
An Object-Oriented Approach
to Database System Implementation

A. JAMES BAROODY, JR.

Xerox Webster Research Center

and

DAVID J. DeWlTT

University of Wisconsin-Madison

This paper examines object-oriented programming as an implementation technique for database
systems. The object-oriented approach encapsulates the representations of database entities and
relationships with the procedures that manipulate them. To achieve this, we first define abstractions
of the modeling constructs of the data model that describe their common properties and behavior.
Then we represent the entity types and relationship types in the conceptual schema and the internal
schema by objects that are instances of these abstractions. The generic procedures (data manipulation
routines) that comprise the user interface can now be implemented as calls to the procedures
associated with these objects.

A generic procedure model of database implementation techniques is presented and discussed.
Several current database system implementation techniques are illustrated as examples of this model,
followed by a critical analysis of our implementation technique based on the use of objects. We
demonstrate that the object-oriented approach has advantages of data independence, run-time
efficiency due to eliminating access to system descriptors, and support for low-level views.

Key Words and Phrases: database systems, data manipulation routines, procedural binding, object-
oriented programming, high-level languages, data independence
CR Categories: 4.22,4.33, 4.34

1. INTRODUCTION

In database systems the principles of abstraction support two fundamental
properties: data independence and a generic-procedure user interface. Data
independence requires that user programs be isolated from the details concerning
the underlying physical and logical structures used to implement the database.
Data independence is achieved by presenting the user an abstraction of the
database in which details of its actual implementation are hidden.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
This research was supported in part by the National Science Foundation under Grant MCS78-01721
and in part by the U.S. Army under Contract DAAG 29-75-C-0024.
Authors’ addresses: A. J. Baroody, Jr., Xerox Webster Research Center, Xerox Square-128, Rochester,
NY 14534; D. J. Dewitt, Computer Sciences Department, University of Wisconsin-Madison, Madison,
WI 53706.
0 1981 ACM 0362-5915/81/1200-0576 $00.75

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981, Pages 576601.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319628.319645&domain=pdf&date_stamp=1981-12-01

Object-Oriented Approach to Database System implementation * 577

In current approaches for database systems (relational [lo], hierarchical [16],
and network [8,9]) the only access path to the entities and relationships contained
in the database is through a user interface that consists of a set of generic
procedures. These procedures operate on entities or relationships of any “type.”
For example; the relational operator “restrict” operates on any relation type (e.g.,
suppliers, parts).

An abstraction technique supported in modern programming languages (SIM-
ULA67, MODULA, MESA, ADA, etc.) is object-oriented programming. This
programming technique provides a strong isolation of users of a software system
from its implementation. We believe that it is important to examine whether the
concepts of modern programming languages are appropriate for supporting the
generic procedure interface. This paper examines object-oriented programming
as an implementation technique for database systems. Our interest in applying
the object-oriented approach is based on the nature of the conceptual schema
and the internal schema. These two schemata describe the attributes of database
entities and the procedures that access and manipulate these representations.
The conceptual schema defines the entities and the relationships between them,
while the internal schema describes the internal data representation of entities,
the physical and logical structure used to represent relationships, and the access
paths that support database access.

The object-oriented approach encapsulates the representations of entities and
relationships with the procedures that manipulate them. To achieve this, we first
define abstractions of the modeling constructs of the data model that describe
their common properties and behavior. Then we represent the entity types and
relationship types in the conceptual schema by objects that are instances of these
abstractions.

The generic procedures that comprise the user interface can now be imple-
mented as calls to the procedures associated with these objects. We demonstrate
that this approach can guarantee that the only access path to the database is
through the generic procedures. In addition, since all internal representations are
encapsulated by these objects, these representations are hidden from the generic
procedures and therefore from the user. This satisfies the goal of data indepen-
dence.

Several authors have reported on related research efforts. Stemple examined
the automatic generation of data manipulation routines [26]. Yeh and Minsky
have examined multilevel implementation techniques [17, 321. The possible use
of abstract data types (and the related concepts of modules) as a technique for
the well-structured implementation of multilevel database system organizations
(such as the ANSI/SPARC three-level organization) has also been suggested by
Weber [30]. This proposal is sketchy and does not address such issues as
elimination of run-time schema interpretation, data independence, or the need
for multiple implementations of a single abstraction. Another application of
abstract data types and modules in database systems is their use in either the
development of user interfaces that are tailored to a specific application [6, 15,
171 or as structuring tools in languages designed to facilitate database access [13,
21, 23, 29, 301.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981

578 * A. J. Baroody, Jr., and D. J. Dewitt

In Section 2, a generic procedure model of database implementation techniques
is presented and discussed. Several current database system implementation
techniques are illustrated as examples of this model. Then, in Section 3, our
implementation technique based on the use of objects is described.

Section 4 presents a critical analysis of our approach and compares the object-
based approach with other implementation techniques. This analysis is done with
respect to requirements for the database system to manage meta-information,
support of low-level and high-level views, performance of the resulting system,
frequency of binding, and concurrency control. We demonstrate that the object-
oriented approach has advantages of data independence, run-time efficiency due
to eliminating access to system descriptors, and support for low-level views.

2. A GENERIC PROCEDURE MODEL OF DATABASE SYSTEM
ARCHITECTURES

The programming language concepts of types and generic procedures are directly
related to database system features. The concept of type in programming lan-
guages is well understood. A type implies a set of values visible to the user, an
underlying representation that is not visible to the user, and the manner in which
primitive operations on the type are to be interpreted in terms of the type’s
representation.

As an example of the use of types within database systems, the entity types
and relationship types that are visible to users are defined in the conceptual
schema. Each entity declaration in the conceptual schema defines a new type in
terms of a set of underlying constituent types. For example, the definition of a
PART relation describes the attributes of parts in terms of underlying data types.
We regard tuples within this relation as instances of type PART.

Work in programming languages has extended procedural abstractions to define
a generic procedure as a procedure that performs the same basic operation on
actual parameters of more than one type. The implementation of the operation
will generally vary depending on the type of the actual parameter. The plus (+)
operation in ALGOL 60 or PASCAL represents such a procedure since it accepts
operands of types integer, real, complex, and so forth. Thus a generic procedure
must know the primitive operations that are supported for each valid parameter
type.

In all current approaches for database systems the only access path to the
entities and relationships contained in the database is through a user interface
that consists of a set of generic procedures, which we refer to as data manipu-
lation routines. These procedures operate on entities or relationships of any
“type” defined in the conceptual schema. For example, the relational operator
“restrict” operates on any relation type. And the network data manipulation
language verb “fmdnext” accepts parameters of any record and set types.

Each data manipulation routine uses descriptions of the entity types and
relationship types from the schemata to determine the correct computation to be
performed. The conceptual and internal schemata associate with an entity not
only the specifications of data items, but also the specification of an access
strategy. This access strategy specifies those procedures to be used to store and
to retrieve entity instances from the database. For a given actual parameter (e.g.,

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Object-Oriented Approach to Database System implementation l 579

I data base I

records
to/from
database

1

data manipulation
actual schemata:

routines: 4 parameter -

generic procedures descriptors data descriptors

A

procedure calls user environment

Fig. 1. A generic procedure model of database systems.

relation type, set type), a data manipulation routine utilizes these schema descrip-
tors to determine which access methods are to be invoked to perform the desired
action.

By representing the data manipulation routines as generic procedures, we can
model a database system as shown in Figure 1. This model highlights the two
basic functions performed by a database system. The first function is to provide
run-time access to the database. However, not only does the database system
perform run-time access to the database, but secondly, it controls access to the
meta-information. This meta-information consists of the schemata that describe
both the representation of information and the primitive operations that may be
performed on this information (e.g., the access methods that are available). This
meta-information is, in effect, a private database for the database system software.

Management of this meta-information involves two functions. The first is a
mechanism that enables the data manipulation routines to associate a given user
program with a particular schema and with a particular database. This mecha-
nism makes available the data descriptors required by the data manipulation
routines to perform run-time access to the database. The second function is
related to the first and defines for user programs the attributes of database
objects that the user program references. The ability of the database system to

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

580 . A. J. Baroody, Jr., and D. J. Dewitt

control and to restrict access to the data descriptors in the schema has a
significant impact on data independence.

Since the time of binding also has a major impact on data independence,
techniques for managing the meta-information differ in terms of three major
characteristics:

(1) mechanisms employed to share the data descriptors maintained by the
database system among all user processes accessing the database through a
particular schema,

(2) controlling access to attributes within the data descriptor to enforce or
guarantee data independence,

(3) time of binding the data descriptors to the attribute names and attribute
types referenced in the user’s data manipulation routine call.

The implementation approaches used for database systems are direct analogs
of the approaches used within programming languages. In order to implement all
of the various computations required for the legal parameter types to a generic
procedure, a programming language compiler must provide access to a description
of the characteristics of all valid actual parameter types. Thus the types of the
operands can be regarded as implicit parameters to the procedure. In program-
ming languages two approaches are used to bind the descriptor of the actual
parameter characteristics to the generic procedure. Tht, first approach is the
compilation approach, which binds this information at compile time. By contrast,
the binding may be postponed until run time by using the interpretive approach.

In the compilation approach the descriptor is the type information from the
compiler symbol table. One implementation method for this approach is to supply
an instance of the procedure implementation for each type of actual parameter.
The procedure body instances are expanded at compile time as macros [14].

As already noted, run-time binding involves interpretation. EL1 is an example
of a language that supports the interpretative approach [31]. EL1 represents type
information as a MODE (similar to the tag of a variant record) which is associated
with each variable and which is testable at run time. A procedure may perform
operations on its arguments depending upon the run-time value of the argument’s
MODE.

For a database system, the determination of when the data manipulation
routines bind the data descriptor from the conceptual schema and internal
schema to their actual parameters is a critical decision. In general, the longer
binding can be delayed, the easier the goal of data independence is to support.
Thus the most frequently used implementation technique is the interpretive
approach. Variations of the interpretive approch are used in IMS [16], DMSllOO
[24,25], INGRES [27], and so forth. The conceptual schema and internal schema
are encoded into an internal form, referred to as the object schema. Using the
types referenced as actual parameters in a data manipulation routine call, the
object schemata are accessed to retrieve the appropriate descriptors. These
descriptors are then interpreted as one of the first steps in performing the data
manipulation language command.

In DMS1100, which we believe is a typical example of this approach, the source
schema is translated into a form suitable for interpretation at run time. A
ACM Transactions on Database Systems, Vol. 6. No. 4, December 1981.

Object-Oriented Approach to Database System Implementation * 581

secondary output of this translation is a set of specifications for a result delivery
area that serves as a communications buffer between the user program and the
database. The user program is then compiled using the object schema for type
checking. The result delivery area specifications generated in the previous phase
are used as a template to generate a user work area within the user’s object
module.

Final binding occurs at run time. Each user call to a data manipulation routine
specifies one or more actual parameters. For each actual parameter the corre-
sponding type descriptor is located in the encoded schema. This descriptor is
interpreted to determine the function to be performed by the data manipulation
routine, for example, the access methods to be employed and the like.

The interpretive approach has some significant disadvantages. Interpretation
will require increased processing time to interpret the object schema and the
object subschema. If the object schema is stored on secondary storage to facilitate
sharing by all programs accessing the database, then increased I/O costs will be
incurred in addition to the increased processing costs.

Database system implementations have traditionally avoided the compilation
approach because it tends to sacrifice the important objective of data indepen-
dence for increased performance. This loss of data independence occurs with
compile-time binding because once the schema descriptors are bound to a user’s
program, a change to the physical storage structure of the database or to its
access mechanisms will invalidate all user programs that are dependent on that
particular mechanism. These programs will require recompilation.

System R is an example of a database system that supports the compilation
approach and yet avoids any loss of data independence [2, 71. The fundamental
idea of the System R approach is that when a user’s program is compiled, each
embedded data manipulation command is replaced with a call to a compiled
version of the command. All compiled commands from the program (along with
each original source command) are then combined into a module that is placed
in a library of such modules associated with the database. When the user’s
program is executed, the various entry points of the module are invoked to
operate on the database.

Whenever a storage structure or access mechanism is altered, System R
examines each module in the library and marks those sections of each module
that have been invalidated by the changes. The next time an invalidated module
section is invoked, the original command is automatically recompiled (using the
new access paths, for example) and then executed. In this way both the goals of
data independence and fast query execution for the majority of queries can be
achieved.

In the next section we will present a database system implementation technique
that also achieves both of these objectives through the use of object-oriented
programming and load-time binding of schema descriptors.

3. AN OBJECT-ORIENTED APPROACH

In Section 2 we introduced a generic procedure model of database system
implementation techniques that we demonstrated is used to support a generic
procedure interface to users. The implementations that we described do not

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

582 . A. J. Baroody, Jr., and D. J. Dewitt

exploit recent advances in programming languages and methodologies. We believe
that it is important to examine whether the concepts in modern programming
languages are appropriate for supporting the generic procedure interface that is
found in database systems. In this section we demonstrate that object-oriented
programming, which is supported by a number of programming languages,
provides structures and facilities that exactly match the implementation needs of
database systems.

As our earlier discussion implied, the external, conceptual, and internal sche-
mata define multiple levels of data representations and define the data structures
and computations that are used to perform efficient access to/from the database
and to perform mappings between the various levels. Our background in program-
ming languages leads us to examine the object-oriented approach because we
believe that it is natural to regard a database system as supporting not only levels
of data representations but also levels of procedures that operate on these data
representations. The object-oriented approach places each procedural level with
the data which it manipulates, thus assuring that the procedure manipulates data
at the proper level of abstraction. In this way primitive data manipulation
functions are associated with each schema level. If the procedures at a given level
are used as primitives to implement the outer procedural levels, then we can
guarantee that. the only access to the database is via the generic procedure
interface.

The object-oriented approach also achieves both of the objectives of data
independence and run-time efficiency that are achieved by System R. However,
in contrast to System R, which compiles a separate query packet for each data
manipulation routine call, we compile the procedures associated with each object.
Then at run time the data manipulation routines select the appropriate objects
and invoke the procedures associated with them.

In Sections 3.1 and 3.2 we present an overview of an object-oriented approach
to database system implementation (for more implementation details we refer
the reader to examine [3-51). In Section 3.3.1 we describe a network data model
system that was implemented using the object-oriented approach. In Section
3.3.2 we discuss a proposal for applying this approach to a relational database
system.

3.1 Basic Assumptions

The basic building block we use in our approach is the class construct. A class is
the encapsulation of a data structure and the procedures that manipulate the
internal representation of the data structure. A key feature of a class is that the
internal representation of the data structure is hidden from users. Users of a class
instance are only able to manipulate the data structure by calling one of the
procedures associated with the class or by accessing attributes that are declared
as externally visible. It is important to distinguish between a class and instances
of the class. This difference can be understood in terms of the difference between
a type and instances of a type. For example, INTEGER variables are instances
of the type integer. By analogy, a class is the declaration of an abstract data type
and objects are instances of the class.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Object-Oriented Approach to Database System Implementation l 583

Level M

Internal Conceptual
Level Level EEY

{Ml {Ml (Ml

/..\ /.\ /.\

Level D {“I IDI IDI

Level 0 101 101 101

Note:

Level M: Classes for modeling constructs of the data model

Level D: Classes correspond to entity and relationship types
of the database. Each D class is a subclass of a Level M class

Level 0: Objects corresponding to the physical database and
to the record delivery area. Each object is an instance of a D
subclass

Fig. 2. The class hierarchy.

A class defines a group of objects with similar properties. A class can also be
partitioned into secondary groups based on common properties, or into sub-
classes. In the examples presented below we base our definitions of class and
subclass on SIMULA67 and we use the SIMULA67 syntax [ll, 18, 191.

The foundation of our approach for database system implementation is a set of
classes it!. Mcontains one class for each fundamental modeling construct provided
by the data model to be supported. The type and number of classes in M will
vary from data model to data model. AlI entity types, relationship types, entity ’
occurrences, and relationship occurrences are instances of one of these classes,
and can be organized into the subclass hierarchy shown in Figure 2.

There are three levels in this hierarchy. The first level is the M. The number
of members in this set, 1 MI, is the number of classes required to represent the
abstract properties of the data model and is dependent on the number of levels
of representation used in the data model. For the ANSI/SPARC organization,
the classes of M are partitioned into three disjoint subsets Me, MC, and Mi
corresponding to the external, conceptual, and internal levels [l]. In this section
we do not explicitly consider the external level. However, in Section 4 we discuss
how the object-based approach also supports the external level.

The second level in the hierarchy shown in Figure 2 is the set of classes D,
which is partitioned into two disjoint subsets D, and Di corresponding, respec-
tively, to the entity types and relationship types defined by the conceptual and

ACM lhnsactions on Database Systems, Vol. 6, No. 4, December 1981.

584 . A. J. Baroody, Jr., and D. J. Dewitt

internal schemata for a specific database. The number of members in D is
determined by the number of entity types and relationship types defined by the
conceptual and internal schemata. Each member of D, (0;) is a subclass of some
class in ilk (Mi) and shares the external interface it defines. Defining each
member of D to be a subclass of a member of M allows it to support the same
external interface, but to internally implement this interface in a unique way, if
necessary. In addition, each member of D concatenates to the attributes defined
at level M the attributes defined in the conceptual or internal schema that are
specific to an entity type or relationship type in the database.

The third level is the set 0 and is composed of those objects that define the
occurrences of entities and relationships within the database. The set 0 also
defines the user’s record delivery area. Each member of 0 is an instance of a
subclass defined at level D. For example, assume that level D contains a subclass
specifying a SUPPLIER record type. Then level 0 will contain objects corre-
sponding to SUPPLIER record occurrences in the database. (The subclasses
defined at level D may be regarded as templates that are used to generate the
objects at level 0.) Level 0 also contains an object implementing a SUPPLIER
record delivery area. Thus 0 is partitioned into two disjoint subsets: O,, the set
of objects which implement the record delivery area and which are instances of
D,, and Oi, the set of objects which correspond to database record occurrences
and which are instances of Di.

3.2 Overview of the Approach

The view presented by the object-oriented approach to a user’s program consists
of four components. The first component is 0,, which is the user’s logical view of
the database and consists of the entities and relationships that are defined by the
set DC. The second component is the database, which contains objects belonging
to the set Oi, that is, records in their internal schema representation. The third
component supported by the object-oriented approach is the set of data manip-
ulation routines. These routines are implemented in terms of the attributes of the
classes in level M. These routines provide the only access path to the database
for the user’s program and are responsible for mapping a user’s request in terms
of the conceptual schema into the access methods and entity types supported by
the internal schema. The final component is a result delivery area which resides
within the address space of the user program and which is implemented by the
conceptual schema objects 0,. Entities in an internal schema representation
returned by the data manipulation routines are placed in the record delivery area
after conversion to their conceptual level representation.

Three major phases or steps are used to generate the set of objects 0, which
comprise a database instance. The first phase involves definition of the set of
classes M, which are required to support a specific data model. On the basis of
the definition of the external interfaces of these classes, the data manipulation
routines are implemented by using the procedural attributes of the classes in the
set M as primitive operators. At this point the user’s view of the logicalproperties
of the data model is complete.

The next phase is the translation of the conceptual and internal schemata into
the declarations of subclasses at level D. On the basis of the data and procedural
ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Object-Oriented Approach to Database System Implementation l 585

database

7
records
to/from
database

data manipulation

routines:

generic procedures

A

procedure
calls

schema objects

class instances

procedure calls
user environment

I user program 4

Fig. 3. An object-oriented model of database systems.

definitions in the schemata, these subclasses implement the data and procedural
attributes of the data model classes. Associated with each subclass definition are
the data attributes of a database entity type, or relationship type, and implemen-
tations of a set of procedures that access these data. These procedure implemen-
tations are the primitive operations that are used to perform run-time access to
a database instance.

The third, and final, step is the generation of the objects which comprise the
user’s record delivery area and which comprise the physical database. The record
delivery area is a set of objects that are subclasses of D,; the objects that comprise
the database are instances of Di.

For each component of the conceptual view of the database, that is, for each
member of DC, there is one object in the user’s record delivery area. These objects
are automatically generated and bound to each user program at run time. The
objects that comprise the database are generated at run time in response to calls
to the data manipulation routines by using the subclasses in Di as templates.

By implementing each schema level as a collection of objects, we have con-
verted the schemata from their passive role in other implementation approaches
to an active role, as shown in Figure 3. The underlying theory of this implemen-

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

586 - A. J. Baroody, Jr., and 0. J. Dewitt

tation approach is quite simple. In other approaches the data manipulation
routines can be viewed as first-order functions, and the actual parameters are
used to determine what computation is performed (either at compile time or at
run time). By contrast, in our approach the data manipulation routines are
second-order functions. The actual parameters to the data manipulation routines
are references to objects and to perform the requested computation, the data
manipulation routines invoke, at run time, the procedures that were bound to
these objects at compile time.

Specifically, in the interpretive approach a user’s program that calls a data
manipulation routine will pass conceptual schema entities and relationships as
actual parameters to the routine. The data manipulation routine will use these
parameters to examine an encoded form of the conceptual schema to determine
what operations should be performed in order to carry out the user’s request.
These operations generally involve invoking the access methods associated with
the internal schema in order to retrieve (store) an entity occurrence from (into)
the database.

In the object-oriented approach, when a data manipulation routine is called,
the user program passes as an actual parameter a pointer to an object in the
conceptual level, that is, a member of 0,. The data manipulation routine then
uses the procedure and data attributes associated with this object to perform the
desired function. A procedure attribute of the object in 0, will generally, in turn,
access data attributes and perhaps procedure attributes of internal schema level
objects (i.e., members of 0;) during its execution. The procedures associated with
the classes at each representation level are also generic procedures and are used
as primitives to implement the procedures at an outer level.

3.3 Implementation Examples

The conceptual and the internal schemata perform two functions. The first is to
provide descriptions of the actual parameters to the data manipulation routines.
The second is the definition of the environment for user programs. Corresponding
to these two functions the database system must support two different represen-
tations of the database, the internal representation and the conceptual represen-
tation. In the following discussion we describe the classes and objects that
represent these viewpoints.

The set M, contains one class for each basic modeling construct that is provided
by the conceptual data model being implemented. Two classes are required for
the network data model: one for the conceptual schema record type (CREC)
construct and one for the conceptual schema set type (CSET) construct. Instances
of the CREC class and CSET class correspond, respectively, to the record and set
types in the conceptual schema. The data and procedure attributes of these
classes will be described below.

Two classes are also required for the entity-relationship data model. One class
will represent the entity-set construct and one will represent the relationship
construct.

Since the relation construct is used to represent both entities and relationships
in the relational data model, only one class for the conceptual schema relation
ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Object-Oriented Approach to Database System Implementation l 587

construct (CREL) is required. Instances of the CREL class correspond to the
relations defined by the conceptual schema.

The number of classes representing internal schema entity types and relation-
ship types in the set Mi depends on the implementation strategy defined by the
internal schema. For example, if network data model sets are implemented using
linked lists, then only one class is needed in Mi [30]. Instances of this class
correspond to physical record occurrences in the database, and set membership
information is embedded within these objects as pointers to other objects in the
same set occurrence. On the other hand, if pointer arrays are used to implement
sets, two classes are required. One class represents physical record occurrences
and the other represents physical set occurrences.

The number of classes required to implement the internal schema for the
relational model also depends on the implementation strategy chosen. If relations
are stored as heaps with secondary indices, then two classes are required: one for
tuple occurrences in the heap and one for secondary indices. If B-trees are used
instead, one class is sufficient since a B-tree can be used as both the primary
storage for the relation as well as a mechanism for secondary indices.

3.3.1 A Network Database System Implementation. In this section we examine
a CODASYL-DBTG system that was implemented using our approach. The
hierarchy of classes and objects representing the Supplier-Parts database is
shown in Figure 4.

The first representation we consider is the physical database defined by the
internal schema. The only member of Mi is the IREC class, which is an abstraction
of internal schema record types. Level D subclasses of IREC are generated for
each record type in the schema and are used as templates to generate all record
instances in the database. Each physical record occurrence (internal schema
record occurrence) is an instance of an IREC subclass and is thus an object.
SIMULA67 class concatenation is used to concatenate the internal schema data
items defined in each specific subclass Di with the IREC object. Therefore each
entity in the database is a concatenated object containing the common properties
of all record objects (as defined by the IREC class) and those of a specific record
type (as defined by the Di subclass of which it is an instance). The subclass
ISupplier, IPart, and ISP are defined as subclasses of the IREC class as shown in
Figure 4.

The IREC class and the ISupplier subclass are shown in Figure 5. The
VIRTUAL attributes of IREC implement set membership and ownership as
specified in the schemata. The implementation of VIRTUAL attributes First and
Last in ISupplier uses pointer chains to implement ownership of the SuppliedBy
set type.

The second representation of the database is the conceptual representation
and is defined by the CREC and CSET classes in M,. The CREC class is an
abstraction of the network data model record construct. Associated with each
instance of the CREC class (i.e., a record type in the conceptual schema) are data
attributes that describe the set types in which record occurrences may participate
and procedures that implement the access methods (e.g., location mode clause).
Additional procedures are associated with the CREC class that map the concep-

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1961.

588 . A. J. Baroody, Jr., and D. J. Dewitt

Internal
Level

Level M {IRec)

I\ ..*
Level D { ISupplier, IPart, ISP}

I\ . . .
Level 0 (ISupplier, IPart, ISP}

{objects}

Co;;;$ual

{ CRec, CSet }

I\ . . .
{ CSupplier, CPart, CSP >
{ CSuppliedBy, Clnstock}

I\ . . .
{ CSupplier, CPart, CSP}

{ CSuppliedBy, Clnstock}
{ objects }

Note:

Level M: Irec, Crec, and Cset classes are modeling constructs
of network data model

Level D: Classes correspond to the record types (Supplier,
Part, SP) and set types (SuppliedBy, Instock) of
the Supplier.Parts database

Level 0: ISupplier, IPart. ISP implement record occurrences
CSupplier, implement user view of record types
CSuppliedBy, . implement user view of set types

Fig. 4. The network model class hierarchy.

tual representation to/from its corresponding representation as an IREC in the
database.

The CSET class, which defines the properties common to all set types, is the
second member of 44,. The CSET class embodies relationships as an entity.
Associated with the CSET class are attributes that describe the record types,
that is, CREC instances, which participate in the set as owner and member. The
attributes of the CSET also include procedures that implement the procedural
aspects of the set declaration, such as the set occurrence selection criterion.

Each CSET instance actually defines two relationships. The first is between
those IREC instances that participate in a set occurrence. This relationship is
implicitly represented by the procedures associated with the CSET. This rela-
tionship is not explicitly visible to users except through the use of a data
manipulation routine. The second relationship is the relationship between CREC
instances that represent the set owner and set member. This relationship models
the relationship defined in the conceptual schema and is explicitly represented
by an owner CREC and a member CREC pointer in the CSET object. The
procedures associated with the CSET class map between these two relationships.

ACM Transactions on Database System, Vol. 6, No. 4, December 1981.

Object-Oriented Approach to Database System Implementation * 589

CLASS IRec;
VIRTUAL: REF (IRec) ARRAY First, Last:

REF (IRec) ARRAY Succ, Pred, SetOwner;
COMMENT First & Last implement set ownership
COMMENT Succ, Pred & SetOwner implement set membership

BEGIN
TEXT Recld;
INTEGER RCode;
REF (CRec) RecPtr;
INNER;

END;

IRec CLASS ISupplier;
BEGIN

TEXT SName, SCity;
INTEGER SNumber, SStatus;
REF (IRec) ARRAY First, Last (1:l);
COMMENT Initialize IRec data :
Recld : = “SUPPLIER”;
RCode:=l;
NUMSETSOWNED : = 1;
RecPtr :. Supplier;

END;

Fig. 5. The IRec class and the ISupplier subclass.

For each record type and set type in the conceptual schema, subclasses of
CREC and CSET are generated in level D. There is one CREC (CSET) subclass
in D, for each record (set) type in the conceptual schema. Each member of DC
uses clam concatenation to combine the common CREC (CSET) properties with
those of a specific record (set) type declared in the conceptual schema. The
CREC classes, CSupplier, CPart, and CSP, and the CSET classes, CSuppliedBy
and CInstock, are shown in Figure 4. Abbreviated examples of CREC and CSET
are shown in Figures 6 and 7 along with examples of subclasses generated from
the conceptual and internal schemata.

A feature of object-oriented programming that is used in this approach is the
separation of the definition of an abstraction from its implementation; for exam-
ple, the separation of cluster declarations in CLU from their implementation
in the CLU library. VIRTUAL class attributes are a mechanism defined in
SIMULh67 for performing this separation. Using the VIRTUAL facility, attri-
butes are defined to be part of a class, but implementation may be postponed
until the class is used as a prefix, in which case the prefixed class may supply an
implementation.

VIRTUAL attributes achieve an effect that is similar to that of FORWARD
procedures in PASCAL: the properties of a class attribute, for example, procedure
A in clas B, can be declared before the attribute is implemented. In the example
of class B, the attributes of VIRTUAL procedure A include its type and its
parameters. This enables code in a strongly typed language that references class
B objects to be compiled before procedure A has been implemented. When
instances 11 and 12 of class B are created, a procedure body for A may be supplied

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

590 * A. J. Baroody, Jr., and D. J. Dewitt

CLASS CRec;
VIRTUAL: REF (CSet) ARRAY OwnerOf. MemberOf:

PROCEDURE Locate, Allocate. Store, Load;
BEGIN

REF (IRec) Current;
INTEGER NumSetsOwner:
INTEGER NumSetsMember;
TEXT Id;
INTEGER Code;
INNER;

END;

CRec CLASS CSupplier;
BEGIN

HIDDEN Allocate, Locate, Store, Load, OwnerOf:
TEXT SName, SCity;
INTEGER SNumber, SStatus;
REF (CSet) ARRAY OwnerOf(1:i);
PROCEDURE Allocate:

COMMENT Co& here allocates a new ISupplier using a hashing
algorithm with SNumber as the key and make it current;

PROCEDURE Locate;
COMMENT Code here retrieves an ISupplier by hashing with
SNumber as a key and make it current;

PROCEDURE Store;
COMMENT Code here performs encoding as required and copies
local data items from CSupplier into current ISupplier database
object;

PROCEDURE Load;
COMMENT Code here performs decoding.as required and copies
data items from current ISupplier database object into local data
items of CSupplier:

COMMENT Initialize’CRec data :
Id : = “SUPPLIER”:
Code:=l:
NumSetsOwner’: = 1;
COMMENT SuppliedBy is a reference to CSuppliedBy;
OwnerOf(1) :- SuppliedBy;
NumSetsMember : = 0;

END;

Fig. 6. The CRec class and the CSupplier subclass.

for each class instance. These implementations of A are bound to a class instance,
that is, 11 and 12, and are referenced as attributes of the class B.

The procedure attributes of the CREC and CSET classes are VIRTUAL. When
a CREC (or CSET) object is created in level 0, to form, for example, a CSupplier
object corresponding to the SUPPLIER record type, a customized procedure for
each VIRTUAL procedure will be generated on the basis of the schema definition
of that record (or set) type. Furthermore, each CREC (or CSET) object will have
an independent implementation of the VIRTUAL attributes.

As an example, the LOCATE procedure of the CREC class implements retrieval
of IREC instances using the strategy specified in the location mode clause of the
schema. Each CREC instance possesses an independent implementation of LO-
CATE that is based on the location mode clause of the schema record type
declarations in the conceptual schema. In our Supplier-Parts schema example,
CSupplier is an instance of CREC and possesses as an attribute a procedure
ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Object-Oriented Approach to Database System Implementation * 591

CLASS CSet;
VIRTUAL: PROCEDURE Remove, Scan, Insert;

REF (IRec) PROCEDURE Locate;
REF (CRec) OwnerRecord, MemberRecord;

BEGIN
REF (IRec) Current;
TEXT Id;
INTEGER Code;
REF (CREC) OwnerRecord, MemberRecord;
INTEGER OwnerOffset:
INTEGER MemberOffset;
COMMENT Remove: remove specified IRec from a set occurrence

Scan: traverse set using pointers and OwnerOffset 8
MemberOffset;

Insert: add a new IRec instance into set occurrence;
Locate: implement set occurrence selection;

INNER;
END;

CSet CLASS CSuppliedBy;
BEGIN

PROCEDURE Locate;
COMMENT code here implements set occurrence selection
through location mode of’owner by invoking OwnerRecord.Locate.
Current becomes the owner occurrence:

PROCEDURE Remove;
COMMENT code here deletes the indicated IRec instance from a
set occurrence. Use OwnerOffset and MemberOffset to reference
the current pointers;

PROCEDURE Scan;
COMMENT code here traverses a set occurrence. Use
OwnerOffset and MemberOffset to reference the current pointers;

PROCEDURE Insert;
COMMENT code here inserts new IRec instance into a Set
occurrence. Maintain set order as sorted in ascending order using
SNumber;

COMMENT initialize CRec data;
Code : = 5;
Id : = “SuppliedBy”;
OwnerOffset : = 1;
OwnerRecord :- Supplier;
MemberOffset : = 1;
MemberRecord :. SP;

END;

Fig. 7. The CSet class and the CSuppliedBy subclass.

LOCATE that implements hashing on its LASTNAME attribute. CSP is also a
CREC instance but possesses an implementation of LOCATE that performs
retrieval via the pointers of the INSTOCK set type.

As discussed earlier, the data manipulation routines are implemented solely in
terms of the data attributes and procedure attributes of the CREC and CSET
classes. Figure 8 contains an implementation of the data manipulation routine
FETCH, which has one parameter, RECPTR, which is a pointer to a conceptual
schema record. RECPTR is used to call at run time the implementation of the
LOCATE procedure associated with the proper CREC instance on level 0,. In
this way run-time interpretation of the schema can be eliminated. For more
detail, the reader is encouraged to examine [3].

ACM Transactions on Database System, Vol. 6, No. 4, December 1981.

592 l A. J. Baroody, Jr., and D. J. Dewitt

PROCEDURE FETCH(RECPTR);
REF (CRec) RECPTR;
BEGIN

INTEGER I;

COMMENT use the schema location mode to find the Oi instance
(IRec) and then copy Oi instance fields into 0, instance
(CRec) field. Also make the Oi instance the current of record
type;

CurrentOfRun :- RECPTR.Current :- RECPTRLocate;

COMMENT Load all data items into the Record Delivery Area. Then
make the record occurrence the current of set in all sets in
which it participates ;

RECPTR.Load (RECPTR.Current);

FOR I: =l STEP 1 UNTIL RECPTR.NumSetsOwned DO
RECPTR.Owner(l).Current :. RECPTR.Current;

FOR I: =l STEP 1 UNTIL RECPTR.NumSetsMember DO
RECPTR.Member(l).Current :- RECPTR.Current;

END:

Fig. 8. The data manipulation routine FETCH.

The examples that we have shown implement record-at-a-time access to the
database. The object-oriented approach could also be used to implement a set-at-
a-time interface. Two approaches are possible. In the first, set-oriented data
manipulation routines could be implemented using the functions associated with
CREC objects as primitives. In the second approach, set-oriented operations
could be defined as attributes of the CSET objects.

3.3.2 A Relational Database System Implementation. The same implementa-
tion strategy can also be used to implement relational database systems. As an
illustration we present an example of such an implementation in this section. We
have assumed that all relations in the database are stored as heaps and that no
secondary indices are available to enhance system performance. As shown in
Figure 9, the IREL class, an abstraction of all internal schema relation formats,
is the only member of Mi required to model internal schema objects. As with the
network example, the set Di contains a subclass of IREL for each relation in the
conceptual schema. The members of Di are used as templates to generate tuple
instances in the database.

As described previously, only one class, CREL, is defined in MC to represent
the conceptual schema for the relational data model. The structure of the CREL
class is shown in Figure 10. Using the same approach described in Section 3.2.1
for the network data model, the set D, contains an instance of CREL for each
relation type defined in the conceptual schema. Associated with a CREL instance
are procedure attributes that are used both as access methods (to map the
conceptual representation of a tuple to/from its internal representation) and as
primitives for the relational algebra operators. The data attributes of an object in

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Object-Oriented Approach to Database System Implementation * 593

Internal
Level

Level M { IReI}

I\ *..
{ CRel}

I\ . . .
Level D { ISupplier, IPart, ISP} { CSupplier, CPart, CSP}

Level 0 (ISupplier, IPart, ISP} { CSupplier, CPart, CSP}
{objects} {objects}

Note:

Level M: IRel and CRel classes are modeling constructs of
of the relational data model

Level D: Classes correspond to the relation types (Supplier
IPart, ISP) and to user view of relations (CSupplier
CPar-t, CSP) of the Supplier-Parts database

Level 0: ISupplier, IPart. ISP implement tuple instances
CSupplier, Cpart, CSP implement user view of relations

Fig. 9. The relational model class hierarchy.

DC correspond to the attributes of the relation type. Abbreviated examples of
IREL and CREL are shown in Figures 10 and 11, along with subclasses generated
from the conceptual and internal schemata.

To illustrate how these procedure attributes are used to implement relational
algebra operations, consider the following restrict operator:

RESTRICT(SRELPTR, COND, TRELPTR)

This operator extracts from the source relation (SRELPTR) those tuples that
satisfy condition COND and places the qualifying tuples in the target relation
(TRELPTR). The form of the selection condition argument COND might be

attributei OP value where op is =, #, >, <, <, >

(Our approach can easily be extended to a more complex selection criterion.)
The code for the RESTRICT operator is shown in Figure 12.

The function of the ScanId is to provide a place marker on the relation being
examined so that the NEXT procedure attribute can return the next tuple
relative to the current position of the ScanId and also update the ScanId. This
feature is especially useful in processing some relational queries such as joining
a relational with itself.

ACM ‘Ihnsactions on Database Systems, Vol. 6, No. 4, December 1981.

594 * A. J. Baroody, Jr., and D. J. Dewitt

CLASS IREL;
BEGIN

INTEGER Tld;
REF (CRel) RelPtr;
BOOLEAN DELETEFLAG;
COMMENT Since relations are maintained as heaps. this flag

indicates whether the tuple instance has been deleted;
INNER;

END;

IRel CLASS ISupplier;
BEGIN

TEXT SName, SCity;
INTEGER SNumber. SStatus:
RelPtr :- Supplier;

END;

Fig. 10. The IRel class and the ISupplier subclass.

CLASS CRel;
VIRTUAL PROCEDURE APPLY, CLOSE, DELETE, INSERT, NEXT,

OPEN;
BEGIN

REF (IRel) Scanld;
END;

CRec CLASS CSupplier;
HIDDEN APPLY, CLOSE, DELETE, INSERT, NEXT, OPEN;

BEGIN
TEXT SName, SCity;
INTEGER SNumber, SStatus;
REF (CSet) ARRAY OwnerOf(l:l);
PROCEDURE APPLY;

COMMENT apply qualification to a tuple instance:
PROCEDURE CLOSE;

COMMENT a virtual procedure to close a scan on a relation;
PROCEDURE DELETE;

COMMENT a virtual procedure to delete a tuple (i.e. member of
Oi) from a relation by setting DELETEFLAG;

PROCEDURE, INSERT;
COMMENT This virtual procedure will attempt to insert the new
tuple(i.e. a new member of Oi) in the space currently occupied by
a deleted tuple. Otherwise new space is allocated in the heap:

PROCEDURE OPEN;
COMMENT a virtual procedure to open a scan on a relation.
Returns a scan pointer to first tuple in the relation;;

PROCEDURE NEXT;

END;

COMMENT a virtual procedure to return the next tuple in a
relation;

Fig. 11. The CRel class and the CSupplier subclass.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Object-Oriented Approach to Database System Implementation l 595

PROCEDURE RESTRICT (SRELPTR: COND. TRELPTR);

BEGIN

REF (IReI) Scanld;

COMMENT Open scan on source relation. Then apply selection

criteria and insert qualifying tuple into target relation;

Scanld :- SRELPTROPEN;

WHILE Scanld = / = NONE DO

BEGIN

IF (SRELPTR.APPLY(COND))

THEN TRELPTR.INSERT (Scanld);

Scanld :- SRELPTR.NEXT (Scanld);

END;

TRELPTRScanld :- SRELPTR.OPEN;

SRELPTRCLOSE;

END;

Fig. 12. The data manipulation routine RESTRICT.

If our example had been based on a more sophisticated storage structure, then
the CREL class would probably have had additional procedure attributes so that
the next tuple with a particular value could be returned directly.

4. AN EVALUATION OF THE OBJECT-ORIENTED APPROACH

In the previous sections we have presented an object-oriented approach to
database system implementation. Traditionally, a database system has been
required to support data independence and multiple concurrent users while
providing acceptable performance. In this section we present a critical evaluation
of our approach in terms of these requirements and contrast its performance with
other techniques. We begin with a discussion of data independence that is
extended to examine management of meta-information and its relationship to
query optimization and the frequency of binding. Following this discussion, we
then examine several concepts related to the support of multiple users: concur-
rency control, support of low-level views, and finally support of high-level views.

Date defines data independence as the immunity of the application to changes
in the storage structures and access strategies of the database [12]. The data
manipulation routines support an interface through which the user interacts with
the database with no knowledge of the database’s underlying representation.

The object-oriented approach not only supports data independence, but also
guarantees that it is not violated. Objects encapsulate data structures with the
procedures that manipulate the data. The user environment consists of the data
manipulation routines and the names and data attributes of the objects repre-
senting the conceptual schema; the procedural attributes of these objects are not
visible. Since programmin g languages easily prevent users from accessing infor-
mation not defined in their environment, the user is required to invoke a data
manipulation routine in order to access the database.

ACM ‘hnsactiom on Database Systems, Vol. 6, No. 4, December 1981.

596 l A. J. Baroody, Jr., and D. J. Dewitt

Table I. Phases of Bindine in the Object-Oriented Annroach

Phase of binding Binding in the object-oriented approach

(I) Binding data model types (a) Declaration of conceptual schema and
internal schema classes

(b) Implementation of data manipulation
routines in terms of conceptual and in-
ternal schemata class attributes

(II) Binding database entity types (a) Translation of data definition lan-
to data model types guage syntax into corresponding sub-

classes

(III) Binding user program to data-
base entity types

(b) Compilation of these subclasses

(a) Compilation of user program: binding
user references to attributes of sub-
classes

(b) Linking user program to subclasses

This call to a data manipulation routine is a transition to a separate environ-
ment in which not only the data attributes are visible, but also the procedure
attributes. These procedures are used as primitives to implement the data
manipulation routines and are the only location of knowledge of the database’s
structure and access methods. Thus the user is isolated from the database’s
structure by at least two levels of procedural abstraction.

Associating primitive operations with objects allows the database system to be
simplified by eliminating the need to manage meta-information. The stages of
binding that achieve this are shown in Table I. The first stage defines the classes
that represent the basic constructs of the data model and implements the data
manipulation routines in terms of these classes.

In the second stage the schemata are converted from their data definition
language representation into object declarations, which are subclasses of the data
model classes defined in Phase I. At the completion of this step, all entity and
relationship types within a database are defined and the procedures that may be
invoked to access entities within the database are implemented. These procedures
and the data manipulation routines comprise the database system.

After Phase II, these objects are managed by the user’s programming language,
not by the database system. The programming language’s environment, or name
scope, control mechanisms are used to control which attributes of the objects
defined in Phase II are accessible to the user program. As we show later, these
environment control mechanisms are also used to support views.

The binding mechanisms within a database management system have an
impact upon system performance. To understand this impact, we compare the
frequency and overhead of binding in our approach with that in the interpretive
and the compiled approaches that we introduced earlier. The object-oriented
approach is the only approach in which Phase I binding is performed explicitly;
in the interpretive and the compiled approaches it is peformed implicitly.

Performing Phase I explicitly allows the management of meta-information to
be integrated into the programming language’s type system, instead of construct-
ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Object-Oriented Approach to Database System Implementation l 597

ing special functions within the database system. All three approaches perform
Phase II binding: the interpretive and compiled approaches translate the data
definition language forms of the schemata into internal forms that are managed
by the database system; in our approach these schemata are translated into
subclass declarations that are managed by the programming language compiler.
The three approaches differ strongly in their approach to Phase III binding. The
interpretive approach performs this binding during every data manipulation
routine call. This provides a high degree of data independence, but results in a
significant run-time overhead [4].

In both the System R implementation of the compiled approach and our
approach, Phase III binding occurs only after a change in the schemata, for
example, after a change in the access methods. In System R, queries are compiled
into query packets that are stored in a library associated with the database.
Rebinding involves the overhead of completely recompiling those queries that
use the invalidated access methods upon their next invocation. In our approach
modified subclasses must be recomplied and linking to the user program per-
formed again.

Our approach does introduce new forms of run-time overhead that are not
present in the other approaches. The first, and not significant, overhead is the
use of indirection within the data manipulation routines to invoke the correct
procedural attribute of an object. The second overhead, which may be significant,
is the context switch required by each invocation of a procedure associated with
an object. Related to the context switching is the additional overhead of code
segment management by the operating system.

Given the number of procedure calls executed by each data manipulation
routine in our approach, the overhead of procedure entry and exit may be
significant. The studies by Scheifler demonstrate that in-line substitution may be
an effective way of implementing the object-oriented style of programming [22].
However, in-line substitution requires recompilation of all application programs
following a change to the schemata.

To improve database system performance, two general optimization approaches
are used to reduce execution time. The first approach, low-level optimization,
involves access path selection at run time. Low-level optimization requires that
the procedure attributes of objects perform selection of an optimal access path.
To make this selection, information concerning database size, such as the size of
each relation, must be stored in the database and must be accessible to these
procedures. This information can be used to determine which of several access
methods will provide minimum execution time. Since this selection is encapsu-
lated within an object, only “local” optimization is possible in our approach. Thus
“joint” optimization of access paths for both relations in a join operation is not
possible.

The second optimization approach, high-level optimization, involves reordering
the user’s sequence of data manipulation routine calls to reduce their execution
time. High-level optimization requires that the programming languages compiler
be enhanced to recognize database queries. The techniques that are commonly
used to reorder operators within a query must then be added to the compiler.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

598 A. J. Baroody, Jr., and D. J. Dewitt

4.1 Multiple User Support

A general-purpose multiuser database system must be capable of correctly
controlling simultaneous access to the database by two or more users and must
be able to provide different external views of the database to different classes of
users. In this section we examine how a database system that is constructed using
the object-oriented approach can satisfy these requirements.

4.1.1 Concurrency Control. One concurrency control mechanism that may be
employed to coordinate the operations of processes accessing a common database
is based on the approach in System R. In this approach a shared read/write table
contains the lock information. This table can reside in either a shared virtual
memory segment or a special file, or can be distributed among the headers of all
files holding data in the database. Before the user’s program (or an access
mechanism invoked by a data manipulation routine) attempts to access a data-
base entity (relation, tuple, etc.), this shared table is examined and perhaps
modified as an indivisible operation. If requested access is permitted, the trans-
action proceeds; otherwise the transaction waits. Since this approch may lead to
a deadlock condition, some additional mechanisms must be employed to either
prevent or resolve deadlock situations.

The same concurrency control scheme can be used for a database system that
is implemented using the object-oriented approach. When a user program calls a
data manipulation routine (e.g., find next, restrict), the data manipulation routines
will invoke those procedure attributes associated with the class instances that
were passed as parameter types in order to perform the requested operation.
Each procedure attribute, when called, will, when necessary, access the shared
lock table to determine whether it can proceed with the action invoked by the
data manipulation routine. When the desired action cannot be immediately
performed (e.g., another procedure has set an exclusive lock on an entity), the
procedure will wait until the monitors controlling access to the database objects
grant it permission to proceed. When deadlock is detected, the procedure will be
instructed to invoke a rollback/recovery process as a means of safely terminating
the transaction on behalf of the user.

If a more active concurrency control mechanism is desired (such as a centralized
wound-wait scheme [20], the procedure attribute invoked would send a message
requesting permission to perform the desired action to a process that is responsible
for controlling concurrent access to the database. This process would respond
with a proceed, wait, or die message to the waiting procedure.

Since either of the above approaches is viable for a database system imple-
mented using the object-oriented approach, successful concurrency control is
possible.

4.1.2 Multiple View Support. The external schema of the ANSI/SPARC data
model is intended to provide a mechanism for supporting alternative views of the
database from that provided by the conceptual schema. We classify such views
into two gross categories: low-level views and high-level views. In this section we
discuss the support of both categories of views in a database system using our
approach.
ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Object-Oriented Approach to Database System Implementation l 599

Low-level views (what in CODASYL terminology are termed subschemata)
support such operations as hiding entities and relationships declared in the
conceptual schema, renaming and/or reformatting attributes, and redefining
procedural information declared in the conceptual schema. We demonstrate how
the object-oriented approach provides an excellent mechanism for supporting
such views.

Since the user environment for the object-oriented approach consists of a prefix
chain of classes-user program, external view, conceptual schema, data manipu-
lation routines, and the set of data model classes-entities and relationships
defined in the conceptual schema can be hidden from the user of an external
schema by declaring them to be HIDDEN in the external view. This permits the
database administrator to define exactly which components of the conceptual
schema are visible to the user.

Renaming of attributes, hiding of attributes, and reformatting of attribute
types can be accomplished in our approach by redefining a class instance
(corresponding to an entity or relationship) in the view. This permits one to hide
certain attributes from a class of users (for example, an employee’s salary should
not be visible to all users of an employee database) or to rename an attribute so
that different groups of users can refer to the same attribute with different names.
If this mechanism is used to change the type of an attribute in the view, then
each time a user accesses the attribute, a coercion in the view will be invoked to
convert the attribute between the type assumed by the user and the type actually
stored in the database.

Redefining a class instance in a view can also be used to redefine procedural
attributes associated with the instance of the class. This is possible because
within the prefix chain multiple implementations of the same virtual attribute
may exist. The one chosen by a data manipulation routine at run time is defined
by lexical scoping to be the one closest (logically) to the user program. This
permits the view to define, for example, a new set-occurrence selection clause for
a CODASYL set type or a new order clause for the tuples in a relation. Since
each of these procedure attributes associated with a class was defined to be
VIRTUAL, redefining them in a view is straightforward.

High-level views are used in an attempt to add more semantics to the database
and the operations performed on it. As an example, consider a data model that
permits types such as employees with associated operations such as add-new-
employee, increase-salary, and delete-employee to be defined. While the object-
oriented approach does not enhance the ability to define high-level views, we feel
that it provides a convenient and natural framework for their implementation.

5. CONCLUSIONS

This paper has examined object-oriented programming as an implementation
technique for database systems. As we have demonstrated, the conceptual schema
and the internal schema describe the attributes of database entities and the
procedures that access and manipulate these representations. The object-oriented
approach encapsulates the representations of entities and relationships with the
procedures that manipulate them. To achieve this, we defined abstractions of the
modeling constructs of the data model that describe their common properties

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

600 l A. J. Baroody, Jr., and D. J. Dewitt

and behavior. Then we represented the entity types and relationship types in the
conceptual schema by objects that are instances of these abstractions. On the
basis of this approach, the generic procedures that comprise the user interface to
the database were implemented as calls to the procedures associated with these
objects.

This approach guaranteed that the only access path to the database is through
the generic procedures, which provides data independence. In addition, we
demonstrated that the object-based approach reduces the requirements for the
database system to manage meta-information. We also demonstrated that the
object-oriented approach has advantages of data independence, run-time effi-
ciency due to eliminating access to system descriptors, and support for low-level
views. It was further shown that the object-oriented approach makes query
optimization more difficult and increases context switching overhead.

ACKNOWLEDGMENTS

The authors wish to express their appreciation to Dan Murray, Larry Rowe, and
the referees for their valuable suggestions during the preparation of this paper.

REFERENCES

1. ANSI/X3/SPARC. Interim Rep. 75-02-08. FDT Bulletin ACM-SZGMOD 7,2 (Feb. 1975),
2. ASTRAHAN, M.M., ET AL. System R: Relational approach to database management. ACM Trans.

Database Syst. 1,2 (June 1976), 97-137.
3. BAROODY, A.J. The evaluation of abstract data types as an implementation tool for database

management systems. Ph.D. Dissertation, Univ. Wisconsin-Madison, Madison, 1978.
4. BAROODY, A.J., AND DEWITT, D.J. The design and implementation of a database management

system using abstract data types. Tech. Summary Rep. 1970, Mathematics Research Center,
Univ. Wisconsin-Madison, June 1979.

5. BAROODY, A.J., AND DEWITT, D.J. The impact of run-time schema interpretation in a network
data model DBMS. Submitted for publication, Jan. 1980.

6. BRODIE, M., AND SCHMIDT, H. What is the use of abstract data types in data bases? In Proc. 4th
Znt. Conf. Very Large Data Buses, 1978, pp. 140-141.

7. CHAMBERLIN, D.D., ET AL. Support for repetitive transactions and ad-hoc query in System R.
IBM Research Rep. RJ2551, May 1979.

8. CODASYL. Data base task group report. ACM, New York, 1971.
9. CODASYL. Data description language. J. Dev. Document C13.6/2:13, U.S. Government Printing

Office, Washington, D.C., 1973.
10. CODD, E.F. A relational model of data for large shared data banks. Commun. ACM 13,6 (June

1970), 377-387.
11. DAHL, O.J., MYHRHARG, B., AND NYGAARD, K. The Simula 67 Common Base Language. Publ.

S-22, Norwegian Computing Center, Oslo, Norway, 1970.
12. DATE, C.J. An Introduction to Database Systems. Addison-Wesley, Reading, Mass., 1975.
13. FURTADO, A.L. A view construct for the specification of external schemas. In Series: Monogra-

fias em Ciencia da Computacao, M. Challis, Ed., 1978.
14. GRIES, D., AND GEHANI, H. Some ideas on data types in high-level languages. Commun. ACM

20,6 (June 1977), 414-420.
15. HAMMER, M. Data abstractions for databases. In Proc. Conf. Data: Abstractions, Definition,

and Structure, SIGPLAN Notices 11 (SpeciaI Issue), (1976), 58-59.
16. MCGEE, W.C. The information management system IMS/VS. IBMSyst. J. 16,2 (1977), 84-168.
17. MINSKY, N. Files with semantics. In Proc. ACM-SIGMOD Znt. Conf. Management of Data,

June 2-4, 1976, pp. 65-74.
18. MYHRE, 0. Protecting attributes of a local class. SIMULA Newsletter 5,4 (Nov. 1977), 14-15.

Norwegian Computing Center, Oslo, Norway.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Object-Oriented Approach to Database System Implementation 601

19. PALME, J. New feature for module protection in SIMULA. SZGPLAN Notices II,5 (May 1976),
59-62.

20. ROSENKRANTZ, D.J., STEARNS, R.E., AND LEWIS, P.M., II. System level concurrency control for
distributed database systems. ACM Trans. Database Syst. 3,2 (June 197% 178-198.

21. ROWE, L.A., AND SHOENS, K.A. Data abstractions, views and updates in RIGEL. Proc. ACM-
SZGMOD 1979 Znt. Conf Management of Data, May 30-June 1,1979, pp. 71-81.

22. SCHEIFLER, R.W. An analysis of inhne substitution for a structured programming language.
Commun. ACM 20,9 (Sept. 1977), 647-654.

23. SCHMIDT, J. Type concepts for database definition. In Proc. Znt. Conf Data Bases, Haifa, Israel,
Aug. 1978.

24. SPERRY UNIVAC. 1100 Series Data Management System (DMS 1100) Schema Definition Data
Administrator Reference Manual, UP-7907, Rev. 2, Sperry Univac, 1975.

25. SPERRY UNIVAC. 1100 Series Data Management System (DMS 1100) System Support Functions
Data Administrator Reference Manual, UP-7909, Rev. 3, Sperry Univac, 1975.

26. STEMPLE, D.W. A database management facility for automatic generation of database managers.
ACM Trans. Database Syst. 1, 1 (March 1976), 79-94.

27. STONEBRAKER, M., WONG, E., KREPS, P., AND HELD, G. The design and implementation of
INGRES. ACM Trans. Database Syst. I, 3 (Sept. 1976), 189-222.

28. TSICHRITZIS, D.C., AND LOCHOVSKY, F.H. Database Management Systems. Academic Press,
New York, 1977.

29. WASSERMAN, A.I. The data management facilities of PLAIN. Proc. ACM-SZGMOD 1979 Znt.
Conf Management of Data, May 30-June 1,1979, pp. 60-70.

30. WEBER, H. A software engineering view of data base systems. In Proc. 4th Znt. Conf Very Large
Data Bases, 1978, pp. 36-51.

31. WEGBREIT, B. The treatment of data types in ELI. Commun. ACM Z7,5 (May 1974), 251-264.
32. YEH, R.T., AND BAKER, J.W. Toward a design methodology for DBMS: A software engineering

approach. In Proc. Znt. Conf Very Large Data Bases, Tokyo, Japan, October 6-8, 1977,
pp. 16-27.

Received May 1979; revised November 1980; accepted December 1980

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

