
ar
X

iv
:1

80
7.

07
16

5v
1 

 [
cs

.S
E

] 
 1

8 
Ju

l 2
01

8

Overcoming Language Dichotomies: Toward Effective Program
Comprehension for Mobile App Development

Kevin Moran
College of William and Mary

Department of Computer Science
kpmoran@cs.wm.edu

Carlos Bernal-Cárdenas
College of William and Mary

Department of Computer Science
cebernal@cs.wm.edu

Mario Linares-Vásquez
Universidad de los Andes

Systems and Computing Engineering Department
m.linaresv@uniandes.edu.co

Denys Poshyvanyk
College of William and Mary

Department of Computer Science
denys@cs.wm.edu

ABSTRACT

Mobile devices and platforms have become an established target

for modern software developers due to performant hardware and

a large and growing user base numbering in the billions. Despite

their popularity, the software development process formobile apps

comes with a set of unique, domain-specific challenges rooted in

program comprehension. Many of these challenges stem from de-

veloper difficulties in reasoning about different representations of

a program, a phenomenon we define as a “language dichotomy".

In this paper, we reflect upon the various language dichotomies

that contribute to open problems in program comprehension and

development for mobile apps. Furthermore, to help guide the re-

search community towards effective solutions for these problems,

we provide a roadmap of directions for future work.

CCS CONCEPTS

• Software and its engineering → Software notations and

tools;

KEYWORDS

ProgramComprehension, Mobile, Android, Natural Language, Code

ACM Reference Format:

Kevin Moran, Carlos Bernal-Cárdenas, Mario Linares-Vásquez, and Denys

Poshyvanyk. 2018. Overcoming Language Dichotomies: Toward Effective

Program Comprehension for Mobile App Development. In ICPC ’18: ICPC

’18: 26th IEEE/ACM International Conference on Program Comprehension ,

May 27–28, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3196321.3196322

1 INTRODUCTION

Mobile computing has become a centerpiece of modern society.

Smartphones and tablets continue to evolve at a rapid pace and

the computational prowess of these devices is approaching parity

with laptop and desktop systems for high-end mobile hardware.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this workmust be honored.
For all other uses, contact the owner/author(s).

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5714-2/18/05.
https://doi.org/10.1145/3196321.3196322

This facilitates new categories of engaging software that aim to im-

prove the ease of use and utility of computing tasks. Additionally,

commodity smartphones are ushering in a completely new popu-

lation of users from developing markets, many of whom are using

a computer and accessing the internet for the first time. These fac-

tors, combined with the ease of distributing mobile apps on mar-

ketplaces like Apple’s App Store [6] or Google Play [9] have made

the development of mobile software a major focus of engineers

around the world. In fact, according to Stack Overflow’s 2018 sur-

vey of over 100,000 developers [1], nearly a quarter of respondents

identified themselves as mobile developers.

While the importance and prevalence of mobile in the modern

software development ecosystem is clear, many of the unique at-

tributes that make mobile platforms attractive to both develop-

ers and users contribute a varied set of challenges that serve as

obstacles to producing high-quality software. For example, while

rich platformAPIs facilitate development of advanced features, the

change-prone nature of these APIs can adversely affect the qual-

ity of the apps they support [24, 73]. Another example of a mobile

specific challenge relates to the touch-based, event driven nature of

mobile apps. Because the core functionality of many apps is driven

mainly by the user interface, testing is typically performed at the

GUI-level. However, manual GUI-testing is a time-consuming task

and developers need automated support to help reduce testing costs

[77, 79]. While a sizable amount of work has been conducted to

help automatemobile testing [31], many developers find that these

approaches do not meet their needs [77].

When examining the current challenges that exist inmobile soft-

ware development, maintenance, and testing one can observe a

common thread weaved throughout these problems, contributing

to a fabric of interconnected difficulties. Incidentally, this thread

is not something specific to mobile development, but rather stems

froma fundamental trait of computer science more generally, namely

abstraction. In their text “Foundations of Computer Science" Aho

and Ullman state that “fundamentally, computer science is a science

of abstraction – creating the right model for thinking about a prob-

lem and devising the appropriate mechanizable techniques to solve

it." Indeed, abstraction is a powerful concept in the engineering of

software, allowing developers to design and implement complex

programs. However, there is also an associated cost that manifests

itself when engineers must reason acrossmultiple layers of abstrac-

tion. In the domain of mobile development, abstractions contribute

http://arxiv.org/abs/1807.07165v1
https://doi.org/10.1145/3196321.3196322
https://doi.org/10.1145/3196321.3196322


ICPC ’18, May 27–28, 2018, Gothenburg, Sweden K. Moran, C. Bernal Cardenas, M. Linares Vasquez et al.

to and underlie many of the unique challenges experienced by de-

velopers.

In particular, foundational abstractions between languages prove

to be particularly troublesome. Here when we refer to the notion

of a language we are not targeting programming languages specif-

ically, but rather the broader definition of language as a medium

by which an idea or information is conveyed. In this sense, there are

several different languages, or modalities, of information that de-

velopers must navigate during the software development process

for mobile applications, including natural language and code, just

to name a few. In essence, the bridging of the knowledge gap be-

tween these information modalities constitutes a set of principal

challenges in program comprehension for mobile apps.

Specific development challenges can be viewed as arising from

difficulties navigating different pairs of language types. For instance,

when considering challenges related to change-prone APIs, devel-

opersmust reason between program representations related to nat-

ural language and code, interpreting changes delineated in API

documentation and how they may affect the use of those APIs in

a particular app. In GUI-based testing of mobile apps, developers

and testers must reason between several different juxtaposed infor-

mation modalities, including code and pixel-based representations

of the app via the GUI. In this paper we refer to these pairs of con-

trasting information modalities as language dichotomies. Develop-

ing solutions to help developers more effectively reason between

various language dichotomies will help facilitate the resolution of

many mobile development challenges.

In this paper, we offer a brief introduction to mobile develop-

ment paradigms (Section 2), survey themajor categories of research

conducted to date on mobile software engineering (Section 3), ex-

amine open challenges through the lens of language dichotomies

(Section 4), and outline a roadmap of potential future work aimed

at aidingmobile developers in effectively navigating these dichotomies

(Section 5). It should be noted that this paper is by no means meant

to be an exhaustive guide to the past research, processes or chal-

lenges related to developing mobile apps, but rather to prime the

reader to think critically about the future research trends on the

topic. We hope that by examining key existing program compre-

hension problems related to mobile development from the view-

point of language dichotomies, we can spur new, creative direc-

tions of work aimed at helping to solve these fundamental prob-

lems, which will in turn result in new processes and techniques for

automating and facilitating software engineering for mobile apps.

2 A BRIEF INTRODUCTION TO MOBILE

SOFTWARE DEVELOPMENT

In this section, we provide a brief overview of mobile development

paradigms, as well as some of the attributes that make the mo-

bile development process unique. Mobile applications are typically

developed on top of an existing mobile platform. These platforms

consist of several different parts and these parts can vary between

platforms, however at a minimum usually include: (i) a kernel and

an operating system (OS) that runs on mobile hardware such as

a smartphone, (ii) an application framework consisting of a set of

platform specific APIs and libraries, and (iii) a set of tools and soft-

ware to aid in developing apps, including IDEs or user interface

builders. Mobile apps are typically written using a target program-

ming language supported for a particular platform (e.g., Java and

Kotlin for Android, and Objective-C and Swift for iOS), in combi-

nation with the APIs from the platform’s application framework.

There are a shrinking set of platforms upon which developers can

create and publish their apps. These platforms include Android,

iOS, BlackBerry 101, Firefox OS, Ubuntu Touch, and Windows 10

Mobile1. However, currently Android and iOS comprise the major-

ity of the market, accounting for 87.7% and 12.1% of the market

share respectively for the 2nd quarter of 2017[14].

2.1 Unique Aspects of the Mobile Development

Process

2.1.1 PlatformEvolution and Instability. Generally, the software

development lifecycle typically follows a cyclic set of activities

that include (i) requirement engineering, (ii) design, (iii) develop-

ment, (iv) testing, and (v) maintenance. Modern agile development

practices typically iterate quickly through these activities with the

goal of delivering working software in a continuousmanner where

features are added and bugs are fixed during each iterative devel-

opment cycle. However, the rapid evolution of mobile platforms

shapes the mobile development process in unique ways. As mo-

bile hardware evolves, platforms evolve to keep pace with techno-

logical advancements, and new more convenient software features

and capabilities are included with each iteration. For instance, An-

droid has had over 15 major version releases since its inception

in 2008 that have dramatically reshaped the underlying platform

APIs [91], leading to support for advanced features such as Aug-

mented Reality (AR). This iterative process puts immense pressure

on developers to evolve their apps with the mobile hardware and

platforms to satisfy the expectations of users that their apps take

advantage of the latest features [51, 57]. This pressure leads to ac-

celerated development cycles with a focus on adapting to changes

in platform APIs. Adapting to these changes can be difficult and

may adversely affect app quality [24, 73]; because developers must

cope with adding additional app functionality based on new plat-

form features, or on fixing bugs that arise due to changes in APIs

currently used in an app. This may detract from time that could be

spent on other activities such as fixing general regressions, refac-

toring, or improving the performance of an app, while also leading

to undue technical debt. Thus, platform evolution has a clear affect

on mobile development.

2.1.2 GUI-Centric, Event Driven Applications. Perhaps one of

the most important features of mobile devices is the ease of use

provided by high-fidelity, touch-enabled displays. Users primarily

interact with their smartphones, tablets, and wearable devices and

by extension the apps that run on these devices, through a touch-

screen interface. This means that mobile apps are centered around

the graphical user interface, and are driven by touch events on this

interface. While other types of apps such as web apps, are also

heavily event-driven, the unique touch based gestures and interac-

tivity provided by mobile apps help to shape the software design,

development and testing processes in unique ways. For example,

the user interface (UI) and user experience in mobile apps must

1Support will end at the end of 2019



Overcoming Language Dichotomies: Toward Effective Program

Comprehension for Mobile App Development ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

be well-designed for an app to be successful in highly competitive

marketplaces. As such design and development tools for construct-

ing UIs are a core part of IDEs catering tomobile developers such as

Xcode and Android Studio. Developers must constantly be aware

of how application is connected to and impacts the GUI of their

apps.

The event-driven nature of mobile apps also impacts testing.

While developers can test small pieces of their code using prac-

tices such as unit testing, ultimately testing must be done through

the GUI. Manually testing applications is a time consuming prac-

tice that is fundamentally at odds with the rapid pace of mobile

development practices. Thus, mobile developers and testers will

often utilize automation frameworks that either allow for reusable

or fully automated test input generation.

2.1.3 AppMarketplaces. The primary (and some cases only)method

of distribution for mobile apps is through “app marketplaces" such

as Google Play or Apple’s App Store. These digital storefronts are

unique to mobile applications, in that they provide users with easy

access to purchase, download, and update apps, while providing

mechanisms for users to review apps and provide feedback to de-

velopers. In recent years, these marketplaces have become increas-

ingly competitive as the number of available apps numbers in the

millions. App marketplaces incentivize developers to ensure their

apps are of the highest possible quality, and to take into account

the feedback of users. Developers need to ensure the quality of

their apps by adhering to proper platform design principles and

performing extensive testing, or risk being passed over for com-

petitors. Likewise developers need to react to feedback communi-

cated through user reviews by gathering an updating requirements

and updating their app’s implementation.

2.1.4 Market, Device, and Platform Fragmentation. The large and

growing user base of smartphones and tablets is one of the most al-

luring aspects for many developers and companies hoping to reach

users. Unfortunately, targeting these users can be difficult due to

multiple levels of fragmentation. The first level of fragmentation

is at the market-level, which is currently dominated by Android

and iOS. Thus, developers hoping to reach the maximum number

of users must target both of these platforms. Second, there is frag-

mentation at the device level [49], as there is a large and growing

number of hardware options for consumers to choose from with

more devices being introduced each year. Finally, there is platform

fragmentation, as users on the same mobile platform may be run-

ning different versions of mobile OSes. For instance, the latest ver-

sion of iOS, iOS11, is currently running on 65% of devices whereas

iOS10 currently encompasses 28% of the install base [21]. How-

ever, in Android fragmentation is more severe where the two lat-

est versions of Google’s OS, Android 8 and 7, make up only 1.1%

and 28.5% of the Android install base respectively. In order to cre-

ate effective apps, developers must ensure that their applications

function properly across a wide of combinations of different plat-

forms, devices, and platform versions. This can make the process

of developing and testing mobile apps challenging, as developers

need to maintain concurrent codebases and test across a dizzying

array of device and platform version configurations.

Naturally, these difficulties have led to creation of platform-independent

development tools such as Xamarin [15], where a single codebase

can be compiled to multiple platforms, eliminating the need for

parallel codebases. Alternatively, there exist tools and frameworks

like Ionic [11] for creating hybrid applications which use a com-

bination of web technologies that interface with underlying plat-

form APIs. In addition to hybrid applications, another framework

created by Facebook called React Native [12] facilitates the devel-

opment of native mobile apps using javascript and React. Applica-

tions built using react native are fully native to the target platform,

the framework simply assembles the native code according to the

javascript written by a developer. All of these approaches can help

ease the burden of fragmentationwhen creating mobile apps. How-

ever, multi-platform development solutions come with their own

set of compromises. For instance, hybrid apps are known to suffer

from performance issues in terms of user interface interactivity,

which can frustrate users. Furthermore, frameworks like Xamarin

or React Native require their own learning curve, and developers

are highly dependent upon the multi-platform framework keeping

up with the latest features of modern mobile platforms.

3 THE STATE OF RESEARCH IN MOBILE

SOFTWARE DEVELOPMENT

This section presents an overview of research related to software

development in mobile ecosystems. We have segmented the cur-

rent landscape of related work into seven major topics. Note that

the purpose of this section is to provide the reader with a primer on

general research areas related to software development for mobile

apps, we leave an in-depth systematic review as future work.

3.1 App Store Analysis

App stores provide valuable information for users and developers.

From user reviews to install base information, work on applying

“app store analytics" to help aid in the development process for mo-

bile apps has seen great interest in recent years. Recent work by

Martin et al. [90] surveyed papers considering any type of techni-

cal or non-technical information frommobilemarkets. The authors

categorized the papers into 7 different categories representing the

underlying goal of empirical studies or new approaches for aid-

ing the development process. The first of these is API analysis

which constitutes papers that examine API usages in mobile apps.

The second category, feature analysis, represents papers that ex-

tract and model both technical and non-technical information ex-

tracted from app stores. The third category, release engineering,

analyzes release data and how this data can be used to help guide

developers toward more effective release engineering. Fourth, re-

view analysis considers all papers that analyze user reviews to

extract information with the intention of using it to augment dif-

ferent parts of themobile development process. App store analyses

have also been conducted in relation to security, and this category

describes papers that investigate how information from app stores

can aid in security and the identification of malware, faults, per-

missions, plagiarism, vulnerabilities, and privacy concerns on app

stores. The sixth category, store ecosystem, includes papers ana-

lyzing the differences between appmarketplaces. Last but not least

is size and effort predictionwhich describes approaches that pre-

dict the effort or size of the functionalities. Recently there has been



ICPC ’18, May 27–28, 2018, Gothenburg, Sweden K. Moran, C. Bernal Cardenas, M. Linares Vasquez et al.

work on integrating information from user reviews to help aid in

the testing process for mobile apps [44].

3.2 App Security Analysis

Mobile markets perform internal validations of apps to minimize

the proliferation of malicious software and protect users privacy.

In addition to the measures taken by application marketplaces, re-

searchers have been actively engaged in using program analysis

techniques to design new approaches for detecting malicious apps,

analyzing security properties of applications, and assisting devel-

opers in creating apps with strong security principles. Sadeghi et

al. [117] performed a systematic literature review resulting in a

taxonomy of research topics based on several complimentary di-

mensions that include the positioning of proposed approaches (e.g.,

what problems are they trying to solve?), the characteristics of the

approach (e.g., how do they solve the purported problem?), and fi-

nally the assessment of the approach (e.g., How was it evaluated).

While we will refer readers to the full survey for more details, we

examine the positioning of the examined papers here to provide an

overview of the active research topics. The authors found the three

main analysis objectives dominated the examined research, includ-

ingmalware detection,vulnerability detection, and gray-ware

detection. Of these analysis objectives the examined papers tar-

geted three major types of security threats, spoofing, elevation

of privilege, and information disclosure. These approaches used

a variety of underlying program analysis techniques utilizing both

static and dynamic information.

3.3 Mobile Testing

Quality assurance is an important metric to be maintained in soft-

ware development. This attribute is particularly important for mo-

bile applications that will compete on fiercely competitive appmar-

ketplaces. Performing effective testing is one of the best ways to en-

sure the quality of software produced and this topic has seen great

interest from the software engineering research community. The

largest area of work is focused on automated test input generation

for mobile apps, and research in this area can be generally grouped

into three categories [31]. The first category is, random-based in-

put generation that randomly selects input events from a set of

potential candidates[5, 10, 85, 119, 129]. These random-based tech-

niques may rely on a purely random event selection or generation

function, or may bias the random selection based on the history

of events with the aim of more effectively exploring an app un-

der test. The next type of approach, systematic-based input gen-

eration, follows a structured or well defined strategy for generat-

ing input events based upon a pre-defined heuristic for interacting

with observable GUI-elements in an application. [19, 20, 23, 45, 97].

Finally, model-based input generation strategies create a model-

based representation of a an application, which is then used to gen-

erate input events with one according to one of several goals such

as uncovering crashes or covering the maximum number of pro-

gram statements [19, 23, 30, 50, 81, 88, 89, 128, 130].

In addition to these strategies, there has also been work done on

record and replay tools that allow developers to easily record GUI-

level testing scenarios and replay them later as a form of regres-

sion testing [41, 43, 52, 93]. Evaluating the efficacy of an automated

test input generation technique can be challenging, as the practical

utility of test adequacy criteria such as method or statement-level

code coverage have come under scrutiny by the software testing

research community. One potential alternative to these more tra-

ditional adequacy criteria is known as mutation analysis. This pro-

cess purposefully injects faults into a software project and mea-

sures a test suite’s ability to detect these faults. However, for such

a process to be effective, the fault injection techniques must seed

faults representative of real errors that are likely to occur for a

given software domain. Thus, recent work has attempted to con-

textualize mutation testing for mobile apps, focusing on both func-

tional and non-functional software quality attributes [35, 36, 76,

98].

3.4 Building Effective User Interfaces

Creating effective UIs for mobile applications is a long and often

tedious process that begins with UI mock-ups created by designers

which are then given to development team to transfer these mock-

ups into code that can be interpreted by mobile platforms [94].

However, translating a mock-up of user interface into code can be

a difficult undertaking. Because developers can introduce errors

when implementing the intended design of a mobile UI, there is

a need for validation approaches to ensure the proper quality of

mobile GUIs, and recent research has helped to enable such ap-

proaches. Joorabchi et al. [59] presented an approach that validates

the consistency between apps that are multi-platform, whereas

Moran et al. [94] focus on automatically reporting instances where

the implementation of anAndroid GUI violates it’s intended design

specifications in an industrial context. Similarly, Fazzini et al. [42]

conducted work that focuses on GUI validation in the context of

comparing the behavior of the same app across platforms.

In addition to these approaches, there is a growing body of work

that aims to automate the process of implementing a GUI from

a mock-up outright, as any automation that can be introduced

into the process can dramatically increase the efficiency of the

overall mobile development process. REMAUI [104] is a tool that

aims at reverse engineering mobile interfaces by leveraging com-

puter vision techniques. However, this only supports the genera-

tion for two types of UI components (text and images). Beltramelli

et al. [26] proposed and approach based on an encoder/decoder

model for translating images into aDomain Specific Language (DSL)

which can then be converted into code. However, this approach

was only tested on a small set of synthetic apps, and has yet to be

proven on real applications. ReDraw [92], aims to overcome the

limitations of both pix2code and REMAUI, by mining GUI-related

information fromapp stores and usingmachine learning approaches

to help build a realistic GUI-hierarchy which can be automatically

translated into code.

3.5 Static Program Analysis for Mobile Apps

Li et al. [71] conducted a systematic literature review taxonomiz-

ing work done on static analysis for Android applications. This

review found that the most popular aims of static analysis tools

for Android were: (i) data leak detection, (ii) vulnerability de-

tection, (iii), permission analysis, (iv) energy analysis, and (v)

clone detection.Moreover, the Smali and Jimple intermediate rep-

resentations were the most widely used program representations.



Overcoming Language Dichotomies: Toward Effective Program

Comprehension for Mobile App Development ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Regarding the analysis methods used by these techniques, there

have been approaches that use abstract interpretation, taint anal-

ysis, symbolic execution, program slicing, code instrumentation,

and type/model checking. Several of these approaches target An-

droid specific program constructs including the component lifecy-

cle, UI callbacks, entry points, inter-component communication,

inter-app communication, and XML layout.

3.6 Energy & Performance Analysis

Nearly all mobile devices operate in a resource constrained con-

text and draw power from a battery. Thus, the non-functional at-

tributes of mobile software, such as performance and energy effi-

ciency, have been a popular topic of study among researchers. This

body ofwork is comprised of empirical studies that study these top-

ics in depth and approaches for improving non-functional aspects

ofmobile apps during the development process. This work can gen-

erally be classified into the following categories: (i) estimation

and prediction of energy consumption [32, 37, 105, 115] (ii)

energy consumption of GUIs [18, 39, 40, 70, 75, 82, 121, 123] (iii)

energy bugs and hot spots [47, 66–69, 74, 83, 109–112, 127] (iv)

energy consumption considering other factors such as mem-

ory, obfuscation, CPU usage among others [53, 116, 118].

Other approaches have focused on measuring the performance

on mobile apps. For instances, Linares-Vásquez et al. [80] surveyed

developers to determine best practices and tools that could be used

to avoid performance bottlenecks. Similarly, Lin et al. [72] imple-

mented a tool to refactor AsynTask to avoid memory leaks and

reduce energy consumption. Moreover, Linares-Vásquez et al. [17]

studied micro-optimizations opportunities, reductions on memory

and CPUperformance, and developers’ practices onmicro-optimizations

on Android.

3.7 Mobile Fragmentation

As overviewed earlier (Section 2) fragmentation is a well known

problem by developers of mobile applications. Han et al. [49] give

an excellent overview on a topic-model based analysis evidencing

the lack of portability and fragmentation considering multiple ven-

dors. Moreover, McDonnell et al. [91] analyzed change prone An-

droid APIs and examined how quickly these changes are adopted in

apps. The results of this study demonstrated slow adoption in sev-

eral cases. Other approaches have focused on providing strategies

to prioritize the devices upon which a developer should focus app

testing [60, 84]. In contrast to these approaches, Wei et al. [125]

focused their attention on detecting and understanding compati-

bility issues at code level. Finally, Linares-Vásquez et al. [73] and

Bavota et al. [24] analyzed the impact of rapid changes in the An-

droid platform to application ratings on Google Play.

4 CHALLENGES IN PROGRAM

COMPREHENSION FOR MOBILE APPS

There is no doubt that significant progress on understanding and

improving the mobile development process has been made due to

the large and growing body of research from the software engi-

neering community. However, there still exist sizable challenges

that must be properly investigated and solved in future work [99].

As stated at the outset of this paper, many of these open chal-

lenges share a common trait; they arise due to various language

dichotomies that developers must reason about in order to build,

test, and maintain successful apps. More specifically, a language

dichotomy can be defined as a difficulty in program comprehension

resulting from reasoning about different representations or modalities

of information that describe a program. In the domain of mobile ap-

plications there are several language dichotomies that contribute

to a varied set of problems. In this sectionwewill examine the prob-

lems resulting from dichotomies involving four major modalities

of information:

(1) Natural Language:Thismodality represents languages that

humans typically use to convey ideas or information to one

another, such as English.

(2) Code: This modality represents the languages that humans

utilize to construct a program, such as Java or Swift.

(3) Graphical User Interfaces (GUIs): Much of today’s user

facing software is graphical, and mobile apps are no excep-

tion. This information modality is highly visual, consisting

of pixel-based representations of a program typically com-

prised of a logical set of building blocks often referred to as

GUI-widgets or GUI-components.

(4) Dynamic Program Event Sequences: As a mobile applica-

tion is executed, the series of inputs, events, and program

responses to these events represents a rich modality of in-

formation that describes program behavior.

Each of the representations described above have their own pow-

erful uses, often serving to facilitate program abstractions. For ex-

ample, a GUI is an extremely powerful abstraction of program code

that allows for seamless interaction and use of features. However,

for a developer, it is often critical to effectively understand and

navigate how information represented in one modality translates

to another. This is, at its core, a program comprehension task. For

instance, a developer must reason about how different parts of the

GUI correspond to different sections of code in a mobile app. How-

ever, bridging this gap between representations can be an arduous

task, and thus underlies many open problems in mobile software

development.

In this section we overview five language dichotomies consist-

ing of the informationmodalities listed above and themobile devel-

opment problems that stem from them. Note that this is not meant

to be an exhaustive list of language dichotomies or problems, but

rather a curated list based upon our research observations of the

past several years. We encourage readers to seek out and define

new problems which we may not have discussed in detail.

4.1 Natural Language vs. Code

Perhaps one of the most well-known language dichotomies for de-

velopers is that between natural language and code. This dichotomy

often surfaces when software requirements or specifications are

stipulated in natural language before being implemented in code.

In this instance, developers must bridge this language gap and rea-

son about the code-based representation of the information en-

coded into the natural language. In the context of mobile develop-

ment, reasoning about this dichotomy is exacerbated. This is not

due to the size or relative complexity of mobile apps, but instead



ICPC ’18, May 27–28, 2018, Gothenburg, Sweden K. Moran, C. Bernal Cardenas, M. Linares Vasquez et al.

to their event driven nature and varying contextual states. Tracing

features to code constructs in a mobile app can be difficult due to

the disconnect between event-handlers, platform APIs, functional

code, context (e.g., network and sensor data) and connection to the

GUI-code. Thus, implementing and reasoning about features repre-

sented in natural language can quickly become an intensive task.

In our experience, this dichotomy has contributed to two impor-

tant open problems in mobile app development.

4.1.1 Feature Location and Traceability. Feature Location has

been defined as “the activity of identifying an initial location in the

source code that implements functionality in a software system" [38].

Feature location is an important program comprehension task in

software development and maintenance, as it is one of the most

frequent developer activities. A wealth of research has been con-

ducted related to feature location techniques, however, few of these

techniques have been contextualized and applied to the domain of

mobile applications. The most closely related work on feature loca-

tion for mobile apps stems from work conducted by Palomba et al.

that recommends and localizes code changes based on information

from user reviews [108]. However, little work has been conducted

that attempts to link requirements or features, stipulated in natu-

ral language, to code-related program constructs for the purpose

of supporting developer comprehension.

Feature Location is particularly relevant in the context of mo-

bile software due to constant pressure for developers for frequent

releases to keep up with the rapid evolution of mobile platforms

and hardware [24, 51, 57, 73]. Because developers are changing the

source code often, they will have to continually locate and under-

stand features in the source code. Due to the event driven nature

of mobile apps, developers need adequate support for this intellec-

tually intensive task. Such support for developers has the potential

to greatly increase productivity and improve the efficiency and ef-

fectiveness of the software maintenance and evolution processes.

Software traceability generally describes the process of estab-

lishing relationships between software requirements and code.While

there has been a large body of work devoted to enabling effec-

tive software traceability, few of these techniques have specifically

targeted the domain of mobile applications. Traceability is impor-

tant during the mobile development process for developers to en-

sure that requirements are properly implemented and tested in

the source code. However, mobile apps present a set of unique

challenges for traditional software traceability approaches. For in-

stance, mobile applications have access to sensitive user informa-

tion that can be collected from a diverse set of sensors such as loca-

tion, or user audio. Most popular mobile platforms, including iOS

and Android, implement a permission system that allows a user

to grant access potentially sensitive user information or hardware

sensors. Given the importance of these permission systems in user

privacy, they must be effectively taken into account by traceability

approaches, and security and privacy related requirements should

consider the permissions systems and other security measures im-

plemented in code. This requires reasoning between natural lan-

guage descriptions of permissions and security principles while

linking this information to relevant areas of code. Another unique

attribute of mobile applications that must be taken into considera-

tion is the heavily used set of platform APIs used to implement

large amounts of the app functionality. Traceability approaches

must be cognizant of the natural language documentation and API

code to establish accurate trace links.

4.1.2 Bug and Error Reporting. Bug and Error reporting is an

important activity for any type of software system, and techniques

for bug triaging [22, 54, 62, 63, 78, 101, 120], duplicate report detec-

tion [46, 48, 58, 103, 124, 131], summarization [27, 34, 64, 87, 113,

126], and reporting of in-field failures [25, 28, 33, 55, 56, 61, 132]

have been devised to help improve this process. In the domain of

mobile apps, the primary mechanism by which feedback and bug

reports are communicated to developers is through user reviews

on app stores. These user reviews have been shown to be incredibly

noisy [29] and a large body of work has been dedicated to extract-

ing effective information from these reviews and operationalizing

it to help aid in software development and testing tasks. While this

research has proven to be valuable, little work has been conducted

to help improve the relatively rudimentary mechanisms employed

by App Stores to provide feedback.

At its core, the process of bug reporting and resolution requires

bridging a knowledge gap between high-level program features (of-

ten described in natural language) and program information repre-

sented in code. Our past work on the Fusion bug reporting system

[95, 96] aims to help bridge this gap by improving the underlying

mechanism by which users report bugs. Furthermore, our work on

CrashScope has helped to automate the bug reporting process

outright for program crashes. While this work showed that au-

tomating and reinventing the the bug reporting process has great

promise, much more work needs to be done in bridging the lan-

guage dichotomy that exists in bug reports. This is particularly im-

portant for mobile apps, as their event driven nature and varying

contextual states can contribute to bug reproduction scenarios that

are difficult to stipulate in natural language, and thus may need

more advanced reporting mechanisms.

4.2 Code vs. Graphical User Interfaces

As with most modern user-facing software, mobile applications

are heavily centered around their graphical user interfaces (GUIs).

While GUIs may not be considered a traditional language ormodal-

ity in which program information is encoded, they contain awealth

of practical data that can be used to help reason about software

properties. GUI information is intrinsically linked with an appli-

cations’ higher level functional and non-functional features. Fur-

thermore, the GUI specifications are typically stipulated in source

code (e.g., the /res/layout/ folder of Android apps) and thus is

inherently linked to code constructs.While mappings between pro-

gram features and code exist, the ambiguities that exist between

these representations can often be difficult to overcome. In modern

mobile development, GUIs must be dynamic and reactive to adapt

to an increasing number of hardware configurations and screen

technologies. However, this means that GUIs are often adjusted

dynamically at runtime, decoupling runtime GUIs from code spec-

ifications. Furthermore, most modern mobile apps also rely upon

network connectivity features to pull information from the inter-

net, and thus a majority of the content displayed by a mobile app’s

GUI is dynamic and directly stipulated in code. These are just two



Overcoming Language Dichotomies: Toward Effective Program

Comprehension for Mobile App Development ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

examples of existing ambiguities that complicate the language di-

chotomy between GUIs and code. GUI-related information is of-

ten underutilized in research related to solving practical program

comprehension problems, and we highlight two instances of open

challenges in mobile apps that could be mitigated by working to

close the abstraction gap between code and user interfaces.

4.2.1 Visualizing the Affects of Code Changes on the GUI. Due

to the GUI-centric nature of mobile apps, developers must con-

stantly reason about how their code affects and is connected to

the GUI. However, this process can be incredibly tedious, as devel-

opers must switch contexts between code, visual representations,

and markup-like code that stipulates the visual properties of the

user interface. Currently, IDEs for the two most popular platforms

provide support within the IDE for building GUIs and visualizing

the layout of an application during development [4, 16]. However,

such features are typically limited to illustrating the properties of

the GUI-related code only (e.g., xml markup files in Android), or to

event handlers (e.g., XCode). Developers need further support for

visualizing how logical code is linked to different parts of the GUI

during the mobile application development process.

4.2.2 Ensuring the Proper Implementation of GUIs from Design

Specifications. The UI/UX design for mobile applications is becom-

ing increasingly important in competitive app marketplaces. As

many applications target similar core functionality (e.g., weather

apps, task managers) they must differentiate themselves with at-

tractive user interfaces and intuitive user experiences. As such,

many companies employ a dedicated team of designers with do-

main expertise in creating visually striking and easy to use GUIs.

Even independent developers not part of a large corporation will

often create user interface mockups to prove out design ideas and

test UI concepts before committing to implementing them. In both

cases, these professionals will often use design software such as

Sketch [13] or Photoshop [2], generally due to the flexibility of-

fered by these tools. Once these mock-ups have been created, they

must be implemented in code by developers, a process that has

been shown to be time consuming and error-prone [65, 94, 100,

102, 122].

Developers and designers need support throughout this process

in order to enable effective prototyping of mobile application user

interfaces, which involves bridging an abstraction gap between

graphical and code-based representations of a program. Initial work

on this problem has been done from two viewpoints: (i) automati-

cally reporting instances where an implementation of a GUI does

not match its intended design specifications [42, 86, 94], and (ii)

automating the process of prototyping a GUI from a mock-up [26,

92, 104]. However, there are still several problems to be solved to

aid in facilitating and automating the process of implementing a

GUI, and the underlying app functionality, from a mock-up or se-

ries of mock-ups. For instance, little work has been conducted in

automatically implementing transitions between related screens,

or generating code related to the underlying functionality of dif-

ferent GUI-components.

4.2.3 Augmented Reality. Smartphones have evolved to become

incredibly capable devices, with computational prowess that is be-

ginning to rival more traditional laptop computers. This combined

with the rapid advancement of many sensors, most notably cam-

eras, has ushered in new use cases that take unique advantage of

increasingly capable hardware. Perhaps the most notable of these

new use cases is commonly referred to as Augmented Reality (AR).

AR applications typically aim to enhance or “augment" a users

physical world by simulating projections of useful information or

graphics into the real world using a camera and a display. This can

facilitate, for example, digital projections of furniture onto a video

stream of a users home or apartment using a smartphone camera

and display. Apple and Google have both recently supported this

technology with the release of ArKit for iOS [8] and ARCore for

Android [7]. While this new category of applications brings with it

exciting new use cases, the development challenges of such types

of applications have yet to be explored thoroughly. Surely appli-

cations implementing such unique features will offer unique chal-

lenges from the point of view of user interface design and testing,

however, researchers need to better understand such challenges

and develop techniques and tools to help facilitate the creation of

AR apps.

4.3 Natural Language vs. Graphical User

Interfaces

While GUIs are inherently interconnected with code, they also form

dichotomywith natural language. Since much of an app’s function-

ality is associated with the actions a user can perform on the GUI,

there is clear link between natural language describing app fea-

tures and GUI-based representations of an app. Bridging this gap

is a necessary task for developers, and there has been little work

to help facilitate this process.

4.3.1 Use Case-Based Testing. One area that could greatly ben-

efit from bridging the abstraction gap between natural language

and GUIs is automated testing. Due to the centrality of the GUI

in exposing most program functionality for mobile apps, testing

is typically conducted at the GUI level. However, mobile develop-

ers have specific testing needs, and while automated approaches

for finding crashes exhibit some utility, many mobile developers

prefer to organize their tests around use-cases [77]. However, au-

tomating test case generation around use cases can be difficult,

even if the use-cases are stipulated in natural language. This dif-

ficulty stems from the fact that the test generation approach must

effectively navigate the language dichotomy between features and

use cases stipulated in natural language, and information displayed

by an application’s GUI to generate a sensible sequence of test in-

put events. In the absence of existing natural language use cases,

an automated approachwould have to infer, online, the use cases of

the app in natural language so that they could be documented and

effectively understood by a developer. Initial work on modeling

app events have been conducted through theMonkeyLab project

[81], however, such work needs to be taken further in order to en-

able practical use-case based testing for developers.

4.3.2 Protecting User Privacy in Mobile Apps. In the last few

years, privacy become an even more critical component of the soft-

ware development process as users store more sensitive informa-

tion in digital spaces than ever before. Mobile developers also need



ICPC ’18, May 27–28, 2018, Gothenburg, Sweden K. Moran, C. Bernal Cardenas, M. Linares Vasquez et al.

to be continuously aware of the security implications of the soft-

ware they create, as the capabilities of mobile phones can enable

the collection of intimate, sensitive user data such as user location

and audio/visual recordings. A large component of the security and

privacy of mobile apps involves informing users how their data is

being utilized by software. However, in practice this can be difficult

or cumbersome for developers to implement, as it involves reason-

ing between natural language descriptions of privacy information

and effective incorporation into the GUI. Further work needs to be

conducted to better support and automate the process of inform-

ing the user about the use of security or privacy related features of

mobile apps.

4.4 Event Sequences vs. Natural Language &

GUIs

Modeling the behavior of mobile applications has been a popular

topic related to automated testing approaches for mobile apps [81,

89]. Many of these approaches use event sequences traces to help

model application behavior and generate more useful testing se-

quences. However, the representative power of these models suf-

fers due to language dichotomies that exist between the event traces

and code as well as between event traces and natural language. For

instance, relating event sequences to natural language descriptions

of features or bugs could help guide automated test generation to-

wards certain testing goals more effectively.

4.4.1 Cross Platform and Cross Device Testing. One well under-

stood problem in mobile development, and more specifically for

Android development, is that of device and platform fragmenta-

tion [49]. Due to the plethora of devices running various versions

of underlying platform software, developing an mobile application

that functions seamlessly across all of these platforms is a major

challenge for developers. One of the biggest challenges related to

the development process is testing an application across a large

combinatorial matrix of physical devices and hardware versions.

Ideally, developers could write a single test case and have this test

case effectively operate across multiple devices, platforms (e.g., iOS

and Android), and platform versions (e.g., iOS 10 vs. iOS 11). While

some existing work has been done toward enabling such testing

approaches [41], this remains an open problem and general pain

point for mobile development and testing. To help mitigate this

problem, event sequences need to be translated across applications

with varying differences automatically, which involves abstracting

or modeling the event sequences across differing GUIs, and per-

haps relating these changes to code differences as well.

4.4.2 Understanding the Affect of So�ware Evolution onUse Cases.

Due to the highly iterative nature of underlying platformAPIs and

hardware, mobile applications tend to evolve at a rapid pace. How-

ever, timelines for app releases are tight and often developers do

not have sufficient time or resources to properly document all as-

pects of an application’s evolution. One such property of apps that

can difficult to document are changes in the use cases, or changes

to the event sequences required for a user to carry out existing use

cases. Properly documenting these software development artifacts

carries implications for enabling effective testing, traceability, and

feature location. Thus, this topic deserves ample attention from

researchers.

5 FUTURE TRENDS IN PROGRAM

COMPREHENSION FOR MOBILE APPS

We expect future research in mobile software engineering to be

driven by need to deal with language dichotomies and the afore-

mentioned challenges. Thus, in this sectionwe discuss likely future

trends in mobile software engineering research that share a com-

mon goal of helping to solve language dichotomies that contribute

to challenges in program comprehension.

Natural Language vs. Code:While appmarketplaces continue to

be the preferred platform for app distribution, short release cycles

will continue to burden mobile developers as they consistently at-

tempt to appease the collective voice of users. Thus, the current

and future mechanisms for gathering user feedback must be ori-

ented to reduce the language gap between the changes that users

request, and the incorporation of these "change requests" into code-

bases and tests. Automated linking of user reviews and bug reports

to source code is a first step partially achieved by current research

[106–108]; next steps should be devoted to enable automated gen-

eration, prioritization, and execution of test cases but triggered by

incoming user reviews and crashlytic data collected at run-time,

without human intervention [79].

However, the larger challenge here is related to understanding

user needs that are expressed in very short snippets of text which

may include very personal expressions, jargon, acronyms, or domain-

specific language. One potential solution here is to move from text-

based reviews/requests/reports to augmented representations that

remove the ambiguities in natural language. Some potential op-

tions for such representations might include on-device data col-

lection, behavior-driven specifications, sketch-based reviews, or

video-based bug reporting. Another potential solution might be to

include advanced machine learning mechanisms that learn from

user reviews and are able to extract high level concepts and rela-

tionships (e.g., by using deep learning) that can be automatically

translated into code or tests.

Another developer need that is closely aligned with shorter De-

vOps cycles in mobile apps is automated source code generation

assisted by high-level representations. The recent introduction of

software architecture components in Android [3] makes it easier

to create applications that are designed to follow well established

patterns (Views, Controllers, ViewModels, DAOs, entities, etc); in

the case of iOS, the usage of the MVC architectural pattern is well

established. New techniques for automated code generation could

leverage these architectural design patterns, in combination with

models of code and natural language mined from software reposi-

tories to enable practical code generation. Another challenge here

is to automatically handle API breaking changes that can be dif-

ficult for developers to identify due to the continuous releases of

new API versions (as in the case of Android), and also because cur-

rent mechanisms for reporting changes in the APIs are detached

from the app development process. Future work should examine

bettermethodologies for incorporating information aboutAPI changes

into the development workflow.



Overcoming Language Dichotomies: Toward Effective Program

Comprehension for Mobile App Development ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

In summary, enabling automated generation of source code that

follows the architectural patterns proposed by each platform, and

that is up-to-date with the latest API versions will be an important

trend in coming years. Having such approaches/tools will help de-

velopers to be more focused on designing mobile apps with better

UX/UI and less prone to issues imposed by the fragmentation.

GUIs vs. Code and Natural Language: Designing for a multi-

device experience (sequential and complementary) is becomingmore

common today as users demand more intricate integration of mo-

bile apps/devices with different devices/appliances available across

a range of different contexts (office, home, public transportation,

etc.). For example, users may utilize an application across a smart-

phone, tablet, wearable device, and digital voice assistant. Enabling

suchmulti-device experiences by default necessitates cross-platform

applications. Current approaches formulti-device ormulti-platform

mobile app development and testing still leave much to be desired

from a developers point of view, as nearly all current approaches

come with undesirable trade-offs. For example, UI performance is-

sues related to hybrid applications. However, this phenomenon

represents a ripe research opportunity, in particular for dealing

with language dichotomies between functional code, GUI-code, and

pixel-based representations of GUIs. Developers desperately need

models and frameworks that are able to express the interaction

of apps across multiple-devices and multiple-platforms in such a

manner that allows for designing-once-running-everywhere and

designing-once-testing-everywhere. Research should focus on con-

verging upon such a solution, as this would help mitigate several

key challenges in program comprehension for mobile apps.

Event Traces vs. Code andNatural Language:Asmulti-platform

and multi-device apps become a more necessary part of mobile de-

velopment, it is important that event-sequences are properly mod-

eled across different contexts. This means that mobile developers

and testers need a method of abstracting the individualized event-

sequences that exist for a given platform or device, to a more gen-

eral representation, linked to natural language descriptions, that

are portable between devices and platforms. This would allow for

a unified understanding of high-level functional use cases across

apps expressed in natural language, while having positive implica-

tions for test case generation andmaintenance. Researchers should

examine newmethods ofmodeling such relationships to helpmake

such a unified representation of application events sequences a re-

ality. One potentially promising modeling technique might come

by theway of emerging deep learning algorithms formachine trans-

lation.

All Dichotomies: Finally, we see theOn-Demand Developer Docu-

mentation (OD3) paradigm [114] as a vision supporting the goal of

reducing the gaps in language dichotomies. OD3 systems could be

used to generate documentation able to serve as the linking points

between language GUI, code, and event sequences. Therefore, we

support the OD3 vision, and encourage mobile software engineer-

ing researchers to propose systems that are aligned with goals set

forth in OD3 and tailored to mobile development challenges.

6 CONCLUSION

In this paper, we introduced the idea of a language dichotomy as

an abstraction gap between contrasting information modalities in

software that contribute to challenges in program comprehension.

We then provided a brief summary of the unique aspects of the

mobile development process, as well as the research that has been

conducted to help understand issues and improve the process as a

whole. Using the notion of a language dichotomy as a guide, we

examined several open challenges related to program comprehen-

sion during the development of mobile apps. Finally, we reviewed

a potential research agenda aimed at overcoming the fundamen-

tal language dichotomies that contribute to a wide range of chal-

lenges in program comprehension for mobile apps, with the hope

that researchers will use this as starting point for working towards

bridging the gap between different information modalities of mo-

bile software.

ACKNOWLEDGMENTS

This work is supported in part by the NSF CCF-1218129, NSF CCF-

1253837, and NSF CCF-1525902 grants. Any opinions, findings, and

conclusions expressed herein are the authors’ and do not necessar-

ily reflect those of the sponsors.

REFERENCES
[1] 2018 stack overflowdeveloper surveyhttps://insights.stackoverflow.com/survey/2018/.
[2] Adobe Photoshop http://www.photoshop.com.
[3] Android architecture components https://developer.android.com/topic/libraries/architecture/index.html.
[4] Android studio layout editor https://developer.android.com/studio/write/layout-editor.html.
[5] Android UI/Application Exerciser Monkey

http://developer.android.com/tools/help/monkey.html.
[6] Apple App Store https://www.apple.com/ios/app-store/.
[7] Arcore https://developers.google.com/ar/discover/.
[8] Arkit https://developer.apple.com/arkit/.
[9] Google Play Store https://play.google.com/store?hl=en.
[10] Intent Fuzzer https://www.isecpartners.com/tools/mobile-security/intent-

fuzzer.aspx.
[11] ionic framework https://ionicframework.com/.
[12] React native https://facebook.github.io/react-native/.
[13] The Sketch Design Tool https://www.sketchapp.com.
[14] Statista -MobileMarket Share https://www.statista.com/statistics/266136/global-

market-share-held-by-smartphone-operating-systems/.
[15] Xamarin Test Cloud https://www.xamarin.com.
[16] Xcode interface builder https://developer.apple.com/xcode/interface-builder/.
[17] How developers micro-optimize android apps. J. Syst. Softw., 130(C):1–23, Aug.

2017.
[18] T. Agolli, L. Pollock, and J. Clause. Investigating decreasing energy usage in

mobile apps via indistinguishable color changes. In 2017 IEEE/ACM 4th Inter-
national Conference on Mobile Software Engineering and Systems, MobileSoft’17,
pages 30–34, May 2017.

[19] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A. M.Memon.
Using GUI Ripping for Automated Testing of Android Applications. In Pro-
ceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering, ASE’12, pages 258–261, Essen, Germany, 2012. ACM.

[20] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated Concolic Testing
of Smartphone Apps. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, FSE ’12, pages 59:1–
59:11, Cary, North Carolina, 2012. ACM.

[21] Apple. App Store - Support. https://developer.apple.com/support/app-store/.
[22] J. Aranda and G. Venolia. The secret life of bugs: Going past the errors and

omissions in software repositories. In 31st International Conference on Software
Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada, Proceedings, pages
298–308, 2009.

[23] T. Azim and I. Neamtiu. Targeted and Depth-first Exploration for Systematic
Testing of Android Apps. In Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages &#38; Applica-
tions, OOPSLA ’13, pages 641–660, Indianapolis, Indiana, USA, 2013. ACM.

[24] G. Bavota,M. Linares-Vásquez,C. Bernal-Cárdenas,M.Di Penta, R. Oliveto, and
D. Poshyvanyk. The Impact of API Change- and Fault-Proneness on the User
Ratings of Android Apps. Software Engineering, IEEE Transactions on, 41(4):384–
407, Apr. 2015.

[25] J. Bell, N. Sarda, and G. Kaiser. Chronicler: Lightweight Recording to Reproduce
Field Failures. In Proceedings of the 2013 International Conference on Software
Engineering, ICSE’13, pages 362–371, San Francisco, CA, USA, 2013. IEEE Press.

https://insights.stackoverflow.com/survey/2018/
https://developer.android.com/topic/libraries/architecture/index.html
https://developer.android.com/studio/write/layout-editor.html
https://developers.google.com/ar/discover/
https://developer.apple.com/arkit/
https://ionicframework.com/
https://facebook.github.io/react-native/
https://developer.apple.com/xcode/interface-builder/


ICPC ’18, May 27–28, 2018, Gothenburg, Sweden K. Moran, C. Bernal Cardenas, M. Linares Vasquez et al.

[26] T. Beltramelli. Pix2code: Generating Code from a Graphical User Interface
Screenshot. CoRR, abs/1705.07962, 2017.

[27] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. Extracting Structural
Information from Bug Reports. In Proceedings of the 2008 International Work-
ing Conference on Mining Software Repositories, MSR ’08, pages 27–30, Leipzig,
Germany, 2008. ACM.

[28] Y. Cao, H. Zhang, and S. Ding. SymCrash: Selective Recording for Reproducing
Crashes. In Proceedings of the 29th ACM/IEEE International Conference on Au-
tomated Software Engineering, ASE ’14, pages 791–802, Vasteras, Sweden, 2014.
ACM.

[29] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang. AR-miner: Mining Informa-
tive Reviews for Developers from Mobile App Marketplace. In Proceedings of
the 36th International Conference on Software Engineering, ICSE’14, pages 767–
778, Hyderabad, India, 2014. ACM.

[30] W. Choi, G. Necula, and K. Sen. Guided GUI Testing of Android Apps with Min-
imal Restart and Approximate Learning. In Proceedings of the 2013 ACM SIG-
PLAN International Conference on Object Oriented Programming Systems Lan-
guages &#38; Applications, OOPSLA ’13, pages 623–640, Indianapolis, Indiana,
USA, 2013. ACM.

[31] S. R. Choudhary, A. Gorla, and A. Orso. Automated Test Input Generation for
Android: Are We There Yet? (E). In 2015 30th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), ASE’15, pages 429–440, Nov.
2015. ISSN:.

[32] S. A. Chowdhury and A. Hindle. Characterizing Energy-aware Software
Projects: Are They Different? In Proceedings of the 13th International Conference
on Mining Software Repositories, MSR ’16, pages 508–511, Austin, Texas, 2016.
ACM.

[33] J. Clause and A. Orso. A Technique for Enabling and Supporting Debugging
of Field Failures. In Proceedings of the 29th International Conference on Soft-
ware Engineering, ICSE ’07, pages 261–270, Washington, DC, USA, 2007. IEEE
Computer Society.

[34] K. Czarnecki, Z. Malik, and R. Lotufo. Modelling the &#8216;Hurried&#8217;
Bug Report Reading Process to Summarize Bug Reports. In Proceedings of the
2012 IEEE International Conference on Software Maintenance (ICSM), ICSM ’12,
pages 430–439, Washington, DC, USA, 2012. IEEE Computer Society.

[35] L. Deng, N. Mirzaei, P. Ammann, and J. Offutt. Towards mutation analysis of
Android apps. In ICSTW ’15, ICSTW ’15, pages 1–10, Apr. 2015.

[36] L. Deng, J. Offutt, P. Ammann, and N. Mirzaei. Mutation Operators for Testing
Android Apps. Inf. Softw. Technol., 81(C):154–168, Jan. 2017.

[37] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and A. De Lu-
cia. PETrA: A software-based tool for estimating the energy profile of android
applications. In Proceedings of the 39th International Conference on Software En-
gineering Companion, ICSE-C’17, pages 3–6, Piscataway, NJ, USA, 2017. IEEE
Press.

[38] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature location in source
code: a taxonomy and survey. Journal of Software: Evolution and Process,
25(1):53–95.

[39] M. Dong and L. Zhong. Chameleon: A color-adaptive web browser for mobile
OLED displays. IEEE Transactions on Mobile Computing, 11(5):724–738, May
2012.

[40] M. Dong and L. Zhong. Power modeling and optimization for OLED displays.
IEEE Transaction on Mobile Computing, 11(9):September, 2012.

[41] M. Fazzini, E. N. D. A. Freitas, S. R. Choudhary, and A. Orso. Barista: A Tech-
nique for Recording, Encoding, and Running Platform Independent Android
Tests. In 2017 IEEE International Conference on Software Testing, Verification
and Validation (ICST), ICST’17, pages 149–160, Mar. 2017. ISSN:.

[42] M. Fazzini and A. Orso. Automated cross-platform inconsistency detection for
mobile apps. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), ASE’17, pages 308–318, Oct. 2017. ISSN:.

[43] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. RERAN: Timing- and Touch-
sensitive Record and Replay for Android. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE’13, pages 72–81, San Francisco, CA,
USA, 2013. IEEE Press.

[44] G. Grano, A. Ciurumelea, S. Panichella, S. Palomba, and H. Gall. Exploring
the integration of user feedback in automated testing of android applications.
In Proceedings of the 25th IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER ’18, 2018.

[45] T. Gu, C. Cao, T. Liu, C. Sun, J. Deng, X. Ma, and J. Lü. AimDroid: Activity-
Insulated Multi-level Automated Testing for Android Applications. In 2017
IEEE International Conference on Software Maintenance and Evolution (ICSME),
ICSME’17, pages 103–114, Sept. 2017. ISSN:.

[46] Z. Gu, E. Barr, D. Hamilton, and Z. Su. Has the bug really been fixed? In Soft-
ware Engineering, 2010 ACM/IEEE 32nd International Conference On, volume 1
of ICSE’10, pages 55–64, May 2010.

[47] J. Gui, S. Mcilroy,M. Nagappan, andW. G. J. Halfond. Truth in Advertising: The
Hidden Cost of Mobile Ads for Software Developers. In Proceedings of the 37th
International Conference on Software Engineering - Volume 1, ICSE ’15, pages
100–110, Florence, Italy, 2015. IEEE Press.

[48] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy. Characterizing and
Predicting Which Bugs Get Fixed: An Empirical Study of Microsoft Windows.
In Proceedings of the 32Nd ACM/IEEE International Conference on Software En-
gineering - Volume 1, ICSE ’10, pages 495–504, Cape Town, South Africa, 2010.
ACM.

[49] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia. Understanding
android fragmentation with topic analysis of vendor-specific bugs. In Proceed-
ings of the 2012 19th Working Conference on Reverse Engineering, WCRE ’12,
pages 83–92, Washington, DC, USA, 2012. IEEE Computer Society.

[50] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan. PUMA: Programmable
UI-automation for Large-scale Dynamic Analysis of Mobile Apps. In Proceed-
ings of the 12th Annual International Conference on Mobile Systems, Applica-
tions, and Services, MobiSys ’14, pages 204–217, Bretton Woods, New Hamp-
shire, USA, 2014. ACM.

[51] G. Hu, X. Yuan, Y. Tang, and J. Yang. Efficiently, Effectively Detecting Mobile
App Bugs with AppDoctor. In Proceedings of the Ninth European Conference
on Computer Systems, EuroSys ’14, pages 18:1–18:15, Amsterdam, The Nether-
lands, 2014. ACM.

[52] Y. Hu, T. Azim, and I. Neamtiu. Versatile Yet Lightweight Record-and-replay for
Android. In OOPSLA’15, OOPSLA 2015, pages 349–366, Pittsburgh, PA, USA,
2015. ACM.

[53] R. Jabbarvand, A. Sadeghi, J. Garcia, S. Malek, and P. Ammann. Ecodroid: An
approach for energy-based ranking of android apps. In Proceedings of the Fourth
International Workshop on Green and Sustainable Software, GREENS ’15, pages
8–14, Piscataway, NJ, USA, 2015. IEEE Press.

[54] G. Jeong, S. Kim, and T. Zimmermann. Improving Bug Triage with Bug Tossing
Graphs. In Proceedings of the the 7th Joint Meeting of the European Software En-
gineering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ESEC/FSE ’09, pages 111–120, Amsterdam, The Nether-
lands, 2009. ACM.

[55] W. Jin and A. Orso. BugRedux: Reproducing Field Failures for In-house Debug-
ging. In Proceedings of the 34th International Conference on Software Engineering,
ICSE ’12, pages 474–484, Zurich, Switzerland, 2012. IEEE Press.

[56] W. Jin and A. Orso. F3: Fault Localization for Field Failures. In Proceedings of
the 2013 International Symposium on Software Testing and Analysis, ISSTA’13,
pages 213–223, Lugano, Switzerland, 2013. ACM.

[57] N. Jones. Seven best practices for optimizing mobile testing efforts. Technical
Report G00248240, Gartner.

[58] M. Joorabchi, M. Mirzaaghaei, and A. Mesbah. Works for Me! Characterizing
Non-reproducible Bug Reports. In Proceedings of the 11th Working Conference
on Mining Software Repositories, MSR’14, pages 62–71, Hyderabad, India, 2014.
ACM.

[59] M. E. Joorabchi, M. Ali, and A. Mesbah. Detecting inconsistencies in multi-
platform mobile apps. In 2015 IEEE 26th International Symposium on Software
Reliability Engineering (ISSRE), ISSRE’15, pages 450–460, Nov. 2015.

[60] H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan. Prioritizing the Devices
to Test Your App on: A Case Study of Android Game Apps. In Proceedings of
the 22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE’14, pages 610–620, Hong Kong, China, 2014. ACM.

[61] F. M. Kifetew, W. Jin, R. Tiella, A. Orso, and P. Tonella. Reproducing Field
Failures for Programs with Complex Grammar-Based Input. In 2014 IEEE Sev-
enth International Conference on Software Testing, Verification and Validation,
ICST’14, pages 163–172, Mar. 2014.

[62] D. Kim, Y. Tao, S. Kim, and A. Zeller. Where Should We Fix This Bug? A Two-
Phase Recommendation Model. Software Engineering, IEEE Transactions on,
39(11):1597–1610, Nov. 2013.

[63] S. Kim, T. Zimmermann, and N. Nagappan. Crash graphs: An aggregated view
of multiple crashes to improve crash triage. In Dependable Systems Networks
(DSN), 2011 IEEE/IFIP 41st International Conference On, DSN’11, pages 486–493,
June 2011.

[64] A. G. Koru and J. Tian. Defect Handling in Medium and Large Open Source
Projects. IEEE Softw., 21(4):54–61, July 2004.

[65] V. Lelli, A. Blouin, and B. Baudry. Classifying and Qualifying GUI Defects.
In 2015 IEEE 8th International Conference on Software Testing, Verification and
Validation (ICST), ICST’15, pages 1–10, Apr. 2015.

[66] D. Li and W. G. J. Halfond. Optimizing energy of http requests in android
applications. In Proceedings of the 3rd International Workshop on Software De-
velopment Lifecycle for Mobile, DeMobile 2015, pages 25–28, 2015.

[67] D. Li, S. Hao, J. Gui, and W. G. J. Halfond. An Empirical Study of the Energy
Consumption of Android Applications. In 2014 IEEE International Conference
on Software Maintenance and Evolution, ICSME’14, pages 121–130, Sept. 2014.

[68] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan. Calculating Source Line Level
Energy Information for Android Applications. In Proceedings of the 2013 Inter-
national Symposium on Software Testing and Analysis, ISSTA’13, pages 78–89,
Lugano, Switzerland, 2013. ACM.

[69] D. Li, Y. Lyu, J. Gui, and W. G. J. Halfond. Automated Energy Optimization of
HTTP Requests for Mobile Applications. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, pages 249–260, New York, NY,



Overcoming Language Dichotomies: Toward Effective Program

Comprehension for Mobile App Development ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

USA, 2016. ACM.
[70] D. Li, A. H. Tran, and W. G. J. Halfond. Making Web Applications More En-

ergy Efficient for OLED Smartphones. In Proceedings of the 36th International
Conference on Software Engineering, ICSE’14, pages 527–538, Hyderabad, India,
2014. ACM.

[71] L. Li, T. F. BissyandÃľ, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau, J. Klein,
and L. Traon. Static analysis of android apps: A systematic literature review.
Information and Software Technology, 88:67 – 95, 2017.

[72] Y. Lin, S. Okur, and D. Dig. Study and Refactoring of Android Asynchronous
Programming (T). In 2015 30th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), ASE’15, pages 224–235, Nov. 2015. ISSN:.

[73] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta, R. Oliveto,
and D. Poshyvanyk. API Change and Fault Proneness: A Threat to the Success
of Android Apps. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, FSE’13, pages 477–487, Saint Petersburg, Russia, 2013.
ACM.

[74] M. Linares-Vásquez,G. Bavota, C. Bernal-Cárdenas, R. Oliveto, M. Di Penta, and
D. Poshyvanyk. Mining Energy-greedy API Usage Patterns in Android Apps:
An Empirical Study. In Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR’14, pages 2–11, Hyderabad, India, 2014. ACM.

[75] M. Linares-Vásquez, G. Bavota, C. E. B. Cárdenas, R. Oliveto, M. Di Penta, and
D. Poshyvanyk. Optimizing Energy Consumption of GUIs in Android Apps: A
Multi-objective Approach. In Proceedings of the 2015 10th JointMeeting on Foun-
dations of Software Engineering, FSE’15, pages 143–154, Bergamo, Italy, 2015.
ACM.

[76] M. Linares-Vásquez, G. Bavota, M. Tufano, K. Moran, M. Di Penta, C. Vendome,
C. Bernal-Cárdenas, and D. Poshyvanyk. Enabling Mutation Testing for An-
droid Apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, FSE’17, pages 233–244, Paderborn, Germany, 2017. ACM.

[77] M. Linares-Vásquez, C. Bernal-Cardenas, K. Moran, and D. Poshyvanyk. How
do Developers Test Android Applications? In 2017 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME), ICSME’17, pages 613–622,
Sept. 2017. ISSN:.

[78] M. Linares-Vásquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and D. Poshy-
vanyk. Triaging incoming change requests: Bug or commit history, or code
authorship? In Software Maintenance (ICSM), 2012 28th IEEE International Con-
ference On, pages 451–460, Sept. 2012.

[79] M. Linares-Vásquez, K. Moran, and D. Poshyvanyk. Continuous, Evolutionary
and Large-Scale: ANewPerspective for AutomatedMobile App Testing. In 2017
IEEE International Conference on Software Maintenance and Evolution (ICSME),
ICSME’17, pages 399–410, Sept. 2017. ISSN:.

[80] M. Linares-Vásquez, C. Vendome, Q. Luo, and D. Poshyvanyk. How developers
detect and fix performance bottlenecks in Android apps. In 2015 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME), ICSME’15,
pages 352–361, Sept. 2015. ISSN:.

[81] M. Linares-Vásquez, M. White, C. Bernal-Cárdenas, K. Moran, and D. Poshy-
vanyk. Mining Android App Usages for Generating Actionable GUI-based Ex-
ecution Scenarios. In Proceedings of the 12th Working Conference on Mining
Software Repositories, MSR ’15, pages 111–122, Florence, Italy, 2015. IEEE Press.

[82] M. Linares-VÃąsquez, C. Bernal-CÃąrdenas, G. Bavota, R. Oliveto, M. D. Penta,
and D. Poshyvanyk. Gemma: Multi-objective optimization of energy consump-
tion of guis in android apps. In 2017 IEEE/ACM 39th International Conference
on Software Engineering Companion (ICSE-C), ICSE-C’17, 2017.

[83] Y. Liu, C. Xu, S. Cheung, and J. Lu. GreenDroid: Automated diagnosis of en-
ergy inefficiency for smartphone applications. IEEE Transactions on Software
Engineering, Preprint, 2014.

[84] X. Lu, X. Liu, H. Li, T. Xie, Q. Mei, D. Hao, G. Huang, and F. Feng. PRADA:
Prioritizing Android Devices for Apps by Mining Large-scale Usage Data. In
Proceedings of the 38th International Conference on Software Engineering, ICSE
’16, pages 3–13, New York, NY, USA, 2016. ACM.

[85] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An Input Generation System
for Android Apps. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, FSE’13, pages 224–234, Saint Petersburg, Russia, 2013.
ACM.

[86] S. Mahajan, N. Abolhasani, P. McMinn, and W. G. Halfond. Automated repair
of mobile friendly problems in web pages. In Proceedings of the International
Conference on Software Engineering (ICSE), May 2018. To Appear.

[87] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey. AUSUM: Approach for Unsu-
pervised Bug Report Summarization. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, FSE ’12,
pages 11:1–11:11, Cary, North Carolina, 2012. ACM.

[88] K. Mao, M. Harman, and Y. Jia. Sapienz: Multi-objective Automated Testing
for Android Applications. In Proceedings of the 25th International Symposium
on Software Testing and Analysis, ISSTA’16, pages 94–105, Saarbr&#252;cken,
Germany, 2016. ACM.

[89] K. Mao, M. Harman, and Y. Jia. Crowd intelligence enhances automated mobile
testing. In 2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), ASE’17, pages 16–26, Oct. 2017. ISSN:.

[90] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman. A survey of app store
analysis for software engineering. IEEE transactions on software engineering,
43(9):817–847, 2017.

[91] T. McDonnell, B. Ray, and M. Kim. An Empirical Study of API Stability and
Adoption in the Android Ecosystem. In Proceedings of the 2013 International
Conference on Software Maintenance, ICSM’13, pages 70–79, 2013.

[92] K. Moran, C. Bernal-Cárdenas, M. Curcio, R. Bonett, and D. Poshyvanyk. Ma-
chine Learning-Based Prototyping of Graphical User Interfaces for Mobile
Apps. ArXiv e-prints, Feb. 2018.

[93] K. Moran, R. Bonett, C. Bernal-Cárdenas, B. Otten, D. Park, and D. Poshyvanyk.
On-Device Bug Reporting for Android Applications. InMobileSOFT’17, Mobile-
Soft’17, May 2017.

[94] K. Moran, B. Li, C. Bernal-Cárdenas, D. Jelf, and D. Poshyvanyk. Automated
Reporting of GUI Design Violations in Mobile Apps. In Proceedings of the 40th
International Conference on Software Engineering Companion, ICSE ’18, page to
appear, Gothenburg, Sweden, 2018. IEEE Press.

[95] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D. Poshyvanyk. Auto-
completing Bug Reports for Android Applications. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, FSE’15, pages 673–
686, Bergamo, Italy, 2015. ACM.

[96] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D. Poshyvanyk. FU-
SION: A Tool for Facilitating and Augmenting Android Bug Reporting. In
ICSE’16, ICSE’16, May 2016.

[97] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and D. Poshy-
vanyk. Automatically Discovering, Reporting and Reproducing Android Ap-
plication Crashes. In 2016 IEEE International Conference on Software Testing,
Verification and Validation (ICST), ICST’16, pages 33–44, Apr. 2016. ISSN:.

[98] K. Moran, M. Tufano, C. Bernal-Cárdenas, M. Linares-Vásquez, G. Bavota,
C. Vendome, M. Di Penta, and D. Poshyvanyk. Mdroid+: A mutation testing
framework for android. In Proceedings of the 40th International Conference on
Software Engineering Companion, ICSE ’18, page to appear, Gothenburg, Swe-
den, 2018. IEEE Press.

[99] H. Muccini, A. Di Francesco, and P. Esposito. Software testing of mobile ap-
plications: Challenges and future research directions. In Proceedings of the 7th
International Workshop on Automation of Software Test, AST ’12, pages 29–35,
Piscataway, NJ, USA, 2012. IEEE Press.

[100] B. Myers. Challenges of HCI Design and Implementation. Interactions, 1(1):73–
83, Jan. 1994.

[101] H. Naguib, N. Narayan, B. Brügge, and D. Helal. Bug Report Assignee Recom-
mendation Using Activity Profiles. In Proceedings of the 10th Working Confer-
ence on Mining Software Repositories, MSR ’13, pages 22–30, San Francisco, CA,
USA, 2013. IEEE Press.

[102] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen. Divide-and-Conquer Ap-
proach for Multi-phase Statistical Migration for Source Code (T). In 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
ASE’15, pages 585–596, Nov. 2015. ISSN:.

[103] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun. Duplicate Bug Re-
port Detection with a Combination of Information Retrieval and Topic Model-
ing. In Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2012, pages 70–79, Essen, Germany, 2012. ACM.

[104] T. A. Nguyen and C. Csallner. Reverse Engineering Mobile Application User
Interfaces with REMAUI. In Proceedings of the 2015 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE’15, pages 248–259,
Washington, DC, USA, 2015. IEEE Computer Society.

[105] D. D. Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and A. D. Lucia.
Software-based energy profiling of android apps: Simple, efficient and reliable?
In 2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering, SANER’17, pages 103–114, Feb 2017.

[106] F. Palomba, M. Linares-Vásquez, G. Bavota, R. Oliveto, M. D. Penta, D. Poshy-
vanyk, and A. D. Lucia. User reviewsmatter! Tracking crowdsourced reviews to
support evolution of successful apps. In 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME), ICSME’15, pages 291–300, Sept.
2015. ISSN:.

[107] F. Palomba, M. Linares-VÃąsquez, G. Bavota, R. Oliveto, M. D. Penta, D. Poshy-
vanyk, and A. D. Lucia. Crowdsourcing user reviews to support the evolution
of mobile apps. Journal of Systems and Software, 137:143 – 162, 2018.

[108] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Ferrucci, and A. D.
Lucia. Recommending and Localizing Code Changes for Mobile Apps based on
User Reviews. In ICSE’17, 2017.

[109] A. Pathak, Y. Hu, and M. Zhang. Bootstrapping Energy Debugging on Smart-
phones: A First Look at Energy Bugs in Mobile Devices. In Hotnets’11, Hot-
nets’11.

[110] A. Pathak, Y. Hu, and M. Zhang. Where is the energy spent inside my app?
Fine Grained Energy Accounting on Smartphones with Eprof. In EuroSys’12,
EuroSys’12, pages 29–42, 2012.

[111] A. Pathak, A. Jindal, Y. Hu, and S. P. Midkiff. What is keeping my phone awake?
Characterizing and Detecting No-Sleep Energy Bugs in Smartphone Apps. In
MobiSys’12, MobiSys’12, pages 267–280, 2012.



ICPC ’18, May 27–28, 2018, Gothenburg, Sweden K. Moran, C. Bernal Cardenas, M. Linares Vasquez et al.

[112] K. Rasmussen, A. Wilson, and A. Hindle. Green mining: energy consumption
of advertisement blocking methods. In GREENS’14, pages 38–45, 2014.

[113] S. Rastkar, G. C. Murphy, and G. Murray. Summarizing Software Artifacts: A
Case Study of Bug Reports. In Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE ’10, pages 505–514, Cape
Town, South Africa, 2010. ACM.

[114] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst, M. A.
Gerosa, M. Godfrey, M. Lanza, M. Linares-Vásquez, G. C. Murphy, L. Moreno,
D. Shepherd, and E. Wong. On-demand Developer Documentation. In 2017
IEEE International Conference on Software Maintenance and Evolution (ICSME),
ICSME’17, pages 479–483, Sept. 2017. ISSN:.

[115] S. Romansky, N. C. Borle, S. Chowdhury, A. Hindle, and R. Greiner. Deep Green:
Modelling Time-Series of Software Energy Consumption. In 2017 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME), ICSME’17,
pages 273–283, Sept. 2017. ISSN:.

[116] R. Saborido, F. Khomh, A. Hindle, and E. Alba. An app performance optimiza-
tion advisor for mobile device app marketplaces. CoRR, abs/1709.04916, 2017.

[117] A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek. A taxonomy and qualitative
comparison of program analysis techniques for security assessment of android
software. IEEE Transactions on Software Engineering, 43(6):492–530, June 2017.

[118] C. Sahin, M. Wan, P. Tornquist, R. McKenna, Z. Pearson, W. G. J. Halfond, and
J. Clause. How does code obfuscation impact energy usage? Journal of Software:
Evolution and Process, pages n/a–n/a, 2016.

[119] R. Sasnauskas and J. Regehr. Intent Fuzzer: Crafting Intents of Death.
In Proceedings of the 2014 Joint International Workshop on Dynamic Analy-
sis and Software and System Performance Testing, Debugging, and Analytics,
WODA+PERTEA’14, pages 1–5, San Jose, CA, USA, 2014. ACM.

[120] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani. Why So Complicated?
Simple Term Filtering and Weighting for Location-based Bug Report Assign-
ment Recommendation. In Proceedings of the 10th Working Conference on Min-
ing Software Repositories, MSR ’13, pages 2–11, San Francisco, CA, USA, 2013.
IEEE Press.

[121] P. Stanley-Marbell, V. Estellers, and M. Rinard. Crayon: saving power through
shape and color approximation on next-generation displays. In Proceedings of
the Eleventh European Conference on Computer Systems, page 11. ACM, 2016.

[122] A. B. Tucker. Computer Science Handbook, Second Edition. Chapman & Hal-
l/CRC, 2004.

[123] M. Wan, Y. Jin, D. Li, and W. G. J. Halfond. Detecting Display Energy Hotspots
in Android Apps. In 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST), ICST’15, pages 1–10, Apr. 2015.

[124] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An Approach to Detecting
Duplicate Bug Reports Using Natural Language and Execution Information. In
Proceedings of the 30th International Conference on Software Engineering, ICSE
’08, pages 461–470, Leipzig, Germany, 2008. ACM.

[125] L. Wei, Y. Liu, and S. C. Cheung. Taming Android fragmentation: Charac-
terizing and detecting compatibility issues for Android apps. In 2016 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE),
ASE’16, pages 226–237, Sept. 2016. ISSN:.

[126] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How Long Will It Take
to Fix This Bug? In Proceedings of the Fourth International Workshop on Mining
Software Repositories, MSR ’07, pages 1–, Washington, DC, USA, 2007. IEEE
Computer Society.

[127] H. Wu, S. Yang, and A. Rountev. Static detection of energy defect patterns
in android applications. In Proceedings of the 25th International Conference on
Compiler Construction, CC’16, pages 185–195, New York, NY, USA, 2016. ACM.

[128] W. Yang, M. R. Prasad, and T. Xie. A Grey-box Approach for Automated GUI-
model Generation of Mobile Applications. In Proceedings of the 16th Interna-
tional Conference on Fundamental Approaches to Software Engineering, FASE’13,
pages 250–265, Rome, Italy, 2013. Springer-Verlag.

[129] H. Ye, S. Cheng, L. Zhang, and F. Jiang. DroidFuzzer: Fuzzing the Android Apps
with Intent-Filter Tag. In Proceedings of International Conference on Advances
in Mobile Computing &#38; Multimedia, MoMM ’13, pages 68:68–68:74, Vienna,
Austria, 2013. ACM.

[130] R. N. Zaeem, M. R. Prasad, and S. Khurshid. Automated Generation of Oracles
for Testing User-Interaction Features of Mobile Apps. In Proceedings of the 2014
IEEE International Conference on Software Testing, Verification, and Validation,
ICST ’14, pages 183–192, Washington, DC, USA, 2014. IEEE Computer Society.

[131] J. Zhou and H. Zhang. Learning to Rank Duplicate Bug Reports. In Proceed-
ings of the 21st ACM International Conference on Information and Knowledge
Management, CIKM ’12, pages 852–861, Maui, Hawaii, USA, 2012. ACM.

[132] J. Zhou, H. Zhang, and D. Lo. Where Should the Bugs Be Fixed? - More Accu-
rate Information Retrieval-based Bug Localization Based on Bug Reports. In
Proceedings of the 34th International Conference on Software Engineering, ICSE
’12, pages 14–24, Zurich, Switzerland, 2012. IEEE Press.


	Abstract
	1 Introduction
	2 A Brief Introduction to Mobile Software Development
	2.1 Unique Aspects of the Mobile Development Process

	3 The State of Research in Mobile Software Development
	3.1 App Store Analysis
	3.2 App Security Analysis
	3.3 Mobile Testing
	3.4 Building Effective User Interfaces
	3.5 Static Program Analysis for Mobile Apps
	3.6 Energy & Performance Analysis
	3.7 Mobile Fragmentation

	4 Challenges in Program Comprehension for Mobile Apps
	4.1 Natural Language vs. Code
	4.2 Code vs. Graphical User Interfaces
	4.3 Natural Language vs. Graphical User Interfaces
	4.4 Event Sequences vs. Natural Language & GUIs

	5 Future Trends in Program Comprehension for Mobile Apps
	6 Conclusion
	Acknowledgments
	References

