
A Study on the Use of IDE Features for Debugging

Afsoon Afzal
Carnegie Mellon University

Pittsburgh, Pennsylvania

afsoona@cs.cmu.edu

Claire Le Goues
Carnegie Mellon University

Pittsburgh, Pennsylvania

clegoues@cs.cmu.edu

ABSTRACT

Integrated development environments (IDEs) provide features to

help developers both create and understand code. As maintenance

and bug repair are time-consuming and costly activities, IDEs have

long integrated debugging features to simplify these tasks. In this

paper we investigate the impact of using IDE debugger features on

different aspects of programming and debugging. Using the data set

provided by MSR challenge track, we compared debugging tasks

performed with or without the IDE debugger. We find, on average,

that developers spendmore time and effort on debugging when they

use the debugger. Typically, developers start using the debugger

early, at the beginning of a debugging session, and that their editing

behavior does not appear to significantly change when they are

debugging regardless of whether debugging features are in use.

KEYWORDS

mining, debugging, IDE, integrated development environment

ACM Reference Format:

Afsoon Afzal and Claire Le Goues. 2018. A Study on the Use of IDE Features

for Debugging. InMSR ’18: MSR ’18: 15th International Conference on Mining

Software Repositories , May 28–29, 2018, Gothenburg, Sweden. ACM, New

York, NY, USA, 4 pages. https://doi.org/10.1145/3196398.3196468

1 INTRODUCTION

More than 70% of software budgets are spent on maintenance. Of all

maintenance activities, 35% are dedicated to corrective maintenance,

or what we simply call debugging [3]. Hours of developer time is

spent on manually finding and fixing bugs [10]. Reducing developer

time spent on debugging can thus significantly lower the cost of

software production.

Integrated development environments (IDEs) provide features

to help developers create and understand code [9]. IDEs have long

integrated debugging features to make it as convenient as possible

for developers to understand code and discover and address defects.

Many of the most popular IDEs such as Eclipse and Visual Studio

include debugging views that allow one to set up breakpoints and

walk through execution step-by-step. This allows the observation of

variables and expression values at each step, often providing a better,

more granular understanding of execution state. Murphy et al. [7]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196468

investigate how 99 Java developers use the Eclipse IDE. They find

that more than 90% of the participants use Eclipse debugging fea-

tures. Visual attention patterns of developers performing debugging

with the jGrasp IDE vary based on participant programming expe-

rience, familiarity with the IDE, and debugging performance [4].

Similarly, of participants performing five maintenance tasks using

Eclipse, programmers spend 35% of their time navigating through

dependencies, and 46% of their time inspecting irrelevant code [5].

Qualitative and quantitative studies of real-world debugging finds

that both knowledge and use of advanced debugging features in

IDEs are low [1]. To the best of our knowledge, prior work has

not looked into the effectiveness of IDE debugging features with

respect to reducing maintenance time and cost.

In this work, we conduct an empirical study on a rich data set

of in-IDE activities of software developers provided by the Mining

Software Repositories (MSR) 2018 challenge track [8]. The data

set contains over 11 million events, corresponding to 15K hours of

working time of 81 developers; they have been collected using Feed-

BaG, a general-purpose interaction tracker for Visual Studio. We

investigate developer debugging behavior. First, we show that there

is a significant difference between the time spent on debugging

performed with and without IDE debugging features: On average,

people spend more time on debugging when a debugger is used

along the way. Second, we show that in most debugging tasks, peo-

ple switch to debugging mode early on. In 80% of cases, developer

starts using the debugger before 13 minutes have elapsed from the

beginning of debugging. Finally, in the majority of cases, the editing

behavior of developers does not change significantly when they

start or end debugging.

2 RESEARCH QUESTIONS

Understanding the behavior of programmers using IDEs to debug

can elaborate limitations and opportunities for enhancement in

designing these tools. Our focus in this paper is specifically on

debugging features. We have access to a large data of millions of

events happening during the normal usage of Visual Studio by 81

developers. Using this data set, we answer three research questions

that capture the impact IDE debuggers may have on programming

behavior and outcomes:

• RQ 1: How effective are Visual Studio’s debugging features

in reducing time and effort spent by programmers on debug-

ging tasks?

More specifically, we investigate how similar are the dis-

tribution of time spent on debugging with or without IDE

features. We ask: Is there a significant difference between

the distribution of the number of edits or navigation activity

on source code during debugging periods that include (or

avoid) the IDE’s debugger?

114

2018 ACM/IEEE 15th International Conference on Mining Software Repositories

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3196398.3196468&domain=pdf&date_stamp=2018-05-28

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Afsoon Afzal and Claire Le Goues

Responding to these questions contributes to understanding

the influence of the debugger on debugging performance in

terms of spent time, number of characters edited, and the

number of navigation activities.

• RQ 2:When do the developers start using the IDE’s debug-

ging features? Do they start using the debugger right away,

or do they postpone it to later time?

This research question can provide insight into how people

actually use the debugger, and whether they find it easy

enough to use from the beginning of debugging.

• RQ 3: Do developers significantly change their editing be-

havior when they are debugging?

Investigating the alteration of developers behavior in de-

velopment mode versus debugging mode can demonstrate

diverse needs of programmers, and encourage IDE designers

to take them under consideration.

Unfortunately the corresponding data set does not supply infor-

mation about the bugs under study. We would have liked to respond

to questions related to the bugs themselves, such as on which kinds

of bugs the IDE features seem to be most effective with respect to

discovering the bug and fixing it. Since this data set is not suitable

for such study, we leave this for future work.

3 DATA PROCESSING

For this study, we used the MSR Challenge Events data set, released

on March 1, 2017. To distinguish between debugging mode and

development mode, we need to have a clear definition of what we

consider a bug, and how to detect the beginning and end of a debug-

ging session. Several methods in the literature have been used to

distinguish debugging from software development. In many studies,

people look at version control history messages and comments to

find bug fixing commits and edits [2]. In others, a bug is indicated

by failing test cases in the project [6]. With the information avail-

able in the data set, we consider the time from a test failure until

its success as a debugging period. All edits and events happening

in those periods are considered debugging events. If multiple test

failures happen before a successful build or test run, we treat the

first failure as the beginning of debugging and subsequent failures

as attempts to fix.

In total, we found 459 debugging tasks based on our definition,

of which 281 are addressed without using the debugger. 178 include

debugger events. To calculate the duration of debugging tasks, we

summed the duration of all events during the debugging period.

We do not simply calculate the duration using the start and end

time of the debugging events, because this would include the IDE

idle time, during which the user is not actively using the IDE. The

activity events, representing times when the user is using IDE but

not triggering an action, that distinguish active or thinking time

from idle time are included in our calculations.

On average, debugging tasks last 16767 seconds in duration,

with median of 623 seconds. The large difference between mean

and median suggests the presence outliers in the data. By removing

the tasks that spent more than 5 hours on debugging, we exclude

51 tasks (almost 10%) which results in mean of 1679 seconds and

median of 466 seconds. From the remaining 408 debugging tasks,

269 do not use the debugger, and 139 do.

0.0

0.2

0.4

0.6

100 10000

seconds

de
ns

ity

lines

Not using debugger

Using debugger

Figure 1: The normalized density plot of debugging duration, with

and without the debugger.

4 METHODOLOGY AND RESULTS

In this section, we discuss the methodology used to explore each

research question, and present the results.

4.1 RQ1: Debugger Impact

As described in Section 3, we divided the collected data in two:

the first group used the debugger (indicated by debugger events in

the data set) at some point during the debugging period, and the

second group did not. These two datasets provide distributions of

time spent on debugging, the number of edits needed to fix an issue,

and the frequency of source code navigating events. We analyze

these distributions with respect to the following null hypothesis:

H0: The distribution of debugging duration is the

same with and without the debugger.

Figure 1 presents the two distributions. On average, the mean

time spent on debugging using the debugger is 1535 seconds higher

than without the debugger. The 2-sample Kolmogorov-Smirnov

test finds significant difference (α = 0.05) between these two dis-

tribution (p < 0.01) with medium effect size (Cohen’s d = 0.52). In

other words, when developers spend a small but significant amount

of additional time debugging when they use the IDE debugging

features.

One possibility is that task difficulty might play a role in the

decision to use the debugger. Developers may be more likely to use

the debugger if the debugging task is difficult. Although the data

does not provide information about the debugging task in question,

we still can define proxies for difficulty. For example, we can use the

number of files edited during a debugging period as a proxy for task

difficulty. Editing more files does not necessarily mean that the bug

is more difficult to understand. However, in general, defects that

are distributed among several files may be harder to find and fix.

We constructed a linear regression model to include the duration

of the task, the number of files edited, and whether the debugger is

used. The model finds a significant relationship between duration

and the number of edited files (p < 0.01), and finds a significant fit

to using debugger (p = 0.011). Figure 2 shows the regression model,

only considering duration and number of files. These results show

a weak (R2=0.15) but significant correlation between the difficulty

115

A Study on the Use of IDE Features for Debugging MSR ’18, May 28–29, 2018, Gothenburg, Sweden

0

5000

10000

15000

0 5 10 15 20 25

of files edited

D
ur

at
io

n Debugger used

Not used

Used

Figure 2: Linear regression model applied the number of edited

files and the duration of debugging.

of the task and the use of debugger, with time spent on debugging.

We cannot simply reject the idea that the debugger is used on more

difficult bugs and the difficulty could result in longer sessions.

Beyond time, it is possible that using a debugger may influence

the number of edits a developer needs to apply to find and fix a

defect. For example, if the developer is not using the debugger to

localize the defect, theymay add print statements to inspect variable

values. We therefore examined the number of characters edited by

the developer over the debugging period. As with duration, the

mean number of edits is higher (by 1,317,324.4 characters) in cases

where debugger was used. However, the t-test cannot reject the null

hypothesis (p > 0.1); the number of edits made by developer does

not statistically significantly differ with or without the debugger.

Developers spend almost 35% of their time navigating through

the source code during maintenance activities [5]. As navigation is

as an essential part of debugging, and representative of developer

effort on fixing issues, we conducted the same experiment on the

number of navigation events.1 The mean number of navigation

events is 69.17 using the debugger, and 34.74 not using it. The t-test

show significant difference between these two distributions (p <

0.01). The number of times the developers navigated through the

source code is significantly higher when the debugger is used.

In general, since the IDE and debugger are designed to simplify

debugging, we expect that using them results in better performance

in terms of fixing the issues faster, or with less effort. However,

these results suggest that there are no such immediate effects from

using the debugger either because the defects that the debugger

was used for are genuinely more complicated, requiring developers

to spend more time on debugging, or because using the debugger

actually results in spending more time and effort on debugging.

4.2 RQ2: Starting Point of Debugger Use

For this research question, we study the effort that developers

spend resolving an issue before switching to the debugger. One

simple measure of effort is time: Developers may spend some time

investigating a defect without the help of a debugger, switching to

1Each navigation event represents jumping from one soure code location to another.

0.0

0.2

0.4

0.6

100 10000

seconds

d
e
n
si
ty

Figure 3: The density function of the seconds spent before starting

to use the debugger.

the debugger when it seems that it might be helpful. Another way

of measuring effort is the number of times a developer navigates

through the source code, an important debugging activity.

One possibility is that developers may first try to fix a bug issues

without additional tools, seeking help from debuggers at the point

that they realize the task is difficult. However, the data does not

support this conjecture. Figure 3 shows the density function of

the number of seconds spent on debugging before first use of the

debugger. In 80% of cases, the developer started using the debugger

in under 13 minutes; in 61% of cases, in under 5 minutes. Consid-

ering that the mean time spent on debugging tasks in this data is

almost 45 minutes, this suggests that in most cases, the programmer

decides to use the debugger early. Considering relative measures

convey similar results. Overall, in 46% of sessions, the developer

started using the debugger when less than 25% of the whole session

is passed.

The number of navigation events show the same results. On

average, developers navigate through code 18.34 times before using

IDE debugger; on 72% of the tasks fewer than 15 navigation attempts

were made before debugger use. The mean number of navigation

events in the whole debugging period is 69.18.

In most cases, developers start using the IDE’s debugging fea-

tures relatively early in a debugging session. One possibility is that

whether to use the debugger or not is mostly a question of user

habit. We cannot further investigate this possibility with provided

data set as it does not distinguish between individual developers.

4.3 RQ3: Behavioral Change When Debugging

Finally, we investigate whether debugging affects the way develop-

ers edit their code. For example, they may frequently apply small

edits to the source code when they develop code, but apply less

frequent or larger edits while repairing defects. For this purpose,

we conduct a time series analysis on every single debugging task.

In this time series analysis, we collect data related to the number of

edit events sorted by time, and treat the beginning and end of the

debugging process as the interruptions. The beginning of analysis is

at most three hours before first interruption, and the end is at most

three hours after the second interruption. The time series analysis

looks into significant changes in the distribution as interruptions

occur.

116

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Afsoon Afzal and Claire Le Goues

10600 10800 11000 11200 11400 11600

0
20

00
60

00
10

00
0

Seconds

of

 c
ha

ra
ct

er
s

ed
ite

d

(a) Significant change

9000 10000 11000 12000 13000 14000

0
20

00
40

00
60

00

Seconds

of

 c
ha

ra
ct

er
s

ed
ite

d

(b) No significant change

Figure 4: Time series diagram of number of edits, with interrup-

tion points at the start and end of a debugging period.

Figure 4a shows an example of the time series analysis done on a

debugging task by a sample developer. In this example, the number

of edits increases when the developer starts debugging and drops

right before it is done.

Although the example in Figure 4a is helpful in understanding

the overall process and idea of this experiment, it does not show

the majority of cases. Figure 4b shows one of the 63.3% of cases

where we could not find a significant change (α = 0.05) before and

after the debugging period. In most cases, developers do not change

their editing behavior as they debug.

4.4 Confounds and Threats

In all aforementioned methods, developer expertise and experi-

ence could be considered as confounding variables. However, we

have no information about the developers and their level of exper-

tise and have to rely on the assumption that the developers have

been sampled from a balanced and diverse group from a variety of

backgrounds and expertise levels [8].

Note that we identify debugging sessions as delimited between

pass/fail and fail/pass transitions of the test suite. Although this is

a common practice among studies [6], it could result in a sequence

of activities that is falsely identified as debugging session.

As mentioned in Section 3, we excluded 10% of debugging ses-

sions which are longer than 5 hours from our study. This decision

could result in loss of valid data points that may affect the results.

5 CONCLUSIONS AND FUTUREWORK

We have explored debugging behavior using IDEs by mining the

2018 MSR challenge data set [8]. We showed that time spent on

debugging is significantly higher when the debugger is used. One

possibility is that this is related to the difficulty of the bugs under

repair. Considering the number of files edited as a proxy for task

difficulty, we show that there exists a statistically significant corre-

lation between debugging duration and its difficulty. These results

motivate future human studies to better understand this correlation.

In particular, future user studies could carefully control confounds

to solely investigate the impact of debuggers on task time.

We also found that, in a majority of cases, the developers switch

to debugger mode relatively early while debugging. Future work

can look into personal habits and preferences of developers to better

explain these results. Finally, we conducted time series analysis

to study the change in developers behavior at starting and ending

points of debugging. Our study shows that in 63.3% of cases, no

significant change is observable.

Overall, our results help us in better understanding developer de-

bugging behavior, and more importantly motivating future research

and improvements to IDE design.

6 ACKNOWLEDGEMENTS

This work is partially supported by NSF (#CCF-1563797); the au-

thors are grateful for the support. All statements are those of the au-

thors, and do not necessarily reflect the views of the funding agency.

REFERENCES
[1] Moritz Beller, Niels Spruit, Diomidis Spinellis, and Andy Zaidman. 2018. On

the Dichotomy of Debugging Behavior Among Programmers. In International
Conference on Software Engineering (to appear) (ICSE 2018).

[2] Marcel Böhme, Ezekiel Olamide Soremekun, Sudipta Chattopadhyay, Emamurho
Ugherughe, and Andreas Zeller. 2017. Where is the Bug and How is it Fixed?
An Experiment with Practitioners. In Joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE 2017). 1–11.

[3] Warren Harrison and Curtis Cook. 1990. Insights on improving the maintenance
process through software measurement. In Conference on Software Maintenance.
37–45.

[4] Prateek Hejmady and N Hari Narayanan. 2012. Visual attention patterns during
program debugging with an IDE. In Symposium on Eye Tracking Research and
Applications. 197–200.

[5] Andrew J Ko, Htet Htet Aung, and Brad A Myers. 2005. Eliciting design re-
quirements for maintenance-oriented IDEs: a detailed study of corrective and
perfective maintenance tasks. In International Conference on Software Engineering
(ICSE 2005). 126–135.

[6] Claire Le Goues, Neal Holtschulte, Edward K Smith, Yuriy Brun, Premkumar
Devanbu, Stephanie Forrest, and Westley Weimer. 2015. The ManyBugs and
IntroClass benchmarks for automated repair of C programs. IEEE Transactions
on Software Engineering 41, 12 (2015), 1236–1256.

[7] Gail C Murphy, Mik Kersten, and Leah Findlater. 2006. How are Java software
developers using the Elipse IDE? IEEE software 23, 4 (2006), 76–83.

[8] Sebastian Proksch, Sven Amann, and Sarah Nadi. 2018. Enriched Event Streams: A
General Dataset for Empirical Studies on In-IDEActivities of Software Developers.
InWorking Conference on Mining Software Repositories.

[9] Martin P Robillard, Wesley Coelho, and Gail C Murphy. 2004. How effective
developers investigate source code: An exploratory study. IEEE Transactions on
software engineering 30, 12 (2004), 889–903.

[10] Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller. 2007.
How longwill it take to fix this bug?. In InternationalWorkshop onMining Software
Repositories. 1.

117

