Brook Auto: High-Level Certification-Friendly Programming
for GPU-powered Automotive Systems

Matina Maria Trompouki
Universitat Politecnica de Catalunya
mtrompou@ac.upc.edu

ABSTRACT

Modern automotive systems require increased performance
to implement Advanced Driving Assistance Systems (ADAS).
GPU-powered platforms are promising candidates for such
computational tasks, however current low-level programming
models challenge the accelerator software certification process,
while they limit the hardware selection to a fraction of the
available platforms. In this paper we present Brook Auto,
a high-level programming language for automotive GPU
systems which removes these limitations. We describe the
challenges and solutions we faced in its implementation, as
well as a complete evaluation in terms of performance and
productivity, which shows the effectiveness of our method.

1 INTRODUCTION

Modern automotive systems exhibit an increased demand
for computational power, in order to implement Advanced
Driver Assistance Systems (ADAS), which have become es-
sential in current vehicles. Embedded GPUs can provide
the required performance to satisfy this need, due to their
massively parallel architecture.

High-end embedded GPUs are programmable using low-
level programming models such as CUDA and OpenCL.
These programming models are extensions of the C program-
ming language, in order to enhance the programmability of
those devices, since this language dominates the software
production nowadays. However, this comes at the expense of
their software certification against safety standards such as
15026262 [8], which is imperative in automotive systems. In
particular, both CUDA and OpenCL, violate several recom-
mendations found in ISO26262 and other code guidelines for
safety critical systems such as MISRA C [3], namely the use
of pointers and dynamic memory allocation.

In addition to this, those programming models are only
available to high-end embedded devices such as NVIDIA’s
Drive PX, which have a higher cost and high power con-
sumption, ranging from 10 up to 500W. On the other hand,
low-end, low-power embedded GPUs such as the Mali-4xx,
the most licensed embedded GPU so far, have been used
in the automotive sector for more than a decade, and they
are still found in latest safety-certified automotive platforms
like Xilinx’s Zynq UltraScale+. These low-end GPUs, which
support only graphics APIs up to OpenGL ES 2.0 [9], can pro-
vide low-cost general purpose algorithm acceleration, using
recently introduced GPGPU solutions [16].

In this work, we introduce Brook Auto, an open-source
high-level programming language for automotive GPUs [12],

© {ACM} {2018}. This is the author's version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was published in
https://doi.org/10.1145/3195970.3196002

Leonidas Kosmidis
Barcelona Supercomputing Center
leonidas.kosmidis@bsc.es

which allows the easy certification of GPU accelerated soft-
ware, while it retains programmer’s productivity and exe-
cution efficiency. Moreover, Brook Auto is portable across
all embedded GPUs found in automotive systems, allowing
not only to reduce the software certification cost, but also
the overall hardware cost enabling the selection of more cost
effective solutions from a wide range of GPU platforms.

Our contributions are the threefold: a) we define a subset
of the Brook GPU language, that we call Brook Auto, which
is amenable to software certification and portable across
every embedded GPU for the automotive domain, b) we
demonstrate its compliance with ISO26262 and c) we present
an implementation and evaluation of Brook Auto on a low-
end embedded platform.

2 SOFTWARE CERTIFICATION AND
CUDA /OPENCL

Due to their critical nature, automotive systems need to be
certified according to the ISO26262 automotive standard.
For this reason, all automotive software needs to comply
with a set of rules defined by the standard. Among those
rules, we find several rules that are violated by every CUDA
and OpenCL program: a) restricted use of pointers, b) no
dynamic memory allocation, c) static verification of program
properties, d) resilience to faults and e) fault propagation.

By definition, CUDA and OpenCL are based on pointers
in order to pass and process data in the GPU. In particular,
the user has to maintain both host pointers, pointing to the
address space mapped to the CPU, as well as device pointers,
pointing to the GPU address space. The data movements
between those address spaces have to explicitly managed,
ensuring not only the validity of the pointers but also the size
of the data to be transferred. This process is error prone, in-
creases the software complexity and it is difficult to maintain,
let alone certify.

In addition, the CPU and especially the GPU mapped
memory has to be dynamically allocated in an explicit manner.
This creates problems to reason about the maximum memory
usage. For example, the presence of a memory leak can render
the GPU unusable if the GPU memory is exhausted. In a
worse scenario, if the allocated memory is precious pinned
memory (non-swappable memory on the CPU side), this can
jeopardize the stability of the entire system, allowing a fault
in one task to affect the whole system (rule e).

The memory allocation problem is a special case of the
static verification of program properties in general. Those
include maximum stack depth, maximum loop bounds and
other limits. Neither language restricts their usage, which

Brook Auto: High-Level Certification-Friendly Programming
for GPU-powered Automotive Systems

may result in a kernel crash or deadlock, depending on the
kernel inputs. In a similar way, emulation for the cases where
a kernel resources exceed the available GPU resources, can
lead to multiple implicit GPU calls for a single kernel.

Finally, a memory violation in a GPU kernel or memory
transfer between the GPU and the CPU, often crashes the
driver and requires a system restart, violating both d) and e).
Therefore, it is evident that these programming models can-
not be used for the highest integrity level (ASIL-D) according
to ISO26262.

3 JUSTIFICATION OF THE
LANGUAGE SELECTION

Similar problems have been identified in the past on CPU
automotive code written in C, which have been addressed by
the introduction of programming guidelines and the definition
of subsets of the C language such as MISRA C [3]. However,
this cannot be applied in the case of CUDA and OpenCL,
due to the fact that the above problematic characteristics are
indispensable parts of their programming model. Therefore,
instead of devising a new GPU language with the desired
characteristics to be compliant with ISO26262 and taking the
risk that it might not be embraced by end users, we leverage
Brook [4], a widely used language for GPUs in the past and
a success story proven in practice.

Brook [4] is an open source language developed at Stanford
University, introduced during the early stage of the heteroge-
neous programming era to leverage the computational power
of multiple CPUs and GPUs, in a period that GPU comput-
ing was only possible using low-level graphics APIs, such as
the desktop OpenGL and DirectX.

Brook is the basis of NVIDIA’s CUDA programming lan-
guage, while it has also been employed by their rival at that
moment, ATT (currently AMD).The latter further improved
Brook for use with their GPU’s low level programming inter-
faces, initially CTM (Close-to-Metal) and later CAL (Com-
pute Abstraction Layer) [11], and they released it also with
an open source license as Brook+ [1]. This resulted to an im-
portant amount of GPGPU software written in this language,
mainly for scientific simulations.

Brook abstracts the programmer from the graphics com-
plexities so that she/he has only to identify the algorithmic
part to be offloaded (kernel) and its input/output. This
procedure is very similar to CUDA. A short but complete
description of the language features can be found in [4].

Brook kernels are written in a restricted subset of C (no
recursion, no goto, no pointers), general enough to support
several backends which might have different types of limita-
tions. The language also features vector extensions similar to
OpenCL, making the transition of a programmer from Brook
to CUDA/OpenCL and vice versa straightforward.

Finally, Brook is one of the most universally supported
languages for heterogeneous computing. Before our imple-
mentation, which is described in the Section 5 and extends
Brook’s support to almost any accelerator device, Brook
supported 4 different backends, one targeting CPUs, based

Matina Maria Trompouki and Leonidas Kosmidis

on OpenMP and three desktop GPU backends: a) desktop
version of OpenGL for Windows and Linux, b) DirectX 9
for Windows and c¢) Close-to-Metal for AMD graphics cards.
Moreover, AMD’s Brook+, included a CAL [11] backend for
AMD graphics cards, on both Windows and Linux machines,
while keeping the front-end compatibility with Brook.

4 BROOK AUTO AND COMPLIANCE
WITH 1S026262

By default Brook does not support pointers. Instead it uses
streams in order to allow the GPU to process data in a kernel.
In Brook there is no possibility for a GPU thread to access
beyond the allocated GPU memory. Moreover, the correct
element is guaranteed to be accessed (the one corresponding
to that thread), minimizing the possibility of the program-
mer to make a mistake. When the array index notation is
used to access the GPU memory, even in the case that the
programmer may erroneously access beyond the limits of
the GPU memory, our implementation over the OpenGL
ES 2.0 graphics API ensures that there is no crash, which
can impact the availability of the GPU or the entire system.
This is because when the texture unit is used for accessing
memory, memory violations do not raise exceptions.
Similarly, Brook does not use pointers neither dynamic
memory allocation to manage GPU memory and its transfers.
In particular, it defines stream handles, which do not allow
low level access into the GPU memory. The size of each stream
is encapsulated in the object size, therefore it is not possible
to have out of bound violations and crashes during data
movements from and to the GPU memory. In Brook Auto,
we force each stream handle to be statically sized, to allow the
static determination of the maximum GPU memory usage.
In the same way, in Brook Auto we enforce upperbounds
to the loop constructs in the kernels, so that the maximum
trip count can be deduced, while the recursion is already
forbidden in Brook. In order to avoid the emulation cost on
certain GPUs, Brook Auto restricts the number of inputs
and outputs to the ones supported by the target platform.

5 IMPLEMENTATION

Next, we describe the implementation of an OpenGL ES 2
backend in Brook Auto, to enable ISO26262 friendly high-
level GPGPU programming on automotive GPU platforms.

Our starting point has been the open source subversion
repository of Brook [7] and its OpenGL backend. The repos-
itory has been converted to git preserving all history and
original authors and can be accessed along with our imple-
mentation in github [12].

5.1 Compiler

We modified the Brook compiler front-end to enforce our
15026262 compliant subset, Brook Auto. The original Brook
implementation for desktop GPU kernels is based on source-
to-source transformations performed by the high-level Cg [13]
language compiler from NVIDIA.

Brook Auto: High-Level Certification-Friendly Programming
for GPU-powered Automotive Systems

Similar to the desktop OpenGL backend, our implementa-
tion is based on the Cg compiler. We upgraded the Brook com-
piler to interface properly with its latest version (3.1.0013) [14]
which features a hidden undocumented option to generate
OpenGL ES 2 shader (kernel) code (GLSL ES 1.0 [10]).

5.2 Array Indexing and indexof

The OpenGL ES 2 standard [9] only allows memory accesses
in textures using normalized coordinates, values between 0
and 1 that are scaled according to the texture size. However,
they were particularly challenging to provide full compatibil-
ity with the rest of the backends, especially with the CPU
one. That is, the same Brook kernel to be executed in the
same way independently of the target device. The source
of the problem comes from the fact that Brook allows the
programmer to use array indices to access kernel inputs,
similarly to C. However, this means that the array indices,
which are the texture coordinates in our backend, need to be
integer values. In the desktop version, the straightforward
option is to use non-normalized coordinates, which are not
available in the embedded case. To support this functionality
in our Brook Auto backend, we pass the texture dimensions
as extra hidden arguments in the kernel invocation, and scale
appropriately the indices in the generated code. This way
the conversion is completely transparent to the user.

We used the same solution to implement the index of
the current element with the indexof operator. This Brook
operator is equivalent to threadId in CUDA, which returns
the identifier of the current thread and it is used to access
certain elements of the provided input. The only difference in
this case is that an implicit texture coordinate is generated
in the GLSL ES 1.0 kernel code, which is further transformed
as any other user-declared array index.

5.3 Texture Size

Several OpenGL ES 2 implementations support only power
of two textures or square only textures. Those cases are
automatically detected in our implementation and they are
appropriately handled in the allocations, in a transparent to
programmer manner. The runtime keeps the sizes of textures
internally so that they can be used for correct scaling e.g.
for array indexing or in indexof implementation. Note that
Brook supports both single and multidimensional inputs with
up to 4 dimensions, which are again transparently used using
a translation scheme, even though the underlying memory is
always 2-dimensional as OpenGL ES 2 requires [9].

5.4 Numerical Formats

Regarding the numerical format interoperability, the numeri-
cal transformations proposed by [16] have been incorporated
in our backend. The implementation of this computationally
intensive and performance-critical code has been optimized
in both CPU and GPU. The input reconstruction and output
encoding GPU part has been optimized with GLSL vector
operations [10], to take advantage of the underlying imple-
mentation of OpenGL ES 2 GPUs, which are based on a

Matina Maria Trompouki and Leonidas Kosmidis

vector microarchitecture in their majority. On the other hand,
the CPU code that sets the data in the textures and reads
them back is implemented in portable performance-oriented
C code. In both cases, we paid special attention to retain
portability across different OpenGL ES 2 platforms.

5.5 Reductions

Brook supports kernel reductions over input data, similar to
OpenMP, Intel’s Threading Building Blocks (TBB) and Cilk
Plus. This functionality consists of an iterative application of
certain associative operations (e.g. addition) over the input
elements in order to reduce the size of the input.

Reductions in Brook are implemented internally as multi-
pass kernels over two intermediate buffer textures. The size
of the input is constantly reduced until the output contains
the desired number of elements. In order to reduce memory
overheads, the same textures are reused for the reduction
steps. The fact that the amount of data are reduced from
each reduction step does not create any complication in the
OpenGL backend, where non-normalized coordinates were
used. However, this is not the case for our OpenGL ES 2
backend. The normalized coordinates forced by API limita-
tions imply that their actual value is directly related to the
allocated texture size. In order to overcome this problem, we
had to keep track internally of the actual data size for reduc-
tion operations as well, similar to the solution we applied for
array indices and the indexof operator.

6 EVALUATION

Without commonly accepted GPU benchmarks (Rodinia [5],
Parboil [15] or SHOC [6]) written in Brook and considering
that porting any of these suites is beyond the scope of our
work, we had to find appropriate alternatives that allow us
to evaluate our implementation and show its potential.

For this reason, we use the reference Brook applications
included in the Brook+ version, released by AMD [1] in order
to show examples of how Brook can be used, as well as to
demonstrate the performance advantages compared to CPUs.
Some of the applications (SpMV, bitonic sort, binary search,
image filtering, mandelbrot, flops) are also present in the
original Brook release [7]. However, their Brook+ version is
enhanced with additional features also present in the rest
of the reference applications, which make them suitable for
performance evaluation. Each benchmark is parametrized, so
that the size of its input set is configurable as well as the seed
of the random generator that is used to generate it, in order
to achieve reproducibility. Moreover, a CPU implementation
of each algorithm is included in the application, allowing to
validate the GPU output against the CPU results. Finally,
a time measurement functionality and statistics reporting is
integrated in each application, so that the performance of
both GPU and CPU is measured and reported, along with
the obtained speedup.

The Brook+ provided set of applications is a rich collec-
tion of mainly computational intensive algorithms that are
amenable to GPU parallelization and which make use of

Brook Auto: High-Level Certification-Friendly Programming
for GPU-powered Automotive Systems

30
2 25 m Brook
o Auto
i 20 Brook+
g1 CAL x86
¢ 10
& s

0

1024
Flops Benchmark

Figure 1: Relative GPU/CPU capabilities between
our target platform and a reference x86 platform.

the various language features. Among them we find financial
algorithms (Binomial Option Pricing and Black Scholes), ma-
trix operations (Sparse Matrix Vector Multiplication (SpMV)
and single precision matrix matrix multiplication (sgemm)),
sorting and binary searching, image filtering and fractal gen-
eration (mandelbrot), prefix sum and a graph processing
algorithm (Floyd Warshall shortest path computation).

When possible, the applications are used unmodified. How-
ever, some applications violate our Brook Auto specification.
In that case, the application is trivially modified, e.g. by en-
forcing maximum loop counts, splitting the kernel in as many
versions as the outputs and converting vector types to scalar.
In all cases, the correctness of the GPU implementation is
retained by validating it with the CPU output.

We execute our experiments on an ARM based platform
with a VideoCore IV GPU.To facilitate the explanation of the
scalability trends for the various benchmarks and compare
the effectiveness of our implementation with the desktop
GPU backend, we have selected a reference Brook+ capable
platform with similar GPU/CPU performance ratio, an Intel
Core 2 Duo CPU T9400 equipped with an AMD Mobility
Radeon HD 3400 Series GPU.

As we can see in Figure 1, the Flops benchmark which
consists of 2 billion floating point operations over 1MB of data,
shows that the relative capabilities of the GPUs compared to
the respective CPUs in both systems are in the same order
of magnitude. In particular in our target system the GPU is
26.7 times faster than the CPU for the computation and the
transfer of a very computationally intensive task, while in the
reference x86 system, the GPU is 23 times faster. Therefore
the scalability trend followed by all applications as well as
the order of magnitude of their speedup is expected to be
similar in both systems.

In Figures 2 and 3 we present the results for the Brook+
applications for various input sizes. We omit data sizes smaller
than 128 x 128 elements because for such small data sets
the CPU is always faster than the GPU, since the latency
for transferring the data to the GPU memory dominates the
total execution time. The results of interest are indicated with
the blue line, while the results for the x86 reference platform
are depicted with light grey, since their only purpose is to
show the scalability trend of each application in the desktop
Brook+ backend implementation, in other words whether it
provides a speedup over the CPU and its order of magnitude.
Note that the x86 results are obtained without our OpenGL

Matina Maria Trompouki and Leonidas Kosmidis

ES 2 modifications and they use AMD’s Brook+ runtime,
which internally uses CAL [2] (Compute Abstraction Layer,
a type of low-level API for AMD GPUs, similar to PTX for
NVIDIA’s CUDA enabled GPUs) instead of OpenGL, which
is more optimized for AMD GPUs. Therefore, it is supposed
to be more efficient than our backend.

We divide our results in two categories, depending on the
scalability of the benchmarks within the explored input sizes.

6.1 Non-scalable GPU Programs

In Figure 2 we see the benchmarks which do not provide a
speedup over the CPU. The two financial applications, Bi-
nomial Option Pricing and Black Scholes, although they are
both quite computationally intensive, they do not provide
any performance advantage over the CPU for the considered
input sizes. An important reason for this is that the appli-
cations have a streaming processing pattern: reading a few
input values, do some complex computations and produce
the output. In the CPU version, the small inputs and in-
termediate results between the heavy computations reside
in the CPU cache, which turns to be very effective for the
CPU implementation compared to the GPU one. Interest-
ingly, the Brook+ version executed on the x86 platform does
not show any performance increase with the input size, un-
like our Brook Auto implementation. The reason for this
difference is that the Brook+ version is highly vectorized,
making it compute bound, therefore the kernel performance
is saturated even with small input sets. On the other hand,
the Brook Auto version on our target platform is scalar and
therefore there is a small performance improvement when
the input size is increased, although in both cases the GPU
version achieves less than 20% performance compared to the
CPU. However, if it was possible to provide inputs larger
than 20482 elements (which is the limitation in our backend,
due to the hardware limits of OpenGL ES 2 GPUs), the
scalability trend of these applications for our backend shows
that larger inputs would provide a benefit over the CPU
version, especially in the case of Binomial Option Pricing.
The Prefix sum application in Brook+ is implemented
as a multipass kernel invocation with low arithmetic inten-
sity, therefore the data movement dominates the execution
time. However the CPU version is extremely efficient in both
systems, as it is implemented as a simple accumulation loop.
Finally, SpMV is implemented as a series of 3 small, low
arithmetic intensity kernels (O(n)), which means that data
transfers are more expensive than the computations for the
small sizes we consider. However, the scalability behavior
of this benchmark indicates that for larger input sets GPU
might be beneficial compared to the CPU. Note that the
maximum input value for our implementation is 1024 instead
of 2048, since this is the size of each dimension of the com-
pressed matrix, which when it is decompressed, it reaches
the maximum texture limit on the OpenGL ES 2 GPUs.
In the Brook+ implementation we provide results for 20482
elements since in the AMD desktop GPU this limit is 4096.

Brook Auto: High-Level Certification-Friendly Programming
for GPU-powered Automotive Systems

Matina Maria Trompouki and Leonidas Kosmidis

0,35
001% ——4—Brook » 0,14 |—==#=Brook O?O'é — 03 —o— Brook ,
2 016 Auto // 012 Auto P 8,88 yd 02'5 Auto /
,07)
S 8;%‘2‘ Brook+ / 01 Brooks // 0,06 // 0 Brook+ |
2 01 CALx86 — 0,08 CALX86 0,05 g CAL x86
2 008 0,06 / 004 015
£ 008 ~ 0,04 0,02 o1 P
P00 | 002 /——/ 0ol o,og ———
0 e s — [e
128 256 512 1024 2048 128 256 512 1024 2048 128 256 512 1024 2048 128 256 512 1024 2048
Binomial Option Pricing Black Scholes prefix sum SpMV
(a) (b) () (d)
Figure 2: Non-scalable GPU programs
2,5 140 7 3
’ —&—Brook —&—Brook
—o— Brook A —o— Brook
2 2 Auto p 10 / Auto 26 Auto 225 Auto .
© Brook+ g 100 Brooks S5 Brook+ 9 2 —=—Brooks e
215 > 80 54 ES K el
CAL x86 CAL X85, AL x8:
2 a. 60 CAL x86 %3 215 AL x86
g ! ¢ g / g1 p
2 & g? 4 g
& 05 / @ 20 a9 &05
0 b e 0 — [[T ——
128 256 512 1024 2048 128 256 512 1024 2048 128 256 512 1024 2048 128 256 512 1024 2048
Binary Seach Bitonic Sort Floyd Warshall Image Filter
(2) (b) () (d)
30 P 12 ”
5 —o— Brook / o 19 | —*Broo —
5 25 Auto 5 Auto /
2 20 Brook+ 2 8 Brook+
§15 CALX86 7/ g 6 CALX86
910 @ 4
2 2 7
w5 w 2
[S ATLLL 0 B
128 256 512 1024 2048 32 64 128 256 512 10242048
Mandelbrot sgemm
(e) ()

Figure 3: Scalable

6.2 Scalable GPU programs

In Figure 3 we present the applications which provide a
speedup compared to the CPU for at least some input size
within the hardware allowed explored limits. As in the case
of the applications examined in the previous section, these
benchmarks also follow the same trend with their Brook+
counterparts on Brook Auto. That is, a program that benefits
from the GPU and has a speedup over the CPU under x86
with Brook+, also benefits from the mobile GPU in our
implementation in Brook Auto and vice versa.

Binary search for input sets up to 10242 elements is more
efficient on the CPU, however for 2048 elements the GPU is
2.16 times faster. This is because from that size and up, the
input set does not fit in the L1 cache of the CPU anymore.
Moreover, the CPU is able to perform all the 2048 searches
in parallel compared to the CPU, which mitigates the extra
cost of transferring the data between the GPU.

Bitonic sort, which implements a data-independent sorting
algorithm, provides an impressive 135x speedup over the
CPU for a vector of 2562 elements. This is because the Brook
implementation consists of a kernel called repetitively over
the same data without any transfers in between. Note that
we only provide speedup results for sizes up to 2562 elements,
because for larger inputs although the GPU finishes fast, the
CPU version takes several hours to finish.

The Floyd Warshall algorithm finds the shortest path in
a weighted directed graph, by exploring all possible paths

GPU programs

between a pair of vertices. Although the kernel has low arith-
metic intensity and needed to be split in two — since it
produced two outputs — the Brook Auto version achieved in-
creasing speedups for any graph size larger than 256> vertices,
until it reached a plateau at 6.5x for larger graphs.

The image processing application has relatively low arith-
metic intensity since it applies a 3x3 filter to the input image.
Therefore the GPU starts to pay-off for image sizes larger
than 512x512 pixels reaching a 2.5x speedup.

The Mandelbrot set is another example of a task that
the GPU excels, yielding a speedup up to 31x. This kernel,
which computes a fractal image, has a significant arithmetic
intensity and its value does not depend on input. Therefore,
it only transfers the output data from the GPU.

Finally, sgemm also achieves significant speedups up to
11x. Note that in this case, the vectorized x86 Brook+ imple-
mentation achieves better scalability than our scalar version
for matrix sizes larger than 256256 elements.

To sum up, the performance of our developed backend
based on OpenGL ES 2 is in par with AMD’s highly opti-
mized Brook+ CAL-based backend. Moreover, the introduced
limitations of our backend due to the hardware limitations
of Open GL ES 2 GPUs do not seem to impact the obtained
performance.

6.3 Runtime Efficiency and Productivity

So far we have evaluated our Brook Auto runtime over
OpenGL ES 2 by comparing the performance of various

Brook Auto: High-Level Certification-Friendly Programming
for GPU-powered Automotive Systems

90 (—o—Brook
80 uto

Hand written GLES

40 //__‘
30

Performance (MFlops)
w
o

20 /
10
0 — i |
32 64 128 256 512 1024 2048
sgemm

Figure 4: Brook Auto code generation and runtime

efficiency vs hand-written OpenGL ES 2.
benchmarks on the CPU and GPU. However, there is no

indication about the efficiency of our proposal in terms of
code generation and runtime overhead, compared to a hand-
written GPGPU application over OpenGL ES 2.

Writing an OpenGL ES 2 GPGPU application by hand is a
titanic endeavor. For this reason, we have implemented from
scratch only a single application, the commonly used sgemm
benchmark. In Figure 4 we can see the performance compar-
ison between the hand-written application and our Brook
runtime. Both implementations use a blocked algorithm sim-
ilar to [17] and the results are reported for the optimal tile
size for each version (16x16 for Brook Auto and 88 for the
hand-written one). We observe that the performance of the
sgemm under our Brook Auto backend is between 50 and 90%
of the performance exhibited by the handwritten application
depending on the input size. This difference in performance
comes from the runtime overhead of Brook, and it is consis-
tent with the overhead of the original Brook implementation
over the desktop version of OpenGL [4].

However, in terms of complexity and productivity, there is
a tremendous difference between the two versions. The Brook
version has been written in less than 2 hours and contains 70
lines of code. For comparison, the hand optimized OpenGL
ES 2 version has been written and optimized in more than
one year and contains 1500 lines of C code.

Therefore, it is evident that our Brook Auto backend
achieves a quite high performance on the embedded GPU,
while at the same time it offers leaps in GPU programmability.

7 CONCLUSION

In this work we presented Brook Auto, a high-level program-
ming language for automotive GPU-based systems, compliant
with ISO26262. We presented an implementation of a portable
Brook Auto backend that can be executed in any embedded
GPU. The performance of our implementation is fast, deliv-
ering speedups over its CPU backend, similar to the one of
other Brook backends for desktop GPUs when it is compared
with hand-written implementations. Finally, we show that

Matina Maria Trompouki and Leonidas Kosmidis

there is a significant reduction in complexity and an immense
increase in productivity.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish Min-
istry of Science and Innovation under grant TIN2015-65316-P
and the HIPEAC Network of Excellence.

REFERENCES

[1] AMD. 2009. AMD Brook+ Subversion Repository. (2009).

https://sourceforge.net/projects/brookplus/.

[2] AMD. 2009. AMD Stream Computing SDK and Driver.

(2009). http://developer.amd.com/wordpress/media/files/

atistream_1.4.0_beta-Inx32.tgz.

Motor Industry Software Reliability Association. 2013. MISRA-

C-2012. Guidelines for the Use of the C Language in Critical

Systems. MISRA, Warwickshire.

Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon

Fatahalian, Mike Houston, and Pat Hanrahan. 2004. Brook for

GPUs: Stream Computing on Graphics Hardware. ACM Trans-

actions on Graphics 23, 3 (2004), 777-786.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,

Jeremy W. Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009.

Rodinia: A Benchmark Suite for Heterogeneous Computing. In

Proceedings of the 2009 IEEE International Symposium on

Workload Characterization (IISWC ’09). 44-54.

Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S.

Meredith, Philip C. Roth, Kyle Spafford, Vinod Tipparaju, and

Jeffrey S. Vetter. 2010. The Scalable Heterogeneous Computing

(SHOC) Benchmark Suite. In Proceedings of the 3rd Workshop

on General-Purpose Computation on Graphics Processing Units

(GPGPU-3). 63-74.

[7] Ian Buck et al. 2007. Brook Subversion Repository. (2007).

https://sourceforge.net/projects/brook/.

[8] International Organization for Standardization. 2009. ISO/DIS

26262. Road Vehicles — Functional Safety.

[9] Khronos Group. 2009. OpenGL ES Common Profile Spec. V2.0.
[10] Khronos Group. 2009. The OpenGL ES Shading Language V1.0.
[11] Aaron Lefohn, Mike Houston, Chas Boyd, Kayvon Fatahalian,

Tom Forsyth, David Luebke, and John Owens. 2008. Beyond Pro-
grammable Shading: Fundamentals, Introduction to the AMD
Stream SDK by Mike Houston. In ACM SIGGRAPH 2008
Classes (SIGGRAPH ’08). Article 9, 9:1-9:21 pages.

[12] Leonidas Kosmidis, Matina Maria Trompouki et al. 2018. Brook
Auto. (2018). http://github.com/lkosmid/brook.

[13] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J.
Kilgard. 2003. Cg: A System for Programming Graphics Hardware
in a C-like Language. ACM Trans. Graph. 22, 3 (2003), 896-907.

[14] NVIDIA. 2012. Cg Toolkit. (2012).
http://developer.nvidia.com/object/cg-toolkit.html.

[15] John A. Stratton, Christopher D A Rodrigues, I-Jui Sung, Nady
Obeid, Li-Wen Chang, Nasser Anssari, Geng Liu, and Wen mei
W. Hwu. 2012. Parboil: A Revised Benchmark Suite for Scien-
tific and Commercial Throughput Computing. Technical Report
IMPACT-12-01. University of Illinois at Urbana-Champaign.

[16] Matina Maria Trompouki and Leonidas Kosmidis. 2016. Towards
General Purpose Computations on Low-end Mobile GPUs. In
Proceedings of the 2016 Conference on Design, Automation €
Test in Europe (DATE ’16). 539-542.

[17] Matina Maria Trompouki and Leonidas Kosmidis. 2017. Opti-
misation Opportunities and Evaluation for GPGPU applications
on Low-End Mobile GPUs. In Proceedings of the Conference on
Design, Automation € Test in Europe (DATE ’17). 950-953.

3

4

5

[6

