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ABSTRACT
A liquid state machine (LSM) is a powerful recurrent spiking neural
network shown to be effective in various learning tasks including
speech recognition. In this work, we investigate design and architec-
tural co-optimization to further improve the area-energy efficiency
of LSM-based speech recognition processors with monolithic 3D
IC (M3D) technology. We conduct fine-grained tier partitioning,
where individual neurons are folded, and explore the impact of
shared memory architecture and synaptic model complexity on the
power-performance-area-accuracy (PPAA) benefit of M3D LSM-
based speech recognition. In training and classification tasks using
spoken English letters, we obtain up to 70.0% PPAA savings over
2D ICs.
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1 INTRODUCTION
The liquid state machine (LSM) [3] is a model of recurrent spiking
neural networks (SNNs) constructed with a recurrent reservoir and
a training unit. In the standard LSM model, the recurrent reservoir
consists of a set of spiking neurons randomly connected with non-
trainable synapses, and exhibits complex non-linear dynamics as a
pre-processor mapping input patterns to a higher-dimensional tran-
sient response. The training unit receives the reservoir responses
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for the final classification through trainable synapses, referred to
as output synapses.

While SNNs hold a lot of promise due to their bio-plausibility
and hardware implementation efficiency, the training of SNNs still
remains challenging. It is difficult to develop a powerful gradient-
based learning mechanism for SNNs, particularly recurrent SNNs.
To this end, the LSM is envisioned as a good tradeoff between
the ability in tapping the computational power of recurrent SNNs
and engineering tractability. Recently, cost-effective hardware im-
plementations of the LSM have been investigated along with bio-
inspired training algorithms to tune both the reservoir and training
unit. For example, [9] proposed a supervised probabilistic spike-
dependent output tuning algorithm, [8] proposed an LSM-based
learning processor with runtime programmable arithmetic pre-
cision and data-dependent reconfiguration. [1] proposed a self-
organizing LSM architecture with hardware-friendly spike-timing-
dependent-plasticity rules for reservoir tuning.

Monolithic 3D (M3D) is an emerging 3D technology enabled
by the sequential integration of device layers. This technology
uses miniscule monolithic inter-tier vias (MIVs) (<100nm diameter,
<1fF), which achieves massive vertical integration density with no
silicon-area overhead from 3D vias. These 3D connections help
in reducing wirelength and power with potentially better perfor-
mance and memory access options [5]. In particular, M3D IC design
offers great benefits in neural network designs due to the neuro-
morphic architecture with a huge number of connections at both
intra-neuron and inter-neuron levels. In this work, for the first time,
we explore the benefits offered by M3D ICs in LSM-based speech
recognition processors.

The major contributions of this paper are (1) We carry out ASIC
design for LSM neural processors in 2D and M3D ICs with detailed
design comparison. (2) We explore the impact of different synapse
models and memory distributions on the power-performance-area-
accuracy (PPAA) benefit of M3D LSM neural processors. (3) We
conduct vector-based functional verification and PPAA analysis for
the real-world task of speech recognition.

2 LSM ARCHITECTURE DESCRIPTION
2.1 Processor Architecture
The overall LSM processor architecture is adopted from [1], and
there are 135 digital reservoir neurons (RNs) in the reservoir unit
(RU) and 26 digital output neurons (ONs) in the training unit (TU)
as depicted in Fig. 1. External input spikes are fed to their targeted
reservoir neurons through the crossbar interface with a pre-defined
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Figure 1: Our LSM-based neuromorphic processor architec-
ture. There are 135 reservoir neurons (RNs) in the reservoir
unit, and 26 output neurons (ONs) in the training unit. Each
RN receives up to 32 external input spikes and up to 16 pre-
synaptic reservoir spikes. Each ON has a full connection to
the individual RNs to receive the reservoir response.

connectivity pattern. The spikes generated from reservoir neurons
are registered (i.e. Reservoir spike buffer[134:0]) and propagate to
the TU.Meanwhile, these spikes are also sent back to other reservoir
neurons in the RU recurrently through reservoir crossbar interface.
The operations of neurons at the same layer are executed in parallel
under the control of a global finite state machine (FSM).

Our on-chip training of the LSM processor is divided into two
phases unlike the standard LSM training model. First, we train
RU based on a hardware-friendly spiking-timing dependent plas-
ticity (STDP) algorithm [1] until its synaptic weight distribution
converges. Then, a bio-plausible supervised spike-based learning
algorithm [2] is employed on the TU for the main classification
function. In this second phase, the reservoir maintains its synaptic
weights while producing spike responses for the TU.

2.2 Digital Spiking Neuron Implementation
The proposed LSM neural processor operates through a series of
computational steps that are controlled by the corresponding states
of the global FSM in the RU and TU, respectively. Based on the
architectural and functional properties, we partition the implemen-
tation of a single digital neuron into three functionally dependent
modules: the synaptic input processing module, the spike gener-
ation module, and the learning module. At each time step, these
three modules activate in order, controlled by the global FSMs.

The synaptic input processing module computes synaptic re-
sponses upon arrival of spike inputs. As a baseline, we implement
2nd-order dynamic synaptic model [9], in which the excitatory and
inhibitory synapses have their separate state variables:

EP(t + 1) = EP(t)(1 − 1/τEP ) +
∑

wi · S+(i)

EN (t + 1) = EN (t)(1 − 1/τEN ) +
∑

wi · S+(i)

IP(t + 1) = IP(t)(1 − 1/τI P ) +
∑

wi · S−(i)

IN (t + 1) = IN (t)(1 − 1/τI N ) +
∑

wi · S−(i)

(1)

where EP(t) and EN (t) are excitatory state variables of a neuron at
the t th biological time step, while IP(t) and IN (t) are for inhibitory
ones. τEP , τEN , τI P , τI N are the decay constants of the correspond-
ing state variables,wi is the synaptic weight. S+(i) and S−(i) is the
spike of the i-th excitatory/inhibitory synapse.

When updating the state variables in a neuron, the input synapses
are examined in serial. If there is an input spike at the current time
step, the synaptic weight of the associated synapse will be added
to the corresponding state variables. After the synaptic responses
are generated, the spike generation module updates the membrane
potential Vmem with the response based on the widely used leaky
integrate-and-fire (LIF) model and generates a spike if the mem-
brane potential exceeds a pre-defined threshold. The calculation of
membrane potential follows below:

Vmem (t + 1) = Vmem (t)(1 − 1/τm ) +
EP − EN

τEP − τEN
−

IP − EN

τI P − τI N
(2)

whereVmem (t) is the membrane potential at the t th biological time
step, τm is the decay constant of membrane voltage.

At last, the learning module activates in each emulation time step
after the spike generation module finishes the process and tunes
the afferent pre-synaptic weights of the associated neurons with
a bio-inspired supervised spike-based algorithm [9]. In our LSM
neural processor, we implement the activity-dependent clock gating
adopted from [2] and directly gate on the clock signals inside each
neuron. The clock signal of each functional module only toggles
when the module needs to be activated.

3 DESIGN FLOW AND METHODOLOGIES
3.1 Baseline RTL-to-GDS Flow
In this work, we implement full-chip RTL-to-GDSII ASIC LSM
neural processors using commercial 28nm process design kit at the
block-level with 135 reservoir neurons and 26 output neurons to
reduce the design complexity and facilitate IP reuse. While using
the conventional hierarchical design flow for 2D IC design, we
adopt the state-of-the-art M3D design flow named Shrunk-2D [5],
and extend it to build the top-down hierarchical M3D IC design.

In Shrunk-2D flow, a pseudo-3D design called Shrunk2D is built
where the dimensions of the cells, wire pitches/widths are scaled
down by a factor 0.707 (1/

√
2) to emulate 50% footprint reduction in

3D IC. The idea is to account for the wirelength reduction impact
on timing and optimization in 3D IC, while using the same stan-
dard cell timing/power information as the original technology. The
optimized placement of the Shrunk2D design is used as an initial
solution for tier partitioning where we maintain the (X,Y) coordi-
nates and just change the tier location. MIV insertion is carried out
subsequently by using a 3D metal stack and the cell pins defined in
proper layers based on the tier location. The diameter of the MIV
used is 50nm and the RC parasitics are (10Ω, 0.2fF) based on 28nm
PDK metal pitches, via-sizes, and via aspect ratio.

3.2 Hierarchical Shrunk-2D
We carry out two-level folding where each individual neuron is
partitioned into two tiers, and top-level cells are partitioned into two
tiers incrementally. First, we decide the top-level floorplan based on



Top-level Floorplanning

MIV Planning

Shrunk2D - P&R

Tier Par!!oning

Block Timing Budge!ng

Neuron-level M3D Design

Neuron MIV Port Punching

M3D !ming & Power Analysis
Tier-by-!er Rou!ng

MIV Planning

Shrunk2D - P&R

Tier Par!!oning

Tier-by-!er Rou!ng

Full-chip-level M3D DesignTech/Macro LEF Shrinking

Shrunk2D Design LEF / LIB

Neuron Spli"ng

Final GDSII Genera!on

Figure 2: Our hierarchical Shrunk-2D flow to enable two-
level design folding: individual neuron is partitioned into
two tiers, and top-level design is also tier partitioned.

the shrunk layout geometry, and derive the timing budget for the
reservoir and output neuron blocks. Then, we follow the Shrunk-2D
flow for each neuron, and build two-tier foldedM3D neuron designs.
To build top-level Shrunk2D design, we use Shrunk2D design for
individual neuron blocks. Although the top-level Shrunk2D design
finds the neurons unfolded in this step, the individual neuron is
actually folded, and fully occupy the placement area in both tiers.
Therefore, we need to split the Shrunk2D neuron blocks into two
different blocks that share the same X,Y location but placed on the
separate tiers. This is called neuron splitting.

The top-level netlist and placement result also should be updated
in accordancewith the neuron splitting. Then, we build the top-level
M3D design. Once the tier-by-tier routing for the top-level is done,
we replace the neuron macros into the ones with MIV ports, and
revise the Verilog and routing results to support full connectivity
including both top-level and neuron-level 3D connections. This is
called neuron MIV port punching. Lastly, we generate GDSII file
for our M3D LSM neuromorphic processer, and proceed the signoff
M3D timing and power analysis.

3.3 Design Methodology Enhancements
We use 6 metal layers in 2D IC while only four metal layers are
allowed inside each neuron. For the M3D IC, 4+4 metal layers are
used inside the folded neuron to provide the same routing resources
as the 2D neuron, and additional two routing layers on the top tier
are dedicated to the inter-neuron routing. In a reservoir neuron,
we use flip-flops to store synaptic weights considering relatively
limited pre-synaptic fanins. For a output neuron, however, we use
register-file modules to store the weights since they have trainable
synapses in full connection to the reservoir unit. Memory modules
are generated using a commercial memory compiler for the used
28nm technology node, and occupy up to four metal.

For the tier partitioning, we place the cells and pins of the neuron
block to maximize the area and power benefit leveraged from M3D
IC. For reservoir neurons, we put all functional cells in the synaptic
input processing module and the action potential (spike) generation

2D reservoir neuron

2D output neuron 2D floorplan 2D layout

3D floorplan 3D layout3D output neuron

3D reservior neuron

memory

Figure 3: 2D vs. M3D designs of a reservoir neuron, a out-
put neuron, and full-chip. Reservoir neurons are in blue, and
output neurons in yellow in the flooplan.

module on the top tier so that they are on the same layer with
the global nets and closer to the external connections to package
pins. Then, we separate the 16-bit reservoir spike input pins into
two groups and put the 8 lower bits of the reservoir spike inputs
and their peripheral logic cells on the bottom tier. All other input
and output pins are assigned to the top tier for simplicity. Since
the reservoir spike input pins are connected to the synaptic input
processing module, by having half of the reservoir spike inputs on
the bottom tier, we increase the vertical connections inside each
neuron.

The memory inside each output neuron takes a large part of the
layout. Considering that the routing across the memory is costly,
we put the memory and its peripheral logic cells on the bottom tier
while all other cells (i.e. synaptic input processing module, action
potential (spike) generationmodule and the learningmodule) on the
top tier. Similar to the reservoir neuron, we also partition the spike
input pins of an output neuron into two evenly sized groups and put
one group on the bottom tier to increase the vertical connections.

Figure 3 demonstrates theM3D and 2D LSMneuromophic proces-
sors. The two-tier M3D IC footprint is half that of 2D IC. Therefore,
the total silicon area used is the same. Since output neurons com-
municate with all reservoir neurons, the 26 output neurons are
uniformly arranged in the center of the floorplans.

4 DESIGN/ARCHITECTURE OPTIMIZATION
4.1 Memory Sharing
In the proposed LSMprocessor, a large number ofmemory resources
are required for weight storage, thus an efficient memory design
scheme is important for the hardware cost and energy efficiency.
The straightforward way is to distribute the memory module inside
each neuron. The depth of the memory depends on the number
of pre-synapses of the neuron, which is set to be 16 for reservoir



neurons and 135 for output neurons. The memory width represents
the synaptic weight bit resolution, which is 2 and 8 for reservoir
and output synapses, respectively.

Although the distributed memory architecture is easy to imple-
ment, it results in large peripheral overhead due to a large number
of memory modules. To improve the memory efficiency, we re-
place the individual weight storage inside the neuron with a large
shared memory at reservoir and output layer, respectively. This
is based on that, at each emulation time step, all neurons at the
same layer work in parallel; The synaptic weights are accessed in
serial following the same order based on their index. Therefore, the
neurons at the same layer are actually accessing the same address
of their own memory, although the values stored at that address
might be different. Given that, in the shared memory architecture,
we store all synaptic weight values in a row that are previously at
that same address in the distributed memory, and the values are
associated with different neurons by the bit index. When updating
the weight value, the updated synaptic weights from all neurons
will first be concatenated to one word then write to the intended
address. When reading the weights, different parts of the memory
output are assigned to their targeted neurons.

4.2 Synaptic Model Complexity Reduction
Reducing synaptic model from the 2nd-order dynamics to the 1st-
order dynamics is another approach to optimize the overall power-
performance-area-accuracy benefit. In the 1st-order synapse model,
there is only one state variable E in each neuron, which represents
the overall synaptic response among all its input spikes:

E(t + 1) = E(t)(1 − 1/τE ) +
∑
i
wi · Si (3)

where E(t) is the 1st-order state variable at the t th biological time
step, τE is the decay constant of the synaptic response.

The calculation of membrane voltage in the 1st-order synaptic
model is also different from the 2nd-order:

Vmem (t + 1) = Vmem (t)(1 − 1/τm ) +
E

τE
(4)

In the following sections, we will show that these two approaches
will effectively reduce the area and power of the M3D LSM neural
processor without hurting the classification accuracy too much.

4.3 Individual Neuron Results
First, we compare the 2D neuron designs of the shared memory
architecture to those of the baseline distributed memory 2nd-order
synaptic model architecture. The distributed memory modules oc-
cupy huge placement area and internal power inside the individual
neuron. Using shared memory architecture, these modules are now
located at the top-level hierarchy, and it leads to 14% and 54% foot-
print area savings for reservoir and output neurons, respectively.
The reduced number of flip-flops and the absence of memory mod-
ule allows to 24%, and 48% internal power savings, and reduced
footprint leads to 15%, and 23% switching power savings in the
reservoir and output neuron, respectively. For output neuron, elim-
inating the memory module not only helps to reduce the huge
internal power, but also removes the routing blockage over the
memory module, resulting in the efficient routing.

2D, 2nd-order complexity 2D, 1st-order complexity

M3D, 2nd-order complexity M3D, 1st-order complexity

Figure 4: 2D vs. M3D LSM processors with memory sharing
& synaptic model complexity reduction schemes. In red is
shared memory for the reservoir neurons (yellow), and in
greens are for output neurons (blue).

On top of this huge benefit, reducing synaptic model complexity
enables more compact neuron design by reducing the cell count
from the relaxed synaptic weight precision. This results in 57%
and 75% footprint savings from shared memory 1st-order synaptic
model architecture compared to the baseline architecture, and 65%
and 69% of total power savings for the reservoir and output neuron,
respectively.

We observe that M3D designs offer even more savings in terms
of footprint, and power consumption for all neuron designs on top
of the architectural optimization benefit. Assuming no silicon area
overhead, 50% footprint savings of M3D design lead to additional
9% and 4% total power savings in the reservoir neuron and 15%
and 4% for output neurons in two-different architectures as shown
in Figure 5. It is note worthy that the shared memory 2nd-order
synaptic model architecture maximizes the M3D power benefits in
both neuron designs. This is because, targeting 1GHz, the neurons
of 1st-order synaptic model architecture have large timing margin
in the path, and meet the timing easily without the need for buffer
insertion. Since the neurons are pin-capacitance and internal-power
dominant designs, reducing the buffer count in M3D design plays
an important role in the power savings.

4.4 Full-Chip Results
Figure 6 shows how the smaller individual neuron enabled by ar-
chitectural optimization impacts on the full-chip footprint, wire-
length and static power consumption. Compared to the baseline
architecture, full-chip footprint of the shared memory 2nd-order
and 1st-order architecture is reduced by 21% and 53%, respectively
while keeping the same spacing between the neuron blocks at the
top-level placement. However, in shared memory 2nd-order archi-
tecture, we observe that this footprint savings does not lead to
the wirelength savings because of the routing overhead from the
shared memory to the individual neurons. Instead, the shared mem-
ory helps to reduce the full-chip internal power by 23%, and this
leads to 18% of total power savings. On the other hand, shared mem-
ory 1st-order architecture has both wirelength and power savings
by 35% and 55%, respectively.
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Figure 5: Individual 2D and M3D neuron design results with
the architectural combinations of the proposed memory
sharing and the synaptic model complexity reduction.

At the top-level, M3D ICs have clear wirelength savings from the
2D counterparts at the same architecture thanks to a large number
of inter-neuron connectivities. In every architecture, M3D designs
offer more than 24% inter-neuron wirelength savings. However,
we observe that this inter-neuron wirelength savings do not guar-
antee the huge full-chip switching power savings because of the
sparse communications between the neurons in the LSM processer.
Nonetheless, combining all the power savings from both individual
neurons and the top-level, we find that both architectural optimiza-
tion approaches help to increase the M3D power savings from 9%
to 13%.

5 APPLICATION-BASED ANALYSIS
We carry out the real-world application of speech recognition on
the implemented LSM neural processors and explore the practical
3D IC benefits. The benchmark is adopted from the TI46 speech
corpus [7], which contains read utterances from 16 speakers of the
English letters ‘A’ through ‘Z’. Without loss of generality, we select
one representative speech for the letter ‘R’ and evaluate the power
dissipation in our designs. The continuous temporal samples are
preprocessed by Lyon’s ear model [4] and encoded into 78-channel
spike trains using the BSA algorithm [6]. The labeled 26 output
neurons correspond to the 26 letters in the English alphabet and
the output spike trains of the intended output neuron (‘R’ in this
case) is observed as expected.

5.1 Full-Chip Power Breakdown
Figure 7 shows the power consumption results for the reservoir
and output training, and classification of the letter ’R’ from three-
different architecture presented in this work. Thanks to the clock
gating implementation, the different activation of reservoir and
training unit effectively reduces the total power consumption. In
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Figure 6: The impact of sharedmemory and synapticmodels
on the full-chip design results.

the reservoir training phase, there is no power consumption of
the training unit as its clock is completely gated out. During the
output training and testing phases, the power of reservoir unit is
much smaller than the reservoir training phase because reservoir
synaptic weights do not change. Architectural optimization has a
great impact on the total power savings. Compared to 2D ICs with
distributed memory, 2D shared memory design with 2nd- and 1st-
order architecture offer 36% and 57% power savings for reservoir
training, and 4% and 27% for output training, and 7% and 38% for
testing, respectively.

The major source of these huge power savings are derived from
the individual reservoir neuron optimization. Regarding the M3D
power savings, we find that M3D designs always reduce the top-
level power consumption by more than 20%. However, as a part of
the overall bio-inspired computation models, the recurrent SNN
inherently operated with sparse firing activities, therefore power
savings at the top-level inter-neuron communications have been
generally consistent and small. Another benefit from M3D is the
output neuron power savings. We observe that the training unit
have a maximum of 12% power savings in M3D compared to the
2D counterpart, and this leads to clear power savings in M3D for
output training and actual classification.

5.2 Power-Performance-Area-Accuracy Benefit
The energy dissipation is dependent on the power as well as the
number of clock cycles of operation. Although the shared memory
architecture offers huge footprint and power savings, the shared
reservoir memory requires additional clock latency to access com-
pared to the flip-flops in the distributed reservoir weight storage.
The design with 1st-order synaptic model also largely saves the
power and footprint, but this hurts the classification accuracy from
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Figure 7: Vector-based power consumption analysis in dif-
ferent operation steps

92.3% to 91.9%. Therefore, we compare the final power-performance-
area-accuracy (PPAA) benefits of the design and architectural co-
optimization in LSM neuromorphic processor to measure the trade-
off among different design criteria.

In general, the overall spike density is roughly the same over vari-
ous samples. Therefore, the average power remains the same andwe
use the power consumption values for each phase from Section 5.1.
To get good learning performance over the entire benchmark, 25
epochs of reservoir training and 250 epochs of output training are
conducted and these numbers of iterations are taken into account
when calculating the total energy consumption.

Targeting 1GHz clock operation, Table 1 summarizes the overall
energy savings for 2D ICs and 3D IC LSM neuromorphic processor
based on the three-different architectures, with two-different design
approaches, respectively. Although the reservoir training energy is
actually large in shared memory architecture, it has little impact on
the total energy dissipation considering its small number of training
iterations than the output training. Also, the power and footprint
savings are significantly large over the accuracy degradation when
using 1st-order synaptic model. This implies that the power and
footprint savings from our co-optimization approaches are well
preserved in the energy consumptions for the speech recognition.
On average, for the LSM neural processor, M3D IC design offers
up to 19% less energy consumption than its 2D IC counterparts for
training and inference of a speech sample. Overall, we observe a 70%
PPAA benefit from using design and architectural co-optimization
compared to the 2D baseline design.

6 CONCLUSION
In this work, we implemented monolithic 3D (M3D) IC design for an
LSM-based neuromorphic processor and devised various design and
architectural co-optimizations to minimize the area and the energy
consumption in the speech recognition. We presented the impact

Table 1: Power × Operation Time Period × Silicon Area ÷

Accuracy (PPAA) benefits of design and architectural co-
optimization proposed in this work.

Distributed
2nd-order

Shared
2nd-order

Shared
1st-order

2D M3D 2D M3D 2D M3D
Silicon Area (mm2) 0.070 0.070 0.056 0.054 0.033 0.033
Res. Tr. Period (ms ) 1.35 3.42
Res. Tr. Power(mW ) 87.76 76.93 56.39 53.68 37.84 35.32
Res. Tr. Energy(m J ) 0.119 0.104 0.193 0.184 0.129 0.121
Out. Tr. Period (ms ) 109.40 109.41
Out. Tr. Power(mW ) 35.92 33.70 34.46 28.70 26.17 23.28
Out. Tr. Energy(m J ) 3.929 3.687 3.770 3.140 2.863 2.547
Training Energy (m J ) 4.048 3.791 3.963 3.323 2.993 2.668

Test Period (ms ) 0.21 0.24
Test Power (mW ) 46.37 41.85 43.22 36.92 28.85 26.05

Testing Energy (m J ) 0.009 0.008 0.010 0.009 0.007 0.006
Total Energy (m J ) 4.058 3.799 3.973 3.333 2.999 2.674

Accuracy (%) 92.3 91.9
Normalized PPAA 1 0.93 0.77 0.62 0.34 0.30

of shared memory architecture and the synaptic model complexity
on the individual neuron and full-chip design. We measured the
energy dissipation for speech recognition application with TI46
corpus spoken English speech samples, and achieved up to 70.0%
reduction in the power-performance-area-accuracy overhead. This
work serves as an important step towards realizing bio-inspired
neuromorphic processors utilizing 3D IC design advantages.
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