
This is a repository copy of Restmule : Enabling resilient clients for remote APIs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/135104/

Version: Published Version

Proceedings Paper:
Sanchez, Beatriz A., Barmpis, Konstantinos, Neubauer, Patrick orcid.org/0000-0002-9811-
4772 et al. (2 more authors) (2018) Restmule : Enabling resilient clients for remote APIs.
In: Proceedings - 2018 ACM/IEEE 15th International Conference on Mining Software
Repositories, MSR 2018. 15th ACM/IEEE International Conference on Mining Software
Repositories, MSR 2018, co-located with the 40th International Conference on Software
Engineering, ICSE 2018, 28-29 May 2018 IEEE Computer Society , SWE , pp. 537-541.

https://doi.org/10.1145/3196398.3196405

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

RestMule: Enabling Resilient Clients for Remote APIs

Beatriz A. Sanchez
Department of Computer Science

University of York

York, UK

basp500@york.ac.uk

Konstantinos Barmpis
Department of Computer Science

University of York

York, UK

konstantinos.barmpis@york.ac.uk

Patrick Neubauer
Department of Computer Science

University of York

York, UK

patrick.neubauer@york.ac.uk

Richard F. Paige
Department of Computer Science

University of York

York, UK

richard.paige@york.ac.uk

Dimitrios S. Kolovos
Department of Computer Science

University of York

York, UK

dimitris.kolovos@york.ac.uk

ABSTRACT

Mining data from remote repositories, such as GitHub and StackEx-

change, involves the execution of requests that can easily reach the

limitations imposed by the respective APIs to shield their services

from overload and abuse. Therefore, data mining clients are left

alone to deal with such protective service policies which usually

involves an extensive amount of manual implementation effort. In

this work we present RestMule, a framework for handling vari-

ous service policies, such as limited number of requests within a

period of time and multi-page responses, by generating resilient

clients that are able to handle request rate limits, network failures,

response caching, and paging in a graceful and transparent manner.

As a result, RestMule clients generated from OpenAPI specifi-

cations (i.e. standardized REST API descriptors), are suitable for

intensive data-fetching scenarios. We evaluate our framework by

reproducing an existing repository mining use case and comparing

the results produced by employing a popular hand-written client

and a RestMule client.

CCS CONCEPTS

• Information systems → RESTful web services; • Software

and its engineering→ Reusability; Error handling and recovery;

KEYWORDS

Resilience, OpenAPI Specification, HTTP API Clients

ACM Reference Format:

Beatriz A. Sanchez, Konstantinos Barmpis, Patrick Neubauer, Richard F.

Paige, and Dimitrios S. Kolovos. 2018. RestMule: Enabling Resilient Clients

for Remote APIs. In MSR ’18: MSR ’18: 15th International Conference on

Mining Software Repositories , May 28–29, 2018, Gothenburg, Sweden. ACM,

New York, NY, USA, 5 pages. https://doi.org/10.1145/3196398.3196405

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR’18, May 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196405

1 INTRODUCTION

Research in the area of Mining Software Repositories (MSR) [6]

investigates challenges associated with handling information that

originate from public software development data sets, source code

repositories, Q&A knowledge bases, requirements and issue track-

ing systems, and are commonly offered by service providers in form

of remote APIs.

Service providers commonly constrain the access to public data

sets in term of service policies to protect their services from satu-

ration and abuse. For example, such protective measures may be

implemented by imposing a limit to the number and rate of client

requests, returning multi-page responses, and black-listing abu-

sive clients. However, there are a number of research applications,

such as evaluating the popularity of software technologies [7, 9],

that require the execution of a number of requests to remote APIs

that easily exceed rate limits imposed by service provides. Conse-

quently, as a result of requiring clients to handle service provider

policies during the execution of their collection and analysis tasks,

their implementation is considered to be a cumbersome and time-

consuming activity [5].

Although some service providers offer client libraries for their

services in a variety of programming languages and thus greatly

reduce implementation effort by providing an abstraction from low-

level remote API behavior, such as informal client-server interaction

contracts over the native HTTP protocol, such a library usually

(i) does not address server-side protection mechanisms, such as

request throttling, (ii) requires extensive manual implementation

effort during its development and maintenance, and (iii) is limited

by the functionality and behavior exposed through its operations.

Research in the area of MSR has brought to light a set of reusable

frameworks, such as BOA [4], as well as replications of public repos-

itories, such as GHTorrent [5], the Stack Exchange’s Data Dump [2]

and the Maven Repository Dataset [12], that enable bypassing ser-

vice provider policies. However, employing data sets mirroring

large public repositories exposes several challenges, like the re-

quirement of (i) maintaining a large infrastructure to import, store,

maintain, and provide access to mirrored repository information,

(ii) handling inconsistencies in replicated data sets [5], and (iii)

dealing with outdated information.

The work presented in this paper offers an approach, which

has been implemented in terms of the RestMule framework, that

537

2018 ACM/IEEE 15th International Conference on Mining Software Repositories

MSR’18, May 2018, Gothenburg, Sweden B. Sanchez et al.

addresses several repository mining challenges by providing a solu-

tion to semi-automatically generate resilient clients from standard-

ized REST API specifications. In general, our approach generates

executable clients for remote APIs that are formally defined in

terms of OpenAPI [10] specifications, which has been proposed

as a machine-readable format for describing the architecture of

services offered as RESTful remote APIs [11]. Moreover, resilience

is achieved by specifying service policies, such as rate limits and

pagination, and handling them, as well as network failures and

response caching, accordingly and in a graceful and transparent

manner.

Roadmap. The rest of the paper is structured as follows. Sec-

tion 2 presents our approach alongside its architecture and design

within the RestMule framework. Section 3 demonstrates the eval-

uation of our framework by reproducing an existing repository

mining use case based on GitHub and comparing the respective

results produced by employing a prominent hand-coded client and

a RestMule-generated client. Section 4 compares with existing

literature and frameworks in the area of intense data collection and

Mining Software Repositories, in general. Section 5 concludes our

work by summarizing findings and highlighting future work.

2 APPROACH

This section presents our approach on semi-automated generation

of resilient clients by focusing on the design and architectural com-

ponents of its implementation within the RestMule framework1.

2.1 Architecture and Design

The RestMule framework is designed on a layered architecture

to reduce the coupling between the two main components, i.e.,

RestMule core and RestMule codegen, as well as to reduce the

amount of generated code.

In general, the RestMule core component, c.f. circle 1 in Fig. 1,

and the RestMule codegen component, c.f. circle 2 in Fig. 1, act as

general purpose layer and API-specific layer, respectively. Moreover,

the general purpose layer encapsulates the functionality that can

be shared across different API-specific components. The RestMule

API client component, c.f. circle 3 in Fig. 1, is responsible to bridge

the gap between the functionalities offered by the RestMule core

component and API-specific RestMule-generated clients. Rest-

Mule has been designed to return Data Access Objects (DAOs) that

handle the different types of successful HTTP response payloads as

well as provide insights to the data acquisition status. The entities

responsible for submitting requests to the service provider are wrap-

pers of plain API requests. Furthermore, these entities (inner clients)

offer a list of services that encapsulate and handle various aspects

of the system, such as API-specific request-limits and pagination.

The RestMule framework defines a number of inner clients that

is equal to the number of rate request limit policies implemented

by the service provider. For example, GitHub implemented two

different request limit policies for two different groups of HTTP

endpoints, i.e., one for those starting with /search/* and one for

all other endpoints, and thus requires defining two inner clients to

handle both groups of endpoints appropriately.

1https://github.com/beatrizsanchez/RestMule

Inner clients are associated to user sessions, i.e., employed to

authenticate HTTP requests, and may affect the request rate limit

value of individual endpoint groups. For example, in GitHub the

aforementioned /search/* endpoints (only) allow 10 request per

minute to a public session and 30 requests per minute to an au-

thenticated session. RestMule abstracts multiple inner clients by

providing users with a single entrypoint that offers services and

delegates their execution to any appropriate inner client. Moreover,

in case a response is available as a valid cache entry, no request is

issued to the service provider.

Resilient Client Generator. In general, the resilient client gen-

erator, c.f. circle 2 in Fig. 1, takes an OpenAPI Specifications (OAS)

in JSON as well as a service policy description as input and produces

a RestMule model that conforms to the RestMule metamodel. In more

detail, the service policy description is represented by an Epsilon

Object Language (EOL) [8] script and contains information, such

as pagination and rate-limits. Finally, the RestMule model, which

conforms to the RestMule metamodel, c.f. Fig. 2 for a simplified ver-

sion, is consumed by the M2T transformation for the generation of

the resilient Java client, c.f. circle 3 in Fig. 1. The generated code is

structured as an Eclipse Plugin2 and can be employed as Java library

by third party-applications. In the following we describe function-

alities and behaviors that are shared among RestMule-generated

clients.

Data Access Objects (DAOs). In addition to simple types, Rest-

Mule API client can handle three types of HTTP response pay-

loads: single objects, arrays of objects, and objects containing point-

ers to data needing to be fetched (wrappers). The latter two may

contain information regarding limitations on the number of items to

be provided or stored, specially if they are in disagreement with the

total count returned by the service provider. For example, GitHub

returns details of a maximum of 1000 items as well as 100 items per

page but its response may indicate that a total of 2000 items have

been found, i.e., addressed by the RestMule API client in terms

of supporting capped results.

The data returned by the DAOs implements the Observer inter-

face (from RxJava3). Both types of aforementioned DAOs return

ReplaySubjects, which keep a copy of the data pushed to its sub-

scribers such that all observers can get the same data upon request.

Pagination and Wrappers. To manage paged responses from

the remote sources, two components are used: page traversal and

response body wrapping. For the page traversal strategy, Rest-

Mule core is used by RestMule API client, with the API-specific

pagination parameters provided and relevant methods defined. Re-

sponse body wrappers wrap appropriate responses to provide com-

mon accessors to be used within the page traversal methods. As

various sources may define different collection schemas, they are

API-specific. For example the one for GitHub provides the mapping

to the specific JSON fields that GitHub provides.

As data is retrieved through callbacks, the handling of these

responses (successful or unsuccessful – of asynchronously-sent

requests) for different pages that are associated to the same result

2https://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.
html
3https://github.com/ReactiveX/RxJava

538

RestMule: Enabling Resilient Clients for Remote APIs MSR’18, May 2018, Gothenburg, Sweden

RestMule CORE

RestMule API

CLIENT

consumes

RestMule CODEGEN

OAS (JSON) RestMule (ecore)

Service Policy (EOL)

consumes

Validation (EOL)

produces

consumes/produces

M2T (EGX)

M2M (ETL) produces

consumes/produces

consumes

Model File

Metamodel

File

Scripts

Conforms to

Consumes/Produces

Uses

Eclipse Plugin

Components

Figure 1: RestMule Architecture Figure 2: Simplified RestMule Metamodel

data set is needed. RestMule uses the abstractions provided by the

OkHttp library4, which deals with asynchronous response types.

Sessions. They are currently used within the HTTP interceptors

context to update the request rates available to the user every time a

new response is received from the Internet; this verifies that a given

session has a non empty request allowance before dispatching them

to the network. The relevant generated API-specific classes provide

methods to create sessions based on the supported authentication

schemes offered by the service provider. These methods return a

session interface which can be used to access its request limits.

InnerClients andMainEntrypoint. The RestMuleAPI client

layer exposes API calls that hide pagination and request limit

handling to the end-user and return Data Access Objects. This

is achieved by delegating the API calls to inner clients that use dif-

ferent request dispatcher engines to deal with specific request-limit

policies regardless of the authentication scheme used to identify

the user. Based on the pagination policy employed by the service-

provider (e.g. page numbered, limit-offset), the inner clients know

how to traverse the pages of a multi-part response from the server.

The request dispatcher engine will monitor the request allowance

based on the user session and await for allowances to be refilled

before sending further requests to the network.

The main entrypoint for the user is a facade to the exposed meth-

ods of the multiple inner clients; it is responsible for instantiating

the inner clients based on the configuration that the user passes to

its builder (e.g. allow caching, user session).

Caching. This is defined in the core layer; API-specific exten-

sions are generated which define how to load and put index entries

that represent HTTP responses. Since the OkHttp library used by

RestMule offers reliable caching capabilities, these are the ones

currently used by the system. If more fine-grained control of the

cache is desired though, RestMule allows for the incorporation of

a custom manager instead.

3 EVALUATION

In order to gain confidence that RestMule is able to offer its in-

tended capabilities, a two-way evaluation has been performed be-

tween RestMule and a popular Java-based GitHub API client5,

i.e., referred to as GAJ in the sequel, using the methodology of

a published case-study. This evaluation aims at reproducing the

4https://github.com/square/okhttp
5https://github.com/kohsuke/github-api

experiment methodology published in previous work that assessed

the use of MDE technologies [9], using RestMule. In that work,

hand-written imperative code in a Javascript-like language was

used to obtain data from GitHub regarding the use of 18 different

model-driven engineering technologies. The resulting data com-

prised (i) the number of repositories using these technologies, (ii)

the number of files in those repositories that contained code written

in the relevant MDE language, and (iii) the commits and authors of

those files.

Method. To evaluate the functionality of RestMule, we gener-

ated a client for GitHub’s HTTPAPI v36 from an unofficial OpenAPI

Specification7 in JSON. The resilient Java client is generated with

the aid of the RestMuleMetamodel as well as a service policy script

that captures restrictions imposed on requests and pagination.

To reproduce the analysis workflow used to assess MDE techolo-

gies ([9]), an initial search on GitHub is performed looking for all

files that, for a given MDE technology, contain a specific keyword

and have a specific file extension that identifies a technology. This

query is repeated for each of the 18 technologies in question. Since

GitHub imposes a limit of 1000 results regardless of the type of

query, and since such queries may return more than this number,

the following workaround was used in that study: For each of the

files returned, a new search is performed to access the repository of

the file, then a new query is used to retrieve all files that contain the

keyword and file extension on that repository. This is in hope that

more relevant files can be retrieved than in the initial limited search

query. From this new set of files, other information is extracted

like (1) the number of commits a file has been involved in and (ii)

the number of authors that have written these commits. With this

information it is possible to generate statistics like total number of

repositories, total number of files, estimated number of developers

(based on commit authors), etc.

This evaluation considers (i) asynchronous page traversal, i.e.,

single multi-paged requests, (ii) variable request policies, i.e., for

groups of API endpoints, (iii) response awaiting when blocked,

i.e., consecutive queries that exceed request limits, (iv) response

caching, i.e., for repeated queries, and (v) network failure, i.e., await

for reconnection.

Results. For both tools, the experiment ran on a quad core i5-

4670k CPU @ 3.40 GHz, with 32GB of RAM and an SSD hard-disk.

The JVMwas provided with up to 5GB of memory and ran Java 8 on

6https://developer.github.com/v3/
7https://api.apis.guru/v2/specs/github.com/v3/swagger.json

539

MSR’18, May 2018, Gothenburg, Sweden B. Sanchez et al.

JDK 1.8.0_92. Since running all 18 technologies would take in the

order of weeks to execute, we decided to replicate the experiment

for a subset of these technologies, more specifically for those used

to create graphical model editors – Eugenia, GMF and Sirius.

1 IDataSet<SearchCode> searchCode =

gitHubAPI.getSearchCode("asc", query, "indexed");

Listing 1: Query snippet for RestMule
1 try {

2 key = Cache.key(gitHub.queryCode(query));

3 if (Cache.contains(key)) { return cache entry; }

4 else {

5 response = gitHub.queryCode(query);

6 Cache.put(key, response);

7 }

8 for (page : response.pages){

9 // request additional pages and consider caching

10 }

11 } catch (NetworkException e1){ handle(e1);

12 } catch (AuthenticationException e2){ handle(e2);

13 } catch (ServerException e3){

14 handle(e3); // for similar responses

15 waitAndRetry(); // for rate limits

16 }

Listing 2: Algorithm for hand-written resilient Java code

The code required to run the experiment for these technologies

was in the order of 100 lines of code for both RestMule and GAJ (88

and 139 LOC repsectively), much lower than the orignal code of 550

LOC. As seen in Listings 1 and 2, a query expressed in a single line

in RestMule will require a much more verbose algorithm when

written in a generic non-resilient manner. It is worth noting that

extending the experiment to run on all 18 technologies in both

cases would not take more than a couple of extra LOC.

Both tools produced the same results for Eugenia and GMF,

whilst GAJ did not terminate for Sirius in our tests8). As both tools

offer similar capabilities and we obtained the same results after

running this case-study, we have gained confidence that the code

generated by RestMule (for GitHub) is as good as the hand-written

code used by GAJ, and they are both superior to the original ex-

periment’s code that was tailored to a specific use-case and much

more verbose. Since RestMule is a generic resilient client genera-

tion tool designed for any repository with an available OpenAPI

Specification, these results are promising.

Threats to Validity. Although the generated client has been

built to enable resilience against request restrictions and network

failure, a more extensive set of unfavorable scenarios, e.g. contem-

plating remote API exceptions, has to be considered.

Several remoteAPIs, such as GitHub, StackExchange, and Bugzilla,

have been explored to identify their commonality, yet the results of

our evaluation are limited to generating and using the GitHub re-

mote API. Further investigation is required to gain confidence that

RestMule can successfully generate clients for other technologies

and offer the same resilience as the GitHub client.

4 RELATED WORK

This section presents related work within the MSR research commu-

nity. Although research using data from collaborative development

8The raw data obtained from these experiments can be found at: https://doi.org/10.
6084/m9.figshare.5840991

environments such as (i) source control management systems (e.g.

GitHub, SourceForge), (ii) bug tracking systems (e.g. JIRA, Bugzilla),

and (iii) archived project communications (e.g. Eclipse Forums,

StackOverflow) is relevant to MSR research, we focus on existing

work that employs them during the construction of data sets and

analysis tools and, in particular, highlight differences to RestMule.

Massive Datasets. Intense data collection tools usually involve

mirroring the server contents into massive public datasets. These

datasets are built either in a non-evolving fashion, such as the

Maven Repository Dataset, or an evolving fashion, such as Stack

Exchange’s Data Dump and GHTorrent. Non evolving datasets hold

information based on a single snapshot of a software repository

while evolving datasets usually follow a schedule to make their

updated versions publicly available. Consequently, at the time their

information is queried, both evolving and non-evolving datasets

may be inconsistent when compared to their origin.

GHTorrent and the Maven Repository Dataset use complex in-

frastructures to retrieve, store and share their data. Their public

availability relies on the benevolence of its maintainers [2], which

is associated with risk from data stagnation and corruption. For

example, both datasets reported data corruption issues that may

be a result of data processing tasks, such as cleansing, abstrac-

tion, transformation, or a collection thereof. As opposed to dealing

with the entire contents of remote software repositories, RestMule

processes near real-time data required to satisfy a given user query.

The restriction imposed on the number of requests that can be

issued within a particular timespan to a remote API, such as offered

by GitHub, has been presented as a major challenge for data collec-

tion in the MSR research community and often motivates the use of

mirroring datasets. To our knowledge, this restriction has only been

addressed by GHTorrent and our framework. GHTorrent manages

this restriction by using their collection of user access-tokens9 and

dispatching requests with different user accounts, which are per-

sisted in a shared database, and consequently achieve an increased

request rate limit. Currently, RestMule handles request limitations

based on a single account. However, our intention is to provide

support for collaborative and distributed queries in the future.

Analysis Frameworks. In general, existing frameworks for

mining information from software repositories differ based on their

orientation, either metric-oriented or workflow-oriented. Metric-

oriented frameworks, such as OSSMETER [1] and RepoGrams [13],

focus on collecting data for producing metrics, such as software

quality, static source code, and changes. Workflow-oriented frame-

works like SmartSHARK [14], CODEMINE [3], and BOA [4], aim

to provide a shared environment for data analysis purposes. Rest-

Mule can act as a complementary component, which can help with

the activity of data collection from remote APIs in such systems.

5 CONCLUSIONS AND FUTUREWORK

Massive data collection has proven to be a challenge in the MSR

community, although not exclusively. In order to mine data from

remote software repositories, applications may perform significant

numbers of requests, commonly to public HTTP APIs. Client appli-

cations can be blocked by strategies implemented by API providers

to protect their servers from saturation. Mining applications tend

9Built with voluntarily offered access-tokens from GitHub user accounts

540

RestMule: Enabling Resilient Clients for Remote APIs MSR’18, May 2018, Gothenburg, Sweden

to re-implement from scratch data collection infrastructures due to

the lack of reusable frameworks able to deal with these restrictions.

We have presented RestMule, a framework that comprises a

set of reusable facilities that handle request rate quota, network

failures, caching and asynchronous paging in a transparent manner;

providing a code generator that produces API-specific Java libraries

from OpenAPI specifications, that employ those facilities. Rest-

Mule allows developers to produce resilient remote-API clients

enabling them to focus on their core mining and analysis logic.

Initial evaluation demonstrates that such resilient clients can be

used to express queries in a much more concise manner, whilst pro-

viding the resilience that would be necessary to execute them,which

would otherwise have to be manually implemented. As such, we en-

courage HTTP service-providers to publish OpenAPI specifications

to ease service consumption and enable client code generation.

FutureWork. In terms of future work, we plan to develop more

sophisticated approaches to handle request rate policies. These

approaches include adding support for collaborative clients (multi-

user workflows) —in a similar fashion to GHTorrent [5]— and en-

abling (shared) distributed analysis workflows.

Furthermore we plan to enable the extension of the resilience

strategies with user-defined policies.

ACKNOWLEDGMENTS

The work in this paper was supported by the Mexican National

Council for Science and Technology (CONACyT) under Grant

No.: 602430/440678 and the European Commission via the CROSS-

MINER Project (732223).

REFERENCES
[1] Bruno Almeida, Sophia Ananiadou, Alessandra Bagnato, Alberto Berreteaga Bar-

bero, Juri Di Rocco, Davide Di Ruscio, Dimitrios S Kolovos, Ioannis Korkontzelos,
Scott Hansen, Pedro Maló, et al. 2015. OSSMETER: Automated Measurement
and Analysis of Open Source Software.. In STAF Projects Showcase. 36–43.

[2] Alberto Bacchelli, Luca Ponzanelli, and Michele Lanza. 2012. Harnessing stack
overflow for the ide. In Proceedings of the Third International Workshop on Rec-
ommendation Systems for Software Engineering. IEEE Press, 26–30.

[3] Jacek Czerwonka, Nachiappan Nagappan,Wolfram Schulte, and BrendanMurphy.
2013. Codemine: Building a software development data analytics platform at
microsoft. IEEE software 30, 4 (2013), 64–71.

[4] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N Nguyen. 2015. Boa:
Ultra-large-scale software repository and source-code mining. ACM Transactions
on Software Engineering and Methodology (TOSEM) 25, 1 (2015), 7.

[5] Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: GitHub’s data from
a firehose. In Proceedings of the 9th IEEE Working Conference on Mining Software
Repositories. IEEE Press, 12–21.

[6] Huzefa H. Kagdi, Michael L. Collard, and Jonathan I. Maletic. 2007. A survey
and taxonomy of approaches for mining software repositories in the context
of software evolution. Journal of Software Maintenance 19, 2 (2007), 77–131.
https://doi.org/10.1002/smr.344

[7] Nafiseh Kahani, Mojtaba Bagherzadeh, Juergen Dingel, and James R Cordy. 2016.
The problems with Eclipse modeling tools: a topic analysis of Eclipse forums.
In Proceedings of the ACM/IEEE 19th International Conference on Model Driven
Engineering Languages and Systems. ACM, 227–237.

[8] Dimitris Kolovos, Louis Rose, Antonio García-Domínguez, and Richard Paige.
2016. The epsilon book. (2016).

[9] Dimitrios S Kolovos, Nicholas Drivalos Matragkas, Ioannis Korkontzelos, Sophia
Ananiadou, and Richard F Paige. 2015. Assessing the Use of Eclipse MDE Tech-
nologies in Open-Source Software Projects.. In OSS4MDE@ MoDELS. 20–29.

[10] openapi:online 2017. StackExchange API version update [Online]. (2017). Avail-
able at: https://github.com/APIs-guru/openapi-directory/issues/217 [Accessed:
May 18, 2017].

[11] Cesare Pautasso. 2014. RESTful web services: principles, patterns, emerging
technologies. In Web Services Foundations. Springer, 31–51.

[12] Steven Raemaekers, Arie van Deursen, and Joost Visser. 2013. The maven repos-
itory dataset of metrics, changes, and dependencies. In Proceedings of the 10th

Working Conference on Mining Software Repositories. IEEE Press, 221–224.
[13] Daniel Rozenberg, Ivan Beschastnikh, Fabian Kosmale, Valerie Poser, Heiko

Becker, Marc Palyart, and Gail C Murphy. 2016. Comparing repositories visually
with repograms. In Mining Software Repositories (MSR), 2016 IEEE/ACM 13th
Working Conference on. IEEE, 109–120.

[14] Fabian Trautsch, Steffen Herbold, Philip Makedonski, and Jens Grabowski. 2016.
Adressing problems with external validity of repository mining studies through
a smart data platform. In Mining Software Repositories (MSR), 2016 IEEE/ACM
13th Working Conference on. IEEE, 97–108.

541

