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ABSTRACT namely,containment for two OMQs @, and Q- with data
schemaS, does@:(D) C Q2(D) hold for every (finite)
databaseD over S (where @Q(D) denotes the certain an-
swers forQ over D)? Apart from the traditional applications
of containment, such as query optimization or view-based
guery answering, it has been recently shown that OMQ con-
tainment has applications on other important static amalys
tasks, namely, distribution over components [11], and UCQ
rewritability [12]. Surprisingly, despite its prominenago
work to date has carried out an in-depth investigation of con
tainment for OMQs based on tgds.

As one might expect, when considered in its full general-
ity, the OMQ containment problem is undecidable. To un-
1. INTRODUCTION derstand, on th_e_ other hand, which rest_rictions on the tgds

) lead to decidability, we recall the two main reasons that ren

representation tools for handling incomplete and heteroge

neous data is giving rise to a new field, recently coined as Undecidability of query evaluatior®MQ evaluation is, in

Many efforts have been dedicated to identifying restritdiomn
ontologies expressed as tuple-generating dependendes),(t
a.k.a. existential rules, that lead to the decidabilityhaf problem
of answering ontology-mediated queries (OMQs). This hasryi
rise to three families of formalisms: guarded, non-revearsand
sticky sets of tgds. We study the containment problem for GMQ
expressed in such formalisms, which is a key ingredientdtwirsg
static analysis tasks associated with them. Our main duwriioin
is the development of specially tailored techniques for OM®-
tainment under the classes of tgds stated above. This enable
obtain sharp complexity bounds for the problems at hand

knowledge-enriched data managemgijt A crucial prob- general, undecidable [8], and it can be reduced to OMQ con-
lem in this field isontology-based data acce@3BDA) [39], tainment. More precisely, OMQ containment is undecidable
which refers to the utilization of ontologies (i.e., setdaufi- whenever query evaluation for at least one of the involved

cal sentences) for providing a unified conceptual view of var languages (i.e., the language of the left-hand or the right-
ious data sources. Users can then pose their queries solely i hand side query) is undecidable.
the schema provided by the ontology, abstracting away from
the specifics of the individual sources. In OBDA, one inter-
prets the ontology. and the user query, which is typically
a union of conjunctive querie@JCQ), as two components
of one composite quer = (S, 3, ¢), known asontology-
mediated querfOMQ); S is called thedata schemgandicat-
ing that@ will be posed on databases o\&j14]. Therefore,
OBDA is often realized as the problem of answering OMQs.
While in this settingdescription logics(DLs) are often In view of the above observations, we focus on languages
used for modeling ontologies, it is widely accepted that for that have a decidable query evaluation, and do not extend
handling arbitrary arity relations in relational datata#e Datalog. The main classes of tgds, which give rise to OMQ
is convenient to uséuple-generating dependenciégds), languages with the desirable properties, can be classified
a.k.a.existential rulesor Datalog* rules cf. [28]. Several into three main families depending on the underlying syn-
aspects of OMQs in which the ontology is a set of tgds and tactic restrictions: (iYfrontier-)guardedtgds [4, 18], which
the actual query is a UCQ (simply called OMQs from now contain inclusion dependencies and linear tgds, n@n-
on) have been studied in the data management literatureyecursivesets of tgds [26], and (iiitickysets of tgds [20].
most notably (ajjuery evaluatiorj4, 18, 19, 20], i.e., given While the decidability of containment for the above OMQ
an OMQQ = (S, X, q), a databas® overS, and a tuple of languages can be established via translations into query la
constants:, doesc belong to the evaluation af over every guages with a decidable containment problem, such transla-

Undecidability of containment for Datalogdecidability of
guery evaluation does not ensure decidability of query con-
tainment. A prime example is Datalog, or, equivalently, the
OMQ language based duoll tgds. Datalog containment is
undecidable [41]; thus, OMQ containment is undecidable if
the involved languages extend Datalog.

extension ofD that satisfie&:, or, equivalently, i acertain tions do not lead to optimal complexity upper bounds (de-
answerfor @) over D? and (b)relative expressivene$$4, tails are given below). Therefore, the main goal of our paper
30, 31]: how does the expressiveness of OMQs compare tois to develop specially tailored decision procedures fer th

the one of other query languages? containment problem under the OMQ languages in question,

This work focuses on another crucial task for OMQs; and, ideally, obtain precise complexity bounds.



I Arbitrary Arity Bounded Arity

. PSPACE-C nk-c
Linear
PSPACEC NP-c
. CONEXPTIME-C 7 -c
Sticky 2
EXPTIME-C NP-c
; NP EXP_ ; NP EXP_
Non-recursive || M CONEXPTIMEN® and P'EXP_hard | in coNExPTIMENP and P'EXP-hard
NEXPTIME-C NEXPTIME-C
2EXPTIME-C 2EXPTIME-C
Guarded
2EXPTIME-C EXPTIME-C
. 2EXPTIME-C 2EXPTIME-C
Frontier-guarded
2EXPTIME-C 2EXPTIME-C

Table 1: Complexity of OMQ containment — in small fonts, we recall the complexity of OMQ evaluation.

Our contributions. The complexity of OMQ containment e Finally, for OMQs based on non-recursive sets of tgds,
for the languages in question is given in Table 1. Using small containmentis in coNEPTIMENP and hard for PEXP,
fonts, we recall the complexity of OMQ evaluation in order even for fixed arity. The lower bound is shown by ex-
to stress that containment is, in general, harder than avalu ploiting a recently introduced tiling problem [25].

tion. We divide our contributions as follows: ) _ _
We conclude that in all these cases OMQ containment is

Linear, non-recursive and sticky sets of tgflke OMQ lan-  harder than evaluation, with one exception: the OMQs based
guages based on linear, non-recursive, and sticky setd®ftg on linear tgds over schemas of unbounded arity, where both
share a useful property: they adcQ rewritable(implicit problems are PSACE-complete. Regarding OMQs based on

in [28]), that is, an OMQ can be rewritten into a UCQ. non-recursive sets of tgds, although our upper bound is not
This property immediately yields decidability for their-as  optimal, it is nearly optimal. Indeed, N TIMENP, which
sociated containment problems, since UCQ containment isforms theA,-level of the exponential hierarchy (EH), and
decidable [40]. However, the obtained complexity bounds PNEXP \which forms theA,-level of the strong EH,! are

are not optimal, since the UCQ rewritings are unavoidably tightly related: if the oracle access in NETIMENP is re-

very large [28]. To obtain more precise bounds, we reduce stricted too much, then it collapses 5P [33].
containment to query evaluation, an idea that is often adpli

in query containment; see, e.g., [21, 22, 40]. Guarded tgdsThe OMQ language based on guarded tgds
Consider a UCQ rewritable OMQ langua@e If Q; and is not UCQ rewritable, which forces us to develop different
Q- belong to©Q, both with data schem&, then we can  tools to study its containment problem. Let us remark that
establish asmall witness propertywhich states that non- ~ guarded OMQs can be rewritten as guarded Datalog queries
containment ofQ; in @, can be witnessed via a database (by exploiting the translations devised in [5, 31]), for whi
overS whose size is bounded by an integer 0, the max- containment is decidable in 2BTIME [15]. But, again, the
imal size of a disjunctin a UCQ rewriting @3;. For linear ~ known rewritings are very large [31], and hence the reduc-
tgds, such an integdris polynomial, but for non-recursive  tion of containment for guarded OMQs to containment for
and sticky sets of tgds it is exponential (implicit in [28]). guarded Datalog does not yield optimal upper bounds.
The above small witness property allows us to devise a sim-  To obtain optimal bounds for the problem in question,
ple non-deterministic algorithm, which makes use of query We exploit two-way alternating parity automata on trees
evaluation as a subroutine for checking non-containment of (2WAPA) [23, 43]. We show that i), and@- are guarded
Q1 in Q2: guess a databage overS of size at most, and ~ OMQs such tha€); is not contained irf)2, then this is wit-
then check if there is a certain answer €@y over D that is nessed over a class of “tree-like” databases that can be-repr
not a certain answer fap, over D. This algorithm allows ~ sented as the set of trees accepted by a 2WR(PAVe then
us to obtain optimal upper bounds for OMQs based on lin- build a 2WAPA with exponentially many states that rec-
ear and sticky sets of tgds; however, the exact complexity of 0gnizes those trees accepteddbythat represent witnesses
OMQs based on non-recursive sets of tgds remains open: 0 non-containment o in Q2. Hence,@; is contained
in Q- iff B accepts no tree. Since the emptiness problem
e For OMQs based on linear tgds, the containment prob- for 2WAPA is feasible in exponential time in the number of
lem is in P$ACE, and inIlf if the arity is fixed. The  states [23], we obtain that containment for guarded OMQs is
PSpAcE-hardness is shown by reduction from query in 2ExPTIME. A matching lower bound, even for fixed arity
evaluation, while théI§-hardness is implicit in [13]. schemas, follows from [12].
. _ Similar ideas based on 2WAPA have been recently used to
e For OMQs based on _stlcllgy_sets of tgds, the problemis gpow that containment for OMQs based on expressive DLs is
in coONEXPTIME, and inIl, if the arity of the schema i 2ExpTiME [12]. In the DL context, schemas consist only

is fixed. The coNKPTIME-hardness is shown by ex-  of ynary and binary relations. Our automata construction,
ploiting the standard tiling problem for the exponential

grid, while thellZ’-hardness is inherited from [13]. The strong EH collapses to ifs,-level [33].




however, is different from the one in [12] for two reasons: whereR € S is of arityn > 0 andv is ann-tuple of terms.

(a) we need to deal with higher arity relations, and (b) even A factis an atom whose arguments consist only of constants.

for unary and binary relations, our OMQ language allows to An instanceoverS is a (possibly infinite) set of atoms over

express properties that are not expressible by the DL-based that contain constants and nulls, whilelatabaseoverS

OMQ languages studied in [12]. is a finite set of facts ove$. We may call an instance and a
database ove$ anS-instanceandS-databaserespectively.

Frontier-guarded tgds. Frontier-guarded tgds generalize Theaactive domairof an instance, denoteddom (1), is the
guarded tgds, and as a matter of fact the techniques we deggt of a1l terms occurring it

velop for studying OMQ containment for the latter do not o conjunctive queryCQ) overS is a formula of the form:
extend in a straightforward manner to the former. Instead,

we provide a translation from a frontier-guarded OMD q(z) = Eg(Rl (T) A A Rm(@m)), Q)
into a guarded OM@’ such that) andQ’ are equivalent

over acyclic databases. This allows to exploit the mackiner Where eachizi(v;) (1 < i < m) is an atom without nulls
overS, each variable mentioned in thigs appears either in

developed for guarded OMQs, and show that containment>"="> o ; e

for frontier-guarded OMQs is in 2B°TIME. As for guarded ~ Z Of ¥, andz are the free variables qf If z is empty, thery
OMQs, a matching lower bound is inherited from [12], even 1S @Boolean CQAs usual, the evaluation of CQs is defined
for fixed arity schema. Let us stress that the employed trans-I" {€rms of homomorphisms. Létbe an instance anf(z)
lation from frontier-guarded into guarded OMQs does not & CQ_Of the fo_rm _(1)' A_hom(_)morphlsnirom qtollsa
preserve the query answers over arbitrary databases, lyut on MaPPingh, which is the identity orC, from the variables
over acyclic databases. This is not surprising since feonti ~ that appear iy to the set of constants and nullsU N such

uarded OMQs are strictly more expressive than guardedthat 2i(h(v;)) € I, for eachl < i < m. Theevaluation
%MQS' see S.g. [30]. y P g of ¢(z) overI, denoted;(I), is the set of all tupleé(z) of

constants such thatis a homomorphism from to 7. We

Combining language3.he above complexity results referto  denote byCQ the class of conjunctive queries.
the containment problem relative to a certain OMQ language A union of conjunctive querig€JCQ) overS is a formula
0, i.e., both queries fall id. However, it is natural to con-  of the formq(z) := ¢1(Z) V- - -V ¢, (ZT), where eacly; () is
sider the version of the problem where the involved OMQs a CQ of the form (1). Thevaluation of;(z) over!, denoted
fall in different languages. Unsurprisingly, if the lefaid q(I), is the set of tuplel), ., ,, ¢:({). We denote byUCQ
side query is expressed in a UCQ rewritable OMQ language the class of union of conjunctive queries.
(based on linear, non-recursive, or sticky sets of tgds), we ,
can use the algorithm that relies on the small witness prop- 19ds and the chase procedureA tuple-generating depen-
erty discussed above, which provides optimal upper boundsdency(tgd) is a first-order sentence of the form:
for aIr_nost all the _cons_idered cases _(the only exceptioreis th Wng(qS(:a ) — 3z 9(z, 2))7 )
containment of sticky in non-recursive OMQs over schemas
of unbounded arity). Things are more interesting if the on- where¢ andy are conjunctions of atoms without nulls. For
tology of the left-hand side query is expressed using guhrde brevity, we write this tgd ag(z,y) — 3z2¢(z, 2) and use
or frontier-guarded tgds, while the ontology of the right- comma instead of for conjoining atoms. Notice thatcan
hand side query is not (frontier-)guarded. By using autamat be empty, in which case the tgd is calledt tgdand is writ-
techniques, we show that containment of (frontier-)gudrde ten asT — 3z(z,Z). We assume that each variablezin
in non-recursive OMQs is in 38 TIME, while containment  is mentioned in some atom gf. We call¢ and the body
of (frontier-)guarded in sticky OMQs is in 2BTIME. We andheadof the tgd, respectively. The tgd in (2) is logically
establish matching lower bounds, even over schemas of fixedequivalent to the expressiore(qs(z) — ¢4(Z)), where
arity, by refining techniques from [22]. q4(7) andqy (z) are the CQSly ¢(z,y) and3z ¢ (z, 2), re-

o o ] ) ] spectively. Thus, an instandeover S satisfiesthis tgd iff
C_)rgamzau_on. Preliminaries are givenin Section 2. In Sec- q5(I) C qy(I). We say that an instandesatisfies a sef of
tion 3 we introduce the OMQ containment problem. Con- tgds, denoted = ¥, if I satisfies every tgd i&l. We denote
tainment for UCQ reyvritablg OMQs is studied in_ Section 4, by TGD the class of (finite) sets of tgds.
for guarded OMQs in Section 5, and for frontier-guarded “Thechasds a useful algorithmic tool when reasoning with
OMQs in Section 6. We consider the case where the mvolvedtgdS [18, 26, 35, 38]. We start by defining a single chase step.
queries fall in different languages in Section 7. Finallg W | et 7 be an instance over a scheSandr — o(Z, ) —
conclude in Section 8. Full proofs and additional details ca 3z¢(z, 2) atgd ovelS. We say that is applicablew.r.t. I if

be found in the attached appendix. there exists a tupléi, b) of terms in/ such that(a, b) holds
in 1. In this casethe result of applying over I with (a, b)
2. PRELIMINARIES is the instance that extendd with every atom iny(a, 1),

Databases and conjunctive queriesLet C, N, andV be where L _is the tuple pbtained by_si.multaneously replz?\cing
A each variable: € z with a fresh distinct null not occurring

disjoint countably infinite sets afonstants(labeled) nulls i

and (regularyariables(used in queries and dependencies), in I. For such a single chase step we Wméﬂ J.
respectively. AschemeS is a finite set of relation symbols Let us assume now thdtis an instance ant a finite set
(or predicates) with associated arity. We wifitgn to denote of tgds. Achase sequence fdrundery is a sequence:
that R has arityn. A termis a either a constant, null, or _ ~

variable. Anatomovers$ is an expression of the for(7), J QLI AEELL N S



of chase steps such that: ()= I; (2) for eachi > 0, 7; is
atgdinX; and (3),~, i = X. We calllJ,-, I; theresult
of this chase sequence, which always exists. Although the

result of a chase sequence is not necessarily unique (up to

isomorphism), each such result is equally useful for our pur

poses, since it can be homomorphically embedded into every

other result. Thus, from now on, we denotediyise(I, %)
the result of an arbitrary chase sequencefanderX.

Ontology-mediated queries.An ontology-mediated query
(OMQ)is atriple(S, X, q), whereS is a schema. is a set of
tgds (the ontology), andis a (U)CQ oveiS U sch(X) (and
possibly other predicates), witlth(X) the set of predicates
occurring in¥x.? We callS the data schemaNotice that the
set of tgds can introduce predicates ndsjrwhich allows us
to enrich the schema of the UCQQ Moreover, the tgds can
modify the content of a predicafe € S, or, in other words,
R can appear in the head of a tgdXf We have explicitly
includeds in the specification of the OMQ to emphasize that
it will be evaluated oveB-databases, even thoughandg
might use additional relational symbols.

The semantics of an OMQ is given in terms of certain an-
swers. Thecertain answerso a UCQq(z) w.r.t. a database
D and a sek of tgds is the set of tuples:

() {c € dom(D)"! | € q(I)}.

DCrIandI|=%

Consider an OMQ@) = (S, X, ¢). Theevaluationof @) over
anS-databas®, denoted) (D), is defined agert(q, D, ¥).
It is well-known thatcert(q, D,X) = q(chase(D, X)); see,
e.g., [18]. Thus@(D) = g(chase(D, X)).

Ontology-mediated query languagesWe write (C, Q) for

the OMQ language that consists of all OMQs of the form
(S,%, q), whereX: falls in the clas€ of tgds, i.e.C C TGD
(concrete classes of tgds are discussed below), and thg quer
g fallsin Q € {CQ,UCQ}. A problem that is quite impor-
tant for our work iSOMQ evaluationdefined as follows:

cert(q, D, %)

PROBLEM: Eval(C,Q)

INPUT : AnOMQ Q = (S,3,¢(7)) € (C,Q),
anS-databasé, andé € dom(D)!*!.

QUESTION: Doesc € Q(D)?

It is well-known thatEval(TGD, CQ) is undecidable; im-
plicit in [8]. This has led to a flurry of activity for identify

ing syntactic restrictions on sets of tgds that make thenatt
problem decidable. Such a restriction defines a subdlass
of tgds. The known decidable classes of tgds are classified
into three main decidability paradigms, which, in turn,egiv
rise to decidable OMQ languages:

GuardednessA tgd is guarded(frontier-guarded if it has

a body-atom, calleduard(frontier-guard, that contains all
the body-variables (all the body-variables that appeahén t
head). A guarded tgd is trivially frontier-guarded, butrthe
are frontier-guarded tgds that are not guarded. Although th
chase under (frontier-)guarded tgds does not necessarly t
minate, the problem of deciding whether a tuple of constants

20MQs can be defined for arbitrary first-order theories, ndy on
tgds, and first-order queries, not only UCQs [14].

R(z,y), Ay,2) — Fw T(z,y,w) R(z.y), Ay,2) = Fw T(z,y,w)

T(z,y,2) — Jw S(y,w)

I |

Tzy,2) — Fw S(z,w)

X

(2)
(b)

R(z.y), Ay.2) — Fw Tz,y,w)
TNz,y,2) — Jw S(z,w)
Figure 1: Stickiness and Marking.

is a certain answer to a UCQ w.r.t. a database and a set of
(frontier-)guarded tgds is decidable. This follows frone th
fact that the result of the chase Hamunded treewidtlisee,

e.g., [4, 18]). LetG (resp.,FG) be the class of (finite) sets

of guarded (resp., frontier-guarded) tgds. Then:

PROPOSITION 1. [4, 18] The problemEval(G, (U)CQ)
is 2EXPTIME-complete, andEXPTIME-complete for fixed
arity. Moreover, the problergval(FG, (U)CQ) is complete
for 2EXPTIME, even for fixed arity.

An important subclass of guarded tgds is the cladmef
ear tgds whose body consists of a single atom. We wiite
for the class of (finite) sets of linear tgds. Then:

PROPOSITION 2. [19, 35]The problenEval(L, (U)CQ)
is PSPace-complete, andNP-complete for fixed arity.

Non-recursivenessA set X of tgds isnon-recursivg(a.k.a.
acyclic[26, 37]), if its predicate graph, the directed graph
that encodes how the predicatessof(X) depend on each
other, is acyclic. Non-recursiveness ensures the terromat
of the chase, and thus decidability of OMQ evaluation. Let
NR be the class of non-recursive (finite) sets of tgds. Then:

PROPOSITION 3. [37] The problentval(NR, (U)CQ) is
NExPTIME-complete, even for fixed arity.

Stickiness:This condition ensures neither termination nor
bounded treewidth of the chase. Instead, the decidability
of OMQ evaluation is obtained by exploiting query rewrit-
ing techniques (more details on query rewriting are given in
Section 4). The goal of stickiness is to capture joins among
variables that are not expressible via guarded tgds, bht wit
out forcing the chase to terminate. The key property under-
lying this condition can be described as follows: during the
chase, terms that are associated (via a homomorphism) with
variables that appear more than once in the body of a tgd
(i.e., join variables) are always propagated (or “stick'jie
inferred atoms. This is illustrated in Figure 1(a); the kdt

of tgds is sticky, while the right set is not. The formal defini
tion is based on an inductive marking procedure that marks
the variables that may violate the semantic property of the
chase described above [20]. Roughly, during the base step
of this procedure, a variable that appears in the body of a tgd

3Eval(C, (U)CQ) meansEval(C, CQ) andEval(C, UCQ).




7 but not in every head-atom efis marked. Then, the mark-
ing is inductively propagated from head to body as shown in
Figure 1(b). Finally, a finite set of tgds is stickyif no tgd

in 3 contains two occurrences of a marked variable. S et
be the class of sticky (finite) sets of tgds. Then:

PROPOSITION 4. [20] The problemEval(S, (U)CQ) is
ExpTIME-complete, andNP-complete for fixed arity.

3. OMQ CONTAINMENT: THE BASICS

The goal of this work is to study in depth the problem of
checking whether an OM@); is containedn an OMQQs,
both over the same data schefar, equivalently, whether
Q1(D) C Q2(D) over every (finite)S-databaseD. In this
case we write); C (-; we write@)1 = Q- if Q1 C Q2 and
Q2 € Q1. The OMQ containmenproblem in question is
defined as follows{); andO, are OMQ language&C, Q),
whereC is a class of tgds (e.qg., linear, non-recursive, sticky,

etc.), andQ € {CQ, UCQ}:

PROBLEM:  Cont(Qq, Q3)
INPUT : Two OMQs@Q; € 07 andQs € Os.
QUESTION: Does@; C Q27?

Whenevef0; = 0, = O, we refer to the containment prob-
lem by simply writingCont(Q).

In what follows, we establish some simple but fundamen-
tal results, which help to better understand the nature of ou
problem. We first investigate the relationship between-eval
uation and containment, which in turn allows us to obtain an
initial boundary for the decidability of our problem, i.ee
can obtain a positive result only if the evaluation problem f
the involved OMQ languages is decidable (e.g., those intro-
duced in the previous section). We then focus on the OMQ

languages introduced in Section 2 and observe that, once wajme intocoCont(Q, Oy)

fix the class of tgds, it does not make a difference whether
we consider CQs or UCQs. In other words, we show that an
OMQ in (C,UCQ), whereC € {FG,G,L,NR,S}, can be
rewritten as an OMQ infC, CQ). This fact simplifies our
later complexity analysis since for establishing uppesgre
lower) bounds it suffices to focus on CQs (resp., UCQSs).

3.1 Evaluation vs. Containment

As one might expect, OMQ evaluation and OMQ contain-
ment are strongly connected. In fact, as we explain below,
the former can be easily reduced to the latter. But let us first
introduce some auxiliary notation. Consider a datakbase
and a tuplec = (c1,...,¢,) € dom(D)™, wheren > 0.

We denote byyp :(Z), wherez = (z,,...,z.,), the CQ
obtained from the conjunction of atoms occurringirafter
replacing each constanwith the variabler.. Consider now
an OMQQ = (S.%,¢(7)) € (C,CQ), whereC is some
class of tgds, a-databasé), and a tuple € dom(D)!*!.
It is not difficult to show that:

ceQ(D) < (sch(2),2,qp,z) C (sch(X),X,q).
Q1 Q2

Let Oy be the OMQ language that consists of all OMQs of
the form(S, &, q), i.e., the set of tgds is empty, wherés a
CQ. ltis clear that); € Oy andQ- € (C,CQ). Therefore,

for every OMQ languag® = (C,CQ), whereC is a class
of tgds, we immediately get that:

PROPOSITION 5. Eval(Q) can be reduced in polynomial
time intoCont(Og, O).

We now show that the problem of evaluation is also re-
ducible to the complement of containment. Let us say that,
for technical reasons which will be made clear in a while, we
focus our attention on class€%f tgds that arelosed under
fact tgd extensioni.e., for every set € C, a set obtained
from X by adding a (finite) set of fact tgds is still {@. This
is not an unnatural assumption since every reasonable class
of tgds, such as the ones introduced above, enjoy this prop-
erty. Consider now an OM@ = (S, %, ¢(z)) € (C,CQ),
whereC is some class of tgds, &tdatabasé), and a tuple
¢ € dom(D)I7l. Itis easy to see then that:

ceQ(D) < (S8,Xp,qz) € (8,9,3x P(x)),
Q1 Q2

whereX7, is obtained fron® by renaming each predicaie
in X into R* ¢ S and adding the set of fact tgds:

{T = R*(c1,...,ck) | R(e1,...,cx) € D},

q% is obtained fromy(¢) by renaming each predicafeinto
R* ¢ S, and the predicaté® does not occur ir8. In-
deed, the above equivalence holds sifcg S implies that
Q2(D) = o, for everyS-databasé). SinceC is closed un-
der fact tgd extensionp; € (C,CQ), while Q2 € Og. We
write coCont(Q1, Q) for the complement ofont(01, O5).
Hence, for every OMQ language = (C, CQ), whereC is

a class of tgds (closed under fact tgd extension), it holals th

PROPOSITION 6. Eval(Q) can be reduced in polynomial

By definition, O is contained in every OMQ language
(C,CQ), whereCis aclass of tgds. Therefore, as a corollary
of Propositions 5 and 6, we obtain an initial boundary for the
decidability of OMQ containment: we can obtain a positive
result only if the evaluation problem for the involved OMQ
languages is decidable. More formally:

COROLLARY 7. Cont(01,0,) is undecidable if
Eval(0,) is undecidable oEval(Q-) is undecidable.

Can we prove the converse of Corollary@snt(O4, O3)
is decidable if bottEval(0;) andEval(O3) are decidable?
The answer to this question is negative. This is due to the
fact that containment of Datalog queries is undecidablg [41
Since Datalog queries can be directly encoded in the OMQ
language based on the cld&sf full tgds i.e., those without
existentially quantified variables, we obtain the follogin

PrROPOSITION 8. [41] Cont((F, CQ)) is undecidable.

This result, combined with the fact thatal(F) is decid-
able (since the chase under full tgds always terminates), im
plies that the converse of Corollary 7 does not hold. Propo-
sition 8 also rules out the OMQ languages that are based
on classes of tgds that generali#zee.g., the weak versions



of the ones introduced in Section 2, callwdakly frontier- e In Section 7, we study the case where the OMQ con-

guarded[4], weakly guarded18], weakly acyclid26], and tainment problem involves two different languages. If
weakly sticky[20] that guarantee the decidability of OMQ the left-hand side language is UCQ rewritable, then
evaluatiort The question that comes up concerns the de- we can devise a guess-and-check algorithm by exploit-
cidability and complexity of containment for the OMQ lan- ing the above small witness property. The challenging
guages that are based on the non-weak versions of the above  case is when the left-hand side languag@i&, CQ),
classes, i.e., frontier-guarded, guarded, non-recyrsivd where again we employ tree automata techniques.

sticky. This will be the subject of the next three sections.
4. UCQ REWRITABLE LANGUAGES

3.2 From UCQs tO.CQS ) ) We now focus on OMQ languages that enjoy the crucial
tainment for the OMQ languages in question, let us state the js UCQ rewritable if every query ifd can be equivalently

following useful result: rewritten as a UCQ. The formal definition follows:
PROPOSITION 9. Given an OMQQ € (C, UCQ), where Definition1. (UCQ Rewritability ) An OMQ language

C e {FG,G,L,NR,S}, we can construct in polynomial (C,CQ), whereC C TGD, is UCQ rewritableif, for each

time an OMQQ’ € (C, CQ) such thatQ = Q' OMQQ = (8, X%, ¢()) € (C,CQ) we can constructa UCQ

¢’ (Z) such tha)(D) = ¢’ (D) for everyS-databasé®. =

We proceed to establish our desired small witness prop-
erty based on UCQ rewritability. By the definition of UCQ

The proof of Proposition 9 relies on the idea of encoding
boolean operations (in our case the ‘or’ operator) using a

set of atoms; this idea has been used in several other Worksr oo . :

' L ewritability, for each languag® that is UCQ rewritable,
(see, e.9., [10, 16, 29]). Proposition 9 allows us to focus on there exists a computable functigg from O to the natural
OMQs that are based on CQs. In fact, let us assume that, hers'sich that the following holds: for every OMQ=
Cl’(.CQ € {FG,G,L,NR, S} z_;md_C IS a complexﬂy clf';\ss (S,%,¢(x)) € O, and UCQ rewritingy; (Z) V - - - V g, (Z) of
that is closed under polynomial time reductions, then: 0, itis the case thahaxi i<, {|g|} < fo(Q), where|q|

Cont((Cy, CQ), (Cs, CQ)) is C-complete «— denotes the number of atoms occurringinThen:

Cont((Cy,UCQ), (C,, UCQ)) is C-complete. PropPosITION 10. Consider a UCQ rewritable language
0, and two OMQ<) € O and@’ € (TGD, CQ), both with
3.3 Plan of Attack data schemd®. If Q Z @', then there exists ai-database

We are now ready to proceed with the complexity analysis 2> Where|D| < fo(Q), such thaQ(D) Z Q'(D).

of containment for the OMQ languages in question. Our  prooF (SKETCH). We assume that(z) = Vi, ¢i(z)is
plan of attack can be summarized as follows: a UCQ rewriting ofQ. Since, by hypothesi€) ¢ @', we

. . . conclude thay Z @', which in turn implies that there exists
e We consider, in Section 4ont((C,CQ)), for C € ani e {1 h th Y to show that
L, NR,S}. These languages enjoy a crucial property, 1€ {L,...,n} suc fmﬁ € Q'. Itis easy to show na
<{:al’led (JC?Q rewritabili?y v?hich ié \yery usefulloforIz)ury c(x) ¢ Q'(Dy,), wherec(z) is a tuple of constants obtained
purposes. This propern; allows us to show the follow- by replacing each variablein z with the constant(x), and

ing result: if the containment does not hold, then this is \l/?a{lrii elli)l?:veii-;avtvziit?ﬁii (();g;asl?;r%(]c:;())msfi}l: CeercE;r))lgc(IJrnge?ch
K2 . qi )

witnessed via a “small” database, which in turn allows ?
us to devise simple guess-and-check algorithms. we get thae(z) € Q(Dy,). Therﬁo;e(%()qu‘) ¢ Q/(Dq%
< Jo(&).

e We then proceed, in Section 5, wittont((G, CQ)). and the claim follows sinceD,,
This OMQ language does not enjoy UCQ rewritabil-
ity, and the task of establishing a small witness prop-
erty that leads to an optimal upper bound turned out to

In Proposition 10 we only assume that the left-hand side
query falls in a UCQ rewritable language, without any as-
) i : sumption on the language of the right-hand side query. Thus,
be challenging. However, if the containment does not we immediately get a decision procedure €t (01, Os)

CV?lli(i’htgﬁgvfgisuissthiér(lee\}/?sS(aeg \(/jigc?s‘i‘gre\e-rlg(ceg dduigggzga if Oy is UCQ rewritable andval(QO,) is decidable. Given
P Q1= (S,51,41(2)) € 0y andQs = (S, %2, ¢2(7)) € Oa:

on two-way alternating parity automata on finite trees.
e The problemCont((FG, CQ)) is studied in Section 6. 1. Guess a$-databaseé such thatD| < fp,(Q1), and
It does not seem straightforward to extend the con- atuplec € dom(D)"l; and
tainment algorithm for(G, CQ) to (FG,CQ) (recall . i i
that the latter is strictl§ more)expr(essive tr)lan the for- 2. Verify thatc € Q1(D) andc ¢ Qa(D).
mer). However, after focussing on acyclic databases, We immediately get that:
frontier-guarded OMQs can be equivalently rewritten ) . o
as guarded OMQs, which essentially provides areduc-  THEOREM 11. Cont(Oy, 0y) is decidable if0, is UCQ
tion from Cont((FG, CQ)) to Cont((G, CQ)). rewritable andEval(Qz) is decidable.

“The idea of those classes is the same: relax the conditioing in This generic result shows thﬁbnt(((C, C@)) is decidable

definition of the class, so that only those positions thagikecnull for every classC € {L,NR,S}, but it says nothing about
values during the chase are taken into account. complexity. This will be the subject of the rest of the setio




4.1 Linearity

The problem of computing UCQ rewritings for OMQs in
(L,CQ) has been studied in [28], where a resolution-based
procedure, calleXRewrite, has been proposed. This rewrit-
ing algorithm accepts a quety = (S, %, ¢(z)) € (L,CQ)
and constructs a UCQ rewriting/ (Z) over S by starting
from ¢ and exhaustively applying rewriting steps based on
resolution. Due to the fact that the set of tgds is linear, i.e
the tgd-bodies consist of a single atom, during the executio
of XRewrite, it is not possible to obtain a CQ that has more
atoms than the original one. Therefore:

PROPOSITION 12. f(1co)((S,%,q)) < lq.

Having the above result in place, it can be shown that the
algorithm underlying Theorem 11 guesses a polynomially
sized witness to non-containment, and then calfsaacle
for solving query evaluation under linear OMQs, whéris
PSPAcCE in general, and NP if the arity is fixed; these com-
plexity classes are obtained from Proposition 2. Therefore
coCont((IL, CQ)) isin PSAcEin general, and i}’ in case
of fixed arity. Regarding the lower bounds, Proposition 5 al-
lows us to inherit the P@rce-hardness oEval(L, CQ); this
holds even for constant-free tgds. Unfortunately, in theeca
of fixed arity, we can only obtain NP-hardness, while Propo-
sition 6 allows to obtain coNP-hardness. Nevertheless, it i
implicitin [13] (see the proof of Theorem 9), where the con-
tainment problem for OMQ languages based on description
logics is considered, thatont((LL, CQ)) is I}’ -hard, even
for tgds of the formP(xz) — R(x). Then:

THEOREM 13. Cont((LL, CQ)) is PSPACE-complete, and
115 -complete if the arity of the schema is fixed. The lower
bounds hold even for tgds without constants.

4.2 Non-Recursiveness

Although the OMQ languag&\R, CQ) is not explicitly
considered in [28], where the algorithXiRewrite is defined,
the same algorithm can deal withR, CQ). By analyzing
the UCQ rewritings constructed b§Rewrite, whenever the
input query falls in(NR, CQ), we can establish the follow-
ing result; herepody () denotes the body of the tgd

PropPoOSITION 14. It holds that:
|sch(X)]
fenco((5:3.0) < ldl- (maxlloan})

Proposition 14 implies that non-containment for queries
that fall in (NR, CQ) is witnessed via a database of at most
exponential size. We show next that this bound is optimal:

PrROPOSITION 15. There are sets diNR, CQ) OMQs

{Qn = (Sa 2?7 Q1)}n>0 and {Q; = (Sa Egv q2)}n>07

where|sch(X7)| = |sch(Z5)| = n + 2, such that for every
S-databaseD, if Q7(D) Z Q3(D) then|D| > 271,

Let us now focus on the complexity @ont((NR, CQ)).

exponential time with access to a NETIME oracle; the or-
acle is needed for solvinval(NR, CQ). Nevertheless, this
rough upper bound can be significantly improved; in fact, it
can be decreased to NETIMENP, which is nearly optimal
(more details are given below), by employing a refined ver-
sion of the algorithm underlying Theorem 11. Recall that
NExpPTIMENP forms the second level of the exponential hi-
erarchy, a.k.ax5*", and it collects all the decision prob-
lems that can be solved via an alternating exponential time
algorithm with two alternations that starts from an exititdn
state, i.e., it can perform a series of existential stepeviad
by a series of universal steps. The refined version of the al-
gorithm underlying Theorem 11 is such an algorithm.
Before giving this algorithm, let us recall a crucial prop-
erty of non-recursive OMQs. Given a databdasean OMQ
(S,%,¢(z)) € (NR,CQ), and a tuplez € dom(D)I®!, if
¢ € Q(D) then there exists a finite chase sequence:

70,Co T1,C1 Tn—1,Cn—1

D=Iy— 1 — I, ---1,_4 Ig(Dyg)

for D underX, where:

[sch(2)]
90.%) = D] (maxllvody(r)]}

such that € q(I,(p,x)) [37]. Having this property in place,
we can now present our alternating algorithm. Giggn=
(87 Zla q1 (1_7)) andQQ = (87 227 q2 (1_7))

1. Guess ais-databaseD of size at mostf(yr, cq)(@1),

and a tuples € dom(D)*.
. Guess a chase sequence

T0,Co T1,C1 Tn—1,Cn—1

D—1L — Iy --1,_4
for D underX;.

To(p,51)

. Guess a mapping, which is the identity orC, from
the variables iny; to dom(Iyp 5,))-

. If h is @ homomorphism from; to I,p 5, such that
h(z) = ¢, then proceed; otherwise, reject.
. Universally select each chase sequence

T0,C0 T1,C1 Tn—1,Cn—1

D—0LH — 1y -1, 4
for D underXs.

Ig(p,)

. Universally select each mappihgwhich is the iden-
tity on C, from the variables if, to dom(Iyp x,))-

. If h is @ homomorphism from to I,p 5, such that
h(z) = ¢, then reject; otherwise, accept.

Itis clear that the above algorithm is an alternating expene
tial time algorithm with two alternations that starts from a
existential state. Moreover, it acceptsdffi ¢ @2, and the
desired upper bound follows.

It is not known whether our problem is coXETIMENP-
complete. Nevertheless, we provide a nearly matching lower

By naively combining the algorithm underlying Theorem 11 bound, i.e., PFEXP-hardness. More details on how the above
and the exponential bound provided by Proposition 14, we complexity classes are related are discussed below. Let us
get thatcoCont((NR, CQ)) is feasible in non-deterministic  now explain how PEXP-hardness is obtained. To this end,



we exploit a tiling problem that has been recently introalice
in [25]. Roughly speaking, an instance of this tiling prahle
is a triple (m, Ty, 1), wherem is an integer in unary rep-
resentation, and’, T, are standard tiling problems for the
exponential gri@™ x 2™. The question is whether, for every
initial conditionw of lengthm, T} has no solution withv or

T, has some solution wittv. The initial conditionw simply
fixes the firstm tiles of the first row of the grid. We con-
struct in polynomial time twdNR, CQ) queries); andQ»
such thatm, Ty, T») has a solution ifiQ; C Q2. The idea
is to force every input database to store an initial conditio
w of lengthm, and then encode the problem whetliehas

a solution withw into @Q;, for eachi € {1,2}. Then:

THEOREM 16. Cont((NR, CQ)) is in coNEXPTIMENP,
and PNEXP_hard. The lower bound holds even if the arity of
the schema is fixed and the tgds are without constants.

NExPTIME NP vs. PNEXP |t is known that NExPTIMENP

is a delicate class: if we restrict its oracle access too mitich
collapses to FEXP [33]. For example, following the notation
of [33], PNEXP coincides with NEPTIMENPIPowliee where
only polynomially many oracle calls are allowed throughout
the computation tree of the Turing machine. Alsé'F¥
coincides with NEPTIMENPPoWlpanlerplyes e where only

its complement. But, sindéval(S, CQ) is in EXPTIME (see
Proposition 4), bottEval(S, CQ) and its complement are
in NExPTIME, and thus, the oracle call is not really needed.
From this discussion, we conclude tkaCont((C, CQ)) is

in NExXPTIME. A matching lower bound is obtained by a
reduction from the standard tiling problem for the exponen-
tial grid 2™ x 2". In fact, the same lower bound has been
recently established in [11]; however, our result is stemg
as it shows that the problem remains hard even if the right-
hand side query is a linear OMQ of a simple form — this is
also discussed in Section 7, where containment of queries
that fall in different OMQ languages is studied. Regarding
schemas of fixed arity, Proposition 17 provides a witness for
non-containment of polynomial size, which implies that the
algorithm underlying Theorem 11 runs in polynomial time
with access to an NP-oracle. Therefarekval(S, CQ) is in

.2, while a matching lower bound is implicit in [13]. Then:

THEOREM 19. Cont((S, CQ)) is coNExPTIME-compl.,
even if the set of tgds uses only two constants. In the case of
fixed arity, it isIT} -complete, even for constant-free tgds.

5. GUARDEDNESS

We proceed with the problem of containment for guarded

polynomially many oracle calls are allowed on each path of OMQs, and we establish the following result:

the computation tree, and exponentially many calls with a
“yes” answer throughout the computation tree of the Turing

machine. The above results support our claim tR&P is
a nearly matching lower bound f@ont((NR, CQ)).

4.3 Stickiness

We now focus on OMQs that fall i(S, CQ). As shown
in [28], given a query(S, ¥, g), there exists an execution of
XRewrite that constructs a UCQ rewriting (Z)V- - -V g, (T)
overS with the following property: for eache {1,...,n},
if a variablev occurs ing; in more than one atom, than
already occurs ig. This property has been used in [28] to
bound the number of atoms that can appear in a single;CQ
We write T'(¢) for the set of terms (constants and variables)
occurring ing; C'(X) for the set of constants occurringii
andar(S) for the maximum arity over all predicates 8f

ProOPOSITION 17. It holds that
feco((8.5,0) < I8 (@] +IC(®)|+ 1.
Proposition 17 implies that non-containment {8t CQ)

queries is witnessed via a database of at most exponentia

size. As for(NRR, CQ) queries, we can show that this bound
is optimal; here, for a set of tgds, we denote bjjX|| the
number of symbols occurring iA.

PROPOSITION 18. There exists a set ¢f, CQ) OMQs:
{Q" = ({S/n}, =", 4(7)) }n>0, Where||S"|| € O(n?),

such that for ever®) = ({S},¥',¢'(z)) € (TGD, CQ) and
{S}-databaseD, if Q"(D) ¢ Q(D) then|D| > 22,

We now study the complexity dfont((S, CQ)). Let us

first look at schemas of unbounded arity. Proposition 17 im-
plies that the algorithm underlying Theorem 11 runs in expo-

nential time assuming access t6-aracle, wher€ is a com-
plexity class powerful enough for solviriyal(S, CQ) and

THEOREM 20. Cont((G, CQ)) is 2EXPTIME-complete.
The lower bound holds even if the arity of the schema is fixed,
and the tgds are without constants.

The lower bound is immediately inherited from [12],
where it is shown that containment for OMQs based on the
description logic€ L7 is 2ExXPTIME-hard. Recall that a set
of £L£T axioms can be equivalently rewritten as a constant-
free set of guarded tgds using only unary and binary predi-
cates, which implies the lower bound stated in Theorem 20.
However, we cannot immediately inherit the desired up-
per bound since the DL-based OMQ languages considered
in [12] are either weaker than or incomparable® CQ).
Nevertheless, the technique developed in [12] was extemel
useful for our analysis. Actually, our automata-based @roc
dure exploits a combination of ideas from [12, 32]. The rest
of this section is devoted to providing a high-level explana
tion of this procedure.

For the sake of technical clarity, we focus on constant-free
gds and CQs, but all the results can be extended to the gen-

ral case at the price of more involved definitions and proofs
Moreover, for simplicity, we focus on Boolean CQs. In other
words, we study the problem fdiG, BCQ), whereBCQ
denotes the class of Boolean CQs. This does not affect the
generality of our proof since it is known th@ont((G, CQ))
can be reduced in polynomial time @nt((G, BCQ)) [12].

A first glimpse. As said, (G, CQ) is not UCQ rewritable
and, therefore, we cannot employ Proposition 10 in order
to establish a small witness property as in Section 4. We
have tried, by following a different route, to establish eaim
witness property foG, CQ), which can then be used for
obtaining an optimal upper bound f@ont((G, CQ)), but it
turned out to be a difficult task. Nevertheless, we can show a
tree witness property, which states that non-containnzent f



(G,CQ) is witnessed via a tree-like database. This allows 5.2 Encoding Tree-like Databases
us to devise a procedure based on alternating tree automata. | js generally known that a databaBewhose treewidth

Summing up, the proof for the 2TIME membership of
(G, CQ) proceeds in three steps:

1. Establish a tree witness property;

is bounded by an integércan be encoded into a tree over a
finite alphabet of double-exponential sizefirthat can be
accepted by an alternating tree automaton; see, e.g., [9].
Consider an alphabét, and letN* be the set of finite se-

2. Encode the tree-like witnesses as trees that can be acguences of natural numbers, including the empty sequence.

cepted by an alternating tree automaton; and

3. Construct an automaton that decidest((G, CQ));
in fact, we reduceont((G,CQ)) into emptiness for
two-way alternating parity automata on finite trees.

A T-labeled treeis a pairL = (T, ), whereT C N* is
closed under prefixes, and T' — T is the labeling func-
tion. The elements ot identify the nodes of.. It can be
shown thatD and a tree decompositianof D with width &
can be encoded aslalabeled treel,, wherel is an alpha-

Each one of the above three steps is discussed in more debet of double-exponential size i such that each node of
tails in the following three sections. Let us say that our 7 corresponds to exactly one node/ofnd vice versa.
automata-based approach provides a small witness property Consider now & '-treeS-databasé), and let” be the tree
for (G,CQ). We obtain that non-containment is witnessed decomposition that witnesses thatis aC-tree. The width

via a triple-exponentially-sized database; details avergi
below. However, we do not know whether this is optimal.

5.1 Tree Witness Property

From the above informal discussion, it is clear that tree-

of T'is at mostk = (|dom(C')| + ar(S) — 1), and thus, the
treewidth of D is bounded by:. Hence, from the above dis-
cussion,D and7" can be encoded adalabeled tree, where
T"is of double-exponential size i In general, given a8-
databasé that is aC-tree due to the tree decomposititn

like databases are crucial for our analysis. Let us make thiswe show thatD andT" can be encoded adg ;-labeled tree,
notion more precise using guarded tree decompositions. Awith |dom(C')| < [ and|I's ;| being double-exponential in

tree decompositionf a databasé is a labeled rooted tree
T = (V,E,\), where) : V — 24°m(D) 'sych that: (i) for
each atomR(ty,...,t,) € D, there exist® € V such that
A(v) 2 {t1,...,t,}, and (ii) for every termt € dom(D),
the set{v € V' | t € A(v)} induces a connected subtree of
T. The tree decompositioFi is called[U]-guarded where
U C V, if, for every nodev € V' \ U, there exists an atom
R(t1,...,t,) € Dsuchthat\(v) C {t1,...,t,}. We write
root(T') for the root node ofl’, and D (v), wherev € V,
for the subset oD induced by\(v). We are now ready to
formalize the notion of the tree-like database:

Definition2. AnS-databasé is aC-tree whereC' C D,
if there is a tree decompositidnof D such that:

1. Dp(root(T)) = C and
2. Tis [{root(T)}]-guarded. "

Roughly, whenever a databageis a C-tree, C is the
cyclic part of D, while the rest ofD is tree-like. Interest-
ingly, for decidingCont((G, BCQ)) it suffices to focus on
databases that a@-trees anddom(C)| depends only on
the left-hand side OMQ. Recall that for a schefnae write
ar(S) for the maximum arity over all predicates®f Then:

PROPOSITION 21. Let Q; = (S,%;,¢:) € (G,BCQ),
fori € {1,2}. The following are equivalent:

1.Q:1 C Q.

2. Q1(D) C Q2(D), for everyC-treeS-databaseD such
that|dom (C)| < (ar(SU sch(X1)) - |q1])-

The fact that(1) = (2) holds trivially, while (2) = (1)

ar(S) and exponential ifS| and.

Although everyC-treeS-databasé) can be encoded as a
I's ;-labeled tree, the other direction does not hold. In other
words, it is not true that eveilys ;-labeled tree encodes’a
treeS-databasé and its corresponding tree decomposition.
In view of this fact, we need the additional notion of consis-
tency. AT's -labeled tree is calledonsistenif it satisfies
certain syntactic properties — we do not give these proper-
ties here since they are not vital in order to understand the
high-level idea of the proof. Now, given a consistéRt;-
labeled treel,, we can show that. can be decoded into an
S-databasd L] that is aC-tree with|dom (C)| < I. From
the above discussion and Proposition 21, we obtain:

LEMMA 22. Let@; = (S,%;,¢;) € (G,BCQ), fori €
{1, 2}. The following are equivalent:

1. Q1 CQo.

2. Q1([L]) € Q2([L]), for every consisterits ;-labeled
tree L, wherel = (ar(S U sch(X1)) - |q1])-

5.3 Constructing Tree Automata

Having the above resultin place, we can now proceed with
our automata-based procedure. We use two-way alternating
parity automata (2WAPA) that run on finite labeled trees.
Two-way alternating automata process the input tree while
branching in an alternating fashion to successor states, an
thereby moving either down or up the input tree. Our goal
is to reduceCont((G, BCQ)) to the emptiness problem for
2WAPA. As usual, given a 2WAPA(, we denote by (%)
thelanguageof 21, i.e., the set of labeled trees it accepts. The
emptiness problem is defined as follows: given a 2WAPA

is shown by using a variant of the notion of guarded unrav- doesC(2) = @? Thus, giver®1, Q2 € (G, BCQ), we need
elling and compactness. Let us clarify that the above result to construct a 2WAPA( such that); C Q- iff L(2) = @.

does not provide a decision procedure@ont((G, BCQ)),

SRecall that the treewidth of a databaBeis the minimum width

since we have to consider infinitely many databases that areamong all possible tree decompositidhs= (V, £, \) of D, while

C-trees with|dom (C)| < (ar(S U sch(X1)) - |q1]).

the width of 7" is defined asnax,ev {|A(v)|} — 1.



It is well-known that deciding whethet(2l) is empty is fea- Proposition 25 implies thafont((G, BCQ)) is in 2ExpP-
sible in exponential time in the number of states, andinpoly TiME, and Theorem 20 follows. The above proposition pro-
nomial time in the size of the input alphabet [23]. Therefore vides a small witness property f@ont((G, BCQ)). In par-
we should construct in double-exponential time, while the ticular, if Q1 ¢ Q-, thenthis is witnessed via a datab§&g,

number of states must be at most exponential. whereL is a tree accepted by the automafbiin Proposi-
We first need a way to check consistency of labeled trees.tion 25. Sincel has exponentially many states, we can con-
It is not difficult to devise an automaton for this task. clude that the trees accepted fyhave size at most triple-

. . exponential. This is becauge can be transformed into a
LEMMA 23. Consider a schemd and an integet > 0. non-deterministic tree automaton with double-expondptia
There is a 2WAPAs; that accepts d's,;-labeled treeL iff many states, which in turn accepts trees of size at mostripl
L is consistent. The number of statesfgf; is logarithmic gy onential. TherefordL] is a triple-exponentially-sized
in the size of’s,;. Furthermore s can be constructed in - yatapase. It is open whether this is an optimal upper bound.
polynomial time in the size dfs ;.

Now, the crucial task is, given an OMQ < (G, BCQ), 6. FRONTIER-GUARDEDNESS
to devise an automaton that accepts labeled trees which cor- We proceed to show that Theorem 20 can be extended to

respond to databases that makérue. OMQs based on frontier-guarded tgds:
LEMMA 24. LetQ = (S,%,q) € (G,BCQ). Thereis a THEOREM 26. Cont((FG, CQ)) is complete for2Exp-
2WAPA2(g, ;, wherel > 0, that accepts a consisteb ;- TIME. The lower bound holds even if the arity of the schema

labeled treeL iff Q([L]) # <. The number of states of is fixed, and the tgds are without constants.

2q, is exponential irf| Q|| andl. FurthermoreRlq; can be As for Cont((G,CQ)), the lower bound is immediately
constructed in double-exponential timelj@[| and!. inherited from [12]. The rest of this section is devoted to es

The intuition underlyingl,; can be described as follows. tablish the desired upper bound. As in the previous section,
2, tries to identify all the possible ways the G@an be we focus on constant-free tgds and constant-free BCQs, but
mapped tochase (D, ¥), for any C-treeS-databasé) such the result can be extended to the general case. In fact, in
that|dom (C)| < 1. It then arrives at possible ways how the order to simplify our analysis even more, let us observe that
input tree can satisfg). These “possible ways” correspond for containment purposes under OMQs based on frontier-
to squid decompositiona notion introduced in [18] thatin-  guarded tgds, it suffices to focus on atomic Boolean queries,
dicates which part of the query is mapped to the cyclic part i-€-, BCQs consisting of a single atom; we refer to this class
C of D, and which to the tree-like part @. The automaton  Of queries a8AQ. The reason for this is because a BCQ can
exhaustively checks all squid decompositions by travgrsin D€ seen as frontier-guarded tgd. More precisely, an OMQ
the input tree and, at the same time, explores possible ways(S: 2, ¢) € (FG, BCQ) can be equivalently rewritten as the
how to match the single parts of the squid decomposition at OMQ (S, XU {q — Ans}, Ans) € (FG, BAQ), where each
hand. The automaton finally accepts if it finds a squid de- Variable ing — Ans is interpreted as a universally quanti-

composition that can be mappeddieuse (D, X). fied variable. From the above discussion, it suffices to show
Having the above automata in place, we can proceed with thatCont((FG, BAQ)) is in 2EXPTIME.
our main technical result, which shows tiaint(G, BCQ) Our goalis to provide a reduction frofont((FG, BAQ))

can be reduced to the emptiness problem for 2WAPA. But 0 Cont((G,BAQ)), and then apply Theorem 20. The main
let us first recall some key results about 2WAPA, which are ingredients of our reduction are the following:

essential for our final construction. It is well-known tha+ 1. A queryQ € (FG,BAQ) can be rewritten as a query
guages accepted by 2WAPAs are closed under intersection Q' € (G,BAQ) in such away thaf) andQ’ are equiv-
and complement. Given two 2WAPA%, and®l,, we write alent overacyclicdatabases, i.e., databases that have a
20, N2, for a 2WAPA, which can be constructed in polyno- [@]-guarded tree decomposition.

mial time, that accepts the language;) N £(2l2). More-
over, for a 2WAPA2L, we write2( for the 2WAPA, which is
also constructible in polynomial time, that accepts the -com
plement of£(2l). We can now show the following:

2. We observe that fdiG, BAQ) we can characterize sat-
isfiability via acyclic databases. In other words, if there
exists a database that satisfie§Ga BAQ) query @,
then( is satisfied by an acyclic database.

PROPOSITION 25. ConsiderQy, Q2 € (G,BCQ). We Let us make the above statements more formal. The trans-
can construct in double-exponential time a 2WARAvhich lation of (FG, BAQ) into a (G, BAQ) relies on the notion
has exponentially many states, such that of treeification(see, e.g., [6, 7]), and is inspired by a con-
Q1 CQy «— L(A) =0. struction given in [7] that translates guarded negatiordfixe
point sentences into guarded negation sentences. Our goal
PROOF (SKETCH). LetQ; = (S,%;,q;), fori € {1,2}, is to transform a frontier-guarded tgd into a set of guarded

andl = (ar(S U sch(¥1)) - |q1|). Then®l is defined as  tgds by treeifying the body of the former. In fact, the treefi-
(€s; NAg, 1) NAg, ;. Sincel's; has double-exponential cation procedure will first transform a tgd-body, which is
size, Lemmas 23 and 24 imply thitcan be constructed in  essentially a CQ, to a set @frictly acyclicCQs, i.e., CQs
double-exponential time, while it has exponentially many that are acyclic and have an atom that contains its free vari-
states. Lemma 22 implies th@y C Q. iff L(A) = 2. O ables. Then each strictly acyclic query will give rise to-lin
early many guarded tgds. Let us now recall treefications.




Consider a CQ(z) over a schem8&. TheT-treefication
of ¢(z), whereT D S, is the setAqT of all strictly acyclic
CQs¢'(z) overT of size at mosB|q| such that ()¢’ C ¢,
and (ii) is minimal, i.e., by removing an atom would render
into a CQ that is not strictly acyclic af Z ¢. The setA;r
can be seen as the UCE (z) defined as the disjunction
of all CQs contained i\ . Notice that the query(z) is in
general not equivalent to its treeification. Howevér;) and
A;f(:‘c) are equivalent over acycli€-databases [6, 7].

We are now ready to explain how a frontier-guarded OMQ
is transformed into a guarded OMQ. Consider a frontier-
guarded tgd-: ¢(z,y) — 3z¢(z, z) and a schemd. Let
f& (), whereC'is a predicate not ifT, be the set of tgds

{a@) = 320 2) |a@) e A5 Y

Notice that the tgds iff 2 () may not be guarded. However,
by construction, their bodies are strictly acyclic CQs, and
this allows us to rewrite each tgd fif () into linearly many
guarded tgds, which we denote by, (7). Now, given an
OMQ@Q = (S,%,¢q) € (FG,BAQ), let

TU{C}
3y ¢(2,7)

9c(Q)

<s u{ch | ge "™ <T>,q> € (G,BAQ),

TEYD

whereC' is an auxiliary predicate not i U sch(X). This
completes the translation from frontier-guarded to gudrde
OMQs. We can show the following crucial lemma, which
actually formalizes the first intuitive statement given ao
Given a schem& and a predicaté€'/n ¢ S, for brevity, we
write S¢ for S U {C'}. Given anS-databaseD, let D¢ be
the Sc-databasé U {C(t) | ¢ € dom(D)™}. By thewidth

of an OMQQ, written width(Q), we mean the maximum
number of variables in the body of a tgd @f

LEMMA 27. LetQ@ = (S, X, q) € (FG,BAQ), and@’ =
9c(Q), whereC' ¢ S has arity at leastwidth(Q). Then:

1. For each acycliS-databaseD, Q(D) = Q'(D).
2. For eachS-databaseD, Q(D) # @ = Q'(D¢) # @.

Let us now formalize the second intuitive statement given
above. Actually, the next result is implicit in the proof of
Proposition 21, which establishes that non-containment fo
(G,CQ) is witnessed via a tree-like database. We write
I — D for the fact that the instanck can be mapped via
a homomorphism to the datababe

LEMMA 28. Consider anS-databaseD, and an OMQ
Q = (S,%,q9) € (G,BAQ). If Q(D) # &, then there is a
finite acyclicS-instancel such that)(I) # @ andl — D.

Having the above lemmas in place, it is easy to show
that g () provides a reduction fror@ont((FG, BAQ)) to
Cont((G,BAQ)), if the arity of C'is sufficiently large.

PROPOSITION 29. Let Q; (S,%i,¢) € (G,BAQ),
fori € {1,2}, and consider a predicat€ ¢ (SUsch(31)U
sch(3¥2)) that has aritymax;e (1 23 { width(Q;)}. Then,

Q1 C Q2 = gc(Q1) C go(Q2).

PROOF (SKETCH). LetQ; = gc(Q;), fori € {1,2}.
Assume that); ¢ Q.. This implies that there exists an
S-databaseD such that), (D) # @ andQ2(D) = &. By
Lemma 27,Q(D¢) # @, and thus, by Lemma 28, there
exists a finite acycliSc-instancel such thatQ}(I) # @
andI — D¢. Since@q(D¢) = Q2(D) = @, andQ)s is
closed under homomorphism3;(I) = @. Consequently,
by Lemma 27,Q5(I) = @, which implies thatQ; ¢ Q5.
The other direction can be shown analogously. O

The above proposition provides the desired reduction from
Cont((FG,BAQ)) to Cont((G,BAQ)), which allows us to
apply the algorithm forCont((G, CQ)), devised in Sec-
tion 5. However, it should not be overlooked that this re-
duction takes exponential time due to the treefication proce
dure. In fact, for a CQy, |AT| < |T|UdD (|g|w)OUalw),
wherew is the maximum arity over all predicates &f[6,

7]. Nevertheless, since the reduction provided by Proposi-
tion 29 increases the arity of the schema only polynomially,
while the algorithm foiCont((G, BAQ)) provided by Theo-
rem 20 is double-exponential only on the arity of the under-
lying schema, we conclude th&bnt((FG, BAQ)) is feasi-

ble in double-exponential time, as needed.

We would like to conclude this section by saying that,
as for guarded OMQs, we obtain a small withess property
for Cont((FG, CQ)), which states that non-containment is
witnessed via a triple-exponentially-sized database. evlor
precisely,Q1 ¢ Q2 implies gc(Q1) € gc(Q2), and we
can show that the latter non-containment is witnessed via
a triple-exponentially-sized acyclic databa®e Since, by
Lemma 27,Q); andgc(Q;), fori € {1,2}, are equivalent
over acyclic databaseb) is a witness foQ; ¢ Q-.

7. COMBINING LANGUAGES

In the previous three sections, we studied the containment
problem relative to a languag® i.e., both OMQs fall inD.
However, it is natural to consider the version of the problem
where the involved OMQs fall in different languages. This
is the goal of this section. Our analysis proceeds by con-
sidering the two cases where the left-hand side (LHS) query
falls in a UCQ rewritable OMQ language, or it is guarded.
Notice that the two cases where the LHS query is guarded or
frontier-guarded behave in the same way. Thus, for brevity,
we only focus on the former case.

7.1 The LHS Query is UCQ Rewritable

As an immediate corollary of Theorem 11 we obtain the
following result: Cont((Cy, CQ), (C2, CQ)), for C; # C,,
C; € {L,NR,S} andC, € {L,NR,S,FG, G}, is decid-
able. By exploiting the algorithm underlying Theorem 11,
we establish optimal upper bounds for all the problems at
hand with the only exception dfont((S, CQ), (NR, CQ)).
For the latter, we obtain a coN®TIMEN® upper bound, by
providing a similar analysis as f@ont((NR, CQ)), while a
NExPTIME lower bound is inherited from query evaluation
by exploiting Proposition 5. Itis rather tedious to go thgbu
all the containment problems in question and explain in de-
tails how the exact upper bounds are obtaified.

5There are twenty-four different cases obtained by conigell



Regarding the matching lower bounds, in most of the casesis needed for sticky OMQs. In fact, we need a more refined
they are inherited from query evaluation or its complement complexity analysis for the problefont((G, CQ), UCQ),
by exploiting Propositions 5 and 6, respectively. There are that is, to decide whether a guarded OMQ is contained in
however, some exceptions: a UCQ. To this end, we provide an automata construction
. different from the one employed in Section 5, which al-
e Cont((S,CQ), (L, CQ)) in the case of unbounded ar- |5 ys 1o establish a refined complexity upper bound for
ity, where the problem is cONEPTIME-hard, evenfor — ha proplem in question. Conside(&, CQ) queryQ, and
sets of tgds that use only two constants. This is shown 5 UCQq = q1 V-~ V gn. As usual, we writd]Q]| and

by a reduption.fr(lm thg standard tiling problem for the llg:|| for the number of symbols that occur @ andg;, re-
exponential gri" x 2. spectively, and we writear>s(g;) for the set of variables

e Cont((L, CQ), (S, CQ)) andCont((S, CQ), (L, CQ)) that appear in more than one atomgpf By exploiting our
in the case of bounded arity, where both problems are €W automata-based procedure, we show that the problem

112 -hard even for constant-free tgds; implicitin [13].  Of checking ifQ € ¢ is feasible in double-exponential time
in (|Q| + maxi<;<n{|var>2(¢;)|}), exponential time in

7.2 The LHS Query is Guarded maxi <;<n{ |||}, and polynomial time im.

; ; This result allows us to show that the above procedure es-
We proceed with the case where the LHS query is guarded,, . . . .
and w?e show t;/]VeI following r;vsult: queryis gu tablishes 2EPTIME-membership when the right-hand side

OoMQ is sticky. But first we n.e.ed to recall the following key
THEOREM 30. The problenCont((G, CQ), (C,CQ)) is properties of the UCQ rewriting = XRewrite(Q)2), con-

C-complete, where: structed during the first step of the algorithm:
2ExPTIME, if C e {L,S}, 1. ¢ consists of double-exponentially many CQs,
- { 3EXPTIME, if C = NR. 2. each CQ ofy is of exponential size, and

The lower bounds hold even if the arity of the schemais fixed. 3. for eachy’ € g, var>2(¢’) is a subset of the variables
Moreover, forC = L (resp.,C € {NR,S}) it holds even for of the original CQ that appears ;.

tgds with one constant (resp., without constants). By combining these key properties with the complexity anal-

Upper bounds. The 2ExpTIME membership whef® = L ysis performed above, it is now straightforward to show that
is an immediate corollary of Theorem 20. This is not true Cont((G, CQ), (S,CQ)) is in 2EXPTIME.

whenC € {NR,S} since the right-hand side query is not | ower Bounds. We establish matching lower bounds by re-
guarded. But in this case, sin€BR, CQ) and(S,CQ) are  fining techniques from [22], where it is shown that contain-
UCQ rewritable, one can rewrite '_[he right-hand 5|(_1Ie query as ment of Datalog in UCQ is 2P TIME-complete, while con-

a UCQ, and then apply the machinery developed in Section 5ginment of Datalog in non-recursive Datalog iS@H IME-

for solving Cont((G,CQ)). More precisely, given OMQs  complete; the lower bounds hold for fixed-arity predicates,
Q1 € (G,CQ) and@; € (C,CQ), whereC € {NR,S}, and constant-free rules. Interestingly, the LHS query @n b

Q1 € Q2 iff Q1 C ¢, whereq is a UCQ rewriting ofQ;. transformed into a Datalog query such that each rule has a
Thus, an immediate decision procedure, which exploits the ody-atom that contains all the variables, i.e., is guarded
algorithmXRewrite, is the following: This is achieved by increasing the arity of some predi-
_ : : cates in order to have enough positions for all the body-
1. Letg = XRewrite(Q>); variables. However, for each rule, the number of unguarded
2. Foreachy € ¢: if Q, C ¢, then proceed; otherwise, Vvariables that we need to guard is constant, and thus, the
reject; and arity of the schema remains constant. We conclude that
Cont((G, CQ), (NR,CQ)) is 3ExPTIME-hard. Moreover,
3. Accept. containment of guarded OMQs in UCQs isx@@H IME-hard,

which in turn allows us to show, by exploiting the construc-
tion underlying Proposition 9, th&ont((G, CQ), (L, CQ))

is 2ExPTIME-hard, even if the set of linear tgds uses only
one constant, whil€ont((G, CQ), (S, CQ)) is 2EXPTIME-
hard, even for tgds without constants.

The above procedure runs in triple-exponential time. The
first step is feasible in double-exponential time [28]. Now,
for a single CQq¢’ € ¢ (which is a guarded OMQ with an
empty set of tgds) the check whetligr C ¢’ can be done by
using the machinery developed in Section 5, which reduces
our problem to checking whether the language of a 2WAPA
20 is empty. However, it should not be forgotten tlgatis 8. CONCLUSIONS

of exponential size, and thus, the automabhas double- We have concentrated on the fundamental problem of con-
exponentially many states. Thisin turn implies thatchegki  tainment for OMQ languages based on the main decidable
whetherL () = & is in 3EXPTIME, as claimed. classes of tgds, and we have developed specially tailored

Although the above algorithm establishes an optimal up- techniques that allow us to obtain a relatively complete pic
per bound for non-recursive OMQs, a more refined analysis ture for the complexity of the problem at hand. Our main
the possible pairéDy, 0z) of OMQ languages, wher®; O conclusion is that for most of the OMQ languages in ques-

2 . . : .
andQ, is UCQ rewritable, and the two cases whether the arity of tion, the containment problem is harder (under widely ac-
the schema is fixed or not. cepted complexity assumptions) than query evaluation.
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