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This paper examines object-oriented programming as an implementation technique for database 
systems. The object-oriented approach encapsulates the representations of database entities and 
relationships with the procedures that manipulate them. To achieve this, we first define abstractions 
of the modeling constructs of the data model that describe their common properties and behavior. 
Then we represent the entity types and relationship types in the conceptual schema and the internal 
schema by objects that are instances of these abstractions. The generic procedures (data manipulation 
routines) that comprise the user interface can now be implemented as calls to the procedures 
associated with these objects. 

A generic procedure model of database implementation techniques is presented and discussed. 
Several current database system implementation techniques are illustrated as examples of this model, 
followed by a critical analysis of our implementation technique based on the use of objects. We 
demonstrate that the object-oriented approach has advantages of data independence, run-time 
efficiency due to eliminating access to system descriptors, and support for low-level views. 
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1. INTRODUCTION 

In database systems the principles of abstraction support two fundamental 
properties: data independence and a generic-procedure user interface. Data 
independence requires that user programs be isolated from the details concerning 
the underlying physical and logical structures used to implement the database. 
Data independence is achieved by presenting the user an abstraction of the 
database in which details of its actual implementation are hidden. 
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In current approaches for database systems (relational [lo], hierarchical [16], 
and network [8,9]) the only access path to the entities and relationships contained 
in the database is through a user interface that consists of a set of generic 
procedures. These procedures operate on entities or relationships of any “type.” 
For example; the relational operator “restrict” operates on any relation type (e.g., 
suppliers, parts). 

An abstraction technique supported in modern programming languages (SIM- 
ULA67, MODULA, MESA, ADA, etc.) is object-oriented programming. This 
programming technique provides a strong isolation of users of a software system 
from its implementation. We believe that it is important to examine whether the 
concepts of modern programming languages are appropriate for supporting the 
generic procedure interface. This paper examines object-oriented programming 
as an implementation technique for database systems. Our interest in applying 
the object-oriented approach is based on the nature of the conceptual schema 
and the internal schema. These two schemata describe the attributes of database 
entities and the procedures that access and manipulate these representations. 
The conceptual schema defines the entities and the relationships between them, 
while the internal schema describes the internal data representation of entities, 
the physical and logical structure used to represent relationships, and the access 
paths that support database access. 

The object-oriented approach encapsulates the representations of entities and 
relationships with the procedures that manipulate them. To achieve this, we first 
define abstractions of the modeling constructs of the data model that describe 
their common properties and behavior. Then we represent the entity types and 
relationship types in the conceptual schema by objects that are instances of these 
abstractions. 

The generic procedures that comprise the user interface can now be imple- 
mented as calls to the procedures associated with these objects. We demonstrate 
that this approach can guarantee that the only access path to the database is 
through the generic procedures. In addition, since all internal representations are 
encapsulated by these objects, these representations are hidden from the generic 
procedures and therefore from the user. This satisfies the goal of data indepen- 
dence. 

Several authors have reported on related research efforts. Stemple examined 
the automatic generation of data manipulation routines [26]. Yeh and Minsky 
have examined multilevel implementation techniques [17, 321. The possible use 
of abstract data types (and the related concepts of modules) as a technique for 
the well-structured implementation of multilevel database system organizations 
(such as the ANSI/SPARC three-level organization) has also been suggested by 
Weber [30]. This proposal is sketchy and does not address such issues as 
elimination of run-time schema interpretation, data independence, or the need 
for multiple implementations of a single abstraction. Another application of 
abstract data types and modules in database systems is their use in either the 
development of user interfaces that are tailored to a specific application [6, 15, 
171 or as structuring tools in languages designed to facilitate database access [13, 
21, 23, 29, 301. 
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In Section 2, a generic procedure model of database implementation techniques 
is presented and discussed. Several current database system implementation 
techniques are illustrated as examples of this model. Then, in Section 3, our 
implementation technique based on the use of objects is described. 

Section 4 presents a critical analysis of our approach and compares the object- 
based approach with other implementation techniques. This analysis is done with 
respect to requirements for the database system to manage meta-information, 
support of low-level and high-level views, performance of the resulting system, 
frequency of binding, and concurrency control. We demonstrate that the object- 
oriented approach has advantages of data independence, run-time efficiency due 
to eliminating access to system descriptors, and support for low-level views. 

2. A GENERIC PROCEDURE MODEL OF DATABASE SYSTEM 
ARCHITECTURES 

The programming language concepts of types and generic procedures are directly 
related to database system features. The concept of type in programming lan- 
guages is well understood. A type implies a set of values visible to the user, an 
underlying representation that is not visible to the user, and the manner in which 
primitive operations on the type are to be interpreted in terms of the type’s 
representation. 

As an example of the use of types within database systems, the entity types 
and relationship types that are visible to users are defined in the conceptual 
schema. Each entity declaration in the conceptual schema defines a new type in 
terms of a set of underlying constituent types. For example, the definition of a 
PART relation describes the attributes of parts in terms of underlying data types. 
We regard tuples within this relation as instances of type PART. 

Work in programming languages has extended procedural abstractions to define 
a generic procedure as a procedure that performs the same basic operation on 
actual parameters of more than one type. The implementation of the operation 
will generally vary depending on the type of the actual parameter. The plus (+) 
operation in ALGOL 60 or PASCAL represents such a procedure since it accepts 
operands of types integer, real, complex, and so forth. Thus a generic procedure 
must know the primitive operations that are supported for each valid parameter 
type. 

In all current approaches for database systems the only access path to the 
entities and relationships contained in the database is through a user interface 
that consists of a set of generic procedures, which we refer to as data manipu- 
lation routines. These procedures operate on entities or relationships of any 
“type” defined in the conceptual schema. For example, the relational operator 
“restrict” operates on any relation type. And the network data manipulation 
language verb “fmdnext” accepts parameters of any record and set types. 

Each data manipulation routine uses descriptions of the entity types and 
relationship types from the schemata to determine the correct computation to be 
performed. The conceptual and internal schemata associate with an entity not 
only the specifications of data items, but also the specification of an access 
strategy. This access strategy specifies those procedures to be used to store and 
to retrieve entity instances from the database. For a given actual parameter (e.g., 
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Fig. 1. A generic procedure model of database systems. 

relation type, set type), a data manipulation routine utilizes these schema descrip- 
tors to determine which access methods are to be invoked to perform the desired 
action. 

By representing the data manipulation routines as generic procedures, we can 
model a database system as shown in Figure 1. This model highlights the two 
basic functions performed by a database system. The first function is to provide 
run-time access to the database. However, not only does the database system 
perform run-time access to the database, but secondly, it controls access to the 
meta-information. This meta-information consists of the schemata that describe 
both the representation of information and the primitive operations that may be 
performed on this information (e.g., the access methods that are available). This 
meta-information is, in effect, a private database for the database system software. 

Management of this meta-information involves two functions. The first is a 
mechanism that enables the data manipulation routines to associate a given user 
program with a particular schema and with a particular database. This mecha- 
nism makes available the data descriptors required by the data manipulation 
routines to perform run-time access to the database. The second function is 
related to the first and defines for user programs the attributes of database 
objects that the user program references. The ability of the database system to 
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control and to restrict access to the data descriptors in the schema has a 
significant impact on data independence. 

Since the time of binding also has a major impact on data independence, 
techniques for managing the meta-information differ in terms of three major 
characteristics: 

(1) mechanisms employed to share the data descriptors maintained by the 
database system among all user processes accessing the database through a 
particular schema, 

(2) controlling access to attributes within the data descriptor to enforce or 
guarantee data independence, 

(3) time of binding the data descriptors to the attribute names and attribute 
types referenced in the user’s data manipulation routine call. 

The implementation approaches used for database systems are direct analogs 
of the approaches used within programming languages. In order to implement all 
of the various computations required for the legal parameter types to a generic 
procedure, a programming language compiler must provide access to a description 
of the characteristics of all valid actual parameter types. Thus the types of the 
operands can be regarded as implicit parameters to the procedure. In program- 
ming languages two approaches are used to bind the descriptor of the actual 
parameter characteristics to the generic procedure. Tht, first approach is the 
compilation approach, which binds this information at compile time. By contrast, 
the binding may be postponed until run time by using the interpretive approach. 

In the compilation approach the descriptor is the type information from the 
compiler symbol table. One implementation method for this approach is to supply 
an instance of the procedure implementation for each type of actual parameter. 
The procedure body instances are expanded at compile time as macros [14]. 

As already noted, run-time binding involves interpretation. EL1 is an example 
of a language that supports the interpretative approach [31]. EL1 represents type 
information as a MODE (similar to the tag of a variant record) which is associated 
with each variable and which is testable at run time. A procedure may perform 
operations on its arguments depending upon the run-time value of the argument’s 
MODE. 

For a database system, the determination of when the data manipulation 
routines bind the data descriptor from the conceptual schema and internal 
schema to their actual parameters is a critical decision. In general, the longer 
binding can be delayed, the easier the goal of data independence is to support. 
Thus the most frequently used implementation technique is the interpretive 
approach. Variations of the interpretive approch are used in IMS [16], DMSllOO 
[24,25], INGRES [27], and so forth. The conceptual schema and internal schema 
are encoded into an internal form, referred to as the object schema. Using the 
types referenced as actual parameters in a data manipulation routine call, the 
object schemata are accessed to retrieve the appropriate descriptors. These 
descriptors are then interpreted as one of the first steps in performing the data 
manipulation language command. 

In DMS1100, which we believe is a typical example of this approach, the source 
schema is translated into a form suitable for interpretation at run time. A 
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secondary output of this translation is a set of specifications for a result delivery 
area that serves as a communications buffer between the user program and the 
database. The user program is then compiled using the object schema for type 
checking. The result delivery area specifications generated in the previous phase 
are used as a template to generate a user work area within the user’s object 
module. 

Final binding occurs at run time. Each user call to a data manipulation routine 
specifies one or more actual parameters. For each actual parameter the corre- 
sponding type descriptor is located in the encoded schema. This descriptor is 
interpreted to determine the function to be performed by the data manipulation 
routine, for example, the access methods to be employed and the like. 

The interpretive approach has some significant disadvantages. Interpretation 
will require increased processing time to interpret the object schema and the 
object subschema. If the object schema is stored on secondary storage to facilitate 
sharing by all programs accessing the database, then increased I/O costs will be 
incurred in addition to the increased processing costs. 

Database system implementations have traditionally avoided the compilation 
approach because it tends to sacrifice the important objective of data indepen- 
dence for increased performance. This loss of data independence occurs with 
compile-time binding because once the schema descriptors are bound to a user’s 
program, a change to the physical storage structure of the database or to its 
access mechanisms will invalidate all user programs that are dependent on that 
particular mechanism. These programs will require recompilation. 

System R is an example of a database system that supports the compilation 
approach and yet avoids any loss of data independence [2, 71. The fundamental 
idea of the System R approach is that when a user’s program is compiled, each 
embedded data manipulation command is replaced with a call to a compiled 
version of the command. All compiled commands from the program (along with 
each original source command) are then combined into a module that is placed 
in a library of such modules associated with the database. When the user’s 
program is executed, the various entry points of the module are invoked to 
operate on the database. 

Whenever a storage structure or access mechanism is altered, System R 
examines each module in the library and marks those sections of each module 
that have been invalidated by the changes. The next time an invalidated module 
section is invoked, the original command is automatically recompiled (using the 
new access paths, for example) and then executed. In this way both the goals of 
data independence and fast query execution for the majority of queries can be 
achieved. 

In the next section we will present a database system implementation technique 
that also achieves both of these objectives through the use of object-oriented 
programming and load-time binding of schema descriptors. 

3. AN OBJECT-ORIENTED APPROACH 

In Section 2 we introduced a generic procedure model of database system 
implementation techniques that we demonstrated is used to support a generic 
procedure interface to users. The implementations that we described do not 
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exploit recent advances in programming languages and methodologies. We believe 
that it is important to examine whether the concepts in modern programming 
languages are appropriate for supporting the generic procedure interface that is 
found in database systems. In this section we demonstrate that object-oriented 
programming, which is supported by a number of programming languages, 
provides structures and facilities that exactly match the implementation needs of 
database systems. 

As our earlier discussion implied, the external, conceptual, and internal sche- 
mata define multiple levels of data representations and define the data structures 
and computations that are used to perform efficient access to/from the database 
and to perform mappings between the various levels. Our background in program- 
ming languages leads us to examine the object-oriented approach because we 
believe that it is natural to regard a database system as supporting not only levels 
of data representations but also levels of procedures that operate on these data 
representations. The object-oriented approach places each procedural level with 
the data which it manipulates, thus assuring that the procedure manipulates data 
at the proper level of abstraction. In this way primitive data manipulation 
functions are associated with each schema level. If the procedures at a given level 
are used as primitives to implement the outer procedural levels, then we can 
guarantee that. the only access to the database is via the generic procedure 
interface. 

The object-oriented approach also achieves both of the objectives of data 
independence and run-time efficiency that are achieved by System R. However, 
in contrast to System R, which compiles a separate query packet for each data 
manipulation routine call, we compile the procedures associated with each object. 
Then at run time the data manipulation routines select the appropriate objects 
and invoke the procedures associated with them. 

In Sections 3.1 and 3.2 we present an overview of an object-oriented approach 
to database system implementation (for more implementation details we refer 
the reader to examine [3-51). In Section 3.3.1 we describe a network data model 
system that was implemented using the object-oriented approach. In Section 
3.3.2 we discuss a proposal for applying this approach to a relational database 
system. 

3.1 Basic Assumptions 

The basic building block we use in our approach is the class construct. A class is 
the encapsulation of a data structure and the procedures that manipulate the 
internal representation of the data structure. A key feature of a class is that the 
internal representation of the data structure is hidden from users. Users of a class 
instance are only able to manipulate the data structure by calling one of the 
procedures associated with the class or by accessing attributes that are declared 
as externally visible. It is important to distinguish between a class and instances 
of the class. This difference can be understood in terms of the difference between 
a type and instances of a type. For example, INTEGER variables are instances 
of the type integer. By analogy, a class is the declaration of an abstract data type 
and objects are instances of the class. 
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Fig. 2. The class hierarchy. 

A class defines a group of objects with similar properties. A class can also be 
partitioned into secondary groups based on common properties, or into sub- 
classes. In the examples presented below we base our definitions of class and 
subclass on SIMULA67 and we use the SIMULA67 syntax [ll, 18, 191. 

The foundation of our approach for database system implementation is a set of 
classes it!. Mcontains one class for each fundamental modeling construct provided 
by the data model to be supported. The type and number of classes in M will 
vary from data model to data model. AlI entity types, relationship types, entity ’ 
occurrences, and relationship occurrences are instances of one of these classes, 
and can be organized into the subclass hierarchy shown in Figure 2. 

There are three levels in this hierarchy. The first level is the M. The number 
of members in this set, 1 MI, is the number of classes required to represent the 
abstract properties of the data model and is dependent on the number of levels 
of representation used in the data model. For the ANSI/SPARC organization, 
the classes of M are partitioned into three disjoint subsets Me, MC, and Mi 
corresponding to the external, conceptual, and internal levels [l]. In this section 
we do not explicitly consider the external level. However, in Section 4 we discuss 
how the object-based approach also supports the external level. 

The second level in the hierarchy shown in Figure 2 is the set of classes D, 
which is partitioned into two disjoint subsets D, and Di corresponding, respec- 
tively, to the entity types and relationship types defined by the conceptual and 
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internal schemata for a specific database. The number of members in D is 
determined by the number of entity types and relationship types defined by the 
conceptual and internal schemata. Each member of D, (0;) is a subclass of some 
class in ilk (Mi) and shares the external interface it defines. Defining each 
member of D to be a subclass of a member of M allows it to support the same 
external interface, but to internally implement this interface in a unique way, if 
necessary. In addition, each member of D concatenates to the attributes defined 
at level M the attributes defined in the conceptual or internal schema that are 
specific to an entity type or relationship type in the database. 

The third level is the set 0 and is composed of those objects that define the 
occurrences of entities and relationships within the database. The set 0 also 
defines the user’s record delivery area. Each member of 0 is an instance of a 
subclass defined at level D. For example, assume that level D contains a subclass 
specifying a SUPPLIER record type. Then level 0 will contain objects corre- 
sponding to SUPPLIER record occurrences in the database. (The subclasses 
defined at level D may be regarded as templates that are used to generate the 
objects at level 0.) Level 0 also contains an object implementing a SUPPLIER 
record delivery area. Thus 0 is partitioned into two disjoint subsets: O,, the set 
of objects which implement the record delivery area and which are instances of 
D,, and Oi, the set of objects which correspond to database record occurrences 
and which are instances of Di. 

3.2 Overview of the Approach 

The view presented by the object-oriented approach to a user’s program consists 
of four components. The first component is 0,, which is the user’s logical view of 
the database and consists of the entities and relationships that are defined by the 
set DC. The second component is the database, which contains objects belonging 
to the set Oi, that is, records in their internal schema representation. The third 
component supported by the object-oriented approach is the set of data manip- 
ulation routines. These routines are implemented in terms of the attributes of the 
classes in level M. These routines provide the only access path to the database 
for the user’s program and are responsible for mapping a user’s request in terms 
of the conceptual schema into the access methods and entity types supported by 
the internal schema. The final component is a result delivery area which resides 
within the address space of the user program and which is implemented by the 
conceptual schema objects 0,. Entities in an internal schema representation 
returned by the data manipulation routines are placed in the record delivery area 
after conversion to their conceptual level representation. 

Three major phases or steps are used to generate the set of objects 0, which 
comprise a database instance. The first phase involves definition of the set of 
classes M, which are required to support a specific data model. On the basis of 
the definition of the external interfaces of these classes, the data manipulation 
routines are implemented by using the procedural attributes of the classes in the 
set M as primitive operators. At this point the user’s view of the logicalproperties 
of the data model is complete. 

The next phase is the translation of the conceptual and internal schemata into 
the declarations of subclasses at level D. On the basis of the data and procedural 
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Fig. 3. An object-oriented model of database systems. 

definitions in the schemata, these subclasses implement the data and procedural 
attributes of the data model classes. Associated with each subclass definition are 
the data attributes of a database entity type, or relationship type, and implemen- 
tations of a set of procedures that access these data. These procedure implemen- 
tations are the primitive operations that are used to perform run-time access to 
a database instance. 

The third, and final, step is the generation of the objects which comprise the 
user’s record delivery area and which comprise the physical database. The record 
delivery area is a set of objects that are subclasses of D,; the objects that comprise 
the database are instances of Di. 

For each component of the conceptual view of the database, that is, for each 
member of DC, there is one object in the user’s record delivery area. These objects 
are automatically generated and bound to each user program at run time. The 
objects that comprise the database are generated at run time in response to calls 
to the data manipulation routines by using the subclasses in Di as templates. 

By implementing each schema level as a collection of objects, we have con- 
verted the schemata from their passive role in other implementation approaches 
to an active role, as shown in Figure 3. The underlying theory of this implemen- 
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tation approach is quite simple. In other approaches the data manipulation 
routines can be viewed as first-order functions, and the actual parameters are 
used to determine what computation is performed (either at compile time or at 
run time). By contrast, in our approach the data manipulation routines are 
second-order functions. The actual parameters to the data manipulation routines 
are references to objects and to perform the requested computation, the data 
manipulation routines invoke, at run time, the procedures that were bound to 
these objects at compile time. 

Specifically, in the interpretive approach a user’s program that calls a data 
manipulation routine will pass conceptual schema entities and relationships as 
actual parameters to the routine. The data manipulation routine will use these 
parameters to examine an encoded form of the conceptual schema to determine 
what operations should be performed in order to carry out the user’s request. 
These operations generally involve invoking the access methods associated with 
the internal schema in order to retrieve (store) an entity occurrence from (into) 
the database. 

In the object-oriented approach, when a data manipulation routine is called, 
the user program passes as an actual parameter a pointer to an object in the 
conceptual level, that is, a member of 0,. The data manipulation routine then 
uses the procedure and data attributes associated with this object to perform the 
desired function. A procedure attribute of the object in 0, will generally, in turn, 
access data attributes and perhaps procedure attributes of internal schema level 
objects (i.e., members of 0;) during its execution. The procedures associated with 
the classes at each representation level are also generic procedures and are used 
as primitives to implement the procedures at an outer level. 

3.3 Implementation Examples 

The conceptual and the internal schemata perform two functions. The first is to 
provide descriptions of the actual parameters to the data manipulation routines. 
The second is the definition of the environment for user programs. Corresponding 
to these two functions the database system must support two different represen- 
tations of the database, the internal representation and the conceptual represen- 
tation. In the following discussion we describe the classes and objects that 
represent these viewpoints. 

The set M, contains one class for each basic modeling construct that is provided 
by the conceptual data model being implemented. Two classes are required for 
the network data model: one for the conceptual schema record type (CREC) 
construct and one for the conceptual schema set type (CSET) construct. Instances 
of the CREC class and CSET class correspond, respectively, to the record and set 
types in the conceptual schema. The data and procedure attributes of these 
classes will be described below. 

Two classes are also required for the entity-relationship data model. One class 
will represent the entity-set construct and one will represent the relationship 
construct. 

Since the relation construct is used to represent both entities and relationships 
in the relational data model, only one class for the conceptual schema relation 
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construct (CREL) is required. Instances of the CREL class correspond to the 
relations defined by the conceptual schema. 

The number of classes representing internal schema entity types and relation- 
ship types in the set Mi depends on the implementation strategy defined by the 
internal schema. For example, if network data model sets are implemented using 
linked lists, then only one class is needed in Mi [30]. Instances of this class 
correspond to physical record occurrences in the database, and set membership 
information is embedded within these objects as pointers to other objects in the 
same set occurrence. On the other hand, if pointer arrays are used to implement 
sets, two classes are required. One class represents physical record occurrences 
and the other represents physical set occurrences. 

The number of classes required to implement the internal schema for the 
relational model also depends on the implementation strategy chosen. If relations 
are stored as heaps with secondary indices, then two classes are required: one for 
tuple occurrences in the heap and one for secondary indices. If B-trees are used 
instead, one class is sufficient since a B-tree can be used as both the primary 
storage for the relation as well as a mechanism for secondary indices. 

3.3.1 A Network Database System Implementation. In this section we examine 
a CODASYL-DBTG system that was implemented using our approach. The 
hierarchy of classes and objects representing the Supplier-Parts database is 
shown in Figure 4. 

The first representation we consider is the physical database defined by the 
internal schema. The only member of Mi is the IREC class, which is an abstraction 
of internal schema record types. Level D subclasses of IREC are generated for 
each record type in the schema and are used as templates to generate all record 
instances in the database. Each physical record occurrence (internal schema 
record occurrence) is an instance of an IREC subclass and is thus an object. 
SIMULA67 class concatenation is used to concatenate the internal schema data 
items defined in each specific subclass Di with the IREC object. Therefore each 
entity in the database is a concatenated object containing the common properties 
of all record objects (as defined by the IREC class) and those of a specific record 
type (as defined by the Di subclass of which it is an instance). The subclass 
ISupplier, IPart, and ISP are defined as subclasses of the IREC class as shown in 
Figure 4. 

The IREC class and the ISupplier subclass are shown in Figure 5. The 
VIRTUAL attributes of IREC implement set membership and ownership as 
specified in the schemata. The implementation of VIRTUAL attributes First and 
Last in ISupplier uses pointer chains to implement ownership of the SuppliedBy 
set type. 

The second representation of the database is the conceptual representation 
and is defined by the CREC and CSET classes in M,. The CREC class is an 
abstraction of the network data model record construct. Associated with each 
instance of the CREC class (i.e., a record type in the conceptual schema) are data 
attributes that describe the set types in which record occurrences may participate 
and procedures that implement the access methods (e.g., location mode clause). 
Additional procedures are associated with the CREC class that map the concep- 
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Internal 
Level 

Level M {IRec) 

I\ ..* 
Level D { ISupplier, IPart, ISP} 

I\ . . . 
Level 0 (ISupplier, IPart, ISP} 

{objects} 

Co;;;$ual 

{ CRec, CSet } 

I\ . . . 
{ CSupplier, CPart, CSP > 
{ CSuppliedBy, Clnstock} 

I\ . . . 
{ CSupplier, CPart, CSP} 

{ CSuppliedBy, Clnstock} 
{ objects } 

Note: 

Level M: Irec, Crec, and Cset classes are modeling constructs 
of network data model 

Level D: Classes correspond to the record types (Supplier, 
Part, SP) and set types (SuppliedBy, Instock) of 
the Supplier.Parts database 

Level 0: ISupplier, IPart. ISP implement record occurrences 
CSupplier, implement user view of record types 
CSuppliedBy, . implement user view of set types 

Fig. 4. The network model class hierarchy. 

tual representation to/from its corresponding representation as an IREC in the 
database. 

The CSET class, which defines the properties common to all set types, is the 
second member of 44,. The CSET class embodies relationships as an entity. 
Associated with the CSET class are attributes that describe the record types, 
that is, CREC instances, which participate in the set as owner and member. The 
attributes of the CSET also include procedures that implement the procedural 
aspects of the set declaration, such as the set occurrence selection criterion. 

Each CSET instance actually defines two relationships. The first is between 
those IREC instances that participate in a set occurrence. This relationship is 
implicitly represented by the procedures associated with the CSET. This rela- 
tionship is not explicitly visible to users except through the use of a data 
manipulation routine. The second relationship is the relationship between CREC 
instances that represent the set owner and set member. This relationship models 
the relationship defined in the conceptual schema and is explicitly represented 
by an owner CREC and a member CREC pointer in the CSET object. The 
procedures associated with the CSET class map between these two relationships. 
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CLASS IRec; 
VIRTUAL: REF (IRec) ARRAY First, Last: 

REF (IRec) ARRAY Succ, Pred, SetOwner; 
COMMENT First & Last implement set ownership 
COMMENT Succ, Pred & SetOwner implement set membership 

BEGIN 
TEXT Recld; 
INTEGER RCode; 
REF (CRec) RecPtr; 
INNER; 

END; 

IRec CLASS ISupplier; 
BEGIN 

TEXT SName, SCity; 
INTEGER SNumber, SStatus; 
REF (IRec) ARRAY First, Last (1:l); 
COMMENT Initialize IRec data : 
Recld : = “SUPPLIER”; 
RCode:=l; 
NUMSETSOWNED : = 1; 
RecPtr :. Supplier; 

END; 

Fig. 5. The IRec class and the ISupplier subclass. 

For each record type and set type in the conceptual schema, subclasses of 
CREC and CSET are generated in level D. There is one CREC (CSET) subclass 
in D, for each record (set) type in the conceptual schema. Each member of DC 
uses clam concatenation to combine the common CREC (CSET) properties with 
those of a specific record (set) type declared in the conceptual schema. The 
CREC classes, CSupplier, CPart, and CSP, and the CSET classes, CSuppliedBy 
and CInstock, are shown in Figure 4. Abbreviated examples of CREC and CSET 
are shown in Figures 6 and 7 along with examples of subclasses generated from 
the conceptual and internal schemata. 

A feature of object-oriented programming that is used in this approach is the 
separation of the definition of an abstraction from its implementation; for exam- 
ple, the separation of cluster declarations in CLU from their implementation 
in the CLU library. VIRTUAL class attributes are a mechanism defined in 
SIMULh67 for performing this separation. Using the VIRTUAL facility, attri- 
butes are defined to be part of a class, but implementation may be postponed 
until the class is used as a prefix, in which case the prefixed class may supply an 
implementation. 

VIRTUAL attributes achieve an effect that is similar to that of FORWARD 
procedures in PASCAL: the properties of a class attribute, for example, procedure 
A in clas B, can be declared before the attribute is implemented. In the example 
of class B, the attributes of VIRTUAL procedure A include its type and its 
parameters. This enables code in a strongly typed language that references class 
B objects to be compiled before procedure A has been implemented. When 
instances 11 and 12 of class B are created, a procedure body for A may be supplied 
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CLASS CRec; 
VIRTUAL: REF (CSet) ARRAY OwnerOf. MemberOf: 

PROCEDURE Locate, Allocate. Store, Load; 
BEGIN 

REF (IRec) Current; 
INTEGER NumSetsOwner: 
INTEGER NumSetsMember; 
TEXT Id; 
INTEGER Code; 
INNER; 

END; 

CRec CLASS CSupplier; 
BEGIN 

HIDDEN Allocate, Locate, Store, Load, OwnerOf: 
TEXT SName, SCity; 
INTEGER SNumber, SStatus; 
REF (CSet) ARRAY OwnerOf(1:i); 
PROCEDURE Allocate: 

COMMENT Co& here allocates a new ISupplier using a hashing 
algorithm with SNumber as the key and make it current; 

PROCEDURE Locate; 
COMMENT Code here retrieves an ISupplier by hashing with 
SNumber as a key and make it current; 

PROCEDURE Store; 
COMMENT Code here performs encoding as required and copies 
local data items from CSupplier into current ISupplier database 
object; 

PROCEDURE Load; 
COMMENT Code here performs decoding.as required and copies 
data items from current ISupplier database object into local data 
items of CSupplier: 

COMMENT Initialize’CRec data : 
Id : = “SUPPLIER”: 
Code:=l: 
NumSetsOwner’: = 1; 
COMMENT SuppliedBy is a reference to CSuppliedBy; 
OwnerOf(1) :- SuppliedBy; 
NumSetsMember : = 0; 

END; 

Fig. 6. The CRec class and the CSupplier subclass. 

for each class instance. These implementations of A are bound to a class instance, 
that is, 11 and 12, and are referenced as attributes of the class B. 

The procedure attributes of the CREC and CSET classes are VIRTUAL. When 
a CREC (or CSET) object is created in level 0, to form, for example, a CSupplier 
object corresponding to the SUPPLIER record type, a customized procedure for 
each VIRTUAL procedure will be generated on the basis of the schema definition 
of that record (or set) type. Furthermore, each CREC (or CSET) object will have 
an independent implementation of the VIRTUAL attributes. 

As an example, the LOCATE procedure of the CREC class implements retrieval 
of IREC instances using the strategy specified in the location mode clause of the 
schema. Each CREC instance possesses an independent implementation of LO- 
CATE that is based on the location mode clause of the schema record type 
declarations in the conceptual schema. In our Supplier-Parts schema example, 
CSupplier is an instance of CREC and possesses as an attribute a procedure 
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CLASS CSet; 
VIRTUAL: PROCEDURE Remove, Scan, Insert; 

REF (IRec) PROCEDURE Locate; 
REF (CRec) OwnerRecord, MemberRecord; 

BEGIN 
REF (IRec) Current; 
TEXT Id; 
INTEGER Code; 
REF (CREC) OwnerRecord, MemberRecord; 
INTEGER OwnerOffset: 
INTEGER MemberOffset; 
COMMENT Remove: remove specified IRec from a set occurrence 

Scan: traverse set using pointers and OwnerOffset 8 
MemberOffset; 

Insert: add a new IRec instance into set occurrence; 
Locate: implement set occurrence selection; 

INNER; 
END; 

CSet CLASS CSuppliedBy; 
BEGIN 

PROCEDURE Locate; 
COMMENT code here implements set occurrence selection 
through location mode of’owner by invoking OwnerRecord.Locate. 
Current becomes the owner occurrence: 

PROCEDURE Remove; 
COMMENT code here deletes the indicated IRec instance from a 
set occurrence. Use OwnerOffset and MemberOffset to reference 
the current pointers; 

PROCEDURE Scan; 
COMMENT code here traverses a set occurrence. Use 
OwnerOffset and MemberOffset to reference the current pointers; 

PROCEDURE Insert; 
COMMENT code here inserts new IRec instance into a Set 
occurrence. Maintain set order as sorted in ascending order using 
SNumber; 

COMMENT initialize CRec data; 
Code : = 5; 
Id : = “SuppliedBy”; 
OwnerOffset : = 1; 
OwnerRecord :- Supplier; 
MemberOffset : = 1; 
MemberRecord :. SP; 

END; 

Fig. 7. The CSet class and the CSuppliedBy subclass. 

LOCATE that implements hashing on its LASTNAME attribute. CSP is also a 
CREC instance but possesses an implementation of LOCATE that performs 
retrieval via the pointers of the INSTOCK set type. 

As discussed earlier, the data manipulation routines are implemented solely in 
terms of the data attributes and procedure attributes of the CREC and CSET 
classes. Figure 8 contains an implementation of the data manipulation routine 
FETCH, which has one parameter, RECPTR, which is a pointer to a conceptual 
schema record. RECPTR is used to call at run time the implementation of the 
LOCATE procedure associated with the proper CREC instance on level 0,. In 
this way run-time interpretation of the schema can be eliminated. For more 
detail, the reader is encouraged to examine [3]. 
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PROCEDURE FETCH(RECPTR); 
REF (CRec) RECPTR; 
BEGIN 

INTEGER I; 

COMMENT use the schema location mode to find the Oi instance 
(IRec) and then copy Oi instance fields into 0, instance 
(CRec) field. Also make the Oi instance the current of record 
type; 

CurrentOfRun :- RECPTR.Current :- RECPTRLocate; 

COMMENT Load all data items into the Record Delivery Area. Then 
make the record occurrence the current of set in all sets in 
which it participates ; 

RECPTR.Load (RECPTR.Current); 

FOR I: =l STEP 1 UNTIL RECPTR.NumSetsOwned DO 
RECPTR.Owner(l).Current :. RECPTR.Current; 

FOR I: =l STEP 1 UNTIL RECPTR.NumSetsMember DO 
RECPTR.Member(l).Current :- RECPTR.Current; 

END: 

Fig. 8. The data manipulation routine FETCH. 

The examples that we have shown implement record-at-a-time access to the 
database. The object-oriented approach could also be used to implement a set-at- 
a-time interface. Two approaches are possible. In the first, set-oriented data 
manipulation routines could be implemented using the functions associated with 
CREC objects as primitives. In the second approach, set-oriented operations 
could be defined as attributes of the CSET objects. 

3.3.2 A Relational Database System Implementation. The same implementa- 
tion strategy can also be used to implement relational database systems. As an 
illustration we present an example of such an implementation in this section. We 
have assumed that all relations in the database are stored as heaps and that no 
secondary indices are available to enhance system performance. As shown in 
Figure 9, the IREL class, an abstraction of all internal schema relation formats, 
is the only member of Mi required to model internal schema objects. As with the 
network example, the set Di contains a subclass of IREL for each relation in the 
conceptual schema. The members of Di are used as templates to generate tuple 
instances in the database. 

As described previously, only one class, CREL, is defined in MC to represent 
the conceptual schema for the relational data model. The structure of the CREL 
class is shown in Figure 10. Using the same approach described in Section 3.2.1 
for the network data model, the set D, contains an instance of CREL for each 
relation type defined in the conceptual schema. Associated with a CREL instance 
are procedure attributes that are used both as access methods (to map the 
conceptual representation of a tuple to/from its internal representation) and as 
primitives for the relational algebra operators. The data attributes of an object in 
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Internal 
Level 

Level M { IReI} 

I\ *.. 
{ CRel} 

I\ . . . 
Level D { ISupplier, IPart, ISP} { CSupplier, CPart, CSP} 

Level 0 (ISupplier, IPart, ISP} { CSupplier, CPart, CSP} 
{objects} {objects} 

Note: 

Level M: IRel and CRel classes are modeling constructs of 
of the relational data model 

Level D: Classes correspond to the relation types (Supplier 
IPart, ISP) and to user view of relations (CSupplier 
CPar-t, CSP) of the Supplier-Parts database 

Level 0: ISupplier, IPart. ISP implement tuple instances 
CSupplier, Cpart, CSP implement user view of relations 

Fig. 9. The relational model class hierarchy. 

DC correspond to the attributes of the relation type. Abbreviated examples of 
IREL and CREL are shown in Figures 10 and 11, along with subclasses generated 
from the conceptual and internal schemata. 

To illustrate how these procedure attributes are used to implement relational 
algebra operations, consider the following restrict operator: 

RESTRICT(SRELPTR, COND, TRELPTR) 

This operator extracts from the source relation (SRELPTR) those tuples that 
satisfy condition COND and places the qualifying tuples in the target relation 
(TRELPTR). The form of the selection condition argument COND might be 

attributei OP value where op is =, #, >, <, <, > 

(Our approach can easily be extended to a more complex selection criterion.) 
The code for the RESTRICT operator is shown in Figure 12. 

The function of the ScanId is to provide a place marker on the relation being 
examined so that the NEXT procedure attribute can return the next tuple 
relative to the current position of the ScanId and also update the ScanId. This 
feature is especially useful in processing some relational queries such as joining 
a relational with itself. 
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CLASS IREL; 
BEGIN 

INTEGER Tld; 
REF (CRel) RelPtr; 
BOOLEAN DELETEFLAG; 
COMMENT Since relations are maintained as heaps. this flag 

indicates whether the tuple instance has been deleted; 
INNER; 

END; 

IRel CLASS ISupplier; 
BEGIN 

TEXT SName, SCity; 
INTEGER SNumber. SStatus: 
RelPtr :- Supplier; 

END; 

Fig. 10. The IRel class and the ISupplier subclass. 

CLASS CRel; 
VIRTUAL PROCEDURE APPLY, CLOSE, DELETE, INSERT, NEXT, 

OPEN; 
BEGIN 

REF (IRel) Scanld; 
END; 

CRec CLASS CSupplier; 
HIDDEN APPLY, CLOSE, DELETE, INSERT, NEXT, OPEN; 

BEGIN 
TEXT SName, SCity; 
INTEGER SNumber, SStatus; 
REF (CSet) ARRAY OwnerOf(l:l); 
PROCEDURE APPLY; 

COMMENT apply qualification to a tuple instance: 
PROCEDURE CLOSE; 

COMMENT a virtual procedure to close a scan on a relation; 
PROCEDURE DELETE; 

COMMENT a virtual procedure to delete a tuple (i.e. member of 
Oi) from a relation by setting DELETEFLAG; 

PROCEDURE, INSERT; 
COMMENT This virtual procedure will attempt to insert the new 
tuple(i.e. a new member of Oi) in the space currently occupied by 
a deleted tuple. Otherwise new space is allocated in the heap: 

PROCEDURE OPEN; 
COMMENT a virtual procedure to open a scan on a relation. 
Returns a scan pointer to first tuple in the relation;; 

PROCEDURE NEXT; 

END; 

COMMENT a virtual procedure to return the next tuple in a 
relation; 

Fig. 11. The CRel class and the CSupplier subclass. 
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PROCEDURE RESTRICT (SRELPTR: COND. TRELPTR); 

BEGIN 

REF (IReI) Scanld; 

COMMENT Open scan on source relation. Then apply selection 

criteria and insert qualifying tuple into target relation; 

Scanld :- SRELPTROPEN; 

WHILE Scanld = / = NONE DO 

BEGIN 

IF (SRELPTR.APPLY(COND)) 

THEN TRELPTR.INSERT (Scanld); 

Scanld :- SRELPTR.NEXT (Scanld); 

END; 

TRELPTRScanld :- SRELPTR.OPEN; 

SRELPTRCLOSE; 

END; 

Fig. 12. The data manipulation routine RESTRICT. 

If our example had been based on a more sophisticated storage structure, then 
the CREL class would probably have had additional procedure attributes so that 
the next tuple with a particular value could be returned directly. 

4. AN EVALUATION OF THE OBJECT-ORIENTED APPROACH 

In the previous sections we have presented an object-oriented approach to 
database system implementation. Traditionally, a database system has been 
required to support data independence and multiple concurrent users while 
providing acceptable performance. In this section we present a critical evaluation 
of our approach in terms of these requirements and contrast its performance with 
other techniques. We begin with a discussion of data independence that is 
extended to examine management of meta-information and its relationship to 
query optimization and the frequency of binding. Following this discussion, we 
then examine several concepts related to the support of multiple users: concur- 
rency control, support of low-level views, and finally support of high-level views. 

Date defines data independence as the immunity of the application to changes 
in the storage structures and access strategies of the database [12]. The data 
manipulation routines support an interface through which the user interacts with 
the database with no knowledge of the database’s underlying representation. 

The object-oriented approach not only supports data independence, but also 
guarantees that it is not violated. Objects encapsulate data structures with the 
procedures that manipulate the data. The user environment consists of the data 
manipulation routines and the names and data attributes of the objects repre- 
senting the conceptual schema; the procedural attributes of these objects are not 
visible. Since programmin g languages easily prevent users from accessing infor- 
mation not defined in their environment, the user is required to invoke a data 
manipulation routine in order to access the database. 
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Table I. Phases of Bindine in the Object-Oriented Annroach 

Phase of binding Binding in the object-oriented approach 

(I) Binding data model types (a) Declaration of conceptual schema and 
internal schema classes 

(b) Implementation of data manipulation 
routines in terms of conceptual and in- 
ternal schemata class attributes 

(II) Binding database entity types (a) Translation of data definition lan- 
to data model types guage syntax into corresponding sub- 

classes 

(III) Binding user program to data- 
base entity types 

(b) Compilation of these subclasses 

(a) Compilation of user program: binding 
user references to attributes of sub- 
classes 

(b) Linking user program to subclasses 

This call to a data manipulation routine is a transition to a separate environ- 
ment in which not only the data attributes are visible, but also the procedure 
attributes. These procedures are used as primitives to implement the data 
manipulation routines and are the only location of knowledge of the database’s 
structure and access methods. Thus the user is isolated from the database’s 
structure by at least two levels of procedural abstraction. 

Associating primitive operations with objects allows the database system to be 
simplified by eliminating the need to manage meta-information. The stages of 
binding that achieve this are shown in Table I. The first stage defines the classes 
that represent the basic constructs of the data model and implements the data 
manipulation routines in terms of these classes. 

In the second stage the schemata are converted from their data definition 
language representation into object declarations, which are subclasses of the data 
model classes defined in Phase I. At the completion of this step, all entity and 
relationship types within a database are defined and the procedures that may be 
invoked to access entities within the database are implemented. These procedures 
and the data manipulation routines comprise the database system. 

After Phase II, these objects are managed by the user’s programming language, 
not by the database system. The programming language’s environment, or name 
scope, control mechanisms are used to control which attributes of the objects 
defined in Phase II are accessible to the user program. As we show later, these 
environment control mechanisms are also used to support views. 

The binding mechanisms within a database management system have an 
impact upon system performance. To understand this impact, we compare the 
frequency and overhead of binding in our approach with that in the interpretive 
and the compiled approaches that we introduced earlier. The object-oriented 
approach is the only approach in which Phase I binding is performed explicitly; 
in the interpretive and the compiled approaches it is peformed implicitly. 

Performing Phase I explicitly allows the management of meta-information to 
be integrated into the programming language’s type system, instead of construct- 
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ing special functions within the database system. All three approaches perform 
Phase II binding: the interpretive and compiled approaches translate the data 
definition language forms of the schemata into internal forms that are managed 
by the database system; in our approach these schemata are translated into 
subclass declarations that are managed by the programming language compiler. 
The three approaches differ strongly in their approach to Phase III binding. The 
interpretive approach performs this binding during every data manipulation 
routine call. This provides a high degree of data independence, but results in a 
significant run-time overhead [4]. 

In both the System R implementation of the compiled approach and our 
approach, Phase III binding occurs only after a change in the schemata, for 
example, after a change in the access methods. In System R, queries are compiled 
into query packets that are stored in a library associated with the database. 
Rebinding involves the overhead of completely recompiling those queries that 
use the invalidated access methods upon their next invocation. In our approach 
modified subclasses must be recomplied and linking to the user program per- 
formed again. 

Our approach does introduce new forms of run-time overhead that are not 
present in the other approaches. The first, and not significant, overhead is the 
use of indirection within the data manipulation routines to invoke the correct 
procedural attribute of an object. The second overhead, which may be significant, 
is the context switch required by each invocation of a procedure associated with 
an object. Related to the context switching is the additional overhead of code 
segment management by the operating system. 

Given the number of procedure calls executed by each data manipulation 
routine in our approach, the overhead of procedure entry and exit may be 
significant. The studies by Scheifler demonstrate that in-line substitution may be 
an effective way of implementing the object-oriented style of programming [22]. 
However, in-line substitution requires recompilation of all application programs 
following a change to the schemata. 

To improve database system performance, two general optimization approaches 
are used to reduce execution time. The first approach, low-level optimization, 
involves access path selection at run time. Low-level optimization requires that 
the procedure attributes of objects perform selection of an optimal access path. 
To make this selection, information concerning database size, such as the size of 
each relation, must be stored in the database and must be accessible to these 
procedures. This information can be used to determine which of several access 
methods will provide minimum execution time. Since this selection is encapsu- 
lated within an object, only “local” optimization is possible in our approach. Thus 
“joint” optimization of access paths for both relations in a join operation is not 
possible. 

The second optimization approach, high-level optimization, involves reordering 
the user’s sequence of data manipulation routine calls to reduce their execution 
time. High-level optimization requires that the programming languages compiler 
be enhanced to recognize database queries. The techniques that are commonly 
used to reorder operators within a query must then be added to the compiler. 
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4.1 Multiple User Support 

A general-purpose multiuser database system must be capable of correctly 
controlling simultaneous access to the database by two or more users and must 
be able to provide different external views of the database to different classes of 
users. In this section we examine how a database system that is constructed using 
the object-oriented approach can satisfy these requirements. 

4.1.1 Concurrency Control. One concurrency control mechanism that may be 
employed to coordinate the operations of processes accessing a common database 
is based on the approach in System R. In this approach a shared read/write table 
contains the lock information. This table can reside in either a shared virtual 
memory segment or a special file, or can be distributed among the headers of all 
files holding data in the database. Before the user’s program (or an access 
mechanism invoked by a data manipulation routine) attempts to access a data- 
base entity (relation, tuple, etc.), this shared table is examined and perhaps 
modified as an indivisible operation. If requested access is permitted, the trans- 
action proceeds; otherwise the transaction waits. Since this approch may lead to 
a deadlock condition, some additional mechanisms must be employed to either 
prevent or resolve deadlock situations. 

The same concurrency control scheme can be used for a database system that 
is implemented using the object-oriented approach. When a user program calls a 
data manipulation routine (e.g., find next, restrict), the data manipulation routines 
will invoke those procedure attributes associated with the class instances that 
were passed as parameter types in order to perform the requested operation. 
Each procedure attribute, when called, will, when necessary, access the shared 
lock table to determine whether it can proceed with the action invoked by the 
data manipulation routine. When the desired action cannot be immediately 
performed (e.g., another procedure has set an exclusive lock on an entity), the 
procedure will wait until the monitors controlling access to the database objects 
grant it permission to proceed. When deadlock is detected, the procedure will be 
instructed to invoke a rollback/recovery process as a means of safely terminating 
the transaction on behalf of the user. 

If a more active concurrency control mechanism is desired (such as a centralized 
wound-wait scheme [20], the procedure attribute invoked would send a message 
requesting permission to perform the desired action to a process that is responsible 
for controlling concurrent access to the database. This process would respond 
with a proceed, wait, or die message to the waiting procedure. 

Since either of the above approaches is viable for a database system imple- 
mented using the object-oriented approach, successful concurrency control is 
possible. 

4.1.2 Multiple View Support. The external schema of the ANSI/SPARC data 
model is intended to provide a mechanism for supporting alternative views of the 
database from that provided by the conceptual schema. We classify such views 
into two gross categories: low-level views and high-level views. In this section we 
discuss the support of both categories of views in a database system using our 
approach. 
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Low-level views (what in CODASYL terminology are termed subschemata) 
support such operations as hiding entities and relationships declared in the 
conceptual schema, renaming and/or reformatting attributes, and redefining 
procedural information declared in the conceptual schema. We demonstrate how 
the object-oriented approach provides an excellent mechanism for supporting 
such views. 

Since the user environment for the object-oriented approach consists of a prefix 
chain of classes-user program, external view, conceptual schema, data manipu- 
lation routines, and the set of data model classes-entities and relationships 
defined in the conceptual schema can be hidden from the user of an external 
schema by declaring them to be HIDDEN in the external view. This permits the 
database administrator to define exactly which components of the conceptual 
schema are visible to the user. 

Renaming of attributes, hiding of attributes, and reformatting of attribute 
types can be accomplished in our approach by redefining a class instance 
(corresponding to an entity or relationship) in the view. This permits one to hide 
certain attributes from a class of users (for example, an employee’s salary should 
not be visible to all users of an employee database) or to rename an attribute so 
that different groups of users can refer to the same attribute with different names. 
If this mechanism is used to change the type of an attribute in the view, then 
each time a user accesses the attribute, a coercion in the view will be invoked to 
convert the attribute between the type assumed by the user and the type actually 
stored in the database. 

Redefining a class instance in a view can also be used to redefine procedural 
attributes associated with the instance of the class. This is possible because 
within the prefix chain multiple implementations of the same virtual attribute 
may exist. The one chosen by a data manipulation routine at run time is defined 
by lexical scoping to be the one closest (logically) to the user program. This 
permits the view to define, for example, a new set-occurrence selection clause for 
a CODASYL set type or a new order clause for the tuples in a relation. Since 
each of these procedure attributes associated with a class was defined to be 
VIRTUAL, redefining them in a view is straightforward. 

High-level views are used in an attempt to add more semantics to the database 
and the operations performed on it. As an example, consider a data model that 
permits types such as employees with associated operations such as add-new- 
employee, increase-salary, and delete-employee to be defined. While the object- 
oriented approach does not enhance the ability to define high-level views, we feel 
that it provides a convenient and natural framework for their implementation. 

5. CONCLUSIONS 

This paper has examined object-oriented programming as an implementation 
technique for database systems. As we have demonstrated, the conceptual schema 
and the internal schema describe the attributes of database entities and the 
procedures that access and manipulate these representations. The object-oriented 
approach encapsulates the representations of entities and relationships with the 
procedures that manipulate them. To achieve this, we defined abstractions of the 
modeling constructs of the data model that describe their common properties 
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and behavior. Then we represented the entity types and relationship types in the 
conceptual schema by objects that are instances of these abstractions. On the 
basis of this approach, the generic procedures that comprise the user interface to 
the database were implemented as calls to the procedures associated with these 
objects. 

This approach guaranteed that the only access path to the database is through 
the generic procedures, which provides data independence. In addition, we 
demonstrated that the object-based approach reduces the requirements for the 
database system to manage meta-information. We also demonstrated that the 
object-oriented approach has advantages of data independence, run-time effi- 
ciency due to eliminating access to system descriptors, and support for low-level 
views. It was further shown that the object-oriented approach makes query 
optimization more difficult and increases context switching overhead. 
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