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ABSTRACT
When a developer is writing code they are usually focused and
in a state-of-mind which some refer to as flow. Breaking out of
this flow can cause the developer to lose their train of thought and
have to start their thought process from the beginning. This loss of
thought can be caused by interruptions and sometimes slow IDE
interactions. Predictive functionality has been harnessed in user
applications to speed up load times, such as in Google Chrome’s
browser which has a feature called “Predicting Network Actions".
This will pre-load web-pages that the user is most likely to click
through. This mitigates the interruption that load times can intro-
duce. In this paper we seek to make the first step towards predicting
user commands in the IDE. Using the MSR 2018 Challenge Data of
over 3000 developer session and over 10 million recorded events, we
analyze and cleanse the data to be parsed into event series, which
can then be used to train a variety of machine learning models,
including a neural network, to predict user induced commands. Our
highest performing model is able to obtain a 5 cross-fold validation
prediction accuracy of 64%.
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1 INTRODUCTION AND BACKGROUND
The task of developing software is a thought-intensive process and
interruptions can derail a train of thought easily. These interrup-
tions can come in a variety of ways, one of which is slow loading
time within an integrated development environment (IDE). Past
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research in bug prediction has touched on the topic of developer
“focus” as a contributor to bug proneness. Di Nucci et al. propose
that the higher a developer’s focus on their activities, the less likely
they are to introduce bugs to the code [3]. Zhang et al. proposed
that certain file editing patterns by developers writing code could
contribute to bug proneness as well. Two of their patterns which
highlight the “focus” of a developer are the “Interrupted” and “Ex-
tended” editing patterns [21], which they found introduced 2.1 and
2.28 (respectively) times more future bugs than without.

The bigger picture of developer activity within an IDE, as char-
acterized by our own investigation of this research area, can be
grouped into four categories: tracking, characterizing, enhancing,
and predicting. Tracking developer activity is the most published
area, due in large part to the necessity of tracking information
before it can be characterized, enhanced, or predicted. One of the
first published works in this area is by Teitelman and Masinter [19]
who sought to expand the functionality of IDEs with automatic an-
alyzing and cross-referencing of user programs. Takada et al. built
a tool that automatically tracks and categorizes developer activity
through the recording of keystrokes [18]. Their work introduced
the concept of live-tracking developers, making way for the refined
IDE activity tracking tools to follow.

Mylyn is a task and application lifecycle management framework
for Eclipse 1. It began as Mylar, a tool for tracking developer activi-
ties in IDEs, focusing on building degree of interest (DOI) models to
offer suggestions to developers on which files they should be view-
ing [7]. Mylyn has always had a focus on tracking, characterizing,
and enhancing developer activity, but not predicting [4, 8, 13].

DFlow is a tool developed by Minelli and Lanza to track and
characterize developer activities within IDEs [11, 12]. Their research
focused on the tracking and characterization of developer activities,
and not enhancing or predicting their activities.

Other notable IDE integrations includes Blaze—a developer ac-
tivity enhancer by Singh et al. [16], WatchDog—an IDE plugin
that listens to UI events related to developer behavior designed to
track and characterize developer activity by Beller et al. [1], and
FeedBaG—the developer activity tracker for Visual Studio 2 coupled
with research designed to track and characterize developer activity.

In this paper we use a corpus of over 10 million developer activity
events generated in Visual Studio and recorded by FeedBaG [15], to
train a model to predict developer commands. We formally address
our intent with the following research question:

• RQ: Can we use machine learning models to predict devel-
oper induced IDE commands?

Similar work has been done on trying to predict developer be-
haviour in the IDE by Damevski et al., where they abstracted

1https://www.eclipse.org/mylyn/
2https://www.visualstudio.com/
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Figure 1: Frequency (ln()) of event-type occurrences in
sessions, with utilized event-types in bold

recorded IDE event sequences using topic models to predict de-
veloper future tasks, such as debugging or testing [2]. Our research
differs from Damevski’s work by harnessing a neural network and
the granularity in which our model predicts command-level actions.

We believe that if we can predict user commands, then we can
reduce slow command process times of actions by preprocessing the
predicted user commands, similar to applications such as Google
Chrome which has predictive page loading to speed up browsing 3.

This paper is structured as follows: Section 2 describes themethod-
ology, Section 3 covers the results, Section 4 discusses the threats
to validity, and Section 5 concludes the paper.

2 METHODOLOGY
In this section we describe our process to analyze, clean, and format
the data into a form which can represent features and labels for our
machine learning models, as well as our selection of models, and
their performance evaluation.

2.1 Data Description
The dataset we use is supplied by Proksch et al. [15] for the 2018
MSR Challenge4. The dataset was collected by FeedBaG++5, an IDE
integration that logs events occurring within the IDE including
developer activities, IDE environment changes, navigation, and
more. Released in March 2017, this dataset contains over 10 million
events, originating from 81 developers and covering a total of 1,527
aggregated days of developer work.

The dataset contains 18 unique IDE event types, but we only
utilized 13 event types initiated by the developer. The most common
developer-induced events are “Command” events which are an
“invocation of an action” by the developer, e.g. “clicking a menu
button or invoking a command via shortcut” [15]. A complete listing
and descriptions of these events can be found on the data supplier’s
website6. Figure 1 shows the natural logarithm of the distribution
of 16 of the event types across all sessions, with the 13 developer-
induced events in bold (2 of the 18 types were lost in the original
parsing of the data). From this we can see that the Command event
type is the most commonly occurring event type.
3https://support.google.com/chrome/answer/1385029
4https://2018.msrconf.org/track/msr-2018-Mining-Challenge
5http://www.kave.cc/feedbag
6http://www.kave.cc/feedbag/event-generation

2.2 Data Processing
In this section we describe the steps taken to select, cleanse, and
format the dataset. The dataset began with ~10.7 million events.

2.2.1 Event-Type Selection. As previously mentioned, we only
utilize 13 of the original 18 event types available in the dataset,
which are developer-induced. These 13 event types are desired
because they are invoked by the developer, and therefore part of
the developer’s working pattern. Although other dynamic system
responses are occurring, we wanted to focus specifically on the
workflow of developers. The non-developer-induced event types,
“SystemEvent”, “InfoEvent”, and “ErrorEvent”, as well as the “Activi-
tyEvent” (recorded when the mouse moves) and “UserProfileEvent”
(recorded when user profile for the FeedBaG++ tool is modified),
were removed from the dataset. Roughly 300,000 events were re-
moved due to this selection.

2.2.2 Data Cleansing. Just over 400,000 events had been recorded
twice with the same triggered-at date, event type and session ID.
These events are considered duplicate records of the same triggered
event and therefore were removed from the dataset.

From our manual investigation of the data, we found that many
events, including Command events, were repeated hundreds of
times in quick succession, milliseconds apart. This behaviour is
not easily explained, nor is it insignificant, so we did not want to
remove them completely. However, we believed that this repetition
of events would negatively influence our models as they would
learn to predict these heavily repeated events and still achieve high
performance in the test environment—while failing to perform well
in the real environment. To avoid this situation, while preserving
the existence of the repetitions, we applied the regular expression
notation of “+” (meaning one or more) to events which repeated one
or more times. For example, the sequence “Command, Command,
Command” would be replaced with “Command+.” This conversion
process removed just over 6 million events.

2.2.3 Event Representation. Most of the event types have addi-
tional descriptors about the recorded event which distinguish them
from other similar event types. For example, the Window Event
also records an “action” value which represents whether the action
of the Window event was to move, open, or close the window. This
is important data for helping understand the more precise actions
of the developer, and this should be captured by our models. For
each event type, we look through the supplied descriptors and map
the associated values which are generated by the event.

We append onto the event type the respective descriptor. For ex-
ample, a Command event instance would be represented as follows:
“CommandEvent-Refresh”, where “CommandEvent” is the event type
and “Refresh” is the additional descriptor.

2.3 Feature and Target Class Extraction
Due to the event stream structure of the data, it is important to
frame how we are extracting the features and target classes from
the data.

Although our data contains 13 developer-induced event types,
we are only trying to predict Command events with their additional
descriptors. There are a total of 651 unique Command descriptors,
but since the 61most frequently used Command descriptors account

https://support.google.com/chrome/answer/1385029
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for 90% of the total Commands invoked, we narrowed down the
target classes to just those 61. In trying to predict developer-induced
events (specifically Commands) for the purpose of preprocessing
them, focusing on the most frequent Commands descriptors allows
us to target the most likely actions that will occur.

Secondly, the data is recorded as multiple sessions of user event
streams, andwe need to framewhat the features of the target classes
are. For illustrative purposes, let’s say one session’s event stream
is G1, G2, C1, G3, C2, where C events are one of the 61 Command
descriptor types described above, andG events are any other generic
event, including any of the other command descriptor types, or
any of the other event types along with their various additional
descriptors. As described above, we are only interested in predicting
the top 61 Command descriptors, so from the example we would
extract two rows in our X and y machine learning matrices (where
X contains the features and y contains the target classes). The first
row of features would be {G1, G2} with the target class of C1, and
the second row of features would be {G1, G2, C1, G3} with the target
class of C2.

2.4 Models
We used four functionally different models to explore which would
perform the best for the given task of predicting the next event.
We trained and tested on a randomly sampled 100,000 event series
from our 3.9 million events (remaining after processing described in
Section 2.2). This reduced sample is due to the Logistic Regression
model’s computationally expensive algorithm performed with over
12 thousand features which are a result of the largest N-Gram range.
For all the models, we conduct 5-fold cross-validation, this was
chosen in favour of 10-fold cross-validation, as it required training
only half as many models which reduces the computational load.
The models we tested are as follows:

2.4.1 Naive Bayes. We harnessed Sci-Kit-learn’s implementa-
tions of the classification models Bernoulli and Multinomial Naive
Bayes which are based on conditional probability and used com-
monly for text classification tasks [14]. To represent these series
of events we use a method called N-Grams [10] which takes series
of tokens, in our case events, and breaks them up into tuples of N
length. Take the following event series for example: E1, E2, E3, A
bigram breakdown (2-Gram) of it would look like (E1,E2,) (E2,E3.)
These N-Grams can be a variety of length which can affect the per-
formance of our models so we experiment with runs on different
N-Grams lengths ranging from 1 to 3. We limit the max N-Gram
range to 3 due to the limited computational resources available.
Once we have these N-Gram representations of our features, we
put them through a count vectorizer, which produces a matrix that
represents the counts of N-Grams.

2.4.2 Logistic Regression. To widen our variety of models, we
also tried Scikit-learn’s Logistic Regression model [9]. Similarly to
the Naive Bayes models, vectorized N-Grams are used to represent
the data.

2.4.3 Neural Network. We also implemented a Neural Network
(NN), using the high-level neural networks API Keras, which con-
sisted of rectified linear unit hidden layers of 500, and 100 nodes,
including a dropout layer with a dropout rate of 0.5 between the two

hidden layers to help reduce overfitting [17], and then a final layer
with softmax activation for the step of classification. The way in
which we represent the data for this model requires that we encode
the events to categorical numbers, and that we one-hot encode the
target classes, which is a method for representing multiple classes
as binary features [5].

2.5 Reporting Results
To compare the performances of our models, which are performing
multi-class classification, we use two measures: accuracy and micro-
averaged receiver operator characteristic area under the curve (ROC
AUC). The accuracy measure is the total accuracy across the 5 folds
of the 5-fold cross validation. Meaning, the predictions from each
fold across the entire dataset are aggregated and compared to the
actual classes. Since our target classes are imbalanced, we use the
micro-averaged ROC AUC, which is the weighted average ROC
AUC for each class [20]. Meaning, the ROC AUC was calculated
for each class as if it was a binary classification task, and then
we take the weighted average of these ROC AUCs to account for
the disproportion of class data points. The micro-average is an
aggregate of the contributions of all classes to compute the average
metric. For both the accuracy andmicro-averaged ROCAUC, higher
values are better.

3 RESULTS
In this section we discuss the results of each of our predictive
models by reporting the accuracy and micro-averaged AUC ROC
of the 5-fold cross-validation results.

3.1 Naive Bayes
The Bernoulli Naive Bayes models achieved its highest accuracy of
20.52% with N-Grams of ranges 1, 2, and 3. Its micro-average ROC
AUC was 0.60, as shown in Table 1. AUC’s for each target class, or
target command, ranged from 0.5 to 0.96, with a mean of 0.55 and
standard deviation of 0.10.

The Multinomial Naive Bayes models achieved its highest accu-
racy of 20.14% with N-Grams of ranges 1, 2, and 3. Its micro-average
ROC AUC was 0.59, as shown in Table 1. AUC’s for each target
class, or target command, ranged from 0.5 to 0.97, with a mean of
0.61 and standard deviation of 0.14.

3.2 Logistic Regression
The Logistic Regression model achieved its highest accuracy of
35.87% with N-Grams of ranges 1, 2. Its micro-average ROC AUC
was 0.67, as shown in Table 1. AUC’s for each target class, or tar-
get command, ranged from 0.50 to 0.95, with a mean of 0.63 and
standard deviation +/- 0.12.

3.3 Neural Network
The NN performed achieved the highest accuracy among the classi-
fiers with an accuracy of 64.39%. Its micro-average ROC AUC was
0.82, as shown in Table 1. AUC’s for each target class, or target
command, ranged from 0.5 to 0.98, with a mean of 0.72 and standard
deviation +/- 0.17.
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Table 1: All models results

Model N-Gram
Range Accuracy (5-fold) Micro AUC

Bernoulli
Naive Bayes

[1,1] 15.74% 0.57
[1,2] 18.77% 0.57
[1,3] 20.53% 0.60

Multinomial
Naive Bayes

[1,1] 16.31% 0.57
[1,2] 17.73% 0.58
[1,3] 20.14% 0.59

Logistic
Regression

[1,1] 25.37% 0.62
[1,2] 35.88% 0.67
[1,3] 35.22% 0.67

Neural Network — 64.39% 0.82

4 THREATS TO VALIDITY
This section discusses the construct, internal, and external threats
to the validity of this study and their respective mitigations.

Construct Validity. The main concern regarding construct va-
lidity in this research is the assumption placed on the data received.
We only have a small description of what the developers experi-
ence and projects were, meaning they could have been working on
anything. Some of their IDE activities might have not even been
code related, or their IDE could have been open while using other
applications and it still would have recorded various activities like
those that pertain to “Window” events. However, we mitigated this
by only predicting developer-induced events, which are more likely
to be done during active development.

Internal Validity. A threat to internal validity in this study
comes with the data source and its cleaning, as the data started
in a JSON format and was converted to a SQL schema. The data
has many other attributes which were available, but not able to be
used for this study. However, since there is always the opportunity
for more data to be used in a machine learning implementation
to improve results, we see the impact of excluding that data as
minimal to the study design.

External Validity. A threat to external validity in this study
pertains to the events and commands recorded by the FeedBaG++
tool. However, the recorded event types we utilized are mostly
generic, such as TestRunEvent and BuildEvent, and therefore this
threat is mitigated by the general nature these attributes.

5 CONCLUSION AND FUTUREWORK
To help keep developers focused, and therefore less likely to intro-
duce bugs, one could ensure that their IDEs performwith little to no
delay time. A step towards ensuring this can be to harness predictive
models combined with the recently released data of recorded devel-
oper activity events. Our findings suggest that a Neural Network
can be used to accomplish this task with an accuracy of 64%.

Answer to RQ: Based on our results, we see that it is possible to
achieve an accuracy of 64% across a target set of 61 possibilities
while maintaining a micro-averaged ROC AUC of 0.82; therefore,
we conclude that the answer to our research question is yes.

Future work which can harness these results would be to inte-
grate command prediction into an IDE to test its feasibility and
actual performance in a development environment. For improved
prediction performance, given access to more computational re-
sources, one could try using a Recurrent Neural Network (RNN)
with the entire (unfiltered) event series. As RNN’s are able to achieve
high performance when used for time series prediction tasks [6].
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