
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Extensive evaluation of programming models and ISAs impact on multicoreExtensive evaluation of programming models and ISAs impact on multicore
soft error reliabilitysoft error reliability

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1145/3195970.3196050

PUBLISHER

© ACM Press

VERSION

AM (Accepted Manuscript)

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

da Rosa, Felipe, Vitor Bandeira, Ricardo Reis, and Luciano Ost. 2019. “Extensive Evaluation of Programming
Models and Isas Impact on Multicore Soft Error Reliability”. figshare. https://hdl.handle.net/2134/37002.

https://lboro.figshare.com/
https://doi.org/10.1145/3195970.3196050

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Extensive Evaluation of Programming Models and ISAs Impact
on Multicore Soft Error Reliability

Anonymous Author(s)
ABSTRACT
To take advantage of the performance enhancements provided
by multicore processors, new instruction set architectures (ISAs)
and parallel programming libraries have been investigated across
multiple industrial segments. It is investigated the impact of paral-
lelization libraries and distinct ISAs on the soft error reliability of
two multicore ARM processor models (i.e., Cortex-A9 and Cortex-
A72), running Linux Kernel and benchmarks with up to 87 billion
instructions. An extensive soft error evaluation with more than 1.2
million simulation hours, considering ARMv7 and ARMv8 ISAs and
the NAS Parallel Benchmark (NPB) suite is presented.

1 INTRODUCTION
Multicore processors are a de-facto components in many industrial
segments, including automotive, medical, consumer electronics,
and high-performance computing (HPC). The ever-increasing de-
mand for computing capacity and energy efficiency leads to the
integration of more and more cores, as evidenced in the middle
graph of Figure 1, which shows the growing number of cores in
commercial processors over the last decades. As more cores are inte-
grated into the same processor, ensuring a reliable operation of such
processing elements as well as taking the inherent performance
capability, have become challenging issues.

The occurrence of soft errors in multicore processors manufac-
tured on industry-leading process technology nodes is a significant
and growing reliability issue in several domains. As illustrated at the
bottom graph of Figure 1, commercial processors based on (10 nm)
process node are likely to be available in the market at the coming
year. Due to the continuously rising number of transistors (top
graph of Figure 1), not only more cores but a vast number of mem-
ory cells (e.g., registers, internal memory) have been integrated on
a single processor die. The exponential growth of internal elements
(e.g., cores, memory cells), coupled with the high clock frequency
operation of multicore processors is making them more vulnerable
to radiation-induced soft errors [14, 20]. While electronic systems
working at ground level are expected to experience at least one soft
error per day [10], identifying the most unreliable system function-
alities is becoming even more difficult due to the ever-increasing
complexity of both software and hardware architectures.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DAC’18, June 2018, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

1041051061071081091010

T
ra
n
si
st
o
r

C
o
u
n
t

Int
el
40
04

Int
el
80
86 AM

D
K7

Int
el
80
48
6 PO

WE
R6

Ry
ze
n

single
dual
quad
octa
16
32
64

C
o
re
 C
o
u
n
t

16-core SPARC T3
32-core SPARC M7

48-core Xeon E7-8894

1970 1980 1990 2000 2010 2018

Year

1

10

100

1000

10000

N
o
d
e
 (
n
m
)

1s
t F
in
fe
t

Ge
ne
ra
tio
n

2n
d
Fi
nf
et

Ge
ne
ra
tio
n

Figure 1: Evolution of commercial processors during the last
decades considering the number of transistors (top), num-
ber of cores (middle), and associeted technology node (bot-
ton) from 1970 to 2018. Information gathered frommultiple
sources including the ITRS (https://www.itrsgroup.com/).

With 48-core processors available in the market, more efficiently
written parallel programs are required to extract the multiprocess-
ing capabilities offered by such systems. Different standard par-
allelization libraries are available to simplify the process of split-
ting up the application processing into multiple threads, includ-
ing Pthreads, OpenMP (OMP), MPI, and Grand Central Dispatch
(GCD) [19]. Although applications only benefit from multicore pro-
cessors performance to a certain point, industrial leaders are invest-
ing heavily in the exploration of more efficient programming mod-
els and more powerful ISAs, aiming to meet the increasingly large
memory and performance requirements of future applications [8, 9].
This problem grows exponentially when multiple of such proces-
sors are combined into the same system as both intra-core localities,
and intra-processor synchronization might be considered. Today’s
large-scale HPC systems already exceed 10 million cores [21], and
the next generation of computing systems is widely expected to
integrate not only more powerful processor cores, which might
be homogeneous or heterogeneous, but also much more complex
memory organizations.

In this direction, the contribution of this paper is to investigate the
impact of state-of-the-art ISAs and standard parallelization libraries
(e.g., MPI, OpenMP) on the soft error reliability using commercial
multicore processors. To achieve an efficient and relevant evalu-
ation, the gem5 is extended to enable the injection of bit-flips on
general microarchitectural CPU components (e.g., general-purpose
registers). Conducted soft error analysis includes 1,040 million fault
injection campaigns, considering multiple versions of the Linux
Kernel and real benchmarks employed in both embedded and HPC
domains. Further, we propose a data mining tool to correlate the soft
error analysis campaigns with profiling information such as gem5
microarchitectural statistics. By finding relationships between fault

1

https://doi.org/10.475/123_4

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

DAC’18, June 2018, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

injection campaigns and the application characteristics we intent
to reduce the development time of improving the system reliability.

The rest of this paper is organized as follows. First, Section 2
presents related works in virtual platform fault injection simulators.
Section 3 details the experimental setup used in this study including
the fault injection framework and target software stack. Finally, the
results are discussed in Section 4 and final conclusions are presented
in Section 5.

2 RELATEDWORK
The assessment of multicore systems soft error resilience requires
powerful modeling and simulation mechanisms to manage aspects
such as resource sharing, memory allocation, and data dependencies.
Due to the increasing complexity of such systems, fault injection
simulators developed on the basis of virtual platform (VP) frame-
works have been considered as an efficient means to assess soft error
resilience at an acceptable time. Such frameworks provide high sim-
ulation performance, design flexibility (e.g., processor, memory, and
peripheral models), and several debugging capabilities. Most fault
injection simulators that rely on VP support the injection of bit-
flips in memory and register-file components [6, 7, 11, 16, 17, 22].
While the work in [17] supports the fault injection into the proces-
sor address generation unit, the authors in [7, 11, 22] explored the
impact of injecting bit-flips into the load/store queue. The majority
of these works consider either simple (i.e., in-house and bare metal
applications) or small scenarios, where only a single-core processor
or specific ISA is considered.

To our knowledge, the only work that addresses the impact of
parallelization libraries on the soft error reliability is [15]. This
work uses a fault injection framework developed on the basis of
an instruction-accurate VP simulator [3] and it employs an ARM
Cortex-A9 model, which executes three in-house applications on
the top of a Linux Kernel. Such adopted applications (e.g., bit count,
vector sum, and a 300 × 300 matrix multiplication) are very small
programs, increasing the parallelization libraries API functions
exposure to the injected faults, which might overestimate their real
impact on the soft error analysis.

Our contribution distinguishes from the previous works in four
main aspects:

• First, the impact of two ISAs onmulticore soft error reliability
is evaluated, considering serial and parallel executions of
complex workloads. This is completely ignored in previous
works.
• Second, this work uses 130 fault injection scenarios con-
sidering real high-performance workloads provided by the
NASA NAS Parallel Benchmark suite [2], which includes
benchmarks with up to 87 billion instructions.
• Third, we propose a cross-layer reliability evaluation tool
which combines profiling information with fault injection
results in a single data mining engine.
• Fourth, an extensive multicore soft error evaluation by using
several and large scale benchmarks, deploying a full-system
cycle-accurate simulator.

3 EXPERIMENTAL SETUP
This section details the configuration of the chosen simulator, the
fault injector, model, and classification as well as the workflow,
software stack, and support tools used to perform this research.

3.1 Simulator
This work adopts the state-of-the-art gem5 simulator [4] for three
main reasons: (1) the gem5 source code is open and several exten-
sions have been proposed in the past [1, 18], (2) the gem5 enables
microarchitectural cycle-accurate simulation in an acceptable time
(i.e., 0.4–2 MIPS depending on the application workload), and (3) it
supports the current ARMCortex-A architectures. Moreover, we use
the processor model for the ARM Cortex-A9 (ARMv7) and Cortex-
A72 (ARMv8) with single, dual, and quad-core variants. Finally,
each of the six processor models has a two-level cache memory
configured as follows: L1 Instruction 32kB 4-Way Associative, L1
Data 32kB 4-Way Associative, and L2 512kB 8-Way Associative. The
gem5 simulator employs Python scripts to control the simulation
flow while C++ modules model the microarchitectural components.

3.2 Fault Injector
3.2.1 Fault Model. Developed fault injection framework emu-

lates the occurrence of single-bit-upsets (SBUs) [13] by enabling
the injection of bit-flips in a single register or memory address dur-
ing the execution of a given soft stack. The default fault injection
configuration (e.g. bit location, injection time) relies on a random
uniform function, which is a well-accepted fault injection technique
since it covers the majority of possible faults on a system at a low
computation cost [?]. Fault injections occur during the target ap-
plication lifespan (i.e., the OS startup is not subject to faults), which
includes OS system calls and parallelization API subroutines arising
during this period. This approach allows to identify unexpected
application execution errors (e.g., segmentation fault), which are
associated to adopted OS components or API libraries. This ap-
proach evaluates the application behavior while considering the
execution environment, thus exposing unforeseen consequences
when compared to standalone implementations.

3.2.2 Fault Classification. We adopted Cho et al. [5] classifica-
tion, which categorizes fault injection outcomes into five groups:
Vanished, no fault traces are left; Application Output Not Af-
fected (ONA), the resulting memory is not modified, however, one
or more remaining bits of the architectural state is incorrect; Ap-
plication Output Mismatch (OMM), the application terminates
without any error indication, and the resulting memory is affected;
Unexpected Termination (UT), the application terminates ab-
normally with an error indication; Hang, the application does not
finish requiring a preemptive removal.

3.2.3 Workflow. The fault injection campaign follows a four-
stage flow. In the first phase, Golden Execution, the target architec-
ture is simulated in the absence of faults to extract the reference
system behavior, while phase two creates a fault target list. In the
third phase, each gem5 instance simulates the target application,
and the included module to perform the fault injection. For each
fault injection, the results are compared against the Golden Execu-
tion reference, aiming to identify any misbehavior regarding the

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Extensive Evaluation of Programming Models and ISAs Impact on Multicore Soft Error Reliability DAC’18, June 2018, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

number of executed instructions, registers context, and memory
state. Lastly, phase four assembles all individual reports to create a
single database.

3.2.4 Distributed and Parallel Simulation. The fault injection
campaigns were performed using an HPC system environment
counting with more than 5,000 cores. For this purpose, phases one
and two of the workflow are executed in a local computer, as they
are common to all fault injections. An additional step is required
to create a series of jobs (i.e., workloads submitted to the HPC)
each one comprising a number of fault injections to be computed
in the HPC nodes. As such, multiple fault injections can run in
parallel (phase three). Phase four remains unaltered and is run locally
after all jobs end. Matching several simulations into a single job
improves the HPC scheduling algorithm performance by reducing
job management and synchronization overheads.

3.3 Software Stack
3.3.1 Environment. The software stack includes a Linux OS

(i.e., the kernel version 3.13 for the ARMv7 and 4.3 for the ARMv8),
identical application source code, compilation flags, and cross-
compiler (GCC 6.2). Furthermore, we entrust the compiler engine to
select the best code optimization according to the target processor
by using the flags -O3 and -mcpu set up to either Cortex-A72 or
Cortex-A9.

3.3.2 Benchmark. This analysis uses the NAS Parallel Bench-
mark suite [2] with 29 applications (i.e., 10 Serial, 10 OpenMP, and
9 MPI benchmarks) which was developed by the NASA Advanced
Supercomputing Division as a set of programs designed to evaluate
the performance of parallel supercomputers. The benchmark was
compiled for all six processor models aforementioned in Section 3.1.
Some applications do not have an MPI or OpenMP version (e.g., BT
and ST applications do not have MPI dual-core implementation),
with this, a total of 130 scenarios are available for simulation.

3.4 Data Mining Tool
We propose a cross-layer investigation tool to perform a multi-
variable and statistical analysis using the gem5 microarchitectural
information (e.g., memory usage, application instruction compo-
sition) along with other software profiling tools (e.g., line cover-
age) that are combined with soft error vulnerability evaluation
results (i.e., fault injection campaigns). This work aims to reduce
the number of complete fault injection campaigns required dur-
ing early design space explorations by using software symptoms
(e.g., execution time, number of branches) correlated with soft error
vulnerabilities to improve the target application reliability.

The analysis process comprises three distinct steps: First, the tool
collects over one million of single fault injection raw outcomes to
create statistical figures (e.g., the percentage of Vanish, Hangs) for
each one of the 130 explored scenarios. Second, different profiling
sources are added into the database, including 200,000 microar-
chitectural parameters (e.g., CPU utilization, memory statics) and
additional information collected using a fast software prototyping
tool called Open Virtual Platform (OVPsim) [12] to extract func-
tion usage, line coverage, and other parameters not available or
accessible into the gem5 simulator. Steps one and two deploy an

Table 1: NPB workload summary.

Description Smaller Average Larger

Simulation Time
Single Run (sec.)

ARMv8 35 437 2,134
ARMv7 163 7,929 42,763

Fault Campaign
Run (hours)

ARMv8 77 971 4,742
ARMv7 363 17,620 95,028

Executed
Instructions

ARMv8 41.1×106 654×106 3.08×109
ARMv7 299×106 16.5×109 87.4×109

Total
Total Fault
Campaign (hours)

ARMv8 82,820
ARMv7 1,152,160

exploratory data analysis (EDA) approach to prepare the data for
modeling, which involves information acquisition from different
sources, data sorting and transformation, and initial statistical anal-
ysis.

This approach enables a flexible investigation concerning evalu-
ated variables as new information sources, can be easily included,
selected, and conformed to different investigation techniques. Third,
different databases created during step one and two are mined to
uncover variable relationships in such away that interesting correla-
tions will becomemore evident. The promoted tool was constructed
using Python that offers a flexible development framework. As it is
used by gem5, with our fault injection extension, and many data
mining applications, integration between them is effortless. Other
components can also be added to analyze different parameters de-
pending on the user’s necessities.

4 RESULTS
We consider the 130 distinct fault injection scenarios where each
one suffers 8,000 randomly assigned bit-flips, computing 1,040,000
fault injections which require 1,234,980 simulation hours. Figures 2
and 3 show such scenarios, considering the MPI (Figures 2a and 3a)
and the OpenMP (Figures 2b and 3b) applications along with the
mismatch of distinct parallelization APIs (Figures 2c and 3c). In this
work the mismatch is defined as the sum of absolute differences
between each soft error occurrence, such as ONA, OMM.

This investigation explores the application behavior under the
presence of faults correlated with distinct profiling parameters,
such as execution time, register file size, instruction function calls,
composition (e.g., number of branches, loads, and stores), function
calls, memory transactions comportment. Further, this analysis
aims to expose software symptoms with a direct impact on the
application reliability and reveal other parameters, which may not
affect soft error vulnerability. By using this indication it is possible
to speed-up early designs space explorations.

4.1 ISAs Reliability Assessment
4.1.1 Execution Time and Workload. The ARMv7 workload for

a single faultless execution has an instruction count that ranges
from 250 million to 87 billion, with an average of 16 billion of
instructions. In contrast, the 64-bit architecture applications execute

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

DAC’18, June 2018, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

BT CG DT EP FT IS LU MG SP
Applications

0
10
20
30
40
50
60
70
80
90
100

In
je
ct
e
d
 F
a
u
lt
s
(%
)

S
E
R
-1

M
P
I-
1

M
P
I-
2

M
P
I-
4 Vanish ONA OMM UT Hang

(a) MPI benchmarks.

BT CG DC EP FT IS LU MG SP UA
Applications

0
10
20
30
40
50
60
70
80
90
100

In
je
ct
e
d
 F
a
u
lt
s
(%
)

S
E
R
-1

O
M
P
-1

O
M
P
-2

O
M
P
-4 Vanish ONA OMM UT Hang

(b) OMP benchmarks.

BT CG EP FT IS LU MG SP
Applications

−35
−30
−25
−20
−15
−10
−5
0
5

10
15
20
25
30
35

M
is
m
a
tc
h
 (
%
)

1 1 1 1 1 1 1 12 2 2 2 2 2 2 24 4 4 4 4 4 4 4
Co
re
s:

MPI

OMP

Vanish ONA OMM UT Hang

(c) Mismatch.

Figure 2: NPB fault injections for gem5 using a multicore ARM Cortex-A9 processor (ARMv7).

BT CG DT EP FT IS LU MG SP
Applications

0
10
20
30
40
50
60
70
80
90
100

In
je
ct
e
d
 F
a
u
lt
s
(%
)

S
E
R
-1

M
P
I-
1

M
P
I-
2

M
P
I-
4 Vanish ONA OMM UT Hang

(a) MPI benchmarks.

BT CG DC EP FT IS LU MG SP UA
Applications

0
10
20
30
40
50
60
70
80
90
100

In
je
ct
e
d
 F
a
u
lt
s
(%
)

S
E
R
-1

O
M
P
-1

O
M
P
-2

O
M
P
-4 Vanish ONA OMM UT Hang

(b) OMP benchmarks.

BT CG EP FT IS LU MG SP
Applications

−35
−30
−25
−20
−15
−10
−5
0
5

10
15
20
25
30
35

M
is
m
a
tc
h
 (
%
)

1 1 1 1 1 1 1 12 2 2 2 2 2 2 24 4 4 4 4 4 4 4
Co
re
s:

MPI

OMP

Vanish ONA OMM UT Hang

(c) Mismatch.

Figure 3: NPB fault injections for gem5 using a multicore ARM Cortex-A72 processor (ARMv8).

in average 654 million instructions, varying from 41 million to
3 billion. Table 1 summarizes the workload regarding simulation
time and the number of executed instructions with average, smaller,
and larger cases.

Applications executed using the ARMv8 ISA present a signifi-
cant performance improvement when compared to the ARMv7. In
some cases the speedup reaches up to 10 times. This performance
gain can be pinpointed to the removal of several legacy features
(e.g., fast and multilevel interruptions, conditional instructions)
and to significant improvements in the floating-point (FP) unit by
adding new specialized instructions and increasing the FP regis-
ter file. The ARMv7 often resorts to the ARM software FP library
to perform some operations and thus increasing execution time.
This choice was made automatically by the compiler (Section 3.3.1).
The evaluated workload employs HPC scientific applications with
some of them heavily depending on FP computation, leading to a
significant performance boost. The executed instruction count for
each application where the average value reduces from 16 billion
(ARMv7) to 654 million (ARMv8) instructions (Table 1). A shorter
execution time improves the ARMv8 mean time between failures
(MTBF) as it has a smaller probability of being stroke by a radiation
event for a given particle fluence1.

4.1.2 Register File Size. The new 64-bit ISA also enlarges the
integer register-file, from 16 to 32 registers, increasing the number
of possible targets for fault injection by a factor of four. However, the
compiler algorithm uses a reduced fraction of the available registers
for load/store and control flow operations leaving other registers

1The number of radiant-energy particles incident on the target system surface in a
given period of time

for global variables or unused. As in this experiment each register
suffers an identical number of fault injections, critical registers
(e.g., program counter, stack pointer, those used on load/store and
control flow operations) are less likely to face faults in the ARMv8
rather than in the ARMv7.

4.1.3 Branches and Function calls. The Hang error occurs when
the target application control flow is severely affected by transient
faults, in most cases, leaving the algorithm in an infinite loop. Ana-
lyzing individual parameters not always expose direct relationships
between profiling data and fault injection campaigns. For example,
themean branch composition from the total executed instructions is
19.24% (σ = 0.21), 14.08% (σ = 0.56), 17.65% (σ = 0.03), and 12.01%
(σ = 0.36) considering the four macro scenarios MPI V7, OMP V7,
MPI V8, and OMP V8, where σ is the standard deviation. While the
ARMv8 displays a 2% decrease in the mean branch occurrence com-
pared with the 32-bit architecture, the application behavior under
fault influence does not show any meaningful impact. Additionally,
function calls variation also does not display any distinctive link
with Hangs incidence. By combining both figures, nonetheless, is
possible to uncover a correlation between this new index value
(i.e., number of function calls times number of branches) with the
Hang incidence after comparing the 130 scenarios. Table 2 exem-
plifies this behavior using the IS application as a case study, note
that this new index value and the Hang percentage increases si-
multaneously, a behavior observable trough several scenarios. The
ARM ISA (i.e., ARMv7 and ARMv8) use distinct instructions to com-
pare the conditional statement (e.g., cmp) and another to perform
the control flow branching, while function calls use unconditional
branches (e.g., jumps) in conjunction of argument registers.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Extensive Evaluation of Programming Models and ISAs Impact on Multicore Soft Error Reliability DAC’18, June 2018, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 2: Hang occurrence compared with the normalized
function calls multiplied branches (F*B).

Scenario Parameter
Number of Cores

Single Dual Quad

IS MPI V7

Hang (%) 0.413 0.625 3.000
Branches 56.0×106 58.0×106 196×106
F. Calls 22.6×106 23.1×106 26.9×106

Index F*B 1.000 1.024 1.700

IS OMP V7

Hang (%) 0.288 0.313 0.400
Branches 54.1×106 54.3×106 54.7×106
F. Calls 21.7×106 21.7×106 21.7×106

Index F*B 1.000 1.001 1.002

IS MPI V8

Hang (%) 0.438 1.850 3.800
Branches 11.2×106 15.9×106 17.6×106
F. Calls 2.85×106 3.35×106 4.84×106

Index F*B 1.000 1.302 1.799

IS OMP V8

Hang (%) 0.225 0.925 1.175
Branches 7.99×106 9.05×106 9.50×106
F. Calls 1.81×106 2.05×106 2.06×106

Index F*B 1.000 1.172 1.194

Table 3: ARMv7Memory transactions and soft error classifi-
cation for selected scenarios.

Scenario
Vanish
+OMM
+ONA

UT
Mem.

Inst. (%)

RD⁄WR
Ratio

1 MG MPIx1 78 22 15.8 1.18
2 MG MPIx2 78 22 16.3 1.12
3 MG MPIx4 70 30 22.5 2.83

4 IS MPIx1 80 20 18.0 0.85
5 IS MPIx2 80 20 19.0 0.83
6 IS MPIx4 70 31 26.0 2.73

4.1.4 Memory Transactions. UTs (i.e., unexpected terminations)
originates from OS segmentation fault exceptions which means
that the program has attempted to access an area of memory out-
side its permissions. At instruction level, the address generation of
memory access operations (e.g., load and stores) is compromised
by transient faults in the source registers leading to wrong address
calculations. The reduced number of ARMv7 registers to perform
address calculations leads to the use of load/store templates by the
compiler to diminish the computational cost of register recycling.
In other words, the ARMv7 compiler continuously utilizes the same
register to perform memory transactions (e.g., R0–3 and SP). As
consequence of this behavior, increasing the number load/store
operations can lead to a more significant UT occurrence in the
target application using an OS on top of the ARMv7 processor.

Table 4: ARMv8Memory transactions and soft error classifi-
cation for selected scenarios.

Scenario
Vanish
+OMM
+ONA

UT
Mem.

Inst. (%)

RD⁄WR
Ratio

A LU OMPx1 57 48 29 1.9
B LU OMPx2 59 45 27 1.9
C LU OMPx4 67 40 22 1.9

D SP OMPx1 57 42 35.1 1.5
E SP OMPx2 59 40 34.0 1.5
F SP OMPx4 70 32 28.5 1.5

G FT MPIx1 62 37 25.7 1.00
H FT MPIx2 62 37 24.6 0.95
I FT MPIx4 62 36 23.7 0.95

Table 3 shows the soft error results (e.g., Vanish, UT, Hangs) along-
side the memory access figures for some examples of the behavior
mentioned above. By increasing the percentage of memory trans-
actions (i.e., load and stores instructions) in applications such as
MG and IS increases the UT ratio. For example, MG application
memory-oriented operations for single and quad-core processors
are 15%, and 22% while the UT occurrence increases from 22% to
30%. Further, increasing the core count alone does not reduce the
UT percentage as is possible to note by comparing scenarios (1,
Table 3) against (2) where both have similar memory instruction
occurrence.

The 64-bit architecture exhibits a similar behavior considering
FP memory transactions, supporting the claim above that wrong
address calculation related to memory access, as FP instructions
are exclusively used for computation and not for control flow oper-
ations (e.g., branches and jumps). Table 4 displays nine scenarios
(A-I) of soft error analysis and FP memory figures. Reducing the
memory transactions participation from the total number of exe-
cuted instructions for LU (A-C) and SP (D-F) applications show a UT
occurrence reduction trend. Scenarios (G-I) reinforce this hypothe-
sis by demonstrating that a constant memory-oriented instruction
incidence leads to a regular UT percentage.

4.2 Parallelization API
The OpenMP library uses a series of the fork and joins approach to
parallelize loop statements (e.g., for, while) where the API automat-
ically create children threads, being suitable for shared memory. In
contrast, the MPI standard is adequate to distribute systems due to
the use of a message-oriented parallelization technique which re-
quires the direct user parallelization regarding thread creation and
communication. Figures 2c and 3c display the mismatch comparing
the MPI and OpenMP applications whenever present for both APIs
for the ARMv7 and ARMv8 respectively.

4.2.1 Serial vs APIs. When we compare the serial implemen-
tation with either parallelization libraries on both architectures,
some patterns can be observed. In ARMv7 MPI, only CG has a small
improvement in the number of UTs, while in IS and MG the number

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

DAC’18, June 2018, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

of UTs and Hangs increases. Considering the OpenMP versions, no
significant variation can be found. For the 64-bit application set,
CG, LU, MG, SP, and UA the number of UTs diminishes. Further,
CG application maintains the number of UTs when the number of
cores increases. The same cannot be said about the other applica-
tion, where the number of UTs diminishes with the increase in core
count. Other applications have negligible variations.

4.2.2 VulnerabilityWindow. Within a software stack, some com-
ponents are more critical than others to the system correct behavior.
For example, targeting a thread scheduling function with faults has
a potentially more hazardous effect on the system reliability than a
purely arithmetic code portion. By comparing these critical func-
tions active periods against application execution time it is possible
to define a time interval called vulnerability window, which varies
with the number of calls and executions of the function. Using
the NBP benchmark suite provides a real high-performance work-
loads, enabling a more accurate evaluation of the OpenMP and
MPI libraries impact on the system reliability. Due to its reduced
vulnerability window, the parallelization mechanism has a limited
effect on the final reliability assessment, less than 23% in the worst
case.

From the 44 possible comparisons between the MPI and OpenMP
scenarios, in 38 the MPI has a higher masking rate (i.e., executions
without any errors) due to two main reasons: First, MPI applica-
tions have a better workload balance among the used cores, in
other words, the number of executed instructions per core is very
similar. For instance, the average difference concerning executed
instructions per core is around 4% for both ARMv7 and ARMv8
considering MPI applications, while the OpenMP variation reaches
up 16%. As the OpenMP does not fully utilize the available cores due
to the fork/join parallelization approach where a loop statement
executes in parallel and other code portions hastily. By contrast, the
MPI has individual and independent working threads for each run-
ning core providing a better workload balance during its execution.
Whenever a core is sub-utilized, it executes a thread scheduling
policy and when no thread is suitable the core waits in a sleep
mode. By consequence the kernel probability to suffer a transient
fault increases, as the scheduling is more often executed. Second,
OpenMP benchmarks have a smaller execution time, 16% in average,
compared against the MPI applications. By consequence, dimin-
ishing the vulnerability window of the MPI inner-functions when
comparing against the OpenMP. Further, the application longer
execution increases the chance of the injected fault being erased
due to software and microarchitectural masking mechanisms.

5 CONCLUSION AND FUTUREWORKS
This work has investigated the impact of the parallelization APIs
and the ISA in the overall software stack reliability by comparing
serial, OpenMP, and MPI implementations of the same benchmarks
using both ARMv7 and ARMv8 architectures. This work amasses
hundred of thousands of profiling and microarchitectural param-
eters alongside more than a million hours of simulation worthy
of fault injection. To explore such large trove of collected data
we propose a cross-layer investigation tool to mine relationships
between soft error vulnerability analysis and other application
statistics. MPI applications have a slightly larger masking rate, in

other words, suffer less from the fault injection. Fault campaigns
show a smaller incidence of the parallelization API in the overall
system reliability due to the limited time ratio of those libraries in
comparison with the total execution time. MPI is more prone to
deadlocks due to failed communication, and OpenMP paralleliza-
tion paradigm increases the chance of unexpected terminations.
When comparing ARMv7 and ARMv8, the former suffers greatly in
performance from the use of software FP arithmetics, which was
set automatically by the compiler. Future works could explore the
relationship of compiler flags and application behavior regarding
soft errors. Further, we intend to include more sophisticated data
mining algorithm, making possible the correlation of even more
data points (e.g., Memory Management Unit statistics, number of
power state transitions), and include new profiling inputs.

REFERENCES
[1] M. Alian et. al. 2016. pd-gem5: Simulation Infrastructure for Parallel/Distributed

Computer Systems. IEEE Computer Architecture Letters 15, 1 (Jan. 2016), 41–44.
[2] D. H. Bailey et. al. 1991. The NAS parallel benchmarks summary and prelimi-

nary results. In Proceedings of the 1991 ACM/IEEE Conference on Supercomputing
(Supercomputing ’91). 158–165.

[3] F. Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. Proceedings of
the Annual Conference on USENIX Annual Technical Conference (2005), 41–41.

[4] N. Binkert et. al. 2011. The Gem5 Simulator. SIGARCH Comput. Archit. News 39,
2 (Aug. 2011), 1–7.

[5] H. Cho et. al. 2013. Quantitative evaluation of soft error injection techniques
for robust system design. In 2013 50th ACM / EDAC / IEEE Design Automation
Conference (DAC). 1–10.

[6] F. de Aguiar Geissler et. al. 2014. Soft error injection methodology based on
QEMU software platform. In Test Workshop - LATW, 2014 15th Latin American.

[7] M. Didehban et. al. 2016. nZDC: A Compiler Technique for Near Zero Silent
Data Corruption. In Proceedings of the 53rd Annual Design Automation Conference
(DAC ’16). ACM, New York, NY, USA, 48:1–48:6.

[8] Massive Parallelism for Mission-Critical Applications. 2017. (2017).
https://www.intel.com/content/www/us/en/processors/itanium/
itanium-9500-massive-parallelism-mission-critical-computing-paper.html

[9] J. Goodacre et. al. 2005. Parallelism and the ARM instruction set architecture.
Computer 38, 7 (July 2005), 42–50.

[10] T. Granlund et. al. 2003. Soft error rate increase for new generations of SRAMs.
IEEE Transactions on Nuclear Science 50, 6 (Dec. 2003), 2065–2068.

[11] Q. Guan et. al. 2016. Design, Use and Evaluation of P-FSEFI: A Parallel Soft Error
Fault Injection Framework for Emulating Soft Errors in Parallel Applications.
In Proceedings of the 9th EAI International Conference on Simulation Tools and
Techniques (SIMUTOOLS’16). ICST, Brussels, Belgium, 9–17.

[12] Imperas. 2017. Open Virtual Platforms (OVP). (2017). http://www.ovpworld.org/
[13] K. Johansson et. al. 1999. Neutron induced single-word multiple-bit upset in

SRAM. IEEE Transactions on Nuclear Science 46, 6 (Dec. 1999), 1427–1433.
[14] S. Mukherjee. 2008. Architecture Design for Soft Errors. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA.
[15] G. Rodrigues et. al. 2017. Analyzing the Impact of Fault Tolerance Methods in

ARM Processors under Soft Errors running Linux and Parallelization APIs. IEEE
Transactions on Nuclear Science PP, 99 (2017), 1–1.

[16] F. Rosa et. al. 2015. A fast and scalable fault injection framework to evaluate
multi/many-core soft error reliability. In 2015 IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS). 211–214.

[17] S. K. Sastry Hari et. al. 2014. GangES: Gang Error Simulation for Hardware
Resiliency Evaluation. In Proceeding of the 41st Annual International Symposium
on Computer Architecuture (ISCA ’14). IEEE Press, Piscataway, NJ, USA, 61–72.

[18] Y. S. Shao et. al. 2016. Co-designing accelerators and SoC interfaces using
gem5-Aladdin. In 2016 49th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO). 1–12.

[19] D. Shekhar T.C et. al. 2011. Comparison of Parallel Programming Models for
Multicore Architectures. In 2011 IEEE International Symposium on Parallel and
Distributed Processing Workshops and Phd Forum. 1675–1682.

[20] M. Snir et. al. 2014. Addressing Failures in Exascale Computing. Int. J. High
Perform. Comput. Appl. 28, 2 (May 2014), 129–173.

[21] TOP500 Supercomputer. 2017. (2017). https://www.top500.org/
[22] K. Tanikella et. al. 2016. gemV: A validated toolset for the early exploration

of system reliability. In 2016 IEEE 27th International Conference on Application-
specific Systems, Architectures and Processors (ASAP). 159–163.

6

https://www.intel.com/content/www/us/en/processors/itanium/itanium-9500-massive-parallelism-mission-critical-computing-paper.html
https://www.intel.com/content/www/us/en/processors/itanium/itanium-9500-massive-parallelism-mission-critical-computing-paper.html
http://www.ovpworld.org/
https://www.top500.org/

	Abstract
	1 Introduction
	2 Related Work
	3 Experimental Setup
	3.1 Simulator
	3.2 Fault Injector
	3.3 Software Stack
	3.4 Data Mining Tool

	4 Results
	4.1 ISAs Reliability Assessment
	4.2 Parallelization API

	5 Conclusion and Future Works
	References

