that
this is not the case. In Figure 6a, the g-STEM with 5 leaves has 30 internal nodes
and the (5, 9)-FAT tree has 37 internal nodes. The modified 4-STEM in Figure
6b has only 9 internal nodes whiie the (5, 4)-FAT tree has 12. Since 37/30 <
12/9, the trees in Figure 6b have a higher cost ratio than those in Figure 6a.
Relating this example back to the tries shown in Figure 1, one can see that the
ratio of sizes of the largest to smallest trie is maximized when the i-STEM has
lower levels which are complete binary subtrees. The rapidly growing subtrees
correspond to the rapid growth just before the leaves in the trie of Figure 1.

Consider an i-STEM in which the leaves have been made the roots of a forest
of binary trees. At each depth in the i-STEM, there must be at least rt(i) = Llg iJ
+ 2 nodes. If there are to be r leaves at depth k, where r > n(k), there must be
some depth p at which the tree begins to grow more rapidly than an i-STEM.
Since one should delay splitting as long as possible, p should be maximized. To
see how the best value for p is obtained, observe that at least [lg ql levels are
required in a binary tree of q leaves. In the case of an i-STEM, the r leaves can
be divided into a forest, F, of n(i) binary trees. Since all trees in the forest lie at
the same depth, we need

d = rnz;rlg(leaves in t)l

depths to distinguish all leaves. It is easily seen that d can be minimized by
distributing the leaves as evenly as possible among all trees in the forest. The
largest tree will have [r/n(i)1 leaves. Thus, at depth i in the i-STEM, the number
ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

Heuristic for Full Trie Minimization . 527

size = 30 size = 37

(a)

size = 9 size = 12

(b)

Fig. 6. (a) A g-STEM and a (5,9)-FAT tree compared to (b) a
3-STEM with binary trees rooted in its leaves and a

(5, 4)-FAT tree.

of additional depths needed to distinguish all r leaves is rlg[r/n(i)ll =
rkwmi.

An (r, K)-THIN tree is defined in terms of an i-STEM in which the leaves form
the roots of a forest of binary trees. It is then shown that the ratio of the size of
an (r, k)-FAT tree to the size of an (r, k)-THIN tree is maximized when all trees
in the forest are complete binary trees of equal size. Finally, the section concludes
by showing that no trie indexing a binary restricted file is smaller than an
(r, k)-THIN tree.

LEMMA 4. Let (r, k) be a valid pair of integers. Then there exists a positive
integer i satisfying

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

528 * D. Comer

PROOF. By inspection the statement holds for k = rig rl when i = 1. It is
sufficient to show that the sequence given by

i + [lg r - lg(lgl4iJ)l - Ilg rl

for i = 1,2,. . . , has no two terms which differ by more than 1 and is nondecreasing.
It is nondecreasing because i 1 lg((lg i) + 2) for i > 1.

Suppose that the jth and j + 1st terms differ by more than 1.

(j + 1 + rig r - lgJ.lg 4(j + 1)Jl - [lg t-1) - (j + rig r - lgllg 4jJl - rig rl) > 1.

Simplifying,

rb-- lgllg 4(j+ UJl - rig r - lk Gll>O
or

W-- lgllg 4(j + OJl > rk r - klk4j11.
Since [a - b) > [a - dl implies b < d for positive a, b, and d,

M.lgW + 1))J < lgtkGij)J

provided that

r 2 lg(4(j + 1)). (2)

If (2) holds, Ig 4(j + 1) < lg(4j) implies that 4(j + 1) < 4j which is a contradiction.
Thus Lemma 4 holds provided (2) is true. Now suppose that r < lg(4(j + 1)).
Then

r 5 lg(4(j + 1)) - 1.

so

r + 1 5 lg(4(j + 1))

and

2’-’ I j + 15 k

which is a contradiction since (r, k) is a valid pair. Therefore, Lemma 4 holds. 0

Definition. Let (r, k) be a valid pair of integers and let n(i) be defined by
n(i) = Llg iJ + 2. Let p be the maximum integer such that

Then an (r, k)-THIN tree is a binary tree which consists of a p-STEM in which
the n(p) leaves form the roots of a forest of 12 (p) binary trees such that the largest
binary tree has rr/lz(p)l leaves.

Note that exact shape of the binary trees in the forest is not specified. While a
forest which leads to a smallest (r, k)-THIN tree can be characterized (see [2]),
the analysis in this paper is limited to finding a bound on K/S,; we consider a
subset of THIN trees for that reason. Lemma 5 establishes conditions on r and k
which allow one to find a worst case bound on the ratio of sizes of an (t; k)-FAT
tree to the size of an (r, k)-THIN tree.

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

Heuristic for Full Trie Minimization

-- --

3” 9 F 9

Fig. 7. An (r, k)-THIN tree, Z’, and an (r, k)-FAT tree that have been extended
to an (r + q, k’)-THIN tree and an (r + q, k’)-FAT tree. q is the minimum

number of leaves necessary to complete a binary subtree of T.

LEMMA 5. Consider the set of ratios

R= {lFl/lTI IO-, k) is a valid pair, F is an (r, k)-FAT tree, and T is an
(r, k)-THIN tree}.

If R achieves a maximum then it does so for a pair (r, k) such that all subtrees
in the forest of the (r, k)-THIN tree are complete binary subtrees.

PROOF. Suppose not. Then there exists a valid pair, (r, k), T, an (r, k)-THIN
tree, and F, an (r, k)-FAT tree, such that 1 Fl/l T 1 is maximum, but not all
subtrees in the forest of T are complete. We show that there exists a valid pair,
(r’, k’) producing a THIN tree, T’, in which all subtrees are complete binary
trees, and a FAT tree F’ such that I F’ I /I T’) > I F I / I T I. Hence, a contradiction
arises.

Consider T and F as shown in Figure 7. Let q be the number of additional
leaves necessary to complete the smallest binary subtree of T that is not complete.
Clearly, q I r or all subtrees would be complete.

Let r’ = r + q, and let k’ = r + 1 + lg r. The pair (r’, k’) is valid for r > 3 (the

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

530 ’ D. Comer

cases r = 2 and r = 3 hold by inspection). Now consider F’, an (r’, h’)-FAT tree
and T’, an (r’, k’)-THIN tree. The size of T’ is the size of T plus the q - 1
internal nodes added in the complete subtree of q leaves. The size of F has been
increased by at least q(k’ - [lg(q + r)l), so the ratio) F’ l/l T’) can be bounded
from below by

IF' IFI + qW- Mq + r)l)
IT'1 - lTl+q-1

= I FI + 0’ - Mq + r)l)
lTl+q *

To prove that 1 F’ I/) T’ 1 >) F]/I T I, it suffkes to show that

x= IF’1 + dk’ - Mq + 41) ,z
lTI+q

x, I J’l + qW - Mq + r))
ITI+q

z I Fl + q(h’ - k(W)
ITl+q

=IF(+q(r+lgr+l-lgr-1)

lTl+q
= IFI + qr

ITl+q’
From Figure 1 and the fact that F is a binary tree we have

so
IJ’I + qr = I TI IFI + I Tlrq
lTl+q ITl(lTl+d

> PI IFI + IFlq
ITl(ITI + d

= lFI(lTI + q) IFI =-,
lTl(ITl+q) ITI

Repeated application of the above transformation will eventually result in a
THIN tree with complete binary subtrees. Since each transformation increases
the ratio of sizes of FAT and THIN trees, Lemma 5 holds. 0

Lemma 5 limits the tries one needs to consider in order to obtain a worst case
bound on the ratio SW/S,,. Theorem 1 summarizes the importance of (r, k)-THIN
trees of this limited form. The next section demonstrates a class of files for which
there exist (r, k)-THIN tries and (r, k)-FAT tries.

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

Heuristic for Full Trie Minimization * 531

THEOREM 1. Let (r, k) be a validpair of integers and let T be an (r, k)-THIN
tree in which the trees of the forest are all complete binary trees of the same
size. Let F be a binary restricted file of r records and k attributes, and let A be
a full trie indexing F. Then

ITlslAl

where (T 1 denotes the size of T.

PROOF. Suppose 1 A 1 < (T (. S ince A and T both have all leaves at depth k,
there must be a first depth, d, such that A has fewer nodes at depth d than T. Let
p be the depth of the roots of the forest of binary trees in T. Now, two cases arise.

Case 1. d I p. From Lemma 3, a p-STEM is the slowest growing trie for a
binary restricted file. Therefore, A cannot have fewer nodes than T at depth d.

Case 2. d > p. Since T has complete binary trees rooted at depth p, if A has
fewer nodes at depth d, A has fewer leaves than T. This is a contradiction.

Therefore, the assumption was false and) T 1 4) A). q

6. A BOUND ON S,.,/S, FOR BINARY RESTRICTED FILES

This section provides a bound on the ratio of the size of an (r, k)-FAT tree, SW,
to an (r, k)-THIN tree, S,,. The worst case bound will provide a measure of the
maximum improvement that can be expected from any heuristic for tries indexing
a binary restricted file. The next section shows that there exists an infinite class
of files for which the ratio of best to worst tries achieves the bound.

The size of an (r, k)-THIN tree can be obtained from the sum of the size of the
i-STEM and the forest. The size of an i-STEM of n leaves (including the leaves)
where i = 2n-’ - 1 can be obtained by summing the number of nodes at each
level.

So = 1 + 2*2’ + 3*2’ + 4*2’ + . . . + n*2n-2

= l+ i i*2i-2 = i + a (n2n+2 - (n + 1)2n+1 + 2).
i=2

Simplifying, we get

f ((n - 1)2” + 1) + - 2 1 = (n - 1)2”-’ + 1.

The size of a forest of n (complete) binary trees of f leaves each is
n(f - 1) - n (excluding the n roots and nf leaves). Since f = r/n, the size of the
forest in an (r, k)-THIN tree is n(r/n - 2) = r - 2n. The size of an (r, k)-THIN
tree is then

So = (n - 1)2”-’ + 1 + r - 2n (3)

where n is the number of leaves in the i-STEM. The definition of THIN trees
provides the exact relation between r, 12, and n. Throughout the remainder of this
paper n is used to refer to the number of subtrees in the forest of a THIN tree.
Observe that for the THIN trees with complete forests, r = n21, where t is the

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

532 - D. Comer

height of the trees in the forest. From Lemma 3, the i-STEM in a THIN tree has
[lg i] + 2 = [lg 4iJ leaves, and so it must hold that k = t + i = t + Zn-’ - 1.

The size of an (I^, k.)-FAT tree (excluding the leaves) can easily be computed
since it consists of a complete binary tree of [lg rJ levels of a complete binary tree
followed by k - Ilg rJ - 1 levels at which exactly r nodes appear. Let p = Ilg rj.
Then the size of an (r, K)-FAT tree, S,, is

SW = 2p+’ - 1 + r(k - 1 -p).

From the discussion above, there exist integers n and t such that r = n2t, so
SW = 2t+1+LlgnJ - 1 + n2t(2”-1 - 2 - [lg nJ)

5 272n - 1 + n(2”-’ - 2 - Llg n])).

2%~(2~-l - Jig nJ) - 1). (4)

From eqs. (3) and (4), one can obtain a bound on the worst case performance
of any heuristic. Since 2”-’ ZD lg n,

SW 5 2t(n2”-1 - 1) = r2n-’ - 2t

1 = fJn-1 _ r = r 2n-1 - -
()

5 r2”-’
n n

therefore,

SW fin-1
-<
S, - (n - 1)2”-’ + r - 2n + 1.

(5)

This ratio is approximately r/(n - 1) for large r and n. Since r/(n - 1) 2 2’,
&/SO is not bounded above by a constant, but grows as the size of the input file.

Files of the form shown in Figure 8 demonstrate that the worst case bound is
achievable.

Definition. Let n, t be positive integers. An (n, t)- WC file is a binary file of
r = n2t records and k = t + 2”-’ - 1 attributes constructed as shown in Figure 8.

Lemma 6 shows that tries exist for an (n, t)-WC file that are (r, k)-THIN trees
and (r, k)-FAT trees.

LEMMA 6. Given n, t > 1, and F an (n, t)- WC file, there exist full tries T and
A indexing F which are an (r, k)-THIN tree and an (r, k)-FAT tree, respectively.

PROOF

a. (For T). Construct T in the following way. By definition of F, all 2’ blocks
of n records are identical. Select the Zn-’ - 1 attributes from set Q left to right,
producing a (2n-1 - l)-STEM where each leaf in the stem represents a set of 2’
records, one from the first block, one from the second block, and so on. Select the
final t attributes from set P left to right dividing up these sets, doubling the
number of divisions at each depth. Twill consist of n subtrees of 2t leaves each,
where each subtree is a complete binary tree rooted in one of the leaves of
the (2n--] - U-STEM. By definition, T is an (r, A)-THIN tree for appropriate
r and k.
ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

Heuristic for Full Trie Minimization - 533

P Q

H\ -----2
""_,\

1 : 1 101010101010101
011001100110011

::i 000111100001111 000000011111111
111 000000000000000

l'loo 011001100110011 101010101010101

:x 000111100001111 000000011111111
110 000000000000000

100: 011001100110011 101010101010101

:oo; 000111100001111 000000011111111
101 000000000000000

loo: 011001100110011 101010101010101

188 000111100001111 000000011111111
100 000000000000000

011 101010101010101

"0:: 011001100110011 000111100001111

00:: 000000011111111 000000000000000

00
: 8

011001100110011 101010101010101

010 000111100001111
010 000000011111111
0 0 1 000000000000000

001 101010101010101
001 011001100110011
001 000111100001111

8001 000000011111111 000000000000000

0 0 0 101010101010101
WI 011001100110011

00c111100001111
0 0 0 000000011111111
0 0 0 000000000000000

n

n

\

n

n

2

n

n

i

n

n

Fig. 8. The construction of an (n, t)-WC file. The example fde has n = 5 and
t = 3.

b. (For A). Construct A in the following way. Choose the t attributes from set
P left to right producing a complete binary tree of depth t. Exactly one record
from each of the n blocks will be associated with each leaf in this part of the tree.
Since the blocks are all identical, they each contain all ZR-’ - 1 possible attribute
values; select those attributes which divide the sets of records represented in half,
then in quarters, and so on. These selections will form complete binary subtrees
rooted at each of the 21 nodes formed by selections in Q. That is, the selections
lead to a complete binary tree with r leaves. Selection of the remaining attributes
in any order will produce an (r, k)-FAT tree. 0

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

534 * D. Comer

7. A WORST CASE BOUND FOR THE GREEDY HEURISTIC

This section shows that the greedy heuristic may produce relatively large files
when presented with an (n, t)-WC file. The choice of the first attribute turns out
to be crucial; a correct choice will lead the greedy heuristic to an optimum
(THIN) trie, but a bad choice may lead to a tree which is almost as large as the
worst (FAT) tree. The details are given in Theorem 2.

THEOREM 2. Let n, t > 1, and let F be an (n, t)- WC file. The greedy heuristic
can produce a trie for which Sh /SO is approximately ,9,/S,.

PROOF. From Lemma 6 there exists an (r, k)-THIN trie indexing F, so SO is
given by the size of an (r, k)-THIN tree. Now consider the selections which can
lead greedy to a worst case trie. Referring to Figure 8, form a trie as follows:
Choose the t attributes from set P left to right, dividing the records into 2’ sets.
As in the (r, k)-FAT trie, a complete binary tree will be formed. Following the
selections from set P, continue to select attributes from set Q left to right. The
selections from Q form 2’ (2n-1 - l)-STEMS rooted in the 2’ nodes at depth t.
The end result is a modified (r, k)-FAT trie in which the first levels grow as
rapidly as possible, but later levels grow more slowly.

The greedy heuristic allows the selections described above. Since there are no
trivial attributes in the file, any attribute may be selected first; its choice is
important. If the leftmost attribute is selected, any second attribute is allowed
because each will increase the breadth of the trie by two. If part of the attributes
from set P have been selected left to right, the next attribute in P can be selected
by the greedy heuristic because any remaining attribute choice will split each
node. After all selections in P are complete, the greedy heuristic will choose the
“best” order for attributes in set Q, producing a STEM for each subtree.

Analysis which follows shows that the size of the modified (r, k)-FAT tree
described by the above selection is such that &,/SO approaches &/SO asymptot-
ically. Therefore, Theorem 2 holds. 0

We now consider the size of the modified (r, k)-FAT tree produced by the
greedy heuristic. As shown in Figure 9, the difference between the tree in question
and an (r, k)-FAT tree is that at depth t the modified trie stops exponential
growth and has 2 t i-STEMS as subtrees. The (r, k)-FAT tree, on the other hand,
continues with complete binary subtrees until all r records have been distin-
guished. So the difference between a FAT tree and the modified FAT tree occurs
only in the 2l subtrees. The point to note is that the subtrees of the (r, k)-FAT
tree are themselves (r/n, k - t&FAT trees while the subtrees of the trie are
(k - t)-STEMS. Lemma 7 shows that the ratio of the size of an (r, k)-FAT tree
to the size of a k-STEM approaches 1 for large r and k. Thus the cost of the
greedy heuristic asymptotically approaches the worst cost possible.

LEMMA 7. Let (r, k) be a validpair, let T be an (r, k)-FAT tree, and let S be
a K-STEM. Then) Tl/jSl is approximately 1 for Large r and appropriate k,
where 1 T 1 denotes the size of T.

PROOF. From the preceding analysis, we have that

ISI = (r - 1)2’-’ + 1,

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

Heuristic for Full Trie Minimization - 535

and

and for k = 2’-’ -.

so

ITI=r(k-[lgrl-l)+r-I

= r(k - [lg rl) - 1

1,

) TI = r(2’-’ - [lg rl - 1) - 1.

(TI r(2’-’ - [lg r-1 - 1) - 1 -=
ISI (r - 1)2’-’ + 1

~ r(2’-’ - rk 4)
(r - 1)2’-’

and for r > 1,

m, r2’-’
ISl-(r-l)2r-1C5i

which approaches 1 as r grows. 0

We conclude that a k-STEM is approximately the size of an (r, k)-FAT tree for
large r and k. This result is intuitively unappealing. In a sense it claims that for
a file of r records and k attributes the slowest growing trie, a k-STEM, and the
fastest growing trie, an (r, k)-FAT tree, are approximately the same size. To see
why this happens, observe that the last k/2 levels of the k-STEM have r nodes.
So for large k, a k-STEM is at least one-half the size of an (r, k)-FAT tree. Of the
remaining levels, k/4 of them have r - 1 nodes, k/8 have r - 2, and so on. Thus,
while a k-STEM grows slowly, it has many levels which are almost as wide as an
(r, k)-FAT tree when k is large.

The above arguments show that when k = 2”-l, the largest and smallest tries
are close to the same size. It is interesting to note that the opposite extreme,
when k = lg r, has the same property. One can visualize a THIN tree being
stretched and compressed as k changes. As k decreases, the THIN tree shrinks
but the binary subtrees expand upward. Eventually, k reaches lg(r) and there is
only one possible trie: the complete binary tree. As k increases, the THIN tree
grows longer while the subtrees grow smaller until only a k-STEM remains. The
cost of a heuristic will be maximized for k = r, and will decrease to 1 for very
large or very small k.

8. SUMMARY AND CONCLUSIONS

The problem of constructing a minimum size trie by reordering attributes is
computationally difficult. This paper has explored a simple heuristic procedure
for trie construction, called greedy, which employs a local optimization in an
attempt to generate low cost tries. The greedy heuristic is a member of a class of
heuristics which all produce optimum tries for files with all possible attribute
combinations. Experimental results show that the greedy heuristic tends to
produce tries with smaller average size than randomly chosen tries. For some

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

536

k

v

. D. Comer

[r/n-k-t) -FAT trees ,T (kzt) -STEBS

0000 --- 0 0 I

c

(r, k) -PAT tree

n nodes

0000 --- II0
r

r-GREEDY tree

Fig. 9. The shape of a largest (FAT) trie, and the shape of a worst case trie for the greedy
heuristic. The greedy trie differs from the FAT trie in that there are n subtrees which are

(k - t)-STEMS instead of n FAT subtrees.

files, the greedy method may produce a nonoptimum trie, however, because it
cannot guarantee success.

The paper defines a class of restricted files which have no trivial or isomorphic
attributes, and characterizes the largest and smallest tries for binary restricted
files. From the size of the largest and smallest tries, we obtained a bound on the
ratio of the size of the worst trie to the size of the best possible trie for a binary
restricted file, and demonstrated a class of files which obtained that ratio.

Analysis of the greedy heuristic shows that it could produce tries which
approach the worst case. We conclude that the greedy heuristic can perform
badly, even though it seems to do well on many files.

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

Heuristic for Full Trie Minimization * 537

Several problems remain open. First, the analysis here concentrates on the
binary case. Extensions to files of greater alphabet size would be interesting.
Second, the worst case occurs when the greedy heuristic is presented with a set
of attributes which all have equal branching. It seems that a more sophisticated
technique which employs bounded lookahead might pay off dramatically in
lowering the worst case cost. For example, a lookahead of 3 for WC files would
force greedy to choose the best attribute order, Third, the worst case occurs when
k is almost equal to r. Since in practice one would expect Iz to be closer to (lg r)2,
it would be interesting to know whether restrictions on rT! would change the bound
significatly. Last, only a static file has been considered. A host of questions
relating to updates can be asked. Given a file and an optimum trie, how does the
trie deviate from the optimum after a sequence of “delete” or “insert” operations?
Phrased another way, at what time during a sequence of updates would it be cost
effective to reorganize the index?

ACKNOWLEDGMENT

The author wishes to thank the referees for several helpful suggestions.

REFERENCES
1. AHO, A., HOPCROFT, J., AND ULLMAN, J. The Design and Analysis of Computer Algorithms.

Addison-Wesley, Reading, Mass., 1974.
2. COMER, D. Trie structured index minimization. Ph.D. Dissertation, The Pennsylvania State

Univ., University Park, Pa., 1976.
3. COMER, D. Heuristics for trie index minimization. ACM Trans. Database Syst. 4, 3 (Sept. 1979),

383-395.
4. COMER, D., AND SETHI, R. The complexity of trie index construction. J. ACM 24,3 (July 1977),

428-440.
5. DEMAINE, P.A.D., AND ROTWITT, T. Storage optimization of tree structured files representing

descriptor sets. In Proc. ACM SIGFIDET Workshop on Data Description, Access, and Control,
Nov. 1971, pp. 207-217.

6. FREDKIN, E. Trie memory. Commun. ACM 3,9 (Sept. 1960), 490-499.
7. YAO, S.B. A model for combined attribute index organizations. In Proc. 5th Texas Conf

Computing Systems, Austin, Tex., Oct. 1976, pp. 127-130.

Received April 1978; revised September 1980; accepted November 1980

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

