
Invited: Efficient Reinforcement Learning for Automating
Human Decision-Making in SoC Design

Shankar Sadasivam
Qualcomm Technologies, Inc.
ssadasiv@qti.qualcomm.com

Zhuo Chen∗
Carnegie Mellon University
zhuochencmu@gmail.com

Jinwon Lee
Qualcomm Technologies, Inc.
jinwonl@qti.qualcomm.com

Rajeev Jain
Qualcomm Technologies, Inc.
rajeevj@qti.qualcomm.com

ABSTRACT
The exponential growth in PVT corners due to Moore’s law scaling,
and the increasing demand for consumer applications and longer
battery life in mobile devices, has ushered in significant cost and
power-related challenges for designing and productizing mobile
chips within a predictable schedule. Two main reasons for this are
the reliance on human decision-making to achieve the desired per-
formance within the target area and power budget, and significant
increases in complexity of the human decision-making space. The
problem is that to-date human design experience has not been re-
placed by design automation tools, and tasks requiring experience
of past designs are still being performed manually.

In this paper we investigate how machine learning may be ap-
plied to develop tools that learn from experience just like human
designers, thus automating tasks that still require human interven-
tion. The potential advantage of the machine learning approach is
the ability to scale with increasing complexity and therefore hold
the design-time constant with same manpower.

Reinforcement Learning (RL) is a machine learning technique
that allows us to mimic a human designers’ ability to learn from
experience and automate human decision-making, without loss
in quality of the design, while making the design time indepen-
dent of the complexity. In this paper we show how manual design
tasks can be abstracted as RL problems. Based on the experience
with applying RL to one of these problems, we show that RL can
automatically achieve results similar to human designs, but in a
predictable schedule. However, a major drawback is that the RL
solution can require a prohibitively large number of iterations for
training. If efficient training techniques can be developed for RL, it
holds great promise to automate tasks requiring human experience.
In this paper we present a Bayesian Optimization technique for
reducing the RL training time.

∗This author’s contributions to this paper were made while he was employed by
Qualcomm Technologies, Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DAC ’18, June 2018, San Francisco
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5700-5/18/06.
https://doi.org/10.1145/3195970.3199855

ACM Reference Format:
Shankar Sadasivam, Zhuo Chen, Jinwon Lee, and Rajeev Jain. 2018. Invited:
Efficient Reinforcement Learning for Automating Human Decision-Making
in SoC Design. In DAC ’18: DAC ’18:The 55th Annual Design Automation
Conference 2018, June 24–29, 2018, San Francisco, CA, USA. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3195970.3199855

1 HUMAN-DECISION MAKING IN SOC
DESIGN FLOW

Despite advances in design automation over the past 30 years, there
remain key tasks in the SoC design and productization flow that
have to be done manually by human designers, because the design
automation tools are not perfect and cannot ensure that the desired
performance is met with desired power targets and cost targets.
Therefore, human designers have to step in after the tools have
done their job to do manual optimization and design changes to
meet the product targets.

The question arises, is this always going to be a fundamental
limitation or can we automate the tasks that are still done by human
designers? In this section we examine two of these tasks, one in
design and one in productization, and understand why designers
have to step in.

Figure 1 shows a typical SoC design and productization flow.
While tools exist to assist in each task, a limitation of these tools is
their inability to guarantee that the requirements, especially timing
and power requirements will be met. Lets examine two tasks that
involve human decision-making and consume significant time in
the overall product release cycle: timing closure (design task) and
run-time power optimization (productization task).

Figure 1: SoC design and productization flow showing hu-
man decision-making tasks.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3195970.3199855&domain=pdf&date_stamp=2018-06-24

(1) Run-time power optimization (Figure 1(h)): To mini-
mize power inmobile devices, various techniques are used on
the chips today to dynamically adjust the clock rate based on
performance requirements, to get the lowest power with the
desired performance. This is known as dynamic clock and
voltage scaling or DCVS. Although several DCVS algorithms
have been developed in the design automation community
to perform the selection of the operating point, the param-
eters of the algorithms have to be manually adjusted for
every chip and for the desired applications [1]. The reason
is that the parameter settings are highly dependent on the
application, the architecture and the technology node of the
chip, which changes from generation to generation. This pa-
rameter tuning process relies entirely on human experience
and decision-making and is time consuming. This tuning
time gates the release of the chip. As technology scales and
applications on mobile devices grow, this tuning consumes
more time.

(2) Timing Closure (Figure 1(f)): Typically, both the logic
synthesis and place and route tools attempt to meet specified
timing constraints (performance) with minimum power and
area. However, in reality, after initial place and route there
are still a large number of timing violations that have to
be corrected through so-called ECO fixes. While EDA tools
exist to assist with these ECOs, the number of violations
on large SoCs exceeds the number of violations that can be
fixed within the tape-out schedule. Hence the designers have
to select a subset of violations that can be fixed within the
schedule, while ensuring that all violations are fixed. Cur-
rently designers rely on past experience in deciding which
subset of violations to provide to the ECO fix tool. It takes
several iterations to remove all violations and each iteration
can take more than a day. With exponentially growing PVT
corners, this process is even more time consuming since
violations have to be fixed across all corners.

2 AUTOMATING HUMAN DECISION
MAKING

One of the reasons why many these tasks have not been automated
is because they rely on human experience and human judgment to
resolve the tradeoffs between power, performance and cost. While
there have been several attempts to capture human design experi-
ence in the form of design automation tools - most of these tech-
niques have leveraged so called rule-based expert systems, where
the rules followed by a human designer are captured in a decision
tree and the decision tree is implemented in software [2]. The prob-
lem with that is that the same rules and decision-making process
don’t apply uniformly to every chip and any deviation from the
rules and decision process followed on a previous chip require
human judgment, defeating the purpose of the expert-system.

So, what we really need are design automation techniques that
can not only capture the human experience or learn by experience
as human designers do, but also make optimal decisions the way
a human designer would do. Now a simple way that designers
arrive at optimal choices is to play what-if games by generating
options to make the design meet requirements, and then based on

the evaluation of each option, decide what is the next option they
should exercise. In many ways this is like playing a game where
there are certain moves that you know you can make to achieve the
outcome, which in the case of a game is to win the game. If you’re
playing against an opponent, and the opponent could be different
each time, you have to be able to determine from the available
moves, which move will help you win the game. While the set of
moves is the same, which sequence of moves works in a particular
game depends on your opponent’s moves and your experience.

In SoC design the same analogy holds because every chip is
different. Although we may have learned a set of rules (moves)
from experience, how we apply them depends a lot on the chip
and application at hand. In machine learning there’s a technique
known as reinforcement learning that has gained momentum in
the past few years, which can help to mimic and automate this
sequential human-decision making process [3]. However, to do as
good a job as a human being would do or perhaps even better, the
reinforcement learning tools do require that we generate several
design experiences so it can learn from those experiences the way
a human would. That means that we need to generate many design
alternatives and allow the reinforcement learning tool to evaluate
the outcomes of all those different alternatives so it knows from
experience what choices result in the best outcome, the best here
implying that we meet a certain performance target with the lowest
power and cost. In this paper we present reinforcement learning
techniques that can help in automating human design decisions,
while achieving similar results as manual designs. However, we
discovered that the limitation is in generating a sufficient number
of design alternatives for the tool to learn from within the given
schedule. This is known as the training process and is the main
focus of this paper: how can we efficiently train RL tools to au-
tomate design tasks that depend on human intuition? In general
machine learning tools need a much larger set of experiences (tens
of thousands) to develop the same ‘intuition’ that human designers
do with much fewer experiences. If we can solve this problem, we
can benefit from the predictable execution time that reinforcement
learning offers.

Going back to the analogy with game playing, the efficacy of
applying reinforcement learning to learning how to win a game
has been established by several people, including most recently by
researchers at Google Deepmind, in the case of the very difficult
game Go [4]. However, in the case of games, it is easy to gener-
ate experiences by having the computer play millions of games
with itself in a very short amount of time. By contrast generating
one chip design option to learn from can take a day or more, so
generating 1000s of design options to learn from can take years.
Therein lies the problem in the case of design automation with rein-
forcement learning. To successfully apply reinforcement learning,
we need creative methods to cut down the number of experiences
the tool needs to learn from. In this paper we present a Bayesian
optimization based RL training method to address this problem.

3 REINFORCEMENT LEARNING APPLIED TO
RUN-TIME POWER OPTIMIZATION

Most CPU based SoCs have built-in hardware to measure the real-
time processing requirements for applications. Based on these mea-
surements run-time tools (i.e., run-time control algorithms) choose
clock frequency and voltage settings (e.g., for the CPU and the DDR)
that deliver the desired performance while minimizing power [1].
Two major drawbacks with existing tools is that their parameters
have to be re-tuned for every new chip based on the SoC archi-
tecture and technology node, and secondly the control algorithms
are rule-based and the rules may have to be modified based on
the applications. The parameter tuning process is usually done
manually based on human experience as part of the post-silicon
productization. The parameters have to be iteratively adjusted,
while measuring power and performance on a variety of applica-
tions, to converge on a setting that meets both performance and
power requirements. Based on experience, human designers use
intuition in guiding this process. We can abstract this problem as
shown in the below sections (see Figure 2).

Figure 2: DCVS manual parameter optimization.

3.1 Definitions
• si : The state at time ti is the value of the processor measure-
ments at time ti
• ai : Action taken by the DCVS algorithm at time ti to select
the clock frequency for the next time step
• πθ : Policy followed by the DCVS algorithm to map the state
si in to the action ai
• θ : Policy parameters
• ri : Reward or the outcome at time ti , corresponding to action
ai , i.e., the measured performance and power

3.2 Problem Formulation
At run time, the DCVS rule-based control algorithm observes state
si and takes action ai based on the policy πθ . Prior to release of
every new chip, human designers have to iteratively tune the pa-
rameter values (θ) of the policy to ensure desired performance for
target applications while meeting power targets. As the power mar-
gins get tighter and number of applications grows, this manual

tuning process becomes more challenging. Mathematically we can
formulate the parameter tuning problem as follows (see Figure 2):

For all applications, given the reward ri and current value of θ in
the ith tuning iteration, and the possible values of θ , select a new
value of θ to improve ri+1. When ri meets or exceeds the product
requirements, the value of θ is set.

Generally, designers rely on experience how to adjust θ to get a
desired outcome, since there is no direct mathematical expression
or model relating θ to power and performance. Thus, this tuning
process is time consuming as the designers have to go through
several iterations to get the right parameter θ that delivers the
performance and power targets. This manual process is repeated
for every chip.

3.3 Reinforcement Learning Solution
The efficacy of the DCVS tool is limited by the ability of the human
designers to adapt the parameters (θ) of the tool for new chips and
applications. The schedule for delivery of the chip is gated by the
time to tune θ . With technology scaling, it is more challenging to
achieve low power and the tuning process can take longer. The
question we explore is whether machine learning can learn the tun-
ing process and do the tuning in a fixed amount of time regardless
of technology node or desired power targets.

The above problem statement is a natural fit for the reinforce-
ment learning (RL) technique as illustrated in Figure 3 [1, 5]. The
DCVS control algorithm can be represented by a policy that is
trained via RL, i.e., optimizes a desired reward ri , by choosing ac-
tions ai in response to the value of state si . The RL training replaces
the manual tuning process described above. In the training phase,
based on its experience with past iterations, reinforcement learning
will discover the optimal policy πθ for mapping the current state to
the next action. In contrast to current rule-based approaches, the
RL model itself can be agnostic to the application and automatically
be retrained for new applications and new chips as needed. From
our experience the training time is mainly gated by the training
data collection which can be a fixed amount of time independent
of chips and applications.

Figure 3: Reinforcement learning basedDCVS parameter op-
timization.

If we can train the RL model in a constant amount of time for any
chip (less than the time currently required for manual tuning), while

achieving power and performance similar or better than manual
tuning, then we can ensure a predictable schedule for release of the
chip for future generations.

The RL training is an iterative process in which the training
algorithm has to exercise the DCVS loop of action→ state→ action
multiple times, measuring the state and reward in each loop, and
adapting the policy till the desired reward is achieved. Therefore,
RL training time is gated by: (1) the number of iterations required
to achieve the desired reward, and (2) the time for each iteration.

The time for each iteration is further determined by time to run
the applications for which the DCVS control needs to be optimized.
Typically, applications run for several minutes. For each applica-
tion the RL training algorithms will require multiple iterations to
converge to the desired reward. Based on other attempts to apply
RL to this problem [5] and our own work, it can take approximately
10,000 iterations (each iteration comprising of 100 policy rollouts)
to train on a single application, which results in a training time
of one month per application. Assuming we need to train on 10
different type of applications to get a robust DCVS model, it can
take almost a year to train, which is not practical. To get an idea
of the efficacy of the RL approach, we conducted training experi-
ments with a representative set of synthetic applications of shorter
duration (few milliseconds each) and discovered that the RL tool
can learn and produce DCVS settings that result in similar or lower
power for the same performance as manual settings (tested on the
same synthetic workloads). The results were reproducible with
a predictable schedule. The training algorithm we used was the
Cross-Entropy Method (CEM) [6].

4 REDUCING RL TRAINING TIME
To benefit from the RL approach by reducing number of training
iterations, we have developed a Bayesian Optimization (BO) method
for the RL training. The proposed iterative-BOmethod for RL-based
DCVS algorithm training, results in a speedup in training time up
to ∼ 37×, relative to direct RL-DCVS training using CEM. First, we
compress the RL-DCVSmodel (Figure 3) to fewer parameters, which
not only speeds up RL training, but also enables the application
of BO. Second, we propose an iterative-BO method that uses a
dimensionality reduction strategy to enable better BO convergence
properties. The improved version of iterative-BOmethod, which we
call iterative-BO with restart, additionally leverages a novel history
forgetting strategy to achieve an increased speedup of ∼ 37× in
RL-based DCVS training.

One of the major challenges in BO is the curse of dimensionality
[7, 8]. Several researchers have tried to alleviate this issue, but with
strong assumptions that are not applicable to our problem [7, 9–12].
For the DCVS problem specifically, we address the curse of dimen-
sionality issue by (a) compressing the model, and (b) decomposing
the BO algorithm to iteratively optimize over subsets of model pa-
rameters focusing on different parts of the underlying system. We
provide additional details regarding algorithm and methodology in
the next section.

4.1 Iterative Bayesian Optimization as a Fast
Proxy for RL Training

DCVS parameter tuning can be modeled as a Markov Decision
Process [5, 13] that traditionally admit solutions via RL [14]. Since
we care about both the performance and power of the system, we
define the reward r as the product of a performance reward and a
power reward. We define the application execution time (proxy for
performance) and average power consumption (proxy for mobile
device battery life), with RL-DCVS, as TRL and PRL , respectively,
and the execution time and power under a rule-based DCVS policy
as Trule and Prule . Performance reward rper f = 1 when TRL <=
Trule and rper f = Trule − TRL , which is a negative value, when
TRL > Trule . Power reward rpower = max(0, 1 − PRL

2Prule) which
prefers lower power than Prule . Accordingly, rule-based DCVS
has a reward of 0.5, and any algorithm with a reward higher than
0.5 achieves better energy efficiency than rule-based DCVS. As
mentioned previously, we denote the state of the system by s , and
it comprises of several system state counter values.

Cross-Entropy Method (CEM) is a well-known RL algorithm [6],
and we use it as the baseline RL-DCVS method for our problem. We
model each device component (e.g., CPU and DDR) control policies
separately as they are distinct components in the mobile device,
and this also helps dealing with the BO curse of dimensionality.
The model we use is:

fcmpt = argmax(θcmpt · s)

where, f is the index corresponding to the component’s selected
frequency level, cmpt is device component (CPU or DDR), θcmpt
is a two-dimensional parameter matrix. We call this the CEM-1
model, and it has 184 parameters, as in our case, Nf cpu = 13 CPU
frequencies and Nf ddr = 10 DDR frequencies. In our experiments
with the CEM-1 model it takes 4,000 iterations of training for the
reward with RL-DCVS to surpass the reward with a rule-based
DCVS method. In order to speed up training, we first propose a
simplified model:

fcmpt = round[(Nf cmpt − 1) · Siдmoid(θ̂cmpt · s)]

where θ̂cmpt is a one-dimensional parameter vector. We use
(Nf cmpt − 1) to scale up the sigmoid output because the frequency
index starts from zero. We call this the CEM-2 model and it has
only 16 parameters. Our experimental results (excluded due to space
constraints) show that CEM-1 and CEM-2 deliver similar energy
and performance.

We then apply BO to speed up the training of our RL-DCVS
algorithm, that uses the CEM-2 model described above. Although
CEM-2 drastically reduces the number of parameters from 184 to 16,
it is still not small enough in dimensionality for BO to be effective [7,
10]. To tackle this problem, we propose the iterative-BOmethod (see
Algorithm 1 withMethod set to iterative-BO) to decouple CPU and
DDR model optimization steps, so that we effectively only optimize
eight parameters at a time, i.e., while the CPU model parameters
are being optimized using BO, the DDR model parameters are held
fixed to the optimal values from the previous iteration (and vice
versa). In each iteration, we optimize each component usingM = 50
iterations, which is determined by experiments. We use a Gaussian

Process prior for our BO algorithm. Since the choice of acquisition
function, covariance kernel and their hyperparameters are problem
dependent, we did a grid search to optimize the same.

Algorithm 1 Pseudocode of iterative-BO method (with restart)
1: Input:MaxIter , Nf cpu , Nf ddr ,Method ,M
2: Output: θ̂CPUbest , θ̂DDRbest ,MaxReward
3:
4: //Randomize CPU, DDR model parameters at iteration zero
5: θ̂CPUbest ← random(); θ̂DDRbest ← random();
6: cmpt ← [CPU , DDR];MaxReward ← 0;
7: Initiate BOCPU , BODDR
8: for i ← 1; i ≤ MaxIter ; i ← i + 1 do
9: for j ← 0; j ≤ 1; j ← j + 1 do
10: if Method == iterative-BO then
11: reward, θ̂cmpt [j] ←

resume BOcmpt [j] on System(θ̂cmpt [j], θ̂cmpt [1−j] ←

θ̂cmpt [1−j]best) for M iterations {Resume BOcmpt [j],
i.e., keep previous observations}

12: else if Method == iterative-BO with restart then
13: reward, θ̂cmpt [j] ←

restart BOcmpt [j] on System(θ̂cmpt [j], θ̂cmpt [1−j] ←

θ̂cmpt [1−j]best) for M iterations {Restart BOcmpt [j],
i.e., clear previous observations}

14: end if
15: if reward > MaxReward then
16: MaxReward ← reward ; θ̂cmpt [j]best ← θ̂cmpt [j];
17: end if
18: end for
19: end for

When iterating between BOCPU and BODDR , note that we may
want to retain the observations from previous iterations as they
may help guide the parameter learning. However, our experiments
showed, that because at the beginning of iterative-BO, parameters
are close to random, they change drastically after a few iterations.
Those early observations therefore quickly become wrong estima-
tions of the reward function and hinder the optimization process.
Accordingly, we propose iterative-BO with restart, which restarts
BO at the beginning of each iteration (see Algorithm 1 withMethod
set to iterative-BO with restart). With restart, results show greatly
improved speedup of RL-based DCVS training (see Figure 4), con-
firming that our intuition to forget the historical BO context is
helping significantly.

4.2 Experiments and Results
4.2.1 Experiment Setup. We show the effectiveness of our pro-

posed methods by testing on extensive combinations of workloads.
The power and performance values of the rule-based DCVS algo-
rithm as well as the features of all workloads are measured from
real mobile chipsets. We implement CEM-1 and CEM-2 following
[6], and use the BO package: BayesianOptimization [15] for BO op-
timization. We modify the source code to experiment with different
kernel hyperparameters and implement our iterative-BO methods.

4.2.2 Experimental Results. CEMhas two hyperparameters: batch
size and noise. We performed grid search to find the best value of
batch size = 200 and noise = 0.01 that surpasses the rule-based
method with fewest iterations. As we pointed out before, the choice
of acquisition functions, kernels and their parameters may highly
affect the results of BO [16]. We experiment with various choices
to determine the best values for them. For the acquisition function,
we tried Expected Improvement (EI) and Upper Confidence Bound
(UCB), both of which have been widely used [17]. EI has no hyper-
parameters, while UCB has one hyperparameter κ that trades off
between exploitation and exploration. Squared Exponential kernel
is often used in BO, however it is considered unrealistically smooth
for many engineering problems [17]. As a result, we pick Matern
kernel and experiment with hyperparameter ν = 0.5, 1.0, 2.5 as
suggested by [16]. Also, these values compute considerably faster
due to the modified Bessel function in Matern [18][16]. Our results
show that a GP prior with Matern kernel ν = 2.5 and unit scale
length, and UCB with κ = 0.5 as the acquisition function gives the
best results.

Figure 4: Sample efficiency of various RL based DCVS train-
ing methodologies.

CEM and BO solve for the model parameters to maximize the
reward r , the indicator of system energy and performance. Rule-
based DCVS method has a reward value of 0.5, and this is the value
our methods aim to surpass with fewer iterations. Figure 4 shows
the reward vs. iteration (in log scale) for all four methods under
the best parameters chosen above. We can see that all methods
surpass rule-based DCVS (horizontal line at 0.5). CEM methods
start from 200 iterations because the reward values are evaluated
after each batch, which has a size of 200. Compared to CEM-1,
model reduction (CEM-2) gives a 1.2× speedup, while iterative-
BO delivers 9.1× speedup based on the compressed model. BO
on joint CPU+DDR system does not even reach the rule-based
DCVS method in the experiment time horizon considered here;
we believe this is due to the curse of dimensionality problem for
BO. Iterative-BO with restart is able to further boost the speedup to

37.4×, which demonstrates that discarding incorrect history helps
learn the target function much faster. Initial values do not matter
much for Iterative-BO with restart as its reward value improves
much faster than Iterative-BO.

5 CONCLUSION
Reinforcement Learning can effectively automate manual design
tasks that depend on human experience and decision-making pro-
vided fast training methods can be found. In the context of chip
DCVS control, we have demonstrated how Bayesian Optimization
can be used as a fast proxy for Reinforcement Learning to reduce
the RL training time. Our future research is aimed at applying this
technique to the timing closure and other human decision-making
tasks in the SoC design flow.

ACKNOWLEDGMENTS
The authors would like to thank Steve Molloy, Steve Halter, Sar-
avana Kannan, Sejoong Lee, Tauseef Kazi, Dilip Gopalakrishna,
Amalendu Iyer, Raju Katari and Premal Shah for their valuable
inputs and contributions towards this work.

REFERENCES
[1] X. Chen, Z. Xu, H. Kim, P. V. Gratz, J. Hu, M. Kishinevsky, U. Ogras, and R. Ay-

oub. Dynamic voltage and frequency scaling for shared resources in multicore
processor designs. In 2013 50th ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 1–7, May 2013.

[2] In A.F. Schwarz, editor, Handbook of {VLSI} Chip Design and Expert Systems.
Academic Press, 1993.

[3] Abhijit Gosavi. Reinforcement learning: A tutorial survey and recent advances.
INFORMS Journal on Computing, 21(2):178–192, 2009.

[4] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
and et al. Mastering the game of go without human knowledge. Nature,
550(7676):354âĂŞ359, 2017.

[5] Zhuo Chen and Diana Marculescu. Distributed reinforcement learning for power
limited many-core system performance optimization. In Proceedings of the 2015
Design, Automation & Test in Europe Conference & Exhibition, pages 1521–1526.
EDA Consortium, 2015.

[6] István Szita and András Lörincz. Learning tetris using the noisy cross-entropy
method. Learning, 18(12), 2006.

[7] Kirthevasan Kandasamy, Jeff Schneider, and Barnabás Póczos. High dimensional
bayesian optimisation and bandits via additive models. In International Conference
on Machine Learning, pages 295–304, 2015.

[8] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian opti-
mization of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

[9] Bo Chen, Rui Castro, and Andreas Krause. Joint optimization and variable
selection of high-dimensional gaussian processes. arXiv preprint arXiv:1206.6396,
2012.

[10] Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, Nando De Freitas,
et al. Bayesian optimization in high dimensions via random embeddings. In
IJCAI, pages 1778–1784, 2013.

[11] Josip Djolonga, Andreas Krause, and Volkan Cevher. High-dimensional gaussian
process bandits. In Advances in Neural Information Processing Systems, pages
1025–1033, 2013.

[12] David K Duvenaud, Hannes Nickisch, and Carl E Rasmussen. Additive gaussian
processes. In Advances in neural information processing systems, pages 226–234,
2011.

[13] Wei Liu, Ying Tan, and Qinru Qiu. Enhanced q-learning algorithm for dynamic
power management with performance constraint. In DATE, pages 602–605.
European Design and Automation Association, 2010.

[14] Andrew G Barto. Reinforcement learning: An introduction. MIT press, 1998.
[15] https://github.com/fmfn/bayesianoptimization.
[16] Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for

machine learning, volume 1. MIT press Cambridge, 2006.
[17] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimiza-

tion of machine learning algorithms. In Advances in neural information processing
systems, pages 2951–2959, 2012.

[18] http://scikit-learn.org.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160112132206
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160112132206
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

