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ABSTRACT
Deep learning methods are useful for high-dimensional data and
are becoming widely used in many areas of so�ware engineering.
Deep learners utilizes extensive computational power and can take
a long time to train– making it di�cult to widely validate and repeat
and improve their results. Further, they are not the best solution
in all domains. For example, recent results show that for �nding
related Stack Over�ow posts, a tuned SVM performs similarly to a
deep learner, but is signi�cantly faster to train.

�is paper extends that recent result by clustering the dataset,
then tuning very learners within each cluster. �is approach is over
500 times faster than deep learning (and over 900 times faster if
we use all the cores on a standard laptop computer). Signi�cantly,
this faster approach generates classi�ers nearly as good (within
2% F1 Score) as the much slower deep learning method. Hence we
recommend this faster methods since it is much easier to reproduce
and utilizes far fewer CPU resources.

More generally, we recommend that before researchers release
research results, that they compare their supposedly sophisticated
methods against simpler alternatives (e.g applying simpler learners
to build local models).
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1 INTRODUCTION
Recently, deep learning methods like convolutional neural networks
(CNN) have become a popular choice for text mining in SE. Such
deep learning works well with high dimensional data [35] but are
very expensive in terms of time and required CPU.

In response to the computational problems of deep learners,
researchers have tried alternate methods. For example, Fu et al. [12]
recently revisited a study by Xu et al. [52] on �nding the semantic
relatedness of Stack Over�ow posts. In that study, a single Stack
Over�ow question along with its complete answer was called a
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“knowledge unit” (KU). If any two KUs are semantically related,
they are considered as linkable knowledge. Otherwise, they are
considered isolated. When Xu et al. applied CNN [21] (a speci�c
kind of deep learner), that took 14 hours to train. Fu et al. showed
that this computational cost was avoidable by replacing a more
complex learner (CNN) with a simpler technique augmented by
some hyperparameter optimization. Speci�cally, Fu et al. shows
that support vector machine (SVM) tuned via di�erential evolution
(DE) could perform as well as CNN, while training 84 times faster.

�is paper further extends the Fu et al. Using very simple widely
used data mining method (KMeans), we can train even faster that
Fu et al. and 500 times faster than deep learning (and over 900
times faster if we use all the cores on a standard laptop computer).
�e core to our approach is (1) building multiple local models then
(2) tuning per local model. �is paper evaluates this divide and
conquer approach by:

(1) Exploring the Xu et al. task using SVM and K-nearest-
neighbor (KNN) classi�ers;

(2) Repeating step 1 using hyperparameter tuning– speci�-
cally, di�erential Evolution (DE)– to select control param-
eters for those learners;

(3) Repeats steps 1 and 2 using local modeling; i.e. clustering
the data then apply tuning and learning to each cluster;

(4) Evaluating these local models in terms of both their train-
ing time and performance

Table 1 lists all the learners explored here.

Type Abbreviation Learner Description
G SVM Support Vector Machine
G KNN K-nearest Neighbors
G DE KNN K-nearest Neighbors tuned using di�er-

ential evolution (DE)
G DE SVM Support Vector Machines Tuned using

di�erential evolution
G CNN Convolution Neural Network
L KMeans KNN Cluster + multiple KNNs
L KMeans DE KNN Cluster + multiple KNNs tuned via DE
L KMenas SVM Cluster + multiple SVMs
L KMeans DE SVM Cluster multiple SVMs tuned via DE

Table 1: Combinations of learning algorithms. L= “local
models” and G= “global models” which denotes learning
from clusters or all of the data (respectively).
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�is approach lets us ask and answer the following questions:

• RQ1: Can we reproduce Fu et al.’s results for tuning SVM
with di�erential evolution (DE)?

Result 1
Our DE with SVM perform no worse than Fu et al.

• RQ2: How do the local models compare with global models
in both tuned and untuned versions in terms model training
time?

Result 2
Local models perform comparably to their global model
counterparts, but are 570 times faster in model training
time.

(To be precise, that 570 �gure comes from running on
a single core. If we distribute the execution cross the eight
cores of a standard laptop computer, our training times
become 965 times faster.)

• RQ3: How does the performance of local models compare
with global models and state-of-the-art deep learner when
used with SVM and KNN?

Result 3
Local models performance very nearly as well (within 2% F1
Score) as their global counterpart and the state-of-the-art
deep Learner.

Based on these experiments and discoveries, our contribution and
outcome from the paper are:

• A dramatically faster solution to the Stack Over�ow text
mining task �rst presented by Xu et al. �is new method
runs three orders of magnitude faster than prior work.

• Support for “not everything needs deep learning”; i.e. some-
times, applying deep learning to a problem may not be the
best approach.

• Support for a simplicity-�rst approach; i.e. simple method
like KMeans DE SVM can performs as good some of the
state of the art models but with a (much) faster training
time.

• Support for local modeling. Such local models can sig-
ni�cantly reduce training time by clustering data then
restricting learning to on each cluster.

• A reproduction package - which can be used to reproduce,
improve or refute our results1.

�e rest of the paper is organized into the following sections Sec-
tion 2 provides background information that directly relates to our
research questions, in addition to laying out the motivation behind
our work. In Section 3 a detailed description of our experimental
setup and data, along with our performance criteria for evaluation
is presented. It is followed by Section 4 the results of the experi-
ments and answers to our research questions are detailed. Section 5
discusses threats to validity. Finally Section 6 concludes the paper
with implications and scope for future work.

1URL blinded for review.

2 BACKGROUND
2.1 Motivation
Why obsesses on making so�ware analytics faster? Why not just
buy more cloud CPU time? Such a “just throw money at it” approach
might not impress researchers like Fisher et al. [11] who de�ne
“so�ware analytics” as a work �ow that distills large quantities of
low-value data down to smaller sets of higher value data. Due
to the complexities and computational cost of some kinds of SE
analytics, “the luxuries of interactivity, direct manipulation, and
fast system response are gone” [11]. �ey characterize modern
cloud-based analytics as a throwback to the 1960s-batch processing
mainframes where jobs are submi�ed and then analysts wait, wait,
wait for results with “li�le insight into what’s really going on
behind the scenes, how long it will take, or how much it’s going to
cost” [11]. Fisher et al. document the issues seen by 16 industrial
data scientists, one of whom remarks “Fast iteration is key, but
incompatible with the say jobs are submi�ed and processed in the
cloud. It’s frustrating to wait for hours, only to realize you need a
slight tweak to your feature set.”.

Fisher’s experience matches with our own. We �nd that the
slower the data mining method, the worse the user experience and
the fewer the people willing to explore that method. �ese result
is particularly acute in research where data miners have to be run
many times to (a) explore the range of possible behaviors resulting
from these methods or (b) generate the statistically signi�cant re-
sults that can satisfy peer review. To understand the CPU problems
with validation, consider the standard validation loop:

1. FOR L = 20 projects DO
2. FOR R = 20 times DO # repeats to satisfy central limit theorem
3 Randomly divide project.data to B = 10 bins;
4 FOR i = 1..B DO
5 test = bin[i]
6 train = project.data - test
7. FOR F = 5 different data filters DO
8. train = filter(train) # e.g. over-sample rare classes
9. model = leaner(train)
10. print report(apply(model,test))

Note the problem with this loop- it must call a data miner (at
line 9) L∗R ∗B ∗F = 20, 000 times. While some data miners are very
fast (e.g. Naive Bayes), some are not (e.g. deep learning). Worse,
several “local learning” results [28–30, 51] report that so�ware
analytics results are speci�c to the data set being processed- which
means that analysts may need to rerun the above loop anytime new
data comes to hand.

Note that the above problem is not solvable by (1) waiting for
faster CPUs or (2) parallelization. We can no longer rely on Moore’s
Law [34] to double our computational power very 18 months. Power
consumption and heat dissipation issues e�ectively block further
exponential increases to CPU clock frequencies [34]. As to paral-
lelization, that would require the kinds of environments that Fisher
et al. discuss; i.e. environments where it is frustrating to wait
for hours, only to realize you need a slight tweak to your feature
se�ing.

Accordingly, in our research, whenever we have a slow and
competent result, we explore methods to make that result faster. �e
rest of this paper o�ers a case study where local learner signi�cantly
speed up than deep learning.
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2.2 Deep Learning
Deep learning is a type of machine learning algorithm based on
multiple layers of neural networks, where each layer is created
with multiple neurons. �ese layers are interconnected via weights,
which are tuned as the model trains. �ese connections and weights
are very speci�c to models and its performance. According to Le-
Cun et al. [26], deep learning methods are representation-learning
methods with multiple levels of representation, obtained by com-
posing simple but non-linear modules that each transforms the
representation at one level (starting with the raw input) into a
representation at a higher, slightly more abstract level.

Deep learning has been applied to many areas including image
processing, natural language processing, genomics etc:

• Wan and Wang [46], deep learning tries to resolve the ”Semantic
Gap” issue in content based image retrieval process [41].

• Deep learning has also been used to predict DNA-RNA binding
proteins [1] which helps to solve problems faced by less so-
phisticated methods (particularly the problem of the automatic
extraction of meaningful features from raw data).

• Deep learning has also recently become established its presence
in so�ware engineering e�ort estimation [8] and text mining [7,
35, 49, 50, 53, 54].

Deep learning is a computationally expensive method. It o�en takes
hours to weeks to train the models. �is makes cross validation
and stability of model check very expensive if not impractical. For
example, the methods of Xu et al. take 14 hours to terminate or
GU et al. [17] reported in his paper that his deep learning model
took almost 240 hours to train [17]. Note that if those computations
were repeated (say) 20 times for statistically purposes, then those
systems would take 11 and 200 days to complete. Worse still, hyper-
parameter optimization2 might require 100s to 1000s of repeated
runs– which would take another three to 50 years to terminate3.

For the above reasons, reproducing deep learning results is a
signi�cant problem:

• Most deep learning paper’s baseline methods in SE are either
not publicly available or too complex to implement [25, 49].

• It is not yet common practice for deep learning researchers to
share their implementations and data [7, 17, 25, 47, 49, 50], where
a tiny di�erence may lead to a huge di�erence in the results.

• Due to the nature of complexity in implementation and unavail-
ability of original implementation, data or environment it is not
possible to implement a deep learner for baseline purpose, and
this is one of the reasons for SE community and this paper to
directly utilizes the results published for comparison [12, 25].

Hence, much research (including this paper) is forced to compare
their new methods with published numbers in deep learning papers
(rather than re-running the rig of the other researchers.)

As discussed below, local learning is one method for reducing
that runtime.

2 Hyperparameter optimizers are algorithms that learn the control parameters of a
learner. For more details on such algorithms, see §2.8.
3Note that such long runtimes have been observed in the SE literature. In 2013, a team
from UCL needed 15 years of CPU time to complete the hyperparameter optimization
study of four so�ware clone detection tools [48].

2.3 Local Learning
When running a data mining algorithm, all the training data can be
used to build one training model. Alternatively, the training data
can be somehow divided into small pieces and one model learned
per piece.

Local models have shown promising results in di�erent studies.
Many researchers have found building specialized local models for
speci�c regions of the data provides a be�er overall performance,
thus according to the studies instead of trying to �nd a generalized
model we should try to �nd best models speci�c to di�erent region
of data. For example, Menzies et al. [28] shows that for defect
prediction and e�ort estimation, lessons learned from models build
on small part of data set from PROMISE repository were superior
to the generalized model build on all the data. �at said, recent
studies have suggested for at least for defect prediction, the bene�t
of local model may be learner speci�c [20].

�is paper explored local learning for a somewhat di�erent per-
spective. �e claim made in this paper is not that local models
always performs signi�cantly be�er. Rather we recommend it since
it can lead to signi�cantly faster inference with very li�le compro-
mise in the performance of the learned model.

More speci�cally, in this study we observer a three order of
magnitude improvement over a prior text mining results by Xu et
al [52]. Hence we recommend local learning since:

• It rarely performs worse than learning from all the data.
• Sometimes it can lead to be�er performance [5, 28, 30, 38].
• It can lead to signi�cantly faster training times.

�e general framework for local learning is shown as a algorithm
in Figure 1. �is algorithm uses a cluster based model with the
training dataset to �nd diversity in the dataset. �is helps to create
clusters with similar data. Now di�erent classi�cation models are
accessed and improved via hyperparameter tuning on each of the
clusters with local data as training dataset. While accessing the
model for performance, the test data is sent through the clustering
model to predict its probable cluster by calculating similarity mea-
sure, next the test data is classi�ed using the local model built on
that cluster.

�e rest of this paper explores the local learning framework of
Figure 1 using the following learning methods:

• K-means for the clustering;
• Di�erential evolution for the ��ing;
• SVM or Kth-nearest neighbor for the classi�cation.

For details on these methods, see later in this paper.

2.4 Word Embedding
In the case study of this paper, we explore local learning for text
mining methods that use word embedding. �is is the process of
converting words to vectors in order to compare their similarity
by comparing cosine similarity between vectors. One method for
doing this is a continuous skip-gram model (word2vec), which
is a unsupervised two-layer neural network that converts words
into semantic vector representations [32] and is also used by Fu et
al. [12] and Xu et al. [52] in their paper.
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1def localLearning (data):
2models = []
3predicted = []
4cluster model = model1(args1) # make clusters
5cluster model.fit(data.train)
6data.train['cluster'] = cluster model.labels
7classification model = model2(args2) # local classi�er
8for i in |cluster|
9classification model.fit(data.train[i]) # ��ing model
10models[i] = classification model
11#end for
12data.test['cluster']= find nearest cluster for test data
13for i in |cluster|
14classification model = models[i]
15predicted[i]= classification model.predict(data.test[i])
16#end for
17performance = compare(predicted,data.test['class'])
18return performance

Figure 1: Pseudo-code of Local Learning

�e model learns vector representation of a word (center word)
by predicting surrounding words in a context window(c) by maxi-
mizing the mean of log probability of the surrounding words (wi+j ),
given the center word (wi ) -

1
n

n∑
i=1

∑
−c≤j≤c, j,0

loдp(wi+j |wi ) (1)

�e probability p(wi+j |wi ) is a conditional probability de�ned
by a so�max function -

p(wi+j |wi ) =
exp(v′Twi+j

vwi )∑ |W |
w=1 exp(v

′T
w vwi )

(2)

Here thevw andv′Tw are respectively the input and output vectors
of a word w in the neural network, and W is the vocabulary of all
words in the word corpus. p(wi+j |wi ) is normalized probability of
word wi+j appearing in a speci�c context for a center word wi . To
improve the computation e�ciency, Mikolove et al. [32] proposed
hierarchical so�max and negative sampling techniques etc which
can also be used for creating word embedding models.

�is paper uses the word2vec models trained by Fu et al. [12]
that converted the Stack Over�ow text data into the corresponding
vectors. For our experiments, we use 100, 000 randomly selected
knowledge units tagged with “java” from Stack Over�ow posts table
(include titles, questions and answers). �is data was pruned by
removing super�ous HTML tags (while keeping short code snippets
in code tag), then ��ed into the gensim word2vec module [39]. �is
is a python wrapper over original word2vec package where, for
wordwi in the post is sent to the trained word2vec model to get the
corresponding word vector representation vi . A�er converting, all
the KUs the output vectors are then used for training and testing
the models.

2.5 SVM in Text Mining
Another component of the case study explored here is support
vector machines. SVMs are a type of supervised machine learning
algorithm which analyzes data using classi�cation or regression
analysis. In SVM models the examples are points in space mapped
in such a way that separate categories/classes are divided by a
clear gap (hyperplane in instance space) [44]. SVMs execute by
transforming the original data space to a higher dimensional space

1def GAP( tData, nrefs=3, cMax = 15): # default se�ings
2gaps = []
3results = create empty dataframe
4for gap index, k in enumerate(range(1, cMax)):
5refDisps = array for inertia
6for i in range(nrefs):
7rRef = random(tData) #reference data
8clf = KMeans(k)
9clf.fit(rRef)
10refDisps[i] = model inertia
11#end for
12clf = KMeans(k)
13clf.fit(tData)
14orgDisp = model inertia with k cluster
15refDispMean = mean(refDisps)
16dispDi� = refDispMean − orgDisp
17gap = log(dispDi�)
18# append the gap value in the list
19results = results.append('clusterCount': k, 'gap': gap)
20gaps[gap index] = gap
21return gaps.argmax() # get cluster size with max gap

Figure 2: Pseudo-code of GAP Statistics

where hyperplane between data from di�erent classes is easier to
detect.

SVMs are particularly useful for in text mining can have a very
large number of features [13]. In most cases the document vec-
tors are sparse and linearly separable in some hyper-dimensional
space [23].

2.6 KNN in Text Mining
If SVM is our most sophisticated classi�er, our simplest is K-Nearest
Neighbor [55]. KNN is a non-parametric [15] method used for
classi�cation and regression problems. Here k is the input and
refers to the number of closest examples that the model will look
for among the training data in the feature space. �e output the
model gives represents the class to which the test data belongs to
and it depends on the majority vote of its k-nearest neighbor [31].

2.7 KMeans Clustering
One way to reduce the computational cost of KNN is, before run-
ning a classi�er, group data into similar sets of clusters. KMeans
is an unsupervised machine learning algorithm that is used for
clustering data [22]. In KMeans, k is an input that refers to the
number of clusters the data set should be divided into. �e algo-
rithm initializes k number of centroids from the data and labels
each as a cluster. For each data point it checks which centroid it
is closest to, and assigns it to that cluster. A�er one pass to the
data, centroids are recalculated and the process repeats until cluster
stability is achieved. �is experiments uses the scikit-learn module
sklearn.cluster.KMeans [37].

Picking an appropriate k value for KMeans is a challenge. If k
is too small, models will over-�t and fails to capture any larger
pa�erns in the data. On the other hand, if using a large k will in-
crease the variability and hence the level of uncertainty within each
cluster. accordingly, this study uses the GAP statistics to determine
the optimal number of k or centroids for KMeans [33, 45]. �e
GAP statistic looks at the di�erence between the dispersion of the
clustered data, and the dispersion of a null reference distribution,
for increasing k values. It �nds the largest k where the gap is bigger
than the next gap minus a value that accounts for simulation error.
Figure 2 describes the GAP statistic computation [45].
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SVM Default Parameter Tuning Range Description
C 1.0 [1,50] Penalty parameter of error term

Kernal ‘rbf’ [‘liner’, ‘poly’, ‘rbf’, ‘sigmoid’] Specify the kernel type to be used in the algorithms
gamma 1/n features [0,1] Kernel coecient for ‘rbf’, ‘poly’ and ‘sigmoid’
coef0 0 [0,1] Independent term in kernel function. It is only used in ‘poly’ and ‘sigmoid’

KNN Default Parameter Tuning Range Description
n neighbors 5 [2,10] Number of neighbors

weights ‘uniform’ [‘uniform’, ‘distance’] weight function used for predictions
Table 2: ‘Tuning Range’ of Parameters for SVM and KNN

1def DE( n=10, cf=0.3, f=0.7): # default se�ings
2frontier = sets of guesses (n=10)
3best = frontier.1 # any value at all
4lives = 1
5while(lives−− > 0):
6tmp = empty
7for i = 1 to |frontier |: # size of frontier
8old = frontieri
9x,y,z = any three from frontier, picked at random
10new= copy(old)
11for j = 1 to |new |: # for all a�ributes
12if rand() < cf # at probability cf…
13new.j = x .j + f ∗ (z .j − y .j) # …change item j
14# end for
15new = new if be�er(new,old) else old
16tmpi = new
17if be�er(new,best) then
18best = new
19lives++ # enable one more generation
20end
21# end for
22frontier = tmp
23# end while
24return best

Figure 3: Tuner Procedure - as mentioned in Fu et al.'s paper.
It is based on Storn's DE optimizer.

2.8 Parameter Tuning with DE
All learners come with “magic parameters” that control their per-
formance. For example, with SVM, there are several parameter that
control the SVM kernel. One way to select those parameters is
to use hyperparameter optimization via algorithms like Di�eren-
tial Evolution. DE is a stochastic population-based optimization
algorithm [43]. DE starts with a frontier of randomly generated
candidate solutions. For example, when exploring tuning, each
member of the frontier would be a di�erent possible set of control
se�ings for (say) an SVM or KNN.

A�er initializing this frontier, a new candidate solution is gen-
erated by extrapolating by some factor f between other items on
the frontier. Such extrapolations are performed for all a�ributes
at probability cf. If the candidate is be�er than one item of the
frontier, then the candidate replaces the frontier item. �e search
then repeats for the remaining frontier items. For the de�nition of
“be�er“, this study uses the same performance measures as Fu et
al.; i.e. “be�er” means maximizing the objective score of the model
based F1 Score.

�is process is repeated for lives number of repeated traversals
of the frontier. For full details of DE, see fFgure 3. As per Storn’s
advice [43] we use

f = 0.75, cf = 0.3, lives = 60

For SVM, this study uses the SVM module from Scikit-learn [37],
a Python package for machine learning, where the following pa-
rameters shown in Table 2 are selected for tuning:
• Parameter C is to set the amount of regularization, which con-

trols the trade-o� between the errors on training data and the
model complexity. A small value for C will generate a simple
model with more training errors, while a large value will lead
to a complicated model with fewer errors.

• gamma de�nes how far the in�uence of a single training example
reaches, with low values meaning ’far’ and high values meaning
‘close’.
• coef0 is an independent parameter used in sigmod and polyno-

mial kernel function to scale the data.
Similarly KNN uses di�erent parameters to control how it learns
and how it predicts. �is study uses KNN module from Scikit-learn,
and the parameters in Table 2. For KNN:
• Parameter n neiдhbors is number of neighbors to be used for

query to check and classi�cation using a majority vote [18].
• weiдht is another parameter which is tuned as part of hyperpa-

rameter tuning. If set to ‘uniform’, then all the points in each
neighborhood are weighted equally. If set to ‘distance’, then the
weights are inverse of their distance from the new example (so
farther away the point, the less weight it has in deciding the
class).

3 EXPERIMENTAL DESIGN
3.1 Data
�is experiment uses the same training and testing dataset as Xu et
al. [52] and Fu et al. [12]. For the reasons discussed in Section 2.2,
this study compares our results to those reported by Xu et al.

Our dataset includes 6,400 training examples and 1,600 testing
examples. Each class is equally represented in both the training
and test datasets, with 1600 of each class in the training dataset
and 400 of each class in the test dataset, so no handling of class
imbalance is necessary.

Both test and training data are in Pandas dataframe [27] format,
which includes a post Id, related post id, and a link type which is
determined by a score between the 2 posts. �e link between 2 posts
can be of 4 types depending on the score between the sentences as
per Table 3.

For �nding word embedding [32] of Stack Over�ow [3] post
data, this paper uses the word2vec model trained by Fu et al. and
described in Section 2.4. �e �nal data that passed to our classi�ers
is similar to Table 4.
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Figure 4: Model Architecture

Scores Class ID Type
1.0 1 duplicate
0.8 2 direct link

0¡x¡0.8 3 indirect link
0.00 4 isolated
Table 3: Classi�cation of data

ID Post
Id

Related
Post Id

Link
Type
Id

Post
Id Vec

Related
Post Id
Vec

Output

0 283 297 1 […] […] […]
1 56 68 2 […] […] […]
2 5 16 3 […] […] […]
3 9083 6841 4 […] […] […]
Table 4: Training/Test data in Pandas.dataframe format.

3.2 Method
Training a models and hyper-parameter tuning technique can take
much time, depending on the complexity of the training dataset.
�is makes it harder to perform cross validation or repeatability
of prior results. �is study check if dividing up the data into small
clusters and then train and tune models within each cluster, reduces
the overall learner’s training time. In order to do this the data is
clustered �rst, then a model is built for each cluster. �is process is
shown Figure 4.

For the clustering algorithm KMeans algorithm from Scikit-learn
has been used. For the parameters, this study used the k-means++
algorithm [2] for the initialization of cluster centroids. In order

to choose k, the number of clusters, the GAP statistic method,
discussed in Figure 2 has been utilized.

For each cluster, a learner is built that is tuned speci�cally for that
cluster. �is study looks at two di�erent learners, SVM and KNN. As
discussed above, to tune the learners, DE is being used, speci�cally
Fu et al.'s DE implementation. �e study uses F1 Score [42] to
evaluate the intermediate models in DE, as F1 Score is calculated
as the trade-o� between precision and recall. �is will help us to
get models which have both good precision and recall.

To use the model, the test data is �rst sent to KMeans to �nd
the cluster which it should belong to by calculating vector distance
from all cluster’s centroid and returning the cluster with minimum
distance. �en the model predict the class using that cluster's
learner.

In this study a 10-fold cross validation [24] has been used, which
was repeated 10 times for the training data. �us, the results are the
mean of 100 models. Each learner (SVM or KNN) on each cluster
has been trained on 90% of the data from that cluster and tuned on
rest of the 10% and then tested on the untouched test data set.

3.3 Performance Criteria
For evaluating the described model, this study collects and present
the same metrics for performance evaluation as Xu et al. and Fu et
al., in order to compare results. �ese metrics are precision, recall
and F1 Score. �is multiclass classi�cation problem have 4 classes
denoted as Duplicate(C1), Direct Link(C2), Indirect Link(C3) and
Isolated(C4). �e result presents class-wise metrics as well as the
mean for the whole model.

From the confusion matrix describe in Table 5, it can be observed
that the correct predictions are the one with label Cii for a class Ci.
And from this we will be able to calculate our evaluation matrix.
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Classi�ed as
C1 C2 C3 C4

Ac
tu

al
C1 C11 C12 C13 C14

C2 C21 C22 C23 C24
C3 C31 C32 C33 C34
C4 C41 C42 C43 C44

Table 5: Confusion Matrix

Using this nomenclature, the evaluation metric F1 Score can be
de�ned as follows:

precision =
Cii∑
i
Ci j

(3)

recall =
Cii∑
i
Cji

(4)

F1 =
2 ∗ recall ∗ precision
(precision + recall) (5)

3.4 Statistical Analysis
In order to compare results of the local models with other models,
there are two useful tests: signi�cance tests [4] and e�ect size
tests [40] [6].
• Signi�cance tests assess if results are distinct enough to be con-

sidered di�erent;
• E�ect size tells us whether that di�erence is large enough to be

interesting.
A�er Wu et al., this study uses the Sco�-Kno� test, which ranks
treatments using a recursive bi-clustering algorithm. At each level,
treatments are split where expected value of the treatments has
most changed from before. Results in each rank are considered the
same according to both signi�cance and e�ect size tests. As per the
recommendations of Wu et al., the Sco�-Kno� test uses the non-
parametric bootstrap [10] method and Cli�s’ Delta. Note that these
two tests are also used and endorsed by other SE researchers [14].

4 RESULTS
RQ1: Can we reproduce Fu et al.'s results for tuning SVM with di�er-
ential evolution (DE)?

�is study uses same di�erential evolution with SVM for both
global and local models. �us to compare with Fu’s DE with SVM
as global model, the �rst task as part of this experiment was to

Class F1 Score Mean
Our DE SVM Fu’s DE SVM

Duplicate 92 88
Direct link 91 84

Indirect link 98 97
Isolated 93 91
Overall 93 90

Table 6: Comparison of all performance measure between
Our DE SVM and Fu et al.'s DE SVM

Figure 5: Training time comparison between models in Log
Scale. In the above, the Xu et al. 2016 results are labelled
“CNN” and the Fu et al. 2017 results are labelled “DE SVM”.

recreate Fu et al.'s work so that this study have a baseline to measure
against. Hence, this research question is a “sanity check” that must
be passed before moving on to the other, more interesting research
questions.

�e study uses the same SVM from Scikit-learn with the param-
eters tuned as mentioned in Table 2. Here the training time of
the DE+SVM model is also compared with Fu et al.'s model. Ta-
ble 6 shows the class by class comparison for all the performance
measure this study is using.

From Table 6 it can be seen that our results with SVM with DE
for hyperparameter tuning [9] [12] similar to the results of Fu et al.
It can be observed from this �gure that for most of the cases apart
from class 3, the model has performed a li�le be�er, but the delta
between the performance is very small.

Hence the answer to our RQ1, is that this study has success-
fully implemented Fu et al.'s SVM. Hence, we can move to more
interesting questions.

RQ2: How do the local models compare with global models in both
tuned and untuned versions in terms model training time?

For RQ2, this experiment built one model for each clusters using
either normal or tuned versions of SVM or KNN (where tuning was
performed with DE): For the default SVM and KNN the experiment
uses the default parameters, described in Table 1.

As discussed above, this study have used the GAP statistic [33] [45]
for �nding the best number of clusters, using minimum and max-
imum number of clusters as 3 and 15, respectively. As part of
the experiment we learned that 13 clusters achieves best results
(measured as per the GAP statistic).

�is study measures the time taken for this model to train which
includes time taken by GAP statistic, KMeans training time, and
SVM/KNN with DE training time.

Figure 5 compare the model training time in log scale of all
models with the results from XU et al.'s CNN approach. Its apparent
from the �gure 5 that for this domain KNN and SVM has the fastest
runtimes. �at said, as describe below, we cannot recommend these
methods since, as shown below, they achieve poor F1 Scores.
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Figure 6: F1 Score comparison for all learners. Numbers
above each bar are ranks learned from the Scott-Knot sta-
tistical test. Clusters have di�erent ranks if they are deter-
mined to be di�erent by both a signi�cance test (bootstrap-
ping) and an e�ect size test (Cli�s’ Delta). For example, the
�rst two bars have the same rank while the third bar has a
di�erent rank. In the above, the Xu et al. 2016 results are
labelled “CNN” and the Fu et al. 2017 results are labelled
“DE SVM”.

�e �gure also shows, when we cluster data and then create
local models on each cluster it achieves fast training times. For
example, in the case of KMeans DE SVM, we achieve an eight-fold
speed improvement from using DE SVM. Further, we see a speed
improvement of over 570 faster training time from XU's CNN4.

RQ3: How does the performance of local models compare with
global models and state-of-the-art Deep Learner when used with SVM
and KNN?

�e �nal part of our research question was to check if the local
models performance is comparable to Fu et al.’s DE SVM and the
XU’s state of the art CNN. To evaluate the performance of the
models this study compares F1 performance measures described in
Section 3.3. As mentioned in the section, a 10 fold * 10 repeat cross
validation was performed, so all the results are mean of 100 models
created.

Figure 6 shows our F1 Score results (mean result across all 4 class
of Table 6). �e numbers on top of each bar show the results of
statistical tests. Bars with the same rank are statistically indistin-
guishable. Note that these results should be discussed with respect
to the runtime results shown above:
• In Figure 5, we saw that CNN was our slowest learning method.

We would excuse this slowness and endorse its use if the perfor-
mance scores for this extremely slow method was outstandingly
high. �is is not the case: as seen Figure 6, CNN is beaten by
many of the treatments shown here.

• In Figure 5, DE SVM was our second slowest method. Again, we
would endorse this approach if nothing else comes close to it in
terms of performance. While KMeans DE SVM is signi�cantly

4 Technical aside: most of our times come from a single core, single thread implemen-
tation. �at said, just for completeness, we have trained our k clusters over a standard
8 core laptop. In that multi-threaded implementation, our training times are 965 times
faster than XU's CNN.

di�erent (as shown by our Sco�-Kno� results), the median per-
formance delta is very small indeed (median F1 Score scores of
94 vs 92). �is is an important pragmatic consideration since, as
shown in Figure 5, the learning time of KMeans DE SVM was
743/88 = 840% faster than that of DE SVM

In summary, we recommend one of our local learning method
(KMeans DE SVM) since:
• It is 840% faster than the prior state-of-the-art results (Fu et al.’s

2017 DE SVM method);
• On a single core machine, it is 570 times faster than the prior

state-of-the-art before that (Xu et al.’s 2016 CNN method);
• On a standard laptop with 8 cores, KMeans DE SVM runs 965

times faster than Xu et al.’s CNN method;
• Our local learner performs be�er than Xu et al. and only a tiny

fraction worse than Fu et al. Given these small performance
deltas, from a pragmatic engineering perspective, we �nd it
hard to justify the extra computational cost of DE SVM over
KMeans DE SVM.

5 THREATS TO VALIDITY
As with any empirical study, biases can a�ect the �nal results.
�erefore, any conclusions made from this work must be considered
with the following issues in mind:
• Sampling bias: threatens any classi�cation experiment; i.e., what

ma�ers there may not be true here. For example, the data sets
used here is a Stack Over�ow dataset and were supplied by one
individual. Although this study uses multiple word2vec models
to validate with a 10-fold * 10 repeat validations. �e text data
is of similar format of question pairs.

• Learner bias: For building the model for �nding semantic relat-
edness of question pars in this study, we elected to use Support
Vector Machine and K-Nearest Neighbor for classi�cation and
KMeans for clustering. �is study chose these methods because
its results were comparable to the more complicated algorithms
and has been successful in text classi�cation �eld. Classi�cation
and clustering is a large and active �eld and any single study
can only use a small subset of the known algorithms.

• Evaluation bias: �is paper uses precision, recall and F1 Score
as performance measures. Other methods like Concordant - Dis-
cordant ratio [16], Gini Coe�cient [36], Kolmogorov Smirnov
chart [19] that are used for this purpose can also be used for
performance evolution in future studies.

• Input bias: For the localization algorithm, this study randomly
selects input values for a range to determine the number of
clusters, also for hyperparameter tuning using DE, a subset of
parameters has been selected for tuning and their range is either
the whole range that the parameter accepts or a range that is
selected for the study.

6 CONCLUSION
�is paper investigates the value of local learning from the per-
spective of reducing the training time compared to methods for
predicting knowledge unit’s relatedness on Stack Over�ow. �is
study clustered the data �rst; then build local models on each clus-
ter separately; then use the clustering algorithms with the local
classi�cation algorithm together to predict. As shown above:
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• Clustering the data �rst and then building local models on those
subsets of data shows signi�cant reduction in runtime.

• Using KMeans on the Word Embedding model �rst to cluster
the data into smaller subsets and then running SVM and KNN
with their DE versions showed runtime reduction as large as 570
times for KMeans DE SVM version with CNN and almost 8 times
improvement than its global DE SVM version with sequential
run. And with parallel run the performance improvement for
KMeans DE SVM version with CNN is 965x and almost 14 times
with its global counter part.
• �e performance in term of precision, recall and F-score is almost

similar to its global counter part and sometime be�er then the
XU’s CNN model.
For future work, we suggest trying several variations of this

experiment -
• �is study tunes the local models separately, tuning all the

local models along with the clustering algorithm together
might produce some interesting results.

• Trying to �nd correlation between number of cluster and
training time and performance might give us e�ect of num-
ber of clusters on the prediction model.
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