
How Swift Developers Handle Errors
Nathan Cassee

Eindhoven University of Technology

Eindhoven, The Netherlands

n.w.cassee@student.tue.nl

Gustavo Pinto

Federal University of Pará

Belém, Brazil

gpinto@ufpa.br

Fernando Castor

Federal University of Pernambuco

Recife, Brazil

castor@cin.ufpe.br

Alexander Serebrenik

Eindhoven University of Technology

Eindhoven, The Netherlands

a.serebrenik@tue.nl

ABSTRACT

Swift is a new programming language developed by Apple as a re-

placement to Objective-C. It features a sophisticated error handling

(EH) mechanism that provides the kind of separation of concerns

afforded by exception handling mechanisms in other languages,

while also including constructs to improve safety and maintainabil-

ity. However, Swift also inherits a software development culture

stemming from Objective-C being the de-facto standard program-

ming language for Apple platforms for the last 15 years. It is, there-

fore, a priori unclear whether Swift developers embrace the novel

EH mechanisms of the programming language or still rely on the

old EH culture of Objective-C even working in Swift.

In this paper, we study to what extent developers adhere to good

practices exemplified by EH guidelines and tutorials, and what are

the common bad EH practices particularly relevant to Swift code.

Furthermore, we investigate whether perception of these practices

differs between novices and experienced Swift developers.

To answer these questionswe employ amixed-methods approach

and combine 10 semi-structured interviews with Swift developers

and quantitative analysis of 78,760 Swift 4 files extracted from 2,733

open-source GitHub repositories. Our findings indicate that there

is ample opportunity to improve the way Swift developers use

error handling mechanisms. For instance, some recommendations

derived in this work are not well spread in the corpus of studied

Swift projects. For example, generic catch handlers are common in

Swift (even though it is not uncommon for them to share space with

their counterparts: non empty catch handlers), custom, developer-

defined error types are rare, and developers are mostly reactive

when it comes to error handling, using Swift’s constructs mostly to

handle errors thrown by libraries, instead of throwing and handling

application-specific errors.

KEYWORDS

Error handling, Swift, Language feature usage

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00

https://doi.org/10.1145/3196398.3196428

ACM Reference Format:

Nathan Cassee, Gustavo Pinto, Fernando Castor, and Alexander Serebrenik.

2018. How Swift Developers Handle Errors. In MSR ’18: MSR ’18: 15th In-
ternational Conference on Mining Software Repositories , May 28–29, 2018,
Gothenburg, Sweden. ACM, New York, NY, USA, 11 pages. https://doi.org/

10.1145/3196398.3196428

1 INTRODUCTION

Error handling (EH) mechanisms are common in modern program-

ming languages. They provide a number of advantages over error

codes employed in such languages as C [4], albeit also create com-

plications [6, 25]. Different programming languages implement

error handling mechanisms differently: e.g., error handling in C# is

driven by maintenance and in Java—by reliability [6].

The Swift programming language, developed by Apple and in-

tended as the replacement for Objective-C, introduces multiple

changes in the ways errors are handled as opposed to Objective-C.

Not surprisingly, the presence of different error handling constructs

in Swift has been reported to hinder adoption of Swift by experi-

enced Objective-C developers [24]. Moreover, as Swift has been

evolving, the error handling mechanism has been evolving as well

inducing further challenges.

To support Swift developers, both Apple itself and other compa-

nies and authors have published multiple guides related to Swift

error handling. Many of these popular guides are published as blog

posts [22] that include code examples developers learn from [29].

In this paper we study the way those guides affect the way Swift

developers use error handling mechanisms. Specifically, we pose

the following research questions:

RQ1. To what extent do developers follow the recommendations

of popular error handling guides?

RQ2. To what extent do developers avoid the anti-patterns identi-

fied by popular error handling guides?

RQ3. How do the perceptions of experienced and novice develop-

ers differ about the usage of error handling?

Answers to RQ1 and RQ2 are important to shed some light on the

current state of practice of developing error handling code in the

Swift programming language. The latter question is motivated by

the observation of Shah et al. that novice developers often choose

to ignore or generalize error handling as they do not consider error

handling to be of high priority [28]. This would suggest that novice

developers are less likely to follow the recommendations and more

likely to write Swift code with anti-patterns. Similarly, experts

https://doi.org/10.1145/3196398.3196428
https://doi.org/10.1145/3196398.3196428
https://doi.org/10.1145/3196398.3196428

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Nathan Cassee, Gustavo Pinto, Fernando Castor, and Alexander Serebrenik

might be more likely to follow Swift best practices, but due to its

recent introduction (Swift was first released in June 2014 and its

error handling mechanism in December 2015), it is still unclear

whether experts indeed take advantage of them.

To provide answers to these questions, we apply a convergence

mixed-methods approach [9, 23]: quantitative and qualitative re-

search are performed in parallel with the expectation that their

results will confirm one another. To conduct the quantitative study

we compile a corpus of 2,733 Swift projects obtained from GitHub,

the largest corpus used in an error handling study. To conduct the

qualitative study, we have interviewed 10 Swift developers. We also

manually inspected a sample of 789 commits made by experts and

categorized those related to error handling.

Our study curates a list of four error handling recommendations

and five anti-patterns. When studying Swift code with these pat-

terns in mind, we observed that 50% of the projects did not employ

a single error handling construct; merely 26% of the projects in the

dataset employ a try variant (i.e., try, try?, or try!). Similarly,

only 39% of the projects employ at least one catch handler, that is,

1668 projects out of the 2733 either do not handle errors or do so

without using do-catch blocks. Interestingly, the most often ap-

plied recommendation (85%) is related to the use of try statements

within do-catch blocks; for the anti-patterns, the most common

one is the use of empty, generic catch blocks, i.e., , catch blocks
that capture every possible error. Although we were able to confirm

some of these findings in the qualitative analysis (e.g., interviewees
mentioned the use of try statements within catch handlers), some

findings were not (e.g., we did not find empty generic catch blocks

in the commit analysis).

The main contributions of our work are as follows:

• A curated corpus of Swift projects for analysis, along with

the methodology behind their selection;

• A tool for collecting a metrics related to the usage of Swift

error handling constructs in these projects;

• An analysis of the results, considering implications for the

practice of software development in Swift.

2 SWIFT ERROR HANDLING

Swift provides numerous ways of specifying and handling errors.

Here we briefly discuss some of them. Further information can be

found in developer guides discussed in Section 3.1.

From a usage perspective, error handling in Swift is akin to excep-

tion handling in Java and C#. Errors are values of types that conform

to the Error protocol. As a protocol, errors can be implemented as

enumerations, structures, or classes.The throw statement signals

the occurrence of an error. A method that signals an error either

catches the error, or indicates in its signature that it throws an

error. Listing 1 shows a common example of how to define errors us-

ing an enum. In Listing 1, IOError is an enumeration with two cases.

One of these, FileNotFound, is particularly interesting because it

carries contextual information that can be employed to capture

errors in more specific situations. Since each case is a value that

represents an error, it can be thrown, as in readFromFile. Methods

invoking readFromFile must either also have a throws clause in
their signatures or explicitly catch the error. Calls to readFromFile
must be preceded by the try keyword to indicate that they may

Listing 1: Example of defining and manipulating errors

1 enum IOError : Error {

2 case FileNotFound(filePath: String)

3 case ConnectionTimedOut

4 }

5

6 func readFromFile(path: String) throws -> String {

7 if (! findFile(path)) {

8 throw IOError.FileNotFound(filePath: path)

9 } else {

10 ... // Start reading.

11 }

12 }

13

14 func processText(filePath: String) {

15 do {

16 let fileContents = try readFromFile(path: filePath)

17 } catch IOError.FileNotFound {

18 print("File not found: \(filePath).")

19 } catch { print(error) }

20 }

throw an error (line 16). Function processText presents an ex-

ample of a method that invokes readFromFile and catches the

FileNotFound error (and others).

To catch an error, it is necessary to place the code that may throw

errors within a do block (line 15) having one or more associated

catch clauses. For instance, the catch clause in line 17 catches

IOError.FileNotFound errors whereas the one in line 19 catches

any other error. We say that a catch block whose catch clause can
capture any kind of error is a generic catch block (or a “catch all”).
Generic catch blocks can be implemented by:

1. not specifying the type of the error (as in line 19 of Listing 1);

2. capturing errors of type NSError, the default type employed

to report errors in Objective-C programs;

3. or capturing every error conforming to the Error protocol
(this is the verbose version of item 1).

A do-catch block must either include at least one generic catch
block, or the method in which the do-catch block is defined should
be declared with throws. This is enforced by the Swift compiler. In

line 19, error is a predefined variable that represents the caught

error accessible within the block.

Swift has additional constructs for error handling [1]. By writing

try? before an expression that may throw an error, that expression

produces nil, instead of its expected result, if an error is thrown.

Similarly, try! before such an expression converts an error into

a runtime error. Programs cannot catch runtime errors and this

will cause the application to crash. Finally, for high-order functions

in Swift, one should check whether the received closure throws

an error. For that, Swift has a special kind of throws: marking the

signatures of higher-order function with rethrows signals that it
only throws an error if the received closure throws one.

3 METHODOLOGY

In this section we start by identifying popular guides pertaining to

Swift error handling (Section 3.1). These guides allow us to refine

research questions RQ1 and RQ2 by identifying recommendations

and anti-patterns. Then, we apply a convergence mixed-methods

approach [9, 23] to estimate adherence to these recommendations

and avoidance of the anti-patterns. Quantitative (repository mining)

and qualitative (interviews) research are performed in parallel as

discussed in Section 3.2 and Section 3.3. The interviews also allow

How Swift Developers Handle Errors MSR ’18, May 28–29, 2018, Gothenburg, Sweden

us to answer RQ3, i.e., to obtain insights in differences between

novices and experienced developers.

3.1 Swift Error Handling Guidelines

As we focus on the impact of guides on the developers’ practice, we

start by analyzing publicly available guides that discuss Swift error

handling. To find which guides are available to Swift programmers

we have searched “Swift Error Handling” on Google. We use Google

rank as our primary popularity criterion since this is the way devel-

opers are likely to obtain knowledge about error handling. From the

ten highest ranked results, six are guides that extensively discuss

error handling in Swift. The remaining four link either to libraries

or to questions on Q&A sites. The six guides are:

G-1) The Swift Programming Language, by Apple Inc.1;
G-2) Error Handling in Swift, by Abhimuralidharan2;
G-3) Magical Error Handling in Swift, by Gemma Barlow3

;

G-4) Intro to Error Handling in Swift, by Bob Lee4;
G-5) Avoiding Swift Error & Swift ErrorHandling, byMindbrowser5,;
G-6) Error Handling in Swift, by Andy Bargh 6

.

Using these guides we compiled a list of recommendations for

handling errors in Swift by doing card sorting, grouping aspects of

the error handling mechanism and analyzing what each guide says

or shows about the particular aspect. Furthermore, we compiled

a list of anti-patterns that indicate potentially wrong usage of the

error handling mechanism. Throughout the paper we refer to rec-

ommendations by names defined in this section. As observed below

the guides tend to agree on recommendations and anti-patterns:

we can claim, therefore, that we have reached saturation on rec-

ommendations and anti-patterns presented in blog posts. Table 1

summarizes the recommendations and anti-patterns.

According to the guides, Swift projects should declare custom

error types to signal exceptional conditions (CustomErrorTypes).
G-5 shows an example using a struct as an error type; G-1 to G-4

and G-6 recommend using enums as error types. In case a variable

needs to be associated with an error condition, these variables can

also be defined as part of the error type (cf. Line 2 of Listing 1).

When an exceptional condition occurs, an instance of the error

type—possibly instantiated with one or more arguments (cf. Line

8 of Listing 1)—should be thrown (ThrowErrorValues). Due to the

straightforward notion of throwing errors in Swift, the only re-

quirement for throwing an error is that the throw statement should

occur in the context of either a method that is declared with the

throws keyword or in the context of do-catch statements. All

guides mention and show examples of this pattern.

The third point that all guides touch on is related to how to call

methods declared with the throws keyword. Interestingly, no guide
recommends using the try! operator for error handling. In fact,

five guides (G-1 to G-4 and G-6) explicitly mention that try! should
only be used in rare cases where it is certain that the called method

1
https://developer.apple.com/library/content/documentation/Swift/Conceptual/

Swift_Programming_Language/ErrorHandling.html#//apple_ref/doc/uid/

TP40014097-CH42-ID508

2
https://medium.com/@abhimuralidharan/error-handling-in-swift-d0a618499910

3
https://www.raywenderlich.com/130197/magical-error-handling-swift

4
https://www.bobthedeveloper.io/blog/intro-to-error-handling-in-swift

5
http://mindbowser.com/error-handling-in-swift/

6
https://andybargh.com/error-handling-in-swift/

never throws an error. As a consequence, we consider excessive

usage of try! as an anti-pattern, ExcessiveTry!. When it comes

to try?, the guides are not unanimous; the Swift programming

guide by Apple (G-1) explains the following about try?: “Using
try? lets you write concise error handling code when you want to
handle all errors in the same way.”. G-2 does not mention whether

try? should be used or not—it only mentions its existence. G-4

and G-6 recommend against using try?, as try? generalizes and
ignores errors. All guides recommend, and show examples of, the

use of the try operator in a do-catch block to call methods that

are declared with the throws keyword (TryWithinDoCatch).
Additionally, every guide explains how errors can be caught

using catch. The Swift programming guide (G-1) explains how

pattern matching can be used to match different error conditions.

A small example is featured in every guide on how to catch error

values with catch handlers, in five out of the six guides (G-1 to

G-4 and G-6), these examples include case matching for enum error

types. Thus, we consider CatchEnumCases to be the usage of catch
handlers that use pattern matching for enum values. Two guides

(G-1 and G-6) also provide examples of so called value binding to

bind error parameters in the catch handler. Lines 17-18 of Listing 1
also provide an example of usage of this approach.

While there are differences in these guidelines, they all describe

a common theme to Swift 4 error handling. According to the guide-

lines, when an exceptional condition occurs, developers should

throw (ThrowErrorValues) an error of an application-specific er-

ror type (CustomErrorTypes). Methods that throw errors should be

calledwith a try statement in a do-catch block (TryWithinDoCatch),
with one or more catch handlers that pattern match different values

of the error type (CatchEnumCases). Meanwhile, try! should only
be used when it is certain that code will never throw an error during

runtime (ExcessiveTry!). When it comes to try? there is less of a

consensus; some guides (G-1, G-4 and G-6) discourage usage of

try? while others only explain the semantics of try?. However,
most guides (G-1, G-3, G-4 and G-6) explain that try? is most suited

for specific cases when the type of error does not matter and there

is no need to distinguish resulting errors. Which is why we consider

excessive of try? to be an anti-pattern (ExcessiveTry?).
Even though catch handlers are an important part of the error

handling mechanism of Swift, none of the guides provide informa-

tion or examples on the contents of catch handlers. All six guides

showcase toy examples of catch handlers where the latter just

write information to the standard output. There are no examples of

how best to notify the user or log the error.

Complementary to the guides found in the gray literature such

as blogs, we investigated recent academic research to identify addi-

tional error handling usage patterns that might also be common

in the Swift arena. Shah et al. [28] have found that novice develop-

ers often choose to ignore or generalize error handling as they do

not consider error handling to be a high priority task. Signs that

projects in Swift ignore or generalize error handling are a lack of any

error handling primitives in a project (LackOfEH), and excessive

usage of the try? operator, as the try? operator swallows all er-

rors that occur (ExcessiveTry?). Furthermore Ebert et al. [10] found
that error handling bugs in Java projects can be caused by catch
handlers that swallow errors or empty catch blocks. Therefore

we also consider empty catch handlers that catch specific errors

https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/ErrorHandling.html#//apple_ref/doc/uid/TP40014097-CH42-ID508
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/ErrorHandling.html#//apple_ref/doc/uid/TP40014097-CH42-ID508
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/ErrorHandling.html#//apple_ref/doc/uid/TP40014097-CH42-ID508
https://medium.com/@abhimuralidharan/error-handling-in-swift-d0a618499910
https://www.raywenderlich.com/130197/magical-error-handling-swift
https://www.bobthedeveloper.io/blog/intro-to-error-handling-in-swift
http://mindbowser.com/error-handling-in-swift/
https://andybargh.com/error-handling-in-swift/

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Nathan Cassee, Gustavo Pinto, Fernando Castor, and Alexander Serebrenik

Table 1: EH recommendations and anti-patterns.

Recommendations

CustomErrorTypes: Use custom error types to signal errors.

ThrowErrorValues: In the presence of errors, throw an error type.

TryWithinDoCatch: Methods that throw errors should be called with a

try statement in a do-catch block.

CatchEnumCases: One or more catch handlers with pattern case match-

ing on different values of the error type.

Anti-Patterns

ExcessiveTry!: Excessive use of try!.
LackOfEH: Lack of error handling code in a project.

ExcessiveTry?: Excessive usage of try? to swallow errors.

EmptyCatch: Empty catch blocks that match specific error(s).

EmptyGenericCatch: The use of empty generic catch blocks.

(EmptyCatch) and empty generic handlers (EmptyGenericCatch)
as anti-patterns. Since the generic and non-generic empty catch
handlers can be used for different scenarios, we consider Empty-
Catch and EmptyGenericCatch to be different anti-patterns: an

empty catch handler that catches a specific error silences that error,
while an empty generic catch handler silences all errors.

3.2 Mining Swift repositories

Next we discuss identifying representative Swift projects (Sec-

tion 3.2.1) and error handling metrics we apply (Section 3.2.2).

3.2.1 Finding Representative Swift Projects.

Selecting a sample of active GitHub projects. To analyze how

Swift developers employ the error handling mechanisms of Swift,

we start by mining Swift Projects using GHTorrent, a third-party

publicly accessible mirror of GitHub [13, 14]. As of November, 1st

2017, we found a total of 402,046 projects that were recorded as a

Swift project by GitHub. When analyzing these projects, we found

that some of them do not present recent activity. Therefore, we

filter out projects with no commits after Jan 1st, 2016. With this

additional constraint, we found a total of 150,675 Swift projects.

The 150,675 recently active Swift projects however were still too

many to analyze in depth, which would make a comprehensive

source code analysis unfeasible. Therefore we selected a random

sample of those projects. Since prevalence of the error handling

constructs was not known a priori we had to assume the prevalence

of 50%, maximizing the sample size for the given confidence level.

For the confidence level of 99% and a confidence interval of 1.32,

the sample size has been determined to be 9,000 projects
7
.

Identifying engineered projects in the sample As Kalliamvakou et
al. [16] have shown, a large amount of software projects on GitHub

are inactive and/or personal. To select engineered software projects

as opposed to personal or naive ones, we applied Reaper, a classifica-

tion framework introduced by Munaiah et al. [19]. Reaper extracts
a set of metrics from a project based on, amongst other things, size

of the project and history. Using Reaper, Munaiah et al. achieved
a precision of 82% and a recall of 86% on their “utility” dataset,

i.e., the dataset based on the definition of engineered projects as

projects that “have a fairly general-purpose utility to users other

7
https://www.surveysystem.com/sscalc.htm

than the developers themselves” [19]. To apply Reaper to Swift

projects, we had to extend Reaper to also be able to score Swift

projects with respect to the six dimensions identified by Munaiah

et al. : community, documentation, history, testing, licenses and

continuous integration. These six dimensions closely match the

original dimensions outlined by Munaiah et al. [19].
From the 9,000 Swift repositories, 2,801 projects have been clas-

sified as engineered software projects. It is important to note that

these projects also include forks. However, we chose not to exclude

forks as we consider the forks to be interactions of developers with

Swift source code. In addition, as recent work suggests [34], forks

not only present active development, but can also have different

features, when compared to the original project.

Reaper dimensions in the engineered Swift projects We have ob-

served that among 2,801 engineered projects 41% of the projects

are configured to use continuous integration and that 37% of the

Swift projects do not state any license.
Figure 1 shows distributions of the metrics representing four

Reaper dimensions over 2,801 engineered projects. The community
metric counts the smallest set of contributors whose total number

of commits accounts for 80% or more of the total contributions. As

we can see, the majority of studied projects have up to two core

contributors. The documentation metric calculates the share of the

commented lines of code among the non-blank lines of code. The

history metric calculates the average number of commits per month.

We removed the outliers from this figure to ease comprehension.

On average, our studied projects perform 5.3 commits per month.

Finally, the testing metric computes the ratio between the amount

of testing code and the overall number of source lines of code.

Although some projects have an extensive testing code base (three

projects have a test ratio greater than 0.9), on average, the projects

have a test ratio of 0.16. We did not analyze whether there were

specific tests for error handling code.

3.2.2 Metrics extraction. To analyze the source code of the 2,801
Swift projects, we cloned all of their git repositories. Two tools have

been used to analyze these projects, cloc
8
has been used to count

which programming languages are used in the projects, and how

many lines of code each project has. Moreover, a custom abstract

syntax tree analyzer, metric extractor, has been developed to extract

the error handling information from the source code
9
. To extract

syntactical information from the corpus metric extractor parses all

Swift source code files with an open-source Swift 4 parser, swift-

ast
10
. For a given repository the metric extractor uses the abstract

syntax tree returned by swift-astto extract information related

to how Swift developers (1) catch errors; (2) call methods that

potentially throw exceptions; (3) throw and/or define error types.

The two leading dependency managers for Swift, CocoaPods

and Carthage, both recommend checking the source code of depen-

dencies into git
1112

. As the location to which both CocoaPods and

Carthage download dependencies is standard, we have removed

all of these directories from the repositories, using the pattern

8
http://cloc.sourceforge.net/

9
https://github.com/TheDutchDevil/parser_wrapper

10
https://github.com/yanagiba/swift-ast

11
https://guides.cocoapods.org/using/using-cocoapods

12
https://github.com/Carthage/Carthage/blob/master/Documentation/Artifacts.md#

carthagecheckouts

https://www.surveysystem.com/sscalc.htm
http://cloc.sourceforge.net/
https://github.com/TheDutchDevil/parser_wrapper
https://github.com/yanagiba/swift-ast
https://guides.cocoapods.org/using/using-cocoapods
https://github.com/Carthage/Carthage/blob/master/Documentation/Artifacts.md#carthagecheckouts
https://github.com/Carthage/Carthage/blob/master/Documentation/Artifacts.md#carthagecheckouts

How Swift Developers Handle Errors MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Community

Core contributors

S
w

if
t

p
ro

je
c
ts

0 2 4 6 8 10 12
0

1
0

0
0

2
5

0
0

Documentation

Comment ratio

S
w

if
t

p
ro

je
c
ts

0.0 0.2 0.4 0.6 0.8

0
5

0
0

1
0

0
0

History

Commit Frequency

S
w

if
t

p
ro

je
c
ts

0 2 4 6 8 10

0
5

0
0

1
5

0
0

Testing

Test Ratio

S
w

if
t

p
ro

je
c
ts

0.0 0.2 0.4 0.6 0.8 1.0

0
5

0
0

1
5

0
0

Figure 1: Characteristics of the studied project, using reaper metrics.

Table 2: Overview of the metrics extracted.

Category Metrics

Calling EH code Number of try, try!, try? and do statements

Defining Error

types

Number of enums, classes and structs that
inherit from Error

Throwing errors Number of throw statements, number of meth-

ods declared with throws and rethrows
Catching errors Number of catch clauses that catch an enum,

catch all, and catch neither an enum nor all

Error types.

*/Carthage/Checkout and */Pods. After removing the dependen-

cies from the Swift repositories there are a total of 149,154 code

files as counted by cloc, and a total of 84,982 Swift files for which

we have attempted to extract information related to error handling.

Table 2 shows the metrics studied. These metrics are based on

the identified guidelines (Section 3.1). In total, from the 2,801 Swift

projects, we extract error handling metrics for 2,733 projects and

78,760 Swift 4 files. A more in depth description of the tools used

to select the projects and parse the Swift source files is available

online
13
. We refer to the collection of 2,733 projects as our corpus.

3.3 Interviews

We conducted semi-structured interviews with Swift developers

to understand why and how do they use Swift’s error handling

constructs. Conducting interviews is commonly performed either

as the main [28] or complementary [10, 24] method in software

engineering research. We used a convenience sampling approach to

recruit developers that use Swift. We started searching at LinkedIn

for practitioners that have professional Swift experience. We also

shared our invitation on two social networks: Twitter and Facebook.

We also searched for conference speakers on Swift conferences.

Finally, we contacted the students of the Apple Developer Academy,

a 2-year educational programwhere undergraduate students receive

13
https://gist.github.com/TheDutchDevil/31d2b54420ffab0d798a26c0b8fe2516

Table 3: Demographics of our interviewees.

ID Location Years of prof. exp. Category

P1 Europe 10+ years Expert

P2 Europe 6 years Expert

P3 Asia 6 years Expert

P4 South America 8 years Expert

P5 North America 4 years Novice

P6 South America 6 years Novice

P7 South America 3 years Novice

P8 South America 3 years Novice

P9 South America 2 years Novice

P10 South America 1 year Novice

extensive education in app development. At the end, we interviewed

10 Swift developers (4 experienced Swift developers, and 6 novices).

Eight interviews were conducted via video calls (the remaining

two ones were conducted via e-mail; the participants had very low

time availability to be interviewed). The interviews were recorded,

and audio was transcribed. On average, the interviews lasted about

40 minutes. At the beginning of the interview, we explained the

purpose of the research, and sought permission to record the in-

terview and to share the data anonymously. To ensure participant

anonymity, they are identified as P1–P10. Table 3 shows some demo-

graphics of the participants. All the South-American interviewees

are Brazilian and their interviews were conducted in Portuguese

and later translated to English.

In the interviews we focused on four main topics: (1) the inter-

viewees’ perception of error handling in general, and in Swift in

particular, (2) the reasons for the interviewee to use error handling

in swift, (3) the reasons to avoid using EH, (4) the pitfalls and chal-

lenges they face when dealing with error situations. Each interview

transcript, along with the associated recording, was analyzed by

one of the authors following the card-sorting procedure [30]. The

emerging topics are discussed in Section 4 along with quotes from

the interviews. Among similar opinions, we chose to quote only

the one we considered the most representative for each case.

https://gist.github.com/TheDutchDevil/31d2b54420ffab0d798a26c0b8fe2516

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Nathan Cassee, Gustavo Pinto, Fernando Castor, and Alexander Serebrenik

Table 4: The division of Swift projects into the three cate-

gories. SLOC refers exclusively to Swift code.

Category % projects # projects Mean SLOC Median SLOC

noEH 50.71% 1386 1066.5 342.0

cEH 29.56% 808 1860.0 926.0

sEH 19.61% 536 6756.1 2475.0

0

2500

5000

7500

10000

12500

noEH cEH sEH

Category

S
w

if
t
S

lo
c

Figure 2: Projects that both consume and throw errors (sEH)

tend to be larger (SLOC) than those that only consume errors

of APIs (cEH) and the latter than those that do not use any

error handling (noEH).

We complement the findings of the interview with a manual

analysis of commits made by experts and novice Swift developers

that touch error handling code. To identify experts, we followed a

simplified version of the technique presented by Mo et al. [18]: for
each project in the dataset, we selected the top-10 contributors (i.e.,
the contributors that made the most commits in a given project).

To avoid counting the same commit scattered in forked projects,

for this analysis, we removed fork projects from the dataset. After

the identification of the top-10 contributors, we analyzed other

Swift projects that these users have contributed to. The selected

experts have contributed significantly to at least four additional

Swift repositories (4 is the third quartile of contributions to different

repositories). Using this approach, we found six Swift experts. We

then manually investigated the 789 commits they performed and

categorized the 223 ones that touch error handling code.

4 RESULTS

This section presents the results obtained from both repository

mining and interviews.

4.1 Error handling recommendations in

practice

To analyze the error handling usage of the 2,733 projects in the

corpus, the projects are split into 3 non-overlapping groups, namely:

(1) noEH: projects that do not use any of the error handling

primitives available in Swift;

(2) cEH: projects that only use error handling primitives to

consume APIs that throw errors, and;

(3) sEH: projects that use error handling to both consume error

throwing APIs and use the error handling mechanism to

throw errors.

0

50

100

150

200

0 40 80 120

try occurrences

c
o
u
n
t

Figure 3: Distribution of try usage in projects with at least

one try operator. For the sake of readability 76 outliers with

more than 125 try statements are not included in this plot.

Table 4 shows how many projects fall into each group. Most

of the projects do not use any of the error handling primitives of

Swift to consume or signal errors; less than a third just consume

and do not signal any errors. Ultimately, one in five projects uses

the error handling mechanism of Swift to actively signal errors.

Figure 2 shows the distribution of the source lines of code (SLOC)

of the Swift projects in each category. Statistical comparison using

the T̃-procedure [17] shows that sEH projects are larger than cEH,

and cEH are larger than noEH . We apply T̃ as it is robust against

unequal population variances, respects transitivity, does not suffer

from well-known problems of two-steps approaches [11] (such as

ANOVA followed by pairwise t-tests or Kruskal-Wallis followed by

pairwise Mann-Whitney tests), and has been successfully applied

in empirical software engineering [31–33].

Out of 1,344 projects that utilize Swift error handling (cEH

and sEH together), only 725 use any try variant (i.e., try, try?,
try!) more than five times (cf. Figure 3). Therefore, even in the

projects that consume errors overall consuming errors is not com-

mon. One example of a project heavily using try statements is

Casperhr/engine with 6,041 Swift Sloc and 595 try instances.
TryWithinDoCatch recommends using the try statement in a

do-catch block. However, out of the 1,344 projects that employ

error handling, there are 190 projects that do not use try to call

methods that potentially throw errors. Among the 1,154 projects

that use the try operator, half have less than 7 try statements (cf.

the distribution of try statements in Figure 3). Still according to

TryWithinDoCatch a do-catch block should be used for error han-

dling. However, among the aforementioned 1,344 projects, we found

that 272 projects do not contain any do statements. More interest-

ingly, these 272 projects call code that signals errors, with try?,
try!, or by declaring methods that have the potential of throwing

errors. For instance, out of the 272 projects that do not contain any

do statements, there are 19 projects that do not throw any errors,

but declare methods that can throw errors. Manual inspection on

these projects reveals that 17 of these 19 projects use the try opera-
tor to call methods that might throw errors. These 17 projects hence

propagate any resulting errors up the call stack, without intercept-

ing them, i.e., not using any aspects of the error handling system of

Swift to catch or report on errors, more importantly, not following

recommendations CustomErrorTypes and ThrowErrorValues.
Out of the 1,344 projects that utilize Swift error handling, 1,065

contain at least one catch handler. The recommendations suggest

How Swift Developers Handle Errors MSR ’18, May 28–29, 2018, Gothenburg, Sweden

0

5

10

15

20

25

0 5 10 15

try? occurrences

c
o
u
n
t

Figure 4: Distribution of try? occurrences in projects that

only use the try? operator for error handling

using case matching on the elements of an enum to catch specific

errors (CatchEnumCases). However, out of the 1,065 projects, only
124 projects use one or more catch handlers with enum case match-

ing. This finding indicates that even though projects are aware of

and adhere to some recommendation (e.g., TryWithinDoCatch),
they do not necessarily follow all of them (e.g., CatchEnumCases).
The guidelines for error handling in Swift mention that custom

enum values should be thrown when exceptional conditions occur

(ThrowErrorValues). Nonetheless, only 536 Swift projects follow

ThrowErrorValues and actually throw errors. The median of errors

thrown per KSloc for these projects is 2.88, i.e., on average, approxi-

mately one line of code throws an error out of every 350, indicating

that if a project throws errors, it does so regularly. However, not

all projects that throw an error also declare methods that throw

errors. In fact, 27 projects have one or more throw statements but

do not declare any methods that throw errors. Therefore, throw
statements in these projects occur in the context of a do-catch
statement and errors are never propagated up the call stack.

While almost all guides provide an example of the declaration

of an enum type that inherits from the Error protocol, and all

guides recommend the declaration of types that inherit from Error
(CustomErrorTypes), 182 projects out of the 536 projects in sEH

do not declare any error types. Among the remaining 354 that do

declare at least one error type, 210 do not declare any enum type

that inherits from Error.

4.2 Error handling anti-patterns in practice

The guidelines for Swift developers regarding the usage of try,
try? and try! specify that try! statements should not be used

extensively (ExcessiveTry!). In order to compare the usage of the

different kinds of try statement, we investigated their occurrences

in the 725 projects with more than 5 try, try?, or try! statements.

We found that 10.76% of these projects use try! in at least half of

the all cases to call code that signals errors, a clear anti-pattern.

Another anti-pattern for handling errors in Swift is ignoring

errors. One way of ignoring errors is by calling a method that

throws errors with the try? operator. Verifying whether the call

succeeded or failed can be done by checking whether the returned

value is nil. However, if try? is used, all information regarding the

error (e.g., the error message) is lost. This makes it nearly impossible

to handle different errors based on their type, value, or parameters

(ExcessiveTry?). Out of the 1,344 projects that use error handling,
there are 569 that use the try? operator at least once, and a total

of 73 projects that only use the try? operator.

However, Figure 4 presents a different perspective. It shows that

most of these projects do not use the try? statement excessively. In

fact the majority of these projects rarely uses the try? statement,

as opposed to using try? to ignore many errors. The projects that

only use try? for error handling rarely use other features of the

Swift error handling mechanism. This finding suggests that these

projects do not follow recommendations CustomErrorTypes and
ThrowErrorValues. Only 6 of the projects actually declare error

types, declare methods that throw errors, or actually throw errors.

While Swift error handling guidelines recommend the usage

of catch handlers (CatchEnumCases), empty catch handlers are
potentially dangerous (EmptyCatch). Out of the 267 projects that
have at least one catch handler that is not a catch all i.e a specific
catch handlers, 108 projects have at least one empty specific catch

handler. These empty catch handlers effectively swallow the er-

ror(s) that match the pattern of the catch clause. Among these

108 projects with empty catch handlers, 43 only have empty han-

dlers. It is important to note that these 43 projects are not perfect

examples of how not to use error handling; most of them employ

some of the recommendations, including 18 projects that throw

errors (ThrowErrorValues) and 11 projects that declare error types

(CustomErrorTypes). Moreover, all of these 43 projects use try
in some form (TryWithinDoCatch). While an empty catch han-

dler is a clear anti-pattern, it appears that in several projects these

are used in combination with other recommended error handling

characteristics as can be observed in Table 5.

In addition to empty catch handlers, empty generic catch han-

dlers are also an anti-pattern (EmptyGenericCatch), since empty

generic catch handlers silently swallow all errors. This kind of

error handler can be rewritten by means of try?, which better cap-

tures the intent of the code. Out of the 1,344 projects that use error

handling, 1,025 projects use at least one generic catch handler. Out
of these 1,025 projects 230 projects have at least one empty generic

catch handler and in 26 projects all generic catch handlers are

empty. However, from the 230 projects with at least one empty

generic catch handler, 153 projects use no specific catch handlers,

and therefore only use generic catch handlers. From these 153

projects, 20 projects have only empty catch handlers, indicating
that these 20 projects swallow all errors that occur.

4.3 Novices and experts

Previous studies have investigated how developers perceive the

importance, challenges, and implementation techniques of error/ex-

ception handling code [2, 10, 27, 28]. The uniqueness of the Swift

error handling constructs fostered the need to update this per-

ception. Generally speaking, our interviewees were aware of the

existence of additional error handing features in Swift. Moreover,

all of them have recently employed or refactored some code re-

lated to error-handling. However, some technical background is

still lacking, in particular, on the novice side.

This claim can be exemplified in difference situations. For in-

stance, when we asked for scenarios in which our participants avoid

using EH constructs, P10 mentioned that “I believe I did not get to the
top of the learning curve in relation to error handling and many times
when I write this type of code I get many compilation errors”. This
interviewee believes that one of the main reasons that makes error

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Nathan Cassee, Gustavo Pinto, Fernando Castor, and Alexander Serebrenik

Table 5: Sub-division of catch handlers usage over different

projects. Indentation in the lines of the table is used to indi-

cate to which group a line belongs.

Projects Category

1344 sEH and cEH

267 Projects with more than one specific catch handler

108 Projects with at least one empty specific catch handler

43 Projects with only empty specific catch handlers

43 Conforms to TryWithinDoCatch
18 Conforms to ThrowErrorValues
11 Conforms to CustomErrorTypes

1025 Projects with more than one catch all handler

230 Projects with more than one empty catch all

26 Only empty catch alls

153 Only catch alls

20 Only empty catch alls

handling in Swift difficult is that it is not intuitive: “I do not think it
is intuitive. For me a programming language is intuitive when I can
start writing the code and ‘hit the syntax’ as a logical consequence of
the rules and examples I saw earlier. In the case of Swift error han-
dling, I always end up confusing some keywords or not knowing if I
should put ? or !. It is also common to get compilation errors whose
recommended fix does not solve the problem.” The problem reported

by this interviewee can be considered as a mix of the anti-patterns

related to the use of try! (ExcessiveTry!) and try? (LackOfEH).
As a comparison, expert developers avoid EH constructs in a

more conscious way, as P2 mentioned: “Its good to handle the errors
in the code, but it is not a compulsion to handle each and every error
with the custom error handler.”. This statement goes along the lines

of ExcessiveTry!. However, as the interview went further, it became

clear that excessive use of error handling in general, not necessarily

only the try! statement, can be harmful: “As long as the errors do
not affect the user experience and performance of an app, the user will
not want to be informed about them”. The respondent complemented

this answer with examples of particular cases where error handling

can be avoided: “a) Error occurred while sending analytic events to
the remote server; b) App failed to connect to the third party service
like ad services etc; c) Failure in image cache on disk.”

Similarly, when we asked what are the reasons to ignore error

handling, P2 suggested that “When we parse the information re-
ceived from the server, there may be error occurred in JSON parsing.
We can handle the parse error by try?. Indicates, ignore error and
allow the variable to assign with nil, whenever function throws them.”
By ignoring errors, this interviewee introduces an anti-pattern

(ExcessiveTry?). Novice developers often mentioned not ignoring

EH. Only one novice interviewee, P10, went in the opposite direc-

tion, stating that “when I am working on a temporary solution, I leave
some variables hard-coded or use force-unwrapping”.

Moreover, regarding the importance of error handling code, both

experts and novice developers concur on the benefits brought by

error handling mechanisms. One novice programmer highlighted

the particular need for error handling. “One of my projects made
many calls to the server and due to the lack of error handling, the
application ceased respondingwhen there was a problem in those calls.”

Likewise, our respondents also mentioned scenarios where error

handling is not particularly relevant. P5 develops an iOS framework

and, in extreme cases, if developers that use the framework violate

some hard constrains that they are not supposed to, internally, the

framework uses a try! statement to raise a runtime error. Note

that, differently from ExcessiveTry!, which highlights the excessive

use of try!, this respondent consciously uses this statement in

extreme scenarios. As one interviewee suggests “if nothing else can
be done, no error needs to be caught”.

When we asked what could be improved in the EH mechanisms,

two experts provided suggestions. One expert (P4) mentioned a lim-

itation particularly relevant to the product the interviewee works

on. This expert develops an SDK organized in different modules.

Each module is managed by a single thread. In the Android version

of the SDK, when an error occurs, the interviewee needs to know

which thread was running the module, so then the interviewee can

finish the execution of this single module, while keeping the other

ones running. The interviewee highlighted that “as far as I know, in
Swift there is no way to catch the thread id that had an error”. In the

Android version of the SDK, the interviewee does that using the

Thread.UncaughtExceptionHandler class. One novice program-

mer mentioned that “At least compiler errors could be better”.
In addition to the interviews, we have also analyzed the error

handling code in 789 commits authored by experienced contribu-

tors to projects in the corpus. Among the commits, 223 modify lines

of code that are related to error handling; 177 out of these either

add, remove, or update code that uses error handling constructs.

However, 50 commits modify lines of code related to error han-

dling but do not modify error handling code itself. e.g., 34 commits

renamed variables used within catch handlers, and 8 commits mod-

ified whitespace. More interestingly, the remaining 173 commits

actually modify error handling code. Among these commits, 14

modify error handling to account for changes in external code e.g.,
a method changing its signature to signal that it now throws errors.

The remaining 159 changesets show that the experienced Swift

developers in general follow the recommendations as laid out by

the guidelines. Especially CustomErrorTypes (declare enum error

types), ThrowErrorValues, and TryWithinDoCatch (call methods

that throw errors with try) are adhered to by the experienced

developers in the analyzed repositories. All of the 16 projects for

which we analyzed the commits of experienced developers are

libraries. Therefore, instances of CatchEnumCases (write catch
handlers that match enum case patterns) are relatively rare, as most

projects cascade errors up the call stack.

Anti-patterns were rarely found in the changesets of experienced

developers. There are several instances of generic catch handlers.

However, these handlers are never empty, and therefore do not

match EmptyGenericCatch. Additionally, the usage of try! and

try? operators is sparse and appears to be aimed at specific cases.

Listing 2 is an excerpt from a changeset
14

by kylef to kylef/Stencil

where line 1 is replaced by line 2. In this excerpt, old Objective-C

style error handling (passing an error parameter) is replaced by

a more appropriate Swift error handling primitive. Line 2 shows

usage of the try! operator as recommend by Apple, to call code

14
https://github.com/kylef/Stencil/commit/dcf2611ac24829ffe80cf46894ebc98fdda62e0c#

diff-87b77d847adec9ff08f07ca050ac9519

https://github.com/kylef/Stencil/commit/dcf2611ac24829ffe80cf46894ebc98fdda62e0c#diff-87b77d847adec9ff08f07ca050ac9519
https://github.com/kylef/Stencil/commit/dcf2611ac24829ffe80cf46894ebc98fdda62e0c#diff-87b77d847adec9ff08f07ca050ac9519

How Swift Developers Handle Errors MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Listing 2: Snippet of a changeset made by a Swift expert to

the kylef/Stencil project. It shows the usage of try!
1 - let regex = NSRegularExpression(pattern: "

(\\{\\{.*?\\}\\}|\\{%.*?%\\}|\\{#.*?#\\})", options: nil ,

error: nil)!

2 + let regex = try! NSRegularExpression(pattern: "

(\\{\\{.*?\\}\\}|\\{%.*?%\\}|\\{#.*?#\\})", options: [])

that is guaranteed not to fail, as the regular expression pattern has

probably been tested during development and is valid.

5 DISCUSSION

In this study we found that roughly half of the 2,733 GitHub projects

analyzed do not use the EH mechanism provided by the Swift pro-

gramming language. The definitive explanation regarding the low

adoption of error handling mechanisms is still lacking. However,

results of the interviews show evidence that both novice and expe-

rienced Swift developers report problems with the error handling

mechanism. While novices programmers find it counter-intuitive

or confusing, experienced developers describe practical limitations

of either the error handling mechanism or the Swift compiler.

These problems related to Swift tooling are not new. An earlier

study by Rebouças et al. [24] found that, for developers that used

Swift 2, problems with the Swift compiler used to be common.

Additionally, although there are extensive guidelines on the subject,

Rebouças et al. found that developers still rely on StackOverflow to

ask questions about the error handling mechanisms of Swift 2.

Moreover, the error handling guides used in this study to derive

the recommendations and anti-patterns do not extensively discuss

advanced use cases of error handling. For instance, catch handlers

are discussed only with contrived examples (e.g., to call a print

function). However, none of the guides discuss how catch handlers
could also be used to deal with, for instance, unreliable networks or

how to properly present an error to the application user. This lack

of in-depth explanation might suggest that there is a disconnect

in the information available online for Swift developers when it

comes to error handling. This knowledge gap explains why novice

developers consider the error handling mechanism to be counter-

intuitive and why we find that half of the Swift projects do not

use any error handling. Moreover, this lack of explanation might

reflect inherent limitations of the error handling mechanism, as

more experienced users cannot express the error handling logic

that they are used to in other languages.

Analysis of the Swift projects that use error handling shows that

several of the recommendations are adhered by Swift developers.

Especially when it comes to calling code that throws errors using

try (TryWithinDoCatch); almost all projects that use error han-

dling adhere to this guideline. While not all projects that use error

handling also throw errors, 19.61% of the projects follow Throw-
ErrorValues and throw errors. Since this is a common exception

handling practice, we hypothesize that developers that employ

these recommendations might be motivated by the old culture of

other programming languages. Ultimately, Swift developers are

not likely to follow recommendations regarding the declaration

of custom error types (CustomErrorTypes) and the recommenda-

tion regarding catch handlers (CatchEnumCases). Consequently,

most anti-patterns found center around swallowing or ignoring er-

rors. Either through try? (ExcessiveTry?) or through empty generic

catch handlers (EmptyGenericCatch).
In a similar vein, out of the 1065 that have at least one catch

handler, 798 exhibit generic catch handlers exclusively. The use

of generic catch is not among the identified anti-patterns. In fact,

Swift requires a generic catch whenever a method may throw

errors but does not include throws in its signature. Nonetheless,

recommendation CatchEnumCases suggests that catch handlers
should be specific, capturing errors by pattern matching on the

error values. Previous work [8, 21, 25] has shown that generic catch
handlers are a potential source of errors, due to the possibility of

capturing errors accidentally, by means of type subsumption.

Low adoption of these recommendations and the occurrence of

the anti-patterns could be attributed to the fact that this area is less

discussed by the guides on Swift error handling. Therefore, improve-

ments in how these constructs are explained to Swift developers

might increase adoption of these recommendations and boost the

overall code quality of Swift code. These findings come as an oppor-

tunity for tool builders that can create or recommend refactoring

tools that might ease the adoption of Swift error handling.

6 LIMITATIONS AND THREATS TO VALIDITY

Fist, mining GitHub as done in this study presents a threat as a large

part of the projects on Github is inactive and/or personal [16]. We

mitigate this treat by selecting only active and engineered GitHub

projects.We have used the Reaper framework [19]. However, Reaper

is not 100% accurate (the authors reported a precision of 82% and a

recall of 86%). There might be valid software engineering projects

which we have excluded (false negatives) while we might also

have reported on GitHub projects that do not represent engineered

projects (false positives). However, in such large scale corpus of data,

we do not expect major distortions in the presence of false positives.

Second, we have analyzed a corpus of publicly GitHub projects,

however, =other source code hosting platforms exist. Therefore our

results might not generalize to the wider Swift community.

Another limitation is regarding the parser used (swift-ast). Us-

ing this parser, we were unable to parse all Swift files in the 2,733

parseable repositories. This happens due to several reasons. Over

the past three years, several versions of the Swift programming

language and its standard library have been released, and, surpris-

ingly, none of the major releases have been backwards compatible.

As the 2,733 projects in the dataset represent a wide spread of Swift

projects there are still repositories written in Swift 2 or 3, leading

to situations where some files cannot be parsed by the Swift 4 com-

piler. Secondly, even if a project is written in Swift 4 there is no

requirement that all Swift 4 files in the repository should contain

syntactically valid Swift 4 code. Therefore, even for Swift 4 projects,

there are unparseable files . Finally, there are several known is-

sues in swift-ast, which means that some syntactically correct

Swift 4 source files cannot be parsed by swift-ast. To deal with

these limitations of parsing Swift source files, we have extended

the metrics extractor to report on the amount of files that cannot be

parsed. If swift-ast fails to parse a file, the file is fed to the Swift 4

compiler, to test whether the code is syntactically valid. If the Swift

4 compiler cannot parse the file, then the file is not syntactically

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Nathan Cassee, Gustavo Pinto, Fernando Castor, and Alexander Serebrenik

valid for Swift 4 code. If the Swift 4 compiler parses the file without

failure then this file cannot be parsed by swift-ast because of a

bug. Thereby rendering it impossible for the metric extractor to

extract metrics from the file. However, a syntactically valid file

that could not be parsed by swift-ast does not necessarily have to

contain error handling code. Therefore, we search for EH primitives

using the following regular expression:

(
do\s*{

)
|
(
try!

)
|
(
try\?

)
.

If this pattern is not matched then it is highly likely that the file

contains no error handling code. Consequently, if there is at least

one match of the pattern in the file the failure is recorded as a parser

failure where potentially error handling code has been missed. If

the pattern is not matched, then the file is marked as a parser error

where no error handling code has been missed.

Out of the 84,982 Swift source code files, 78,760 ones have been

parsed by the metrics extractor. From the 6,222 files that could not

be parsed, 2,641 could not be compiled by the Swift compiler; i.e.,

these 2,641 files do not contain syntactically valid Swift 4 code.

The remaining 3,581 files are syntactically valid. When applying

our search with the regular expression, we found 723 files that

potentially contain error handling code (false positive are possible,

e.g., a try! statement that have been commented out). However,

these files account for only 0.8% of the total files investigated.

Some limitations pertain to the qualitative part of this study. The

guides found are likely to change in a near future, as new guides

are written and become popular. Due to the rapidly changing na-

ture of Swift and programming practices in general we preferred

professional (e.g., the Apple developer guide) and popular guides

(the ones that were top ranked in a Google search) to books and

MOOCs. Manual analysis of the content was conducted by indi-

vidual authors (e.g., analysis of the guides and interview data). We

adhered to the best practices in qualitative research methods as e.g.,
defined for card sorting. During the process, we also reviewed the

preliminary findings with the other authors.

Finally, one might suggest that some of our recommendations or

anti-patterns are well-established in the error handling community

(e.g., with TryWithinDoCatch, we suggest that methods that throw

errors should be called with a try statement). However, for novice

programmers such well-established recommendations might not

be straightforward to understand. As we found in our interview,

novice developers face problems related to use of try! or try?, as
well as compiler errors when implementing error handling code.

Therefore, such guidelines are still useful.

7 RELATEDWORK

Swift usage. Despite the crescent adoption in the software devel-

opment arena, the Swift programming language received limited

attention from the research community. By implementing the same

functionality in Swift and Objective-C, González García et al. ob-
served that Swift is less verbose than Objective-C due to changes

in keywords and access operators, as well as lack of pointers [12].

Rogers et al. [26] discussed how Swift can be used in the educa-

tional context. In a previous effort, some of us investigated the

most common problems faced by Swift developers [24]. We found

that optionals and error handling are among the most common

ones. However, none of these studies discuss how Error Handling

constructs are being used in the Swift programming language.

Error/Exception Handling. Among the contributions in this area,

researchers have been investigating how software developers use

error and exception handling in different programming languages,

such as Java, C, C++, C#, and PHP [2–5, 15, 20, 21]. Another branch

of study is related to understanding how error handling techniques

impact different concerns, such as modularity and reuse [7], evo-

lution [5], and even bugs [10]. Other studies were interested in

understanding the perception of developers on the use of error/ex-

ception handling mechanisms [27, 28]. This work differs from the

literature in terms of 1) its focus on the Swift programming lan-

guage, which is not only new in the software development arena,

but also introduces additional features to the traditional error han-

dling mechanisms, and 2) its mixed-methods approach, which relies

on large scale corpus of Swift projects and in a set of interviews

with practitioners, grouped by experience.

8 CONCLUSIONS

In this paper we report on the error handling patterns of 78,760

Swift source files from 2,733 open source Swift projects, the experi-

ences of 10 Swift developers with the error handling mechanisms

of Swift, and the qualitative analysis of 789 changesets authored

by expert Swift developers. Among the findings, we observed that

while error handling guides provide different recommendations

about using Swift error handling mechanism, 50.71% of the projects

do not exhibit any error handling code. However, the Swift projects

that do employ the error handling mechanisms tend to follow some

of the recommendations of the guidelines, for instance, 85.86% of

the projects that employ error handling follow guidelines on how to

call code that throws errors. This percentage drops to 24.70%, when

considering more complex recommendations, such as declaring a

custom enum error. Several projects do contain anti-patterns explic-

itly discouraged by guides; we find that 11.24% of projects exhibit

anti-patterns related to the usage of try! or try?. Similarly, 22.84%

of the projects contain an anti-pattern related to catch handlers.

Most of the interviewees mention problems when using Swift’s

error handling mechanisms. Novices mention confusion and expe-

rienced developers mention technical limitations they encountered.

This is corroborated by the fact 50.71% of the projects do not utilize

any of the error handling mechanisms of Swift. When investigat-

ing commits made by experts related to error handling, we rarely

observed the introduction of anti-patterns in Swift code. Moreover

a thorough analysis of Swift error handling guides found that all

guides discuss the basics of Swift error handling. However, the

examples used in the guides are contrived and adequate real world

examples of how to deal with errors are not given.

As future work we intend to conduct a survey with Swift de-

velopers to understand the reasons for introducing some of the

anti-patterns described. We also plan to create static analysis tools

to automatically identify the anti-patterns. As a complement of this

tool, refactoring and recommendations tools can also be proposed.

These tooling might be useful for novice and experts alike, when

dealing with error handling in Swift.

ACKNOWLEDGMENTS

This work is supported by CNPq (406308/2016-0);

How Swift Developers Handle Errors MSR ’18, May 28–29, 2018, Gothenburg, Sweden

REFERENCES

[1] Apple Inc. 2018. The Swift Programming Language 4.1 – Error Handling. (Feb-

ruary 2018). https://developer.apple.com/library/content/documentation/Swift/

Conceptual/Swift_Programming_Language/ErrorHandling.html

[2] Muhammad Asaduzzaman, Muhammad Ahasanuzzaman, Chanchal K. Roy, and

Kevin A. Schneider. 2016. How Developers Use Exception Handling in Java?. In

MSR. ACM, 516–519.

[3] Rodrigo Bonifácio, Fausto Carvalho, Guilherme N. Ramos, Uirá Kulesza, and

Roberta Coelho. 2015. The use of C++ exception handling constructs: A com-

prehensive study. In 15th IEEE International Working Conference on Source Code
Analysis and Manipulation, SCAM 2015. Bremen, Germany, 21–30.

[4] Magiel Bruntink, Arie van Deursen, and Tom Tourwé. 2006. Discovering faults

in idiom-based exception handling. In 28th International Conference on Software
Engineering (ICSE 2006). Shanghai, China, 242–251.

[5] Nélio Cacho, Eiji Adachi Barbosa, Juliana Araujo, Frederico Pranto, Alessandro F.

Garcia, Thiago César, Eliezio Soares, Arthur Cassio, Thomas Filipe, and Israel

García. 2014. How Does Exception Handling Behavior Evolve? An Exploratory

Study in Java and C# Applications. In ICSME. 31–40.
[6] Nélio Cacho, Thiago César, Thomas Filipe, Eliezio Soares, Arthur Cassio, Rafael

Souza, Israel García, Eiji Adachi Barbosa, and Alessandro Garcia. [n. d.]. Trading

robustness for maintainability: an empirical study of evolving c# programs. In

ICSE. 584–595.
[7] Fernando Castor, Nélio Cacho, Eduardo Figueiredo, Alessandro Garcia, Cecília

M. F. Rubira, Jefferson Silva de Amorim, and Hítalo Oliveira da Silva. 2009. On

the Modularization and Reuse of Exception Handling with Aspects. Softw. Pract.
Exper. 39, 17 (Dec. 2009), 1377–1417.

[8] Roberta Coelho, Awais Rashid, Alessandro Garcia, Fabiano Ferrari, Nélio Cacho,

Uirá Kulesza, Arndt Staa, and Carlos Lucena. 2008. Assessing the Impact of

Aspects on Exception Flows: An Exploratory Study. In ECOOP. 207–234.
[9] Massimiliano Di Penta and Damian Andrew Tamburri. 2017. Combining quan-

titative and qualitative studies in empirical software engineering research. In

Proceedings of the 39th International Conference on Software Engineering, ICSE
2017, Buenos Aires, Argentina, May 20-28, 2017 - Companion Volume, Sebastián
Uchitel, Alessandro Orso, and Martin P. Robillard (Eds.). IEEE Computer Society,

499–500. https://doi.org/10.1109/ICSE-C.2017.163

[10] Felipe Ebert, Fernando Castor, and Alexander Serebrenik. 2015. An exploratory

study on exception handling bugs in Java programs. Journal of Systems and
Software 106 (2015), 82–101.

[11] K. R. Gabriel. 1969. Simultaneous test procedures—some theory of multiple

comparisons. The Annals Mathematical Statistics 40, 1 (1969), 224–250.
[12] Cristian González García, Jordán Pascual Espada, B. Cristina Pelayo Gar-

cía Bustelo, and Juan Manuel Lovelle Cueva. [n. d.]. Swift vs. Objective-C: A

New Programming. International Journal of Artificial Intelligence and Interactive
Multimedia 3, 3 ([n. d.]), 74–81.

[13] Georgios Gousios. 2013. The GHTorrent dataset and tool suite. In Proceedings
of the 10th Working Conference on Mining Software Repositories (MSR ’13). IEEE
Press, Piscataway, NJ, USA, 233–236. http://dl.acm.org/citation.cfm?id=2487085.

2487132

[14] Georgios Gousios, Bogdan Vasilescu, Alexander Serebrenik, and Andy Zaidman.

2014. Lean GHTorrent: GitHub data on demand. In 11th Working Conference
on Mining Software Repositories, MSR 2014, Proceedings, May 31 - June 1, 2014,
Hyderabad, India, Premkumar T. Devanbu, Sung Kim, and Martin Pinzger (Eds.).

ACM, 384–387. https://doi.org/10.1145/2597073.2597126

[15] Benjamin Jakobus, Eiji Adachi Barbosa, Alessandro Garcia, and Carlos

Jose Pereira de Lucena. 2015. Contrasting Exception Handling Code Across

Languages: An Experience Report Involving 50 Open Source Projects. In ISSRE.
183–193.

[16] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.

German, and Daniela Damian. 2014. The Promises and Perils of Mining GitHub.

In MSR. 92–101.
[17] Frank Konietschke, Ludwig A. Hothorn, and Edgar Brunner. 2012. Rank-based

multiple test procedures and simultaneous confidence intervals. Electronic Journal
of Statistics 6 (2012), 738–759.

[18] Wenkai Mo, Beijun Shen, Yuming He, and Hao Zhong. 2015. GEMiner: Mining

Social and Programming Behaviors to Identify Experts in Github. In Proceedings
of the 7th Asia-Pacific Symposium on Internetware (Internetware ’15). 93–101.

[19] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.

Curating GitHub for engineered software projects. Empirical Software Engineering
22, 6 (01 Dec 2017), 3219–3253. https://doi.org/10.1007/s10664-017-9512-6

[20] Meiyappan Nagappan, Romain Robbes, Yasutaka Kamei, Éric Tanter, Shane McIn-

tosh, Audris Mockus, and Ahmed E. Hassan. 2015. An empirical study of goto in

C code from GitHub repositories. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2015). 404–414.

[21] Juliana Oliveira, Deise Borges, Thaisa Silva, Nélio Cacho, and Fernando Castor.

2018. Do android developers neglect error handling? a maintenance-Centric

study on the relationship between android abstractions and uncaught exceptions.

Journal of Systems and Software 136 (2018), 1–18.
[22] Dennis Pagano and Walid Maalej. 2011. How Do Developers Blog?: An Ex-

ploratory Study. In Proceedings of the 8th Working Conference on Mining Software
Repositories (MSR ’11). ACM, New York, NY, USA, 123–132. https://doi.org/10.

1145/1985441.1985461

[23] Lawrence A. Palinkas, Sarah M. Horwitz, Patricia Chamberlain, Michael S. Hurl-

burt, and John Landsverk. 2011. Mixed-Methods Designs in Mental Health

Services Research: A Review. Psychiatric Services 62, 3 (2011), 255–263.
[24] M. Rebouças, G. Pinto, F. Ebert, W. Torres, A. Serebrenik, and F. Castor. 2016. An

Empirical Study on the Usage of the Swift Programming Language. In SANER.
634–638.

[25] Martin P. Robillard and Gail C. Murphy. 2003. Static analysis to support the

evolution of exception structure in object-oriented systems. ACM Trans. Softw.
Eng. Methodol. 12, 2 (2003), 191–221.

[26] Michael P. Rogers and William Siever. 2015. Switching to Swift: Instructional

Issues and Student Sentiment. J. Comput. Sci. Coll. 30, 5 (2015), 144–150.
[27] Hina Shah, Carsten Görg, and Mary Jean Harrold. 2008. Why Do Developers

Neglect Exception Handling?. In Proceedings of the 4th International Workshop on
Exception Handling (WEH ’08). 62–68.

[28] Hina Shah, Carsten Görg, and Mary Jean Harrold. 2010. Understanding Exception

Handling: Viewpoints of Novices and Experts. IEEE Trans. Software Eng. 36, 2
(2010), 150–161. https://doi.org/10.1109/TSE.2010.7

[29] Susan Elliott Sim and Kavita Philip. 2010. Software Source Code Mashups as

Transnational Circuits of Know-How. In Tinkering, Tailoring, and Mashing: The
Social and Collaborative Practices of the Read-Write Web. 1–4.

[30] Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.

[31] Alaaeddin Swidan, Alexander Serebrenik, and Felienne Hermans. 2017. How do

Scratch Programmers Name Variables and Procedures?. In SCAM.

[32] Bogdan Vasilescu, Andrea Capiluppi, and Alexander Serebrenik. 2014. Gender,

Representation and Online Participation: A Quantitative Study. Interacting with
Computers 26, 5 (2014), 488–511.

[33] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. 2016. Reviewer recommenda-

tion for pull-requests in GitHub: What can we learn from code review and bug

assignment? Inf. & Softw. Technology 74 (2016), 204–218.

[34] Shurui Zhou, Ştefan Stãnciulescu, Olaf Leßenich, Yingfei Xiong, Andrzej Wą-

sowski, and Christian Kästner. 2018. Identifying Features in Forks. In Proceedings
of the 40th International Conference on Software Engineering (ICSE). ACM Press,

New York, NY.

https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/ErrorHandling.html
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/ErrorHandling.html
https://doi.org/10.1109/ICSE-C.2017.163
http://dl.acm.org/citation.cfm?id=2487085.2487132
http://dl.acm.org/citation.cfm?id=2487085.2487132
https://doi.org/10.1145/2597073.2597126
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1145/1985441.1985461
https://doi.org/10.1145/1985441.1985461
https://doi.org/10.1109/TSE.2010.7

	Abstract
	1 Introduction
	2 Swift Error Handling
	3 Methodology
	3.1 Swift Error Handling Guidelines
	3.2 Mining Swift repositories
	3.3 Interviews

	4 Results
	4.1 Error handling recommendations in practice
	4.2 Error handling anti-patterns in practice
	4.3 Novices and experts

	5 Discussion
	6 Limitations and threats to validity
	7 Related work
	8 Conclusions
	Acknowledgments
	References

