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ABSTRACT

�e use of natural language processing (NLP) is gaining popular-

ity in so�ware engineering. In order to correctly perform NLP, we

must pre-process the textual information to separate natural lan-

guage from other information, such as log messages, that are o�en

part of the communication in so�ware engineering. We present

a simple approach for classifying whether some textual input is

natural language or not. Although our NLoN package relies on

only 11 language features and character tri-grams, we are able to

achieve an area under the ROC curve performances between 0.976-

0.987 on three different data sources, with Lasso regression from

Glmnet as our learner and two human raters for providing ground

truth. Cross-source prediction performance is lower and has more

fluctuation with top ROC performances from 0.913 to 0.980. Com-

pared with prior work, our approach offers similar performance

but is considerably more lightweight, making it easier to apply in

so�ware engineering text mining pipelines. Our source code and

data are provided as an R-package for further improvements.
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1 INTRODUCTION

Mining so�ware repositories community o�enneeds to utilizemeth-

ods originating from the Natural Language Processing (NLP) com-

munity. Sentiment Analysis is an NLP task that has received a 50-

fold increase in the number of papers between 2005 and 2015 [19].

In so�ware engineering it has gained recent a�ention on detect-

ing developers’ emotions [7, 13, 15, 20] as well as opinions about

so�ware products used in the field [9, 17, 21]. Topic modeling is

another NLP task that discovers topics occurring in a set of docu-

ments. For example, in so�ware engineering it has been used to

improve test case selection for manual testing [11] and to detect

error prone so�ware components [4]. What is common in these

NLP tasks is that they may produce incorrect results unless pre-

processing is able to distinguish natural language from other tex-

tual elements that are common in so�ware engineering context,

such as source code, system configuration, and stack traces.

In so�ware engineering literature, we can find prior works on

this topic. Bacchelli et al. [1] presented a system for classifying con-

tent of so�ware development emails. �eir approach uses several

parser and machine learning techniques and achieves an F-score

of 0.945 for classifying whether a line is natural language(NL) or

not, further classifying non-NL as junk, patch, or stack trace. �eir

tool seemed ideal for our problem, however, we were unable to ei-

ther get it running or just extract their benchmark data from the

database dump to a CSV file, due to complex database design. Over-

all, their solution offered very good performances, but their design

seemed excessive. �us, we searched for other solutions. In earlier

work, Bacchelli et al. [2] used a simpler approach which was based

on regular expressions alone and achieved F-scores as high as 0.89

in separating source code from email. As our task is to separate nat-

ural language from various forms of SE communication, this only

partially matched our needs. Yet, we found this approach appeal-

ing due its simplicity and relatively good performance. Before the

work by Bacchelli et al., Be�ernburg et al. [3] showed how regular

expressions and island parsing can be used in a single project to

extract patches, stack traces, source code, and enumerations from

bug reports with an Accuracy between 97.0 and 100.0. However,

they do not consider the extraction of natural language, thus, the

task is a bit different from ours. Furthermore, Be�ernburg et al.

did not report how easily transferable their approach is between

projects, thus making us unsure if one could develop a similarly

accurate regular expression for diverse data sources.

When looking at the natural language processing literature, we

realized that detecting natural language from computing outputs

could be viewed as a special case of a language detection task, e.g.

whether a piece of text is wri�en in English or French. From the

http://arxiv.org/abs/1803.07292v1
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language detection literature, e.g. [14], we learned that different

language features can be used, and it seemed that very good per-

formances are achieved by extracting character n-grams between

three to five characters.

2 METHODOLOGY

Using ideas originating from so�ware engineering and language

detection, we aim at creating a lightweight classifier tool thatwould

take a line of text as input and predict whether it is Natural Language

or Not (NLoN). �e tool is currently available as an open-source R

package on GitHub [18].

We want the cost of moving our tool between projects manage-

able in terms of effort and expertise. To control effort, we decided

that it should require no more than 2,000 lines of text for train-

ing. According to our experience, manually labeling a single line

takes about 3 seconds meaning that 2,000 lines can be labeled in

1 hour and 40 minutes. However, counting in some breaks and

time needed to think about borderline cases, we think it is realistic

to budget 4 hours for annotating project-specific data that can be

incorporated in adaptations of the tool. In order to minimize ex-

pertise and effort, we decided to use machine learning rather than

regular expressions. Although regular expression and parsers can

offer excellent accuracy [3], they may require significant expertise

when adapting them from one project to another. �e adaption of

regular expressions also requires investigation of the project un-

der study. We think that effort is be�er spent in manual data label-

ing, whose results are then fed to a machine learner that decides

whether a particular regular expression is a good predictor or not.

We utilized 3 data sources with 2,000 samples each. First, we

have Comments made on the Mozilla issue tracker for projects

where most of the professional development happens, i.e., Fire-

fox, Core, and Firefox OS. In total, the repository has over 6 mil-

lion issue comments. Second, we have Chat entries retrieved from

the public Slack archive of Kubernetes. In particular, we down-

loaded 16K random entries from the #kubernetes-dev channel,

where we expected to find more representative examples of chat

entries mixing natural language with code. �ird, we have Email

messages mined from one of themailing list archives of theApache

Lucene project. Similarly, we downloaded the entire content (25K

message) of the lucene-dev mailing list, where we expected to

find more emails containing natural language content interleaved

with code snippets.

�e first and second authors performed independent labeling.

We noticed that oversight errors in human labeling occurred be-

tween 1 and 2% of the labels for both labelers. A�er these errors

were fixed, the labelers agreed on 97 to 98% of the lines. To keep

our presentation of results tidy, we only use the labels of the second

rater (= second author). �e first rater (= first author) was responsi-

ble for the NLoN-package implementation, thus, it is possible that

his ratings are influenced by the feature engineering done for the

machine learning model. �us, the use of the second rater who

was not involved in the tool implementation offers unbiased text

labels. Still, we note that there is no meaningful difference in our

classifier performance between raters.

For machine learning, we implemented two approaches: feature

engineering (FEng) and character tri-grams (C3gram). Feature en-

gineering is inspired by the success of regular expressions of past

work [2, 3]. Yet, we do not interpret regular expressions as abso-

lute rules where matching certain condition would classify the in-

put as NL or non-NL. Rather we extract them as language features

and feed the results to our machine learning algorithm, e.g. if the

line ends with “{”, it is fed as 1, or as 0 otherwise. Additionally,

feature engineering uses statistics of each line such as the ratio of

non-le�er characters and the ratio of capital le�ers. All feature

engineering predictors are shown in Table 3. Ten of our eleven

features were created when working with our first data set, but to

our surprise these features also performed very well with the two

other data sets. In the end, we only found one extra feature that

improved performance. However, we think that there is room for

improvement in future works.

Character tri-grams were suggested by language detection liter-

ature, e.g. [14]. We were afraid that due to our small sample size

(2,000 lines) and the limited amount of contents each line holds,

that tri-grams would not perform very well. Language detection

approaches offer good performance starting from 25 characters

and top performance is reached at 60 characters [14], requirements

that are not met by many of our input lines. Also, the number of

samples in the language detection can go up to millions [14].

Glmnet implements a generalized linear model with a penalty.

It was chosen as our machine learning tool due to its fast perfor-

mance, robustness, and ability to handle large and sparse input

space with multiple correlating inputs [6]. Due to these features,

penalized regressions are regarded as a recommended strategy for

natural language processing tasks [8]. Glmnet performs both vari-

able selection and regularization, which prevent over-fi�ing by

limiting themodel complexitywith a penalty term lambda. �is en-

sures that we can test language features with high dimensionality,

e.g. character tri-grams, without having to worry about feature se-

lection or over-fi�ing. �e ability to do feature selection as part of

prediction has made Glmnet gain interest in the defect prediction

community as well [22]. We use Glmnet for performing binomial

logistic lasso regression and optimize its 10-fold cross-validation

performance with respect to the area under the ROC curve (AUC).

We report a performance at lambdamin which gives the maximum

mean AUC in cross validation. We repeated the cross validation 5

times and use the median performance in our results to counter

the effects of non-balanced data partitioning.

3 RESULTS

3.1 Within-source prediction

Table 1 shows the results of machine learning using Glmnet with

10-fold cross validation. In all cases, we can see that both AUC and

F-scores are above 0.9, and in many cases above 0.95. Combining

both feature engineering and character tri-grams always offers a

superior performance but it also contains the highest number of

variables. �e F-scores are shown to make backward comparison

to previous papers easier. As reported in Bacchelli et al. [1], their

work resulted in F-scores up to 0.945. Our F-scores are between

0.959 and 0.970. From past work we found no execution times and

our very brief execution time tests show that our tool can classify
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Table 1: Classification performance

Comments Chat Email

NL lines 64.8 % 83.4 % 63.6 %

AUC

FEng 0.984 0.971 0.969

C3gram 0.973 0.951 0.962

Both 0.987 0.976 0.981

F1

FEng 0.957 0.957 0.938

C3gram 0.918 0.935 0.918

Both 0.959 0.970 0.959

1,000, 10,000, and 100,000 lines in 0.3s, 2.6s. and 27s respectively

with a personal computer using a single core and logical unit.

For the remainder of this paper, we will only report and discuss

AUC measures. Unlike F-measure, AUC is threshold-independent,

i.e., it does not depend on selecting a cutoff value that the model

uses to decide whether an instance is to be classified as either posi-

tive or negative. �reshold-dependent measures can lead to differ-

ent and conflicting conclusions [23]. Besides, the three experimen-

tal datasets described earlier are imbalanced: the instances of the

class NL outnumber those in the other class non-NL (see Table 1).

�is problem, referred to as class imbalance [10], can significantly

compromise both the performance of the learning algorithms and

the reliability of the assessment metrics. However, because it is

threshold-independent, AUC is be�er at providing a reliable mea-

sure of the classification performance in presence of imbalanced

datasets [12].

3.2 Feature Engineering (FEng)

Table 2 shows normalized feature engineering coefficients at opti-

mal penalty (lambda.min) while Table 3 explains each coefficient.

A positive sign of a coefficient means that the coefficient increases

the probability of a line being natural language, while negative val-

ues decrease it. We can notice that most of the coefficients have

the same sign in all three data sets, meaning they predict towards

the same end result. �e coefficients are normalized, meaning that

their size indicates their importance. An empty cell indicates that

predictor is not selected for the model. For example, we can see

that the number of stop-words, i.e. very common English words

such “it” and “the”, strongly predicts natural language while the

ratio of special characters predicts the opposite.

For stop words, we used a list included in MySQL database but

we removed source code specific words, e.g. “for” and “while”. We

included the number of stop words twice with different ways of

tokenizing character streams to words as we found that, depend-

ing on the data, a different tokenization was required. Coefficient

values show that our decision was correct as both stop-word pre-

dictors are meaningful for all three data sets.

3.3 Character tri-grams (C3gram)

For character trigrams, we did some pre-processing. We changed

all numbers to zeros as we figured that recognizing numberswould

be important but the exact numbers would not ma�er for our task.

We also converted all characters to lower case as we noticed no

performance difference when keeping casing. We do realize that

ratio of capital le�ers is a predictor in feature engineering, but still,

Table 2: Normalized coefficients for model FEng

Comments Chat Email

r.caps -0.40 -0.11 0.14

r.specials -2.04 -0.41 -1.13

r.numbers -0.90 -0.21 .

l.words -1.59 -0.85 -2.54

n.sw 1.80 2.31 0.91

n.sw2 0.59 0.29 0.30

last.c.code -0.15 0.04 -0.63

c1-3.le�ers 0.29 0.06 0.33

last.c.nl 1.42 0.90 0.50

n.emoticons 0.64 0.05 .

first.c.at . 1.58 .

Table 3: Feature engineering predictors

Abbreviation Explanation

r.caps Ratio of capital le�ers

r.specials Ratio of chars not alphanumeric or whitespace

r.numbers Ratio of numbers

l.words Length of words

n.sw Number of stop-words split with white space

n.sw2 Number of stop-words split with tokenize words

last.c.code Is last character typical in code , e.g. { or ;

n.c1-3.le�ers Number of le�ers in first three characters

last.c.nl Is last character typical in NL, e.g. ? or .

n.emoticons Number of emoticons

first.c.at Is first character of line @-sign

as keeping capitals offered no performance improvement, we re-

moved them. Perhaps with larger training data it would be mean-

ingful.

Table 4 shows the number of selected predictors and trigrams

at minimum lambda, which gives the maximum AUC, but also for

1se lambda, which gives the most regularized (penalized) model

such that AUC is within one standard deviation of the maximum.

Utilizing not the best model but one that is one standard deviation

away from it (lambda 1se) is an heuristic o�en used in machine

learning, when several predictors are present, which slightly sacri-

fices model accuracy to select a simpler model whose accuracy is

similar to the best model [5, 16]

We have many character trigrams in our input data, between

8740 and 11169, but in all cases less than 10% of those are selected

as predictors for the best model. �e number of selected tri-grams

varies between 304 and 597. When we go for the simpler model,

whose performance is within one standard deviation from the best

model, we find that for the Chat messages from Kubernetes only

1.4% of the trigrams (149/11169) are used in prediction. In the case

of the Comments fromMozilla and the Mails from Lucene, the per-

centages are 2.8 and 2.4 percent respectively.

�e reduction in the number of predictors of the simpler model

is even more evident in the model combining both tri-grams and

feature engineering (see Table 5). �e best model, using both, has

a number of predictors between 138 and 447, while the simpler
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Table 4: Number of predictors and performance at two dif-

ferent lambda values for model C3gram

Comments Chat Email

C3grams 11169 9101 8740

AUC (lambda min) 0.973 0.951 0.962

selected 3-grams 464 304 554

AUC (lambda 1se) 0.966 0.949 0.959

selected 3-grams 133 129 210

Table 5: Number of predictors and performance at two dif-

ferent lambda values for model Both

Comments Chat Email

Features (C3grams+FEng) 11180 9112 8751

AUC (lambda min) 0.987 0.976 0.981

selected features 406 138 383

AUC (lambda 1se) 0.986 0.973 0.980

selected features 48 27 68

model, giving nearly identical performance, uses between 27 to 68

predictors.

3.4 Cross-source prediction

We were also interested on how would our tool perform in cross-

source prediction task. Table 6 shows these results. �e first col-

umn (i) shows the results of the 10-fold cross validation using all

the six thousand samples of the three source. We can see that in

comparison to using just source-specific data (see Tables 1 and 6)

the performance of character tri-grams slightly improves as it is

higher than the midpoint of the range of within source prediction

(0.968 vs. range 0.951-0.973), while the performance of feature engi-

neering slightly reduces (0.970 vs range 0.969-0.984). �is matches

our expectation that character tri-grams do be�er with larger data

sets as they are sparse in comparison to feature engineering num-

bers that can be computed from every line. When using both fea-

ture engineering and character tri-grams with all data, we achieve

a performance of 0.982, while the performance of using only source

specific data gives results varying between 0.987 and 0.976. We

conclude that using all the data neither improves nor weakens the

performance.

For cross-source prediction (see the last three columns in Ta-

ble 6), we can see that using the Kubernetes Chat messages and

the Lucene Email messages to predict Mozilla issue Comments (ii)

works out surprisingly well with AUC up to 0.980, which is al-

most as good as using Mozilla’s own data (AUC 0.987, see Table 1).

On the other hand using Mozilla issue Comments and Kubernetes

Chat messages to predict Lucene Emails (iv) offers much weaker

performances with the best AUC at 0.913, which is considerable

weaker than using Lucene mailing list’s own data (0.981).

Our cross-prediction results show that directly using our data

one can get very goodperformanceswhen filtering out non-natural

language text in a so�ware engineering context. Nevertheless, we

recommend labeling a data set for each source as the effort is quite

low (estimated only four hours) and the performance is very likely

to be be�er.

Table 6: Cross-source prediction results (AUC)

(i) (ii) (iii) (iv)

All (CV) Comments Chat Email

F-engineering 0.970 0.975 0.964 0.911

Char 3-grams 0.968 0.946 0.914 0.880

Both 0.982 0.980 0.957 0.913

3.5 Limitations and future work

Our approach is relatively simple and offers very goodperformance

in three different source types from three different projects. How-

ever, the results from three sources cannot be used to claim that our

solutionwould work in all other so�ware engineering contexts. In

addition, we only tried one machine learning method (i.e., Glm-

net) with default se�ings, and it is possible that other algorithms

could offer be�er results. �erefore, we welcome others to try and

improve our solution that is available online alongside our data.

It is typical to have a mix of natural language and code in a line

of text. When labeling we always consider these mixed lines as nat-

ural language lines. Based on reviewer feedback, we think it might

be worthwhile to have a third class for themixed lines. Suchmixed

lines would require further processing and they would need to be

fed to another tool implementing parsing to separate the contents.

Overall, one could challenge our choice of using line granularity,

which was selected as we aimed for simplicity rather than perfec-

tion. Furthermore, we note that we did not assessed how NLoN

performs with respect to different programming languages.

Finally, the tool is only tested with an English language context

and uses English stop-word list as part of the detection. �e mini-

mal requirement to use this tool in another language context would

be to replace the English stop-word list with one of the correspond-

ing language. Languages with numerous conjugated forms would

probably also need lemmatization and pre-processing before our

tool could be used.

4 CONCLUSIONS

In this paper, we have presented a solution to separate natural lan-

guage from other text inputs that are common in so�ware engi-

neering such as stack traces or source code. From the so�ware en-

gineering domain, we derived the idea of using regular expressions

to separate input in different types. However, we do not follow reg-

ular expression matches as absolute rules but rather as information

that is fed to machine learning. We also extract other language fea-

tures such as the ratio of capital le�ers and the number of the most

common English words, i.e. stop words. Finally, from the language

detection literature, we borrowed the idea of extracting charac-

ter tri-grams as further information to feed our machine learning

model. Our best model achieves an area under ROC curve per-

formance from 0.976 to 0.987 in three different source types (bug

tracker issue comments, chat messages, and email) which origi-

nate from three different projects (Mozilla Firefox, Kubernetes and

Apache Lucene).

When we originally came up with the problem that natural lan-

guage should be separated from non-natural language while per-

forming NLP tasks like as sentiment analysis or topicmodeling, we

were sure that a solution to this problemwould be openly available.
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We found only one solution [1] that address the same problem and

was openly available. Unfortunately, (i) we could not run it; (ii)

even if we could have, the complexity of the solution seemed too

high given the problem. �erefore, we implemented a lightweight

solution of few hundreds lines of R-code and data files, instead of

database dumps. Our solution is available as an open source R-

package on GitHub [18].
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tizing manual test cases in rapid release environments. So�ware Testing, Verifi-
cation and Reliability 27, 6 (2017).

[12] Jin Huang and Charles X. Ling. 2005. Using AUC and Accuracy in Evaluating
Learning Algorithms. IEEE Trans. on Knowl. and Data Eng. 17, 3 (March 2005),
299–310. DOI:h�p://dx.doi.org/10.1109/TKDE.2005.50

[13] Md Rakibul Islam and Minhaz F Zibran. 2016. Towards understanding and ex-
ploiting developers’ emotional variations in so�ware engineering. In So�ware
Engineering Research, Management and Applications (SERA), 2016 IEEE 14th Int’l
Conf. on. IEEE, IEEE, 185–192.

[14] Tommi Jauhiainen, Krister Lindén, and Heidi Jauhiainen. 2017. Evaluation of
language identification methods using 285 languages. In Proceedings of the 21st
Nordic Conf. on Computational Linguistics, NoDaLiDa, 22-24 May 2017, Gothen-
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