
Learning Lexical Features of Programming Languages from
Imagery Using Convolutional Neural Networks

Jordan Ott, Abigail Atchison, Paul Harnack, Natalie Best, Haley Anderson, Cristiano Firmani,
Erik Linstead

Machine Learning and Assistive Technology Lab

Schmid College of Science and Technology

Chapman University

Orange, California

{ott109,atchi102,harna100,best120,ander427,firma103}@mail.chapman.edu,linstead@chapman.edu

ABSTRACT

We demonstrate the ability of deep architectures, specifically con-

volutional neural networks, to learn and differentiate the lexical

features of different programming languages presented in coding

video tutorials found on the Internet. We analyze over 17,000 video

frames containing examples of Java, Python, and other textual and

non-textual objects. Our results indicate that not only can computer

vision models based on deep architectures be taught to differenti-

ate among programming languages with over 98% accuracy, but

can learn language-specific lexical features in the process. This

provides a powerful mechanism for carrying out program compre-

hension research on repositories where source code is represented

with imagery rather than text, while simultaneously avoiding the

computational overhead of optical character recognition.

CCS CONCEPTS

•Computer systems organization→Neural networks; • Soft-

ware and its engineering→ Software libraries and reposito-

ries;

KEYWORDS

deep learning, convolutional neural networks, program syntax

ACM Reference Format:

Jordan Ott, Abigail Atchison, Paul Harnack, Natalie Best, Haley Anderson,

Cristiano Firmani, Erik Linstead. 2018. Learning Lexical Features of Pro-

gramming Languages from Imagery Using Convolutional Neural Networks.

In ICPC ’18: ICPC ’18: 26th IEEE/ACM International Confernece on Program

Comprehension , May 27–28, 2018, Gothenburg, Sweden. ACM, New York, NY,

USA, 4 pages. https://doi.org/10.1145/3196321.3196359

1 INTRODUCTION

In recent years, the state-of-the-art in computer vision techniques

have converged on deep learning solutions based on artificial neu-

ral networks. In particular, convolutional neural networks (CNNs)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5714-2/18/05. . . $15.00
https://doi.org/10.1145/3196321.3196359

have demonstrated the ability to learn high-order features in im-

agery which can be leveraged for both supervised and unsupervised

machine learning tasks. While this has led to a wide variety of ap-

plications in areas such as medical informatics and autonomy, the

inherently textual nature of source code has left CNNs relatively

unexplored in the software engineering community.

Despite the textual nature of source code, substantial volumes

of software data remain embedded in images and video as part of

technical tutorials available on the Internet. This data provides an

opportunity for new directions in program comprehension research,

particularly the ability of computer vision models to learn visual

differences, such as syntax, among programming languages in the

same way that human eyes perceive these features when looking

at code. If computer vision models are capable of learning such

features, these models can form the basis of new techniques for the

automated understanding of code in images and videos that is not

predicated on optical character recognition to first convert the data

into text.

In this paper we apply, for the first time, CNNs to the task of

learning lexical features from image-based representations of pro-

grams, focusing on Java and Python for a pilot study. Leveraging a

training set of 17,500 hand-labeled images, we are able to achieve

98.73% cross-validated accuracy distinguishing Java and Python,

and 92.50% accuracy distinguishing Java and Python from non-code

data. Using class activation mapping (CAM) [16] as a visualization

technique, we can see that our CNN models are learning low-level

lexical features of programming languages as part of the training

process, similar to cues a human uses to differentiate one language

from another.

2 DATA

As a first step in exploring the suitability of CNNs for identifying

lexical features of programming languages, we cultivated a corpus

of 100 tutorials consisting of approximately 50 hours of video from

YouTube. A diverse set of Integrated Development Environments

(IDEs), text editors, font sizes, and text colors appear in the dataset.

We focused on the Java and Python programming languages for

the experiments described here. All 100 videos were downloaded to

our server and segmented into a discrete image set by sampling at

a rate of one frame per second. This resulted in 160,500 unlabeled

images. These images were then filtered manually to exclude frames

with code examples that were obstructed or obscured in any way,

or contained handwritten code (such as on a whiteboard). This

336

2018 ACM/IEEE 26th International Conference on Program Comprehension

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3196321.3196359&domain=pdf&date_stamp=2018-05-28

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Ott et al.

Binary Classification
Training Set Testing Set

Java Python Java Python

Java vs Python 4,853 2,514 1,215 630

Categorical Classification
Training Set Testing Set

Java Python NC Java Python NC

Java vs Python vs NC 4,853 2,514 5,495 1,215 630 1,370

Table 1: Average data set size of each cross validation fold.

step was taken to ensure that the CNNs could leverage full textual

context as part of the learning process. In the future it would be

worthwhile to explore the ability of the models to generalize to

obscured or handwritten code.

As with all supervised learning methods, the ability of CNNs to

achieve high classification accuracy is predicated on the availability

of accurately labeled training data. To label as many images as

accurately and efficiently as possible, help was solicited from ap-

proximately 50 students enrolled in freshman and sophomore-level

courses focusing on programming in Java and Python. Students

were asked to label images as coming from one of three categories:

containing Java code, containing Python code, or not containing

either Java or Python. This process resulted in a final image set of

17,500 frames. Due to differing resolutions in our video corpus, as

well as a need for uniform input sizes in the first layer of our neural

networks, all images were rescaled to 500x500 pixels.

3 METHODS

Structured input data, such as images, lose their spatial relationships

when passed through traditional fully-connected, feed-forward arti-

ficial neural networks (ANNs). This is problematic for applications

such as computer vision since image features are comprised of

groups of pixels. Convolutional Neural Networks represent an al-

ternative ANN architecture that is able to maintain spatial relations

between pixels by convolving the input space with a multidimen-

sional weight matrix, commonly referred to as a filter. Training

CNNs with backpropagation was first proposed by LeCunn et al.

[7]. CNNs use a shared weight paradigm to reduce the number of

trained parameters, and as a result scale better compared to their

fully-connected counterparts. Weight sharing also builds transla-

tional invariance into the learned model, so that features can be

recognized despite their specific location in the image.

In this paper, we leverage the VGG [11] network, a popular

CNN architecture, to distinguish between Java and Python in video

frames. The VGG network has a convenient architecture in which

multiple convolutional operations occur in succession, followed by

a max pooling layer, which has the effect of downsampling high-

dimensional pixel spaces. After these layers have been repeated

several times, a fully connected output layer, typically implement-

ing a softmax function, is added. For our experiments, the VGG

architecture was implemented in Python using the Keras API with

a TensorFlow backend using two NVidia P100 GPUs with 16 GBs

of memory and 3,584 CUDA cores each.

4 RESULTS

Convolutional neural networks were trained using 5-fold cross-

validation for the two experiments detailed in Table 1. Each convo-

lutional model took, on average, 2.5 hours per fold to train, for a

total of 37.5 computing hours of training for all folds in all models.

In practice, the overall time was decreased by training models in

parallel by taking advantage of multiple GPUs on our deep learning

server.

The mean accuracies of the 5-fold cross-validation experiments

for each classifier are detailed below. A mean accuracy of 98.73%

(median 98.75%) is achieved on the binary classification task of

predicting Java versus Python typeset visible code. Including a

third category of no code, yields an accuracy of 92.50% (median

92.60%). This accuracy was achieved when both Java and Python

datasets contained only visible typeset code.

Figure 1 shows CAM results on correctly predicted Java code im-

age frames. Additional CAM figures are available in the supplemen-

tary material. The heatmap produced by CAM can be interpreted

by the degree of redness in a given region. The more red a region

is, the more weight the network associates with features in that

area to formulate its output prediction. In Figure 1, the left column

shows examples from the test set, while the right column shows

the CAM overlaid on the corresponding test image. The first row

shows an example of correctly predicted Java typeset code, while

the second shows a Python image frame. Visual analysis of the

CAM result images reveals the network’s preference towards Java

and Python specific features such as method and class declarations,

semicolons, and curly brackets. For example, the Java example in

Figure 1 shows the network’s strong preference for curly brackets

when predicting Java as the category. The Python image directly

below it shows strong preference for the de f keyword as well as
Python’s indentation pattern. The results of Figure 1 show the net-

work is capable of learning lexical and contextual features of image

code frames.

To ensure our method can distinguish between Java and Python

in homogeneous settings, we present the CAM results in Figure

2. Like Figure 1, the left column shows examples from the test

set, while the right column shows the CAM overlaid on the corre-

sponding test image. Both Java and Python code snippets are of

the Quicksort algorithm. Each line is semantically the same, only

differing in the languages appropriate syntax. The first row shows

an example of correctly predicted Java typeset code, while the sec-

ond shows a Python image frame. The Java CAM image shows

the network identifies curly brackets, semicolons, backslashes for

comments, and keywords such as public and private. The Python

CAM image highlights then end of lines, indicating an absence of

semicolons. These results show that convolutional networks, such

337

Learning Lexical Features of Programming Languages from Imagery Using Convolutional Neural Networks ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Figure 1: CAM results on correctly predicted Java (top) and Python (bottom) code image frames. The left column shows the

normal test image. The right column shows the CAM results overlaid on the test image.

as the ones used in this study, are capable of learning, visually,

lexical differences between programming languages.

Using CAM, we are able to visualize what regions of input images

the network attends to when making its classification prediction.

This allows us to ensure the network is learning features directly

related to the language’s syntax and not other circumstantial fea-

tures contained in the images (IDE/text editor features). Additional

CAM results, as well as the convolutional architecture used for

the artificial neural networks in this study, are available in the

supplementary material: https://github.com/mlat/icpc.

5 RELATEDWORKS

The application of deep learning to the study of natural language

represented as text was conducted in [2]. The authors leveraged

a single CNN architecture to predict part-of-speech tags, chunks,

named entity tags, as well as other semantic attributes given an

input sentence. The authors in [6] use recurrent neural network

grammars to identify and learn heads of phrases in order to deter-

mine the syntactic category of a natural language phrase. In [1], the

authors propose a modular ANN architecture for lexical analysis of

natural language in the form of a continuous input stream.

Digital image processing in the code recognition domain is out-

lined in [10]. In this study, the authors look to identify Java code

in video frames through the application of OCR to candidate sub

frames. In [14], the authors use language specific statistical model-

ing to identify code regions appearing across frames. In [9], deep-

learning is applied to this domain through the application of con-

volutional neural networks to Java programming tutorials. This

approach allows for a more scalable solution to video indexing

while still maintaining accuracy. In this study, we extend this deep

learning approach, focusing on building a single model that can

differentiate between multiple languages while learning lexical

features in the process.

The in-depth analysis of source code samples, although not in

the form of images, has been explored in depth over the past decade.

The study of vocabulary trends throughout Java software develop-

ment is conducted in [8]. Others have sought to classify languages

given source code samples. In [15], the authors present a maximum

entropy classifier. The work in [12] employs a support vector ma-

chine based classifier while a statistical analysis of program features

is conducted in [5]. In [4], a Multinomial Naive Bayes classifier is

used and a modified Kneser-Ney discounting classifier is presented

in [13]. The application of a CNN to language classification comes

in [3]. This paper demonstrates the efficiency and accuracy of ap-

plying CNNs to the problem of classifying textual source code.

While previous work shares our goal of leveraging language

features to classify programming languages, we believe our study

338

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Ott et al.

Figure 2: CAM results on correctly predicted Java (top) and Python (bottom) code image frames, of the Quicksort algorithm.

The left column shows the normal test image. The right column shows the CAM results overlaid on the test image.

represents the first use of deep learning to do this using native

images instead of text.

REFERENCES
[1] Chun-Hsien Chen and V. Honavar. 1999. A neural-network architecture for

syntax analysis. IEEE Transactions on Neural Networks 10, 1 (1999), 94–114.
https://doi.org/10.1109/72.737497

[2] Ronan Collobert and Jason Weston. 2008. A Unified Architecture for Natural
Language Processing: Deep Neural Networks with Multitask Learning. In Pro-
ceedings of the 25th International Conference on Machine Learning (ICML ’08).
ACM, New York, NY, USA, 160–167. https://doi.org/10.1145/1390156.1390177

[3] S. Gilda. 2017. Source code classification using Neural Networks. In 2017 14th
International Joint Conference on Computer Science and Software Engineering
(JCSSE). 1–6. https://doi.org/10.1109/JCSSE.2017.8025917

[4] Jyotiska Nath Khasnabish, Mitali Sodhi, Jayati Deshmukh, and G. Srinivasaragha-
van. 2014. Detecting Programming Language from Source Code Using Bayesian
Learning Techniques. InMachine Learning and Data Mining in Pattern Recognition,
Petra Perner (Ed.). Springer International Publishing, Cham, 513–522.

[5] David Klein, Kyle Murray, and Simon Weber. 2011. Algorithmic Programming
Language Identification. CoRR abs/1106.4064 (2011). arXiv:1106.4064 http://arxiv.
org/abs/1106.4064

[6] Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong, Chris Dyer, Graham
Neubig, and Noah A. Smith. 2016. What Do Recurrent Neural Network Grammars
Learn About Syntax? CoRR abs/1611.05774 (2016). arXiv:1611.05774 http://arxiv.
org/abs/1611.05774

[7] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[8] Erik Linstead, Lindsey Hughes, Cristina Lopes, and Pierre Baldi. 2009. Exploring
Java software vocabulary: A search and mining perspective. In Proceedings of

the 2009 ICSE Workshop on Search-Driven Development-Users, Infrastructure, Tools
and Evaluation. IEEE Computer Society, 29–32.

[9] Jordan Ott, Abigail Atchison, Paul Harnack, Adrienne Bergh, and Erik Linstead.
2018. A Deep Learning Approach to Identifying Source Code in Images and Video.
In 2018 IEEE/ACM 15th International Conference on Mining Software Repositories
(MSR).

[10] Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano Di Penta, Rocco
Oliveto, Mir Hasan, Barbara Russo, Sonia Haiduc, and Michele Lanza. 2016. Too
long; didn’t watch!: extracting relevant fragments from software development
video tutorials. In Proceedings of the 38th International Conference on Software
Engineering. ACM, 261–272.

[11] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[12] Secil Ugurel, Robert Krovetz, and C. Lee Giles. 2002. What’s the Code?: Automatic
Classification of Source Code Archives. In Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’02).
ACM, New York, NY, USA, 632–638.

[13] J. K. v. Dam and V. Zaytsev. 2016. Software Language Identification with Natural
Language Classifiers. In 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), Vol. 1. 624–628. https://doi.org/
10.1109/SANER.2016.92

[14] Shir Yadid and Eran Yahav. 2016. Extracting code from programming tutorial
videos. In Proceedings of the 2016 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software. ACM, 98–111.

[15] Shaul Zevin and Catherine Holzem. 2017. Machine Learning Based Source Code
Classification Using Syntax Oriented Features. CoRR abs/1703.07638 (2017).
arXiv:1703.07638 http://arxiv.org/abs/1703.07638

[16] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
2016. Learning deep features for discriminative localization. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2921–2929.

339

