

Edinburgh Research Explorer

Containment for Rule-Based Ontology-Mediated Queries
Citation for published version:
Barceló, P, Berger, G & Pieris, A 2018, Containment for Rule-Based Ontology-Mediated Queries. in
Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
(PODS), 2018. ACM, Houston, TX, USA, pp. 267-279, ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems (PODS), 2018, Houston, United States, 10/06/18.
https://doi.org/10.1145/3196959.3196963

Digital Object Identifier (DOI):
10.1145/3196959.3196963

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS),
2018

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 19. Apr. 2024

https://doi.org/10.1145/3196959.3196963
https://doi.org/10.1145/3196959.3196963
https://www.research.ed.ac.uk/en/publications/fc3f9ddd-3e0f-4d28-b544-56c04856e9dc

Containment for Rule-Based Ontology-Mediated Queries

Pablo Barceló
Center for SW Research &
DCC, University of Chile

pbarcelo@dcc.uchile.cl

Gerald Berger
Institute of Information Syst.

TU Wien
gberger@dbai.tuwien.ac.at

Andreas Pieris
School of Informatics

University of Edinburgh
apieris@inf.ed.ac.uk

ABSTRACT
Many efforts have been dedicated to identifying restrictions on
ontologies expressed as tuple-generating dependencies (tgds),
a.k.a. existential rules, that lead to the decidability of the problem
of answering ontology-mediated queries (OMQs). This has given
rise to three families of formalisms: guarded, non-recursive, and
sticky sets of tgds. We study the containment problem for OMQs
expressed in such formalisms, which is a key ingredient for solving
static analysis tasks associated with them. Our main contribution
is the development of specially tailored techniques for OMQcon-
tainment under the classes of tgds stated above. This enables us to
obtain sharp complexity bounds for the problems at hand

1. INTRODUCTION
Motivation and goals. The novel application of knowledge
representation tools for handling incomplete and heteroge-
neous data is giving rise to a new field, recently coined as
knowledge-enriched data management[2]. A crucial prob-
lem in this field isontology-based data access(OBDA) [39],
which refers to the utilization of ontologies (i.e., sets oflogi-
cal sentences) for providing a unified conceptual view of var-
ious data sources. Users can then pose their queries solely in
the schema provided by the ontology, abstracting away from
the specifics of the individual sources. In OBDA, one inter-
prets the ontologyΣ and the user queryq, which is typically
a union of conjunctive queries(UCQ), as two components
of one composite queryQ = (S,Σ, q), known asontology-
mediated query(OMQ);S is called thedata schema, indicat-
ing thatQwill be posed on databases overS [14]. Therefore,
OBDA is often realized as the problem of answering OMQs.

While in this settingdescription logics(DLs) are often
used for modeling ontologies, it is widely accepted that for
handling arbitrary arity relations in relational databases it
is convenient to usetuple-generating dependencies(tgds),
a.k.a.existential rulesor Datalog± rules; cf. [28]. Several
aspects of OMQs in which the ontology is a set of tgds and
the actual query is a UCQ (simply called OMQs from now
on) have been studied in the data management literature;
most notably (a)query evaluation[4, 18, 19, 20], i.e., given
an OMQQ = (S,Σ, q), a databaseD overS, and a tuple of
constants̄c, doesc̄ belong to the evaluation ofq over every
extension ofD that satisfiesΣ, or, equivalently, is̄c acertain
answerfor Q overD? and (b)relative expressiveness[14,
30, 31]: how does the expressiveness of OMQs compare to
the one of other query languages?

This work focuses on another crucial task for OMQs;

namely,containment: for two OMQsQ1 andQ2 with data
schemaS, doesQ1(D) ⊆ Q2(D) hold for every (finite)
databaseD over S (whereQ(D) denotes the certain an-
swers forQ overD)? Apart from the traditional applications
of containment, such as query optimization or view-based
query answering, it has been recently shown that OMQ con-
tainment has applications on other important static analysis
tasks, namely, distribution over components [11], and UCQ
rewritability [12]. Surprisingly, despite its prominence, no
work to date has carried out an in-depth investigation of con-
tainment for OMQs based on tgds.

As one might expect, when considered in its full general-
ity, the OMQ containment problem is undecidable. To un-
derstand, on the other hand, which restrictions on the tgds
lead to decidability, we recall the two main reasons that ren-
der the general containment problem undecidable:

Undecidability of query evaluation:OMQ evaluation is, in
general, undecidable [8], and it can be reduced to OMQ con-
tainment. More precisely, OMQ containment is undecidable
whenever query evaluation for at least one of the involved
languages (i.e., the language of the left-hand or the right-
hand side query) is undecidable.

Undecidability of containment for Datalog:decidability of
query evaluation does not ensure decidability of query con-
tainment. A prime example is Datalog, or, equivalently, the
OMQ language based onfull tgds. Datalog containment is
undecidable [41]; thus, OMQ containment is undecidable if
the involved languages extend Datalog.

In view of the above observations, we focus on languages
that have a decidable query evaluation, and do not extend
Datalog. The main classes of tgds, which give rise to OMQ
languages with the desirable properties, can be classified
into three main families depending on the underlying syn-
tactic restrictions: (i)(frontier-)guardedtgds [4, 18], which
contain inclusion dependencies and linear tgds, (ii)non-
recursivesets of tgds [26], and (iii)stickysets of tgds [20].

While the decidability of containment for the above OMQ
languages can be established via translations into query lan-
guages with a decidable containment problem, such transla-
tions do not lead to optimal complexity upper bounds (de-
tails are given below). Therefore, the main goal of our paper
is to develop specially tailored decision procedures for the
containment problem under the OMQ languages in question,
and, ideally, obtain precise complexity bounds.

Arbitrary Arity Bounded Arity

Linear
PSPACE-c

PSPACE-c

ΠP2 -c
NP-c

Sticky
coNEXPTIME-c

EXPTIME-c

ΠP2 -c
NP-c

Non-recursive in coNEXPTIMENP and PNEXP-hard
NEXPTIME-c

in coNEXPTIMENP and PNEXP-hard
NEXPTIME-c

Guarded
2EXPTIME-c

2EXPTIME-c

2EXPTIME-c
EXPTIME-c

Frontier-guarded
2EXPTIME-c

2EXPTIME-c

2EXPTIME-c
2EXPTIME-c

Table 1: Complexity of OMQ containment – in small fonts, we recall the complexity of OMQ evaluation.

Our contributions. The complexity of OMQ containment
for the languages in question is given in Table 1. Using small
fonts, we recall the complexity of OMQ evaluation in order
to stress that containment is, in general, harder than evalua-
tion. We divide our contributions as follows:

Linear, non-recursive and sticky sets of tgds.The OMQ lan-
guages based on linear, non-recursive, and sticky sets of tgds
share a useful property: they areUCQ rewritable(implicit
in [28]), that is, an OMQ can be rewritten into a UCQ.
This property immediately yields decidability for their as-
sociated containment problems, since UCQ containment is
decidable [40]. However, the obtained complexity bounds
are not optimal, since the UCQ rewritings are unavoidably
very large [28]. To obtain more precise bounds, we reduce
containment to query evaluation, an idea that is often applied
in query containment; see, e.g., [21, 22, 40].

Consider a UCQ rewritable OMQ languageO. If Q1 and
Q2 belong toO, both with data schemaS, then we can
establish asmall witness property, which states that non-
containment ofQ1 in Q2 can be witnessed via a database
overS whose size is bounded by an integerk ≥ 0, the max-
imal size of a disjunct in a UCQ rewriting ofQ1. For linear
tgds, such an integerk is polynomial, but for non-recursive
and sticky sets of tgds it is exponential (implicit in [28]).
The above small witness property allows us to devise a sim-
ple non-deterministic algorithm, which makes use of query
evaluation as a subroutine for checking non-containment of
Q1 in Q2: guess a databaseD overS of size at mostk, and
then check if there is a certain answer forQ1 overD that is
not a certain answer forQ2 overD. This algorithm allows
us to obtain optimal upper bounds for OMQs based on lin-
ear and sticky sets of tgds; however, the exact complexity of
OMQs based on non-recursive sets of tgds remains open:

• For OMQs based on linear tgds, the containment prob-
lem is in PSPACE, and inΠP2 if the arity is fixed. The
PSPACE-hardness is shown by reduction from query
evaluation, while theΠP2 -hardness is implicit in [13].

• For OMQs based on sticky sets of tgds, the problem is
in coNEXPTIME, and inΠP2 if the arity of the schema
is fixed. The coNEXPTIME-hardness is shown by ex-
ploiting the standard tiling problem for the exponential
grid, while theΠP2 -hardness is inherited from [13].

• Finally, for OMQs based on non-recursive sets of tgds,
containment is in coNEXPTIMENP and hard for PNEXP,
even for fixed arity. The lower bound is shown by ex-
ploiting a recently introduced tiling problem [25].

We conclude that in all these cases OMQ containment is
harder than evaluation, with one exception: the OMQs based
on linear tgds over schemas of unbounded arity, where both
problems are PSPACE-complete. Regarding OMQs based on
non-recursive sets of tgds, although our upper bound is not
optimal, it is nearly optimal. Indeed, NEXPTIMENP, which
forms the∆2-level of the exponential hierarchy (EH), and
PNEXP, which forms the∆2-level of the strong EH,1 are
tightly related: if the oracle access in NEXPTIMENP is re-
stricted too much, then it collapses to PNEXP [33].

Guarded tgds.The OMQ language based on guarded tgds
is not UCQ rewritable, which forces us to develop different
tools to study its containment problem. Let us remark that
guarded OMQs can be rewritten as guarded Datalog queries
(by exploiting the translations devised in [5, 31]), for which
containment is decidable in 2EXPTIME [15]. But, again, the
known rewritings are very large [31], and hence the reduc-
tion of containment for guarded OMQs to containment for
guarded Datalog does not yield optimal upper bounds.

To obtain optimal bounds for the problem in question,
we exploit two-way alternating parity automata on trees
(2WAPA) [23, 43]. We show that ifQ1 andQ2 are guarded
OMQs such thatQ1 is not contained inQ2, then this is wit-
nessed over a class of “tree-like” databases that can be repre-
sented as the set of trees accepted by a 2WAPAA. We then
build a 2WAPAB with exponentially many states that rec-
ognizes those trees accepted byA that represent witnesses
to non-containment ofQ1 in Q2. Hence,Q1 is contained
in Q2 iff B accepts no tree. Since the emptiness problem
for 2WAPA is feasible in exponential time in the number of
states [23], we obtain that containment for guarded OMQs is
in 2EXPTIME. A matching lower bound, even for fixed arity
schemas, follows from [12].

Similar ideas based on 2WAPA have been recently used to
show that containment for OMQs based on expressive DLs is
in 2EXPTIME [12]. In the DL context, schemas consist only
of unary and binary relations. Our automata construction,

1The strong EH collapses to its∆2-level [33].

however, is different from the one in [12] for two reasons:
(a) we need to deal with higher arity relations, and (b) even
for unary and binary relations, our OMQ language allows to
express properties that are not expressible by the DL-based
OMQ languages studied in [12].

Frontier-guarded tgds. Frontier-guarded tgds generalize
guarded tgds, and as a matter of fact the techniques we de-
velop for studying OMQ containment for the latter do not
extend in a straightforward manner to the former. Instead,
we provide a translation from a frontier-guarded OMQQ
into a guarded OMQQ′ such thatQ andQ′ are equivalent
over acyclic databases. This allows to exploit the machinery
developed for guarded OMQs, and show that containment
for frontier-guarded OMQs is in 2EXPTIME. As for guarded
OMQs, a matching lower bound is inherited from [12], even
for fixed arity schema. Let us stress that the employed trans-
lation from frontier-guarded into guarded OMQs does not
preserve the query answers over arbitrary databases, but only
over acyclic databases. This is not surprising since frontier-
guarded OMQs are strictly more expressive than guarded
OMQs; see, e.g., [30].

Combining languages.The above complexity results refer to
the containment problem relative to a certain OMQ language
O, i.e., both queries fall inO. However, it is natural to con-
sider the version of the problem where the involved OMQs
fall in different languages. Unsurprisingly, if the left-hand
side query is expressed in a UCQ rewritable OMQ language
(based on linear, non-recursive, or sticky sets of tgds), we
can use the algorithm that relies on the small witness prop-
erty discussed above, which provides optimal upper bounds
for almost all the considered cases (the only exception is the
containment of sticky in non-recursive OMQs over schemas
of unbounded arity). Things are more interesting if the on-
tology of the left-hand side query is expressed using guarded
or frontier-guarded tgds, while the ontology of the right-
hand side query is not (frontier-)guarded. By using automata
techniques, we show that containment of (frontier-)guarded
in non-recursive OMQs is in 3EXPTIME, while containment
of (frontier-)guarded in sticky OMQs is in 2EXPTIME. We
establish matching lower bounds, even over schemas of fixed
arity, by refining techniques from [22].

Organization. Preliminaries are given in Section 2. In Sec-
tion 3 we introduce the OMQ containment problem. Con-
tainment for UCQ rewritable OMQs is studied in Section 4,
for guarded OMQs in Section 5, and for frontier-guarded
OMQs in Section 6. We consider the case where the involved
queries fall in different languages in Section 7. Finally, we
conclude in Section 8. Full proofs and additional details can
be found in the attached appendix.

2. PRELIMINARIES
Databases and conjunctive queries.Let C, N, andV be
disjoint countably infinite sets ofconstants, (labeled) nulls,
and (regular)variables(used in queries and dependencies),
respectively. AschemaS is a finite set of relation symbols
(or predicates) with associated arity. We writeR/n to denote
thatR has arityn. A term is a either a constant, null, or
variable. AnatomoverS is an expression of the formR(v̄),

whereR ∈ S is of arityn > 0 andv̄ is ann-tuple of terms.
A fact is an atom whose arguments consist only of constants.
An instanceoverS is a (possibly infinite) set of atoms over
S that contain constants and nulls, while adatabaseoverS
is a finite set of facts overS. We may call an instance and a
database overS anS-instanceandS-database, respectively.
Theactive domainof an instanceI, denoteddom(I), is the
set of all terms occurring inI.

A conjunctive query(CQ) overS is a formula of the form:

q(x̄) := ∃ȳ
(
R1(v̄1) ∧ · · · ∧Rm(v̄m)

)
, (1)

where eachRi(v̄i) (1 ≤ i ≤ m) is an atom without nulls
overS, each variable mentioned in thēvi’s appears either in
x̄ or ȳ, andx̄ are the free variables ofq. If x̄ is empty, thenq
is aBoolean CQ. As usual, the evaluation of CQs is defined
in terms of homomorphisms. LetI be an instance andq(x̄)
a CQ of the form (1). Ahomomorphismfrom q to I is a
mappingh, which is the identity onC, from the variables
that appear inq to the set of constants and nullsC∪N such
thatRi(h(v̄i)) ∈ I, for each1 ≤ i ≤ m. Theevaluation
of q(x̄) overI, denotedq(I), is the set of all tuplesh(x̄) of
constants such thath is a homomorphism fromq to I. We
denote byCQ the class of conjunctive queries.

A union of conjunctive queries(UCQ) overS is a formula
of the formq(x̄) := q1(x̄)∨· · ·∨ qn(x̄), where eachqi(x̄) is
a CQ of the form (1). Theevaluation ofq(x̄) overI, denoted
q(I), is the set of tuples

⋃

1≤i≤n qi(I). We denote byUCQ
the class of union of conjunctive queries.

Tgds and the chase procedure.A tuple-generating depen-
dency(tgd) is a first-order sentence of the form:

∀x̄∀ȳ
(
φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)

)
, (2)

whereφ andψ are conjunctions of atoms without nulls. For
brevity, we write this tgd asφ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) and use
comma instead of∧ for conjoining atoms. Notice thatφ can
be empty, in which case the tgd is calledfact tgdand is writ-
ten as⊤ → ∃z̄ ψ(x̄, z̄). We assume that each variable inx̄
is mentioned in some atom ofψ. We callφ andψ thebody
andheadof the tgd, respectively. The tgd in (2) is logically
equivalent to the expression∀x̄(qφ(x̄) → qψ(x̄)), where
qφ(x̄) andqψ(x̄) are the CQs∃ȳ φ(x̄, ȳ) and∃z̄ ψ(x̄, z̄), re-
spectively. Thus, an instanceI overS satisfiesthis tgd iff
qφ(I) ⊆ qψ(I). We say that an instanceI satisfies a setΣ of
tgds, denotedI |= Σ, if I satisfies every tgd inΣ. We denote
byTGD the class of (finite) sets of tgds.

Thechaseis a useful algorithmic tool when reasoning with
tgds [18, 26, 35, 38]. We start by defining a single chase step.
Let I be an instance over a schemaS andτ = φ(x̄, ȳ) →
∃z̄ ψ(x̄, z̄) a tgd overS. We say thatτ is applicablew.r.t.I if
there exists a tuple(ā, b̄) of terms inI such thatφ(ā, b̄) holds
in I. In this case,the result of applyingτ overI with (ā, b̄)
is the instanceJ that extendsI with every atom inψ(ā, ⊥̄),
where⊥̄ is the tuple obtained by simultaneously replacing
each variablez ∈ z̄ with a fresh distinct null not occurring

in I. For such a single chase step we writeI
τ,(ā,b̄)
−−−−→ J .

Let us assume now thatI is an instance andΣ a finite set
of tgds. Achase sequence forI underΣ is a sequence:

I0
τ0,c̄0
−−−→ I1

τ1,c̄1
−−−→ I2 · · ·

of chase steps such that: (1)I0 = I; (2) for eachi ≥ 0, τi is
a tgd inΣ; and (3)

⋃

i≥0 Ii |= Σ. We call
⋃

i≥0 Ii theresult
of this chase sequence, which always exists. Although the
result of a chase sequence is not necessarily unique (up to
isomorphism), each such result is equally useful for our pur-
poses, since it can be homomorphically embedded into every
other result. Thus, from now on, we denote bychase(I,Σ)
the result of an arbitrary chase sequence forI underΣ.

Ontology-mediated queries.An ontology-mediated query
(OMQ) is a triple(S,Σ, q), whereS is a schema,Σ is a set of
tgds (the ontology), andq is a (U)CQ overS ∪ sch(Σ) (and
possibly other predicates), withsch(Σ) the set of predicates
occurring inΣ.2 We callS thedata schema. Notice that the
set of tgds can introduce predicates not inS, which allows us
to enrich the schema of the UCQq. Moreover, the tgds can
modify the content of a predicateR ∈ S, or, in other words,
R can appear in the head of a tgd ofΣ. We have explicitly
includedS in the specification of the OMQ to emphasize that
it will be evaluated overS-databases, even thoughΣ andq
might use additional relational symbols.

The semantics of an OMQ is given in terms of certain an-
swers. Thecertain answersto a UCQq(x̄) w.r.t. a database
D and a setΣ of tgds is the set of tuples:

cert(q,D,Σ) =
⋂

D⊆I andI|=Σ

{c̄ ∈ dom(I)|x̄| | c̄ ∈ q(I)}.

Consider an OMQQ = (S,Σ, q). Theevaluationof Q over
anS-databaseD, denotedQ(D), is defined ascert(q,D,Σ).
It is well-known thatcert(q,D,Σ) = q(chase(D,Σ)); see,
e.g., [18]. Thus,Q(D) = q(chase(D,Σ)).

Ontology-mediated query languages.We write(C,Q) for
the OMQ language that consists of all OMQs of the form
(S,Σ, q), whereΣ falls in the classC of tgds, i.e.,C ⊆ TGD
(concrete classes of tgds are discussed below), and the query
q falls in Q ∈ {CQ,UCQ}. A problem that is quite impor-
tant for our work isOMQ evaluation, defined as follows:

PROBLEM: Eval(C,Q)
INPUT : An OMQQ = (S,Σ, q(x̄)) ∈ (C,Q),

anS-databaseD, andc̄ ∈ dom(D)|x̄|.
QUESTION: Doesc̄ ∈ Q(D)?

It is well-known thatEval(TGD,CQ) is undecidable; im-
plicit in [8]. This has led to a flurry of activity for identify-
ing syntactic restrictions on sets of tgds that make the latter
problem decidable. Such a restriction defines a subclassC
of tgds. The known decidable classes of tgds are classified
into three main decidability paradigms, which, in turn, give
rise to decidable OMQ languages:

Guardedness:A tgd is guarded(frontier-guarded) if it has
a body-atom, calledguard(frontier-guard), that contains all
the body-variables (all the body-variables that appear in the
head). A guarded tgd is trivially frontier-guarded, but there
are frontier-guarded tgds that are not guarded. Although the
chase under (frontier-)guarded tgds does not necessarily ter-
minate, the problem of deciding whether a tuple of constants
2OMQs can be defined for arbitrary first-order theories, not only
tgds, and first-order queries, not only UCQs [14].

(a)

 T(x,yyyy,z) → ∃w S(x,w)

 R(x,yyyy), P(yyyy,z) → ∃w T(x,y,w)

(b)

×

 T(x,y,z) → ∃w S(y,w)

 R(x,y), P(y,z) → ∃w T(x,y,w)

 T(x,y,z) → ∃w S(x,w)

 R(x,y), P(y,z) → ∃w T(x,y,w)

Figure 1: Stickiness and Marking.

is a certain answer to a UCQ w.r.t. a database and a set of
(frontier-)guarded tgds is decidable. This follows from the
fact that the result of the chase hasbounded treewidth(see,
e.g., [4, 18]). LetG (resp.,FG) be the class of (finite) sets
of guarded (resp., frontier-guarded) tgds. Then:

PROPOSITION 1. [4, 18] The problemEval(G, (U)CQ)
is 2EXPTIME-complete, andEXPTIME-complete for fixed
arity. Moreover, the problemEval(FG, (U)CQ) is complete
for 2EXPTIME, even for fixed arity.3

An important subclass of guarded tgds is the class oflin-
ear tgds whose body consists of a single atom. We writeL
for the class of (finite) sets of linear tgds. Then:

PROPOSITION 2. [19, 35]The problemEval(L, (U)CQ)
is PSPACE-complete, andNP-complete for fixed arity.

Non-recursiveness:A setΣ of tgds isnon-recursive(a.k.a.
acyclic [26, 37]), if its predicate graph, the directed graph
that encodes how the predicates ofsch(Σ) depend on each
other, is acyclic. Non-recursiveness ensures the termination
of the chase, and thus decidability of OMQ evaluation. Let
NR be the class of non-recursive (finite) sets of tgds. Then:

PROPOSITION 3. [37]The problemEval(NR, (U)CQ) is
NEXPTIME-complete, even for fixed arity.

Stickiness:This condition ensures neither termination nor
bounded treewidth of the chase. Instead, the decidability
of OMQ evaluation is obtained by exploiting query rewrit-
ing techniques (more details on query rewriting are given in
Section 4). The goal of stickiness is to capture joins among
variables that are not expressible via guarded tgds, but with-
out forcing the chase to terminate. The key property under-
lying this condition can be described as follows: during the
chase, terms that are associated (via a homomorphism) with
variables that appear more than once in the body of a tgd
(i.e., join variables) are always propagated (or “stick”) to the
inferred atoms. This is illustrated in Figure 1(a); the leftset
of tgds is sticky, while the right set is not. The formal defini-
tion is based on an inductive marking procedure that marks
the variables that may violate the semantic property of the
chase described above [20]. Roughly, during the base step
of this procedure, a variable that appears in the body of a tgd
3
Eval(C, (U)CQ) meansEval(C,CQ) andEval(C,UCQ).

τ but not in every head-atom ofτ is marked. Then, the mark-
ing is inductively propagated from head to body as shown in
Figure 1(b). Finally, a finite set of tgdsΣ is sticky if no tgd
in Σ contains two occurrences of a marked variable. LetS
be the class of sticky (finite) sets of tgds. Then:

PROPOSITION 4. [20] The problemEval(S, (U)CQ) is
EXPTIME-complete, andNP-complete for fixed arity.

3. OMQ CONTAINMENT: THE BASICS
The goal of this work is to study in depth the problem of

checking whether an OMQQ1 is containedin an OMQQ2,
both over the same data schemaS, or, equivalently, whether
Q1(D) ⊆ Q2(D) over every (finite)S-databaseD. In this
case we writeQ1 ⊆ Q2; we writeQ1 ≡ Q2 if Q1 ⊆ Q2 and
Q2 ⊆ Q1. The OMQ containmentproblem in question is
defined as follows;O1 andO2 are OMQ languages(C,Q),
whereC is a class of tgds (e.g., linear, non-recursive, sticky,
etc.), andQ ∈ {CQ,UCQ}:

PROBLEM : Cont(O1,O2)
INPUT : Two OMQsQ1 ∈ O1 andQ2 ∈ O2.
QUESTION: DoesQ1 ⊆ Q2?

WheneverO1 = O2 = O, we refer to the containment prob-
lem by simply writingCont(O).

In what follows, we establish some simple but fundamen-
tal results, which help to better understand the nature of our
problem. We first investigate the relationship between eval-
uation and containment, which in turn allows us to obtain an
initial boundary for the decidability of our problem, i.e.,we
can obtain a positive result only if the evaluation problem for
the involved OMQ languages is decidable (e.g., those intro-
duced in the previous section). We then focus on the OMQ
languages introduced in Section 2 and observe that, once we
fix the class of tgds, it does not make a difference whether
we consider CQs or UCQs. In other words, we show that an
OMQ in (C,UCQ), whereC ∈ {FG,G,L,NR, S}, can be
rewritten as an OMQ in(C,CQ). This fact simplifies our
later complexity analysis since for establishing upper (resp.,
lower) bounds it suffices to focus on CQs (resp., UCQs).

3.1 Evaluation vs. Containment
As one might expect, OMQ evaluation and OMQ contain-

ment are strongly connected. In fact, as we explain below,
the former can be easily reduced to the latter. But let us first
introduce some auxiliary notation. Consider a databaseD
and a tuplēc = (c1, . . . , cn) ∈ dom(D)n, wheren ≥ 0.
We denote byqD,c̄(x̄), wherex̄ = (xc1 , . . . , xcn), the CQ
obtained from the conjunction of atoms occurring inD after
replacing each constantcwith the variablexc. Consider now
an OMQQ = (S,Σ, q(x̄)) ∈ (C,CQ), whereC is some
class of tgds, anS-databaseD, and a tuplēc ∈ dom(D)|x̄|.
It is not difficult to show that:

c̄ ∈ Q(D) ⇐⇒ (sch(Σ),∅, qD,c̄)
︸ ︷︷ ︸

Q1

⊆ (sch(Σ),Σ, q)
︸ ︷︷ ︸

Q2

.

Let O∅ be the OMQ language that consists of all OMQs of
the form(S,∅, q), i.e., the set of tgds is empty, whereq is a
CQ. It is clear thatQ1 ∈ O∅ andQ2 ∈ (C,CQ). Therefore,

for every OMQ languageO = (C,CQ), whereC is a class
of tgds, we immediately get that:

PROPOSITION 5. Eval(O) can be reduced in polynomial
time intoCont(O∅,O).

We now show that the problem of evaluation is also re-
ducible to the complement of containment. Let us say that,
for technical reasons which will be made clear in a while, we
focus our attention on classesC of tgds that areclosed under
fact tgd extension, i.e., for every setΣ ∈ C, a set obtained
fromΣ by adding a (finite) set of fact tgds is still inC. This
is not an unnatural assumption since every reasonable class
of tgds, such as the ones introduced above, enjoy this prop-
erty. Consider now an OMQQ = (S,Σ, q(x̄)) ∈ (C,CQ),
whereC is some class of tgds, anS-databaseD, and a tuple
c̄ ∈ dom(D)|x̄|. It is easy to see then that:

c̄ ∈ Q(D) ⇐⇒ (S,Σ⋆D, q
⋆
c̄)

︸ ︷︷ ︸

Q1

6⊆ (S,∅, ∃xP (x))
︸ ︷︷ ︸

Q2

,

whereΣ⋆D is obtained fromΣ by renaming each predicateR
in Σ intoR⋆ 6∈ S and adding the set of fact tgds:

{⊤ → R⋆(c1, . . . , ck) | R(c1, . . . , ck) ∈ D},

q⋆c̄ is obtained fromq(c̄) by renaming each predicateR into
R⋆ 6∈ S, and the predicateP does not occur inS. In-
deed, the above equivalence holds sinceP 6∈ S implies that
Q2(D) = ∅, for everyS-databaseD. SinceC is closed un-
der fact tgd extension,Q1 ∈ (C,CQ), whileQ2 ∈ O∅. We
write coCont(O1,O2) for the complement ofCont(O1,O2).
Hence, for every OMQ languageO = (C,CQ), whereC is
a class of tgds (closed under fact tgd extension), it holds that:

PROPOSITION 6. Eval(O) can be reduced in polynomial
time intocoCont(O,O∅).

By definition,O∅ is contained in every OMQ language
(C,CQ), whereC is a class of tgds. Therefore, as a corollary
of Propositions 5 and 6, we obtain an initial boundary for the
decidability of OMQ containment: we can obtain a positive
result only if the evaluation problem for the involved OMQ
languages is decidable. More formally:

COROLLARY 7. Cont(O1,O2) is undecidable if
Eval(O1) is undecidable orEval(O2) is undecidable.

Can we prove the converse of Corollary 7:Cont(O1,O2)
is decidable if bothEval(O1) andEval(O2) are decidable?
The answer to this question is negative. This is due to the
fact that containment of Datalog queries is undecidable [41].
Since Datalog queries can be directly encoded in the OMQ
language based on the classF of full tgds, i.e., those without
existentially quantified variables, we obtain the following:

PROPOSITION 8. [41]Cont((F,CQ)) is undecidable.

This result, combined with the fact thatEval(F) is decid-
able (since the chase under full tgds always terminates), im-
plies that the converse of Corollary 7 does not hold. Propo-
sition 8 also rules out the OMQ languages that are based
on classes of tgds that generalizeF; e.g., the weak versions

of the ones introduced in Section 2, calledweakly frontier-
guarded[4], weakly guarded[18], weakly acyclic[26], and
weakly sticky[20] that guarantee the decidability of OMQ
evaluation.4 The question that comes up concerns the de-
cidability and complexity of containment for the OMQ lan-
guages that are based on the non-weak versions of the above
classes, i.e., frontier-guarded, guarded, non-recursive, and
sticky. This will be the subject of the next three sections.

3.2 From UCQs to CQs
Before we proceed with the complexity analysis of con-

tainment for the OMQ languages in question, let us state the
following useful result:

PROPOSITION 9. Given an OMQQ ∈ (C,UCQ), where
C ∈ {FG,G,L,NR, S}, we can construct in polynomial
time an OMQQ′ ∈ (C,CQ) such thatQ ≡ Q′.

The proof of Proposition 9 relies on the idea of encoding
boolean operations (in our case the ‘or’ operator) using a
set of atoms; this idea has been used in several other works
(see, e.g., [10, 16, 29]). Proposition 9 allows us to focus on
OMQs that are based on CQs. In fact, let us assume that
C1,C2 ∈ {FG,G,L,NR, S} andC is a complexity class
that is closed under polynomial time reductions, then:

Cont((C1,CQ), (C2,CQ)) is C-complete ⇐⇒

Cont((C1,UCQ), (C2,UCQ)) is C-complete.

3.3 Plan of Attack
We are now ready to proceed with the complexity analysis

of containment for the OMQ languages in question. Our
plan of attack can be summarized as follows:

• We consider, in Section 4,Cont((C,CQ)), for C ∈
{L,NR, S}. These languages enjoy a crucial property,
called UCQ rewritability, which is very useful for our
purposes. This property allows us to show the follow-
ing result: if the containment does not hold, then this is
witnessed via a “small” database, which in turn allows
us to devise simple guess-and-check algorithms.

• We then proceed, in Section 5, withCont((G,CQ)).
This OMQ language does not enjoy UCQ rewritabil-
ity, and the task of establishing a small witness prop-
erty that leads to an optimal upper bound turned out to
be challenging. However, if the containment does not
hold, then this is witnessed via a “tree-like” database,
which allows us to devise a decision procedure based
on two-way alternating parity automata on finite trees.

• The problemCont((FG,CQ)) is studied in Section 6.
It does not seem straightforward to extend the con-
tainment algorithm for(G,CQ) to (FG,CQ) (recall
that the latter is strictly more expressive than the for-
mer). However, after focussing on acyclic databases,
frontier-guarded OMQs can be equivalently rewritten
as guarded OMQs, which essentially provides a reduc-
tion fromCont((FG,CQ)) to Cont((G,CQ)).

4The idea of those classes is the same: relax the conditions inthe
definition of the class, so that only those positions that receive null
values during the chase are taken into account.

• In Section 7, we study the case where the OMQ con-
tainment problem involves two different languages. If
the left-hand side language is UCQ rewritable, then
we can devise a guess-and-check algorithm by exploit-
ing the above small witness property. The challenging
case is when the left-hand side language is(FG,CQ),
where again we employ tree automata techniques.

4. UCQ REWRITABLE LANGUAGES
We now focus on OMQ languages that enjoy the crucial

property of UCQ rewritability. Roughly, an OMQ language
O is UCQ rewritable if every query inO can be equivalently
rewritten as a UCQ. The formal definition follows:

Definition1. (UCQ Rewritability) An OMQ language
(C,CQ), whereC ⊆ TGD, is UCQ rewritableif, for each
OMQQ = (S,Σ, q(x̄)) ∈ (C,CQ) we can construct a UCQ
q′(x̄) such thatQ(D) = q′(D) for everyS-databaseD.

We proceed to establish our desired small witness prop-
erty based on UCQ rewritability. By the definition of UCQ
rewritability, for each languageO that is UCQ rewritable,
there exists a computable functionfO from O to the natural
numbers such that the following holds: for every OMQQ =
(S,Σ, q(x̄)) ∈ O, and UCQ rewritingq1(x̄)∨ · · · ∨ qn(x̄) of
Q, it is the case thatmax1≤i≤n{|qi|} ≤ fO(Q), where|qi|
denotes the number of atoms occurring inqi. Then:

PROPOSITION 10. Consider a UCQ rewritable language
O, and two OMQsQ ∈ O andQ′ ∈ (TGD,CQ), both with
data schemaS. If Q 6⊆ Q′, then there exists anS-database
D, where|D| ≤ fO(Q), such thatQ(D) 6⊆ Q′(D).

PROOF (SKETCH). We assume thatq(x̄) =
∨n
i=1 qi(x̄) is

a UCQ rewriting ofQ. Since, by hypothesis,Q 6⊆ Q′, we
conclude thatq 6⊆ Q′, which in turn implies that there exists
ani ∈ {1, . . . , n} such thatqi 6⊆ Q′. It is easy to show that
c(x̄) 6∈ Q′(Dqi), wherec(x̄) is a tuple of constants obtained
by replacing each variablex in x̄ with the constantc(x), and
Dqi is theS-database obtained fromqi after replacing each
variablex in qi with the constantc(x). Sincec(x̄) ∈ q(Dqi),
we get thatc(x̄) ∈ Q(Dqi). Therefore,Q(Dqi) 6⊆ Q′(Dqi),
and the claim follows since|Dqi | ≤ fO(Q). �

In Proposition 10 we only assume that the left-hand side
query falls in a UCQ rewritable language, without any as-
sumption on the language of the right-hand side query. Thus,
we immediately get a decision procedure forCont(O1,O2)
if O1 is UCQ rewritable andEval(O2) is decidable. Given
Q1 = (S,Σ1, q1(x̄)) ∈ O1 andQ2 = (S,Σ2, q2(x̄)) ∈ O2:

1. Guess anS-databaseD such that|D| ≤ fO1
(Q1), and

a tuplec̄ ∈ dom(D)|x̄|; and

2. Verify thatc̄ ∈ Q1(D) andc̄ 6∈ Q2(D).

We immediately get that:

THEOREM 11. Cont(O1,O2) is decidable ifO1 is UCQ
rewritable andEval(O2) is decidable.

This generic result shows thatCont((C,CQ)) is decidable
for every classC ∈ {L,NR, S}, but it says nothing about
complexity. This will be the subject of the rest of the section.

4.1 Linearity
The problem of computing UCQ rewritings for OMQs in

(L,CQ) has been studied in [28], where a resolution-based
procedure, calledXRewrite, has been proposed. This rewrit-
ing algorithm accepts a queryQ = (S,Σ, q(x̄)) ∈ (L,CQ)
and constructs a UCQ rewritingq′(x̄) over S by starting
from q and exhaustively applying rewriting steps based on
resolution. Due to the fact that the set of tgds is linear, i.e.,
the tgd-bodies consist of a single atom, during the execution
of XRewrite, it is not possible to obtain a CQ that has more
atoms than the original one. Therefore:

PROPOSITION 12. f(L,CQ)

(
(S,Σ, q)

)
≤ |q|.

Having the above result in place, it can be shown that the
algorithm underlying Theorem 11 guesses a polynomially
sized witness to non-containment, and then calls aC-oracle
for solving query evaluation under linear OMQs, whereC is
PSPACE in general, and NP if the arity is fixed; these com-
plexity classes are obtained from Proposition 2. Therefore,
coCont((L,CQ)) is in PSPACE in general, and inΣP2 in case
of fixed arity. Regarding the lower bounds, Proposition 5 al-
lows us to inherit the PSPACE-hardness ofEval(L,CQ); this
holds even for constant-free tgds. Unfortunately, in the case
of fixed arity, we can only obtain NP-hardness, while Propo-
sition 6 allows to obtain coNP-hardness. Nevertheless, it is
implicit in [13] (see the proof of Theorem 9), where the con-
tainment problem for OMQ languages based on description
logics is considered, thatCont((L,CQ)) is ΠP2 -hard, even
for tgds of the formP (x) → R(x). Then:

THEOREM 13. Cont((L,CQ)) is PSPACE-complete, and
ΠP2 -complete if the arity of the schema is fixed. The lower
bounds hold even for tgds without constants.

4.2 Non-Recursiveness
Although the OMQ language(NR,CQ) is not explicitly

considered in [28], where the algorithmXRewrite is defined,
the same algorithm can deal with(NR,CQ). By analyzing
the UCQ rewritings constructed byXRewrite, whenever the
input query falls in(NR,CQ), we can establish the follow-
ing result; here,body(τ) denotes the body of the tgdτ :

PROPOSITION 14. It holds that:

f(NR,CQ)

(
(S,Σ, q)

)
≤ |q| ·

(

max
τ∈Σ

{|body(τ)|}

)|sch(Σ)|

.

Proposition 14 implies that non-containment for queries
that fall in (NR,CQ) is witnessed via a database of at most
exponential size. We show next that this bound is optimal:

PROPOSITION 15. There are sets of(NR,CQ) OMQs

{Qn1 = (S,Σn1 , q1)}n>0 and {Qn2 = (S,Σn2 , q2)}n>0,

where|sch(Σn1)| = |sch(Σn2)| = n+ 2, such that for every
S-databaseD, if Qn1 (D) 6⊆ Qn2 (D) then|D| ≥ 2n−1.

Let us now focus on the complexity ofCont((NR,CQ)).
By naively combining the algorithm underlying Theorem 11
and the exponential bound provided by Proposition 14, we
get thatcoCont((NR,CQ)) is feasible in non-deterministic

exponential time with access to a NEXPTIME oracle; the or-
acle is needed for solvingEval(NR,CQ). Nevertheless, this
rough upper bound can be significantly improved; in fact, it
can be decreased to NEXPTIMENP, which is nearly optimal
(more details are given below), by employing a refined ver-
sion of the algorithm underlying Theorem 11. Recall that
NEXPTIMENP forms the second level of the exponential hi-
erarchy, a.k.a.ΣEXP

2 , and it collects all the decision prob-
lems that can be solved via an alternating exponential time
algorithm with two alternations that starts from an existential
state, i.e., it can perform a series of existential steps followed
by a series of universal steps. The refined version of the al-
gorithm underlying Theorem 11 is such an algorithm.

Before giving this algorithm, let us recall a crucial prop-
erty of non-recursive OMQs. Given a databaseD, an OMQ
(S,Σ, q(x̄)) ∈ (NR,CQ), and a tuplēc ∈ dom(D)|x̄|, if
c̄ ∈ Q(D) then there exists a finite chase sequence:

D = I0
τ0,c̄0
−−−→ I1

τ1,c̄1
−−−→ I2 · · · In−1

τn−1,c̄n−1

−−−−−−−→ Ig(D,Σ)

for D underΣ, where:

g(D,Σ) = |D| ·

(

max
τ∈Σ

{|body(τ)|}

)|sch(Σ)|

such that̄c ∈ q(Ig(D,Σ)) [37]. Having this property in place,
we can now present our alternating algorithm. GivenQ1 =
(S,Σ1, q1(x̄)) andQ2 = (S,Σ2, q2(x̄)):

1. Guess anS-databaseD of size at mostf(NR,CQ)(Q1),
and a tuplēc ∈ dom(D)|x̄|.

2. Guess a chase sequence

D
τ0,c̄0
−−−→ I1

τ1,c̄1
−−−→ I2 · · · In−1

τn−1,c̄n−1

−−−−−−−→ Ig(D,Σ1)

forD underΣ1.

3. Guess a mappingh, which is the identity onC, from
the variables inq1 to dom(Ig(D,Σ1)).

4. If h is a homomorphism fromq1 to Ig(D,Σ1) such that
h(x̄) = c̄, then proceed; otherwise, reject.

5. Universally select each chase sequence

D
τ0,c̄0
−−−→ I1

τ1,c̄1
−−−→ I2 · · · In−1

τn−1,c̄n−1

−−−−−−−→ Ig(D,Σ2)

forD underΣ2.

6. Universally select each mappingh, which is the iden-
tity onC, from the variables inq2 to dom(Ig(D,Σ2)).

7. If h is a homomorphism fromq2 to Ig(D,Σ2) such that
h(x̄) = c̄, then reject; otherwise, accept.

It is clear that the above algorithm is an alternating exponen-
tial time algorithm with two alternations that starts from an
existential state. Moreover, it accepts iffQ1 * Q2, and the
desired upper bound follows.

It is not known whether our problem is coNEXPTIMENP-
complete. Nevertheless, we provide a nearly matching lower
bound, i.e., PNEXP-hardness. More details on how the above
complexity classes are related are discussed below. Let us
now explain how PNEXP-hardness is obtained. To this end,

we exploit a tiling problem that has been recently introduced
in [25]. Roughly speaking, an instance of this tiling problem
is a triple(m,T1, T2), wherem is an integer in unary rep-
resentation, andT1, T2 are standard tiling problems for the
exponential grid2n× 2n. The question is whether, for every
initial conditionw of lengthm, T1 has no solution withw or
T2 has some solution withw. The initial conditionw simply
fixes the firstm tiles of the first row of the grid. We con-
struct in polynomial time two(NR,CQ) queriesQ1 andQ2

such that(m,T1, T2) has a solution iffQ1 ⊆ Q2. The idea
is to force every input database to store an initial condition
w of lengthm, and then encode the problem whetherTi has
a solution withw intoQi, for eachi ∈ {1, 2}. Then:

THEOREM 16. Cont((NR,CQ)) is in coNEXPTIMENP,
andPNEXP-hard. The lower bound holds even if the arity of
the schema is fixed and the tgds are without constants.

NEXPT IME NP vs. PNEXP . It is known that NEXPTIMENP

is a delicate class: if we restrict its oracle access too much, it
collapses to PNEXP [33]. For example, following the notation
of [33], PNEXP coincides with NEXPTIMENP[poly]tree , where
only polynomially many oracle calls are allowed throughout
the computation tree of the Turing machine. Also, PNEXP

coincides with NEXPTIMENP[poly]path [exp]yes,tree , where only
polynomially many oracle calls are allowed on each path of
the computation tree, and exponentially many calls with a
“yes” answer throughout the computation tree of the Turing
machine. The above results support our claim that PNEXP is
a nearly matching lower bound forCont((NR,CQ)).

4.3 Stickiness
We now focus on OMQs that fall in(S,CQ). As shown

in [28], given a query(S,Σ, q), there exists an execution of
XRewrite that constructs a UCQ rewritingq1(x̄)∨· · ·∨qn(x̄)
overS with the following property: for eachi ∈ {1, . . . , n},
if a variablev occurs inqi in more than one atom, thenv
already occurs inq. This property has been used in [28] to
bound the number of atoms that can appear in a single CQqi.
We writeT (q) for the set of terms (constants and variables)
occurring inq; C(Σ) for the set of constants occurring inΣ;
andar(S) for the maximum arity over all predicates ofS.

PROPOSITION 17. It holds that

f(S,CQ)((S,Σ, q)) ≤ |S| · (|T (q)|+ |C(Σ)| + 1)
ar(S)

.

Proposition 17 implies that non-containment for(S,CQ)
queries is witnessed via a database of at most exponential
size. As for(NR,CQ) queries, we can show that this bound
is optimal; here, for a setΣ of tgds, we denote by‖Σ‖ the
number of symbols occurring inΣ.

PROPOSITION 18. There exists a set of(S,CQ) OMQs:

{Qn = ({S/n},Σn, q(x̄))}n>0, where‖Σn‖ ∈ O(n2),

such that for everyQ = ({S},Σ′, q′(x̄)) ∈ (TGD,CQ) and
{S}-databaseD, if Qn(D) 6⊆ Q(D) then|D| ≥ 2n−2.

We now study the complexity ofCont((S,CQ)). Let us
first look at schemas of unbounded arity. Proposition 17 im-
plies that the algorithm underlying Theorem 11 runs in expo-
nential time assuming access to aC-oracle, whereC is a com-
plexity class powerful enough for solvingEval(S,CQ) and

its complement. But, sinceEval(S,CQ) is in EXPTIME (see
Proposition 4), bothEval(S,CQ) and its complement are
in NEXPTIME, and thus, the oracle call is not really needed.
From this discussion, we conclude thatcoCont((C,CQ)) is
in NEXPTIME. A matching lower bound is obtained by a
reduction from the standard tiling problem for the exponen-
tial grid 2n × 2n. In fact, the same lower bound has been
recently established in [11]; however, our result is stronger
as it shows that the problem remains hard even if the right-
hand side query is a linear OMQ of a simple form – this is
also discussed in Section 7, where containment of queries
that fall in different OMQ languages is studied. Regarding
schemas of fixed arity, Proposition 17 provides a witness for
non-containment of polynomial size, which implies that the
algorithm underlying Theorem 11 runs in polynomial time
with access to an NP-oracle. Therefore,coEval(S,CQ) is in
ΣP2 , while a matching lower bound is implicit in [13]. Then:

THEOREM 19. Cont((S,CQ)) is coNEXPTIME-compl.,
even if the set of tgds uses only two constants. In the case of
fixed arity, it isΠP2 -complete, even for constant-free tgds.

5. GUARDEDNESS
We proceed with the problem of containment for guarded

OMQs, and we establish the following result:

THEOREM 20. Cont((G,CQ)) is 2EXPTIME-complete.
The lower bound holds even if the arity of the schema is fixed,
and the tgds are without constants.

The lower bound is immediately inherited from [12],
where it is shown that containment for OMQs based on the
description logicELI is 2EXPTIME-hard. Recall that a set
of ELI axioms can be equivalently rewritten as a constant-
free set of guarded tgds using only unary and binary predi-
cates, which implies the lower bound stated in Theorem 20.
However, we cannot immediately inherit the desired up-
per bound since the DL-based OMQ languages considered
in [12] are either weaker than or incomparable to(G,CQ).
Nevertheless, the technique developed in [12] was extremely
useful for our analysis. Actually, our automata-based proce-
dure exploits a combination of ideas from [12, 32]. The rest
of this section is devoted to providing a high-level explana-
tion of this procedure.

For the sake of technical clarity, we focus on constant-free
tgds and CQs, but all the results can be extended to the gen-
eral case at the price of more involved definitions and proofs.
Moreover, for simplicity, we focus on Boolean CQs. In other
words, we study the problem for(G,BCQ), whereBCQ
denotes the class of Boolean CQs. This does not affect the
generality of our proof since it is known thatCont((G,CQ))
can be reduced in polynomial time toCont((G,BCQ)) [12].

A first glimpse. As said,(G,CQ) is not UCQ rewritable
and, therefore, we cannot employ Proposition 10 in order
to establish a small witness property as in Section 4. We
have tried, by following a different route, to establish a small
witness property for(G,CQ), which can then be used for
obtaining an optimal upper bound forCont((G,CQ)), but it
turned out to be a difficult task. Nevertheless, we can show a
tree witness property, which states that non-containment for

(G,CQ) is witnessed via a tree-like database. This allows
us to devise a procedure based on alternating tree automata.
Summing up, the proof for the 2EXPTIME membership of
(G,CQ) proceeds in three steps:

1. Establish a tree witness property;

2. Encode the tree-like witnesses as trees that can be ac-
cepted by an alternating tree automaton; and

3. Construct an automaton that decidesCont((G,CQ));
in fact, we reduceCont((G,CQ)) into emptiness for
two-way alternating parity automata on finite trees.

Each one of the above three steps is discussed in more de-
tails in the following three sections. Let us say that our
automata-based approach provides a small witness property
for (G,CQ). We obtain that non-containment is witnessed
via a triple-exponentially-sized database; details are given
below. However, we do not know whether this is optimal.

5.1 Tree Witness Property
From the above informal discussion, it is clear that tree-

like databases are crucial for our analysis. Let us make this
notion more precise using guarded tree decompositions. A
tree decompositionof a databaseD is a labeled rooted tree
T = (V,E, λ), whereλ : V → 2dom(D), such that: (i) for
each atomR(t1, . . . , tn) ∈ D, there existsv ∈ V such that
λ(v) ⊇ {t1, . . . , tn}, and (ii) for every termt ∈ dom(D),
the set{v ∈ V | t ∈ λ(v)} induces a connected subtree of
T . The tree decompositionT is called[U]-guarded, where
U ⊆ V , if, for every nodev ∈ V \ U , there exists an atom
R(t1, . . . , tn) ∈ D such thatλ(v) ⊆ {t1, . . . , tn}. We write
root(T) for the root node ofT , andDT (v), wherev ∈ V ,
for the subset ofD induced byλ(v). We are now ready to
formalize the notion of the tree-like database:

Definition2. AnS-databaseD is aC-tree, whereC ⊆ D,
if there is a tree decompositionT of D such that:

1. DT (root(T)) = C and

2. T is [{root(T)}]-guarded.

Roughly, whenever a databaseD is a C-tree,C is the
cyclic part ofD, while the rest ofD is tree-like. Interest-
ingly, for decidingCont((G,BCQ)) it suffices to focus on
databases that areC-trees and|dom(C)| depends only on
the left-hand side OMQ. Recall that for a schemaS we write
ar (S) for the maximum arity over all predicates ofS. Then:

PROPOSITION 21. Let Qi = (S,Σi, qi) ∈ (G,BCQ),
for i ∈ {1, 2}. The following are equivalent:

1. Q1 ⊆ Q2.

2. Q1(D) ⊆ Q2(D), for everyC-treeS-databaseD such
that |dom(C)| ≤ (ar (S ∪ sch(Σ1)) · |q1|).

The fact that(1) ⇒ (2) holds trivially, while(2) ⇒ (1)
is shown by using a variant of the notion of guarded unrav-
elling and compactness. Let us clarify that the above result
does not provide a decision procedure forCont((G,BCQ)),
since we have to consider infinitely many databases that are
C-trees with|dom(C)| ≤ (ar (S ∪ sch(Σ1)) · |q1|).

5.2 Encoding Tree-like Databases
It is generally known that a databaseD whose treewidth5

is bounded by an integerk can be encoded into a tree over a
finite alphabet of double-exponential size ink that can be
accepted by an alternating tree automaton; see, e.g., [9].
Consider an alphabetΓ, and letN∗ be the set of finite se-
quences of natural numbers, including the empty sequence.
A Γ-labeled treeis a pairL = (T, λ), whereT ⊆ N∗ is
closed under prefixes, andλ : T → Γ is the labeling func-
tion. The elements ofT identify the nodes ofL. It can be
shown thatD and a tree decompositionT ofD with width k
can be encoded as aΓ-labeled treeL, whereΓ is an alpha-
bet of double-exponential size ink, such that each node of
T corresponds to exactly one node ofL and vice versa.

Consider now aC-treeS-databaseD, and letT be the tree
decomposition that witnesses thatD is aC-tree. The width
of T is at mostk = (|dom(C)| + ar(S) − 1), and thus, the
treewidth ofD is bounded byk. Hence, from the above dis-
cussion,D andT can be encoded as aΓ-labeled tree, where
Γ is of double-exponential size ink. In general, given anS-
databaseD that is aC-tree due to the tree decompositionT ,
we show thatD andT can be encoded as aΓS,l-labeled tree,
with |dom(C)| ≤ l and |ΓS,l| being double-exponential in
ar(S) and exponential in|S| andl.

Although everyC-treeS-databaseD can be encoded as a
ΓS,l-labeled tree, the other direction does not hold. In other
words, it is not true that everyΓS,l-labeled tree encodes aC-
treeS-databaseD and its corresponding tree decomposition.
In view of this fact, we need the additional notion of consis-
tency. AΓS,l-labeled tree is calledconsistentif it satisfies
certain syntactic properties – we do not give these proper-
ties here since they are not vital in order to understand the
high-level idea of the proof. Now, given a consistentΓS,l-
labeled treeL, we can show thatL can be decoded into an
S-databaseJLK that is aC-tree with |dom(C)| ≤ l. From
the above discussion and Proposition 21, we obtain:

LEMMA 22. LetQi = (S,Σi, qi) ∈ (G,BCQ), for i ∈
{1, 2}. The following are equivalent:

1. Q1 ⊆ Q2.

2. Q1(JLK) ⊆ Q2(JLK), for every consistentΓS,l-labeled
treeL, wherel = (ar (S ∪ sch(Σ1)) · |q1|).

5.3 Constructing Tree Automata
Having the above result in place, we can now proceed with

our automata-based procedure. We use two-way alternating
parity automata (2WAPA) that run on finite labeled trees.
Two-way alternating automata process the input tree while
branching in an alternating fashion to successor states, and
thereby moving either down or up the input tree. Our goal
is to reduceCont((G,BCQ)) to the emptiness problem for
2WAPA. As usual, given a 2WAPAA, we denote byL(A)
thelanguageof A, i.e., the set of labeled trees it accepts. The
emptiness problem is defined as follows: given a 2WAPAA,
doesL(A) = ∅? Thus, givenQ1, Q2 ∈ (G,BCQ), we need
to construct a 2WAPAA such thatQ1 ⊆ Q2 iff L(A) = ∅.
5Recall that the treewidth of a databaseD is the minimum width
among all possible tree decompositionsT = (V,E, λ) of D, while
the width ofT is defined asmaxv∈V {|λ(v)|} − 1.

It is well-known that deciding whetherL(A) is empty is fea-
sible in exponential time in the number of states, and in poly-
nomial time in the size of the input alphabet [23]. Therefore,
we should constructA in double-exponential time, while the
number of states must be at most exponential.

We first need a way to check consistency of labeled trees.
It is not difficult to devise an automaton for this task.

LEMMA 23. Consider a schemaS and an integerl > 0.
There is a 2WAPACS,l that accepts aΓS,l-labeled treeL iff
L is consistent. The number of states ofCS,l is logarithmic
in the size ofΓS,l. Furthermore,CS,l can be constructed in
polynomial time in the size ofΓS,l.

Now, the crucial task is, given an OMQQ ∈ (G,BCQ),
to devise an automaton that accepts labeled trees which cor-
respond to databases that makeQ true.

LEMMA 24. LetQ = (S,Σ, q) ∈ (G,BCQ). There is a
2WAPAAQ,l, wherel > 0, that accepts a consistentΓS,l-
labeled treeL iff Q(JLK) 6= ∅. The number of states of
AQ,l is exponential in‖Q‖ andl. Furthermore,AQ,l can be
constructed in double-exponential time in‖Q‖ andl.

The intuition underlyingAQ,l can be described as follows.
AQ,l tries to identify all the possible ways the CQq can be
mapped tochase(D,Σ), for anyC-treeS-databaseD such
that |dom(C)| ≤ l. It then arrives at possible ways how the
input tree can satisfyQ. These “possible ways” correspond
to squid decompositions, a notion introduced in [18] that in-
dicates which part of the query is mapped to the cyclic part
C ofD, and which to the tree-like part ofD. The automaton
exhaustively checks all squid decompositions by traversing
the input tree and, at the same time, explores possible ways
how to match the single parts of the squid decomposition at
hand. The automaton finally accepts if it finds a squid de-
composition that can be mapped tochase(D,Σ).

Having the above automata in place, we can proceed with
our main technical result, which shows thatCont(G,BCQ)
can be reduced to the emptiness problem for 2WAPA. But
let us first recall some key results about 2WAPA, which are
essential for our final construction. It is well-known that lan-
guages accepted by 2WAPAs are closed under intersection
and complement. Given two 2WAPAsA1 andA2, we write
A1 ∩A2 for a 2WAPA, which can be constructed in polyno-
mial time, that accepts the languageL(A1) ∩ L(A2). More-
over, for a 2WAPAA, we writeA for the 2WAPA, which is
also constructible in polynomial time, that accepts the com-
plement ofL(A). We can now show the following:

PROPOSITION 25. ConsiderQ1, Q2 ∈ (G,BCQ). We
can construct in double-exponential time a 2WAPAA, which
has exponentially many states, such that

Q1 ⊆ Q2 ⇐⇒ L(A) = ∅.

PROOF (SKETCH). LetQi = (S,Σi, qi), for i ∈ {1, 2},
and l = (ar (S ∪ sch(Σ1)) · |q1|). ThenA is defined as
(CS,l ∩ AQ1,l) ∩ AQ2,l. SinceΓS,l has double-exponential
size, Lemmas 23 and 24 imply thatA can be constructed in
double-exponential time, while it has exponentially many
states. Lemma 22 implies thatQ1 ⊆ Q2 iff L(A) = ∅. �

Proposition 25 implies thatCont((G,BCQ)) is in 2EXP-
TIME, and Theorem 20 follows. The above proposition pro-
vides a small witness property forCont((G,BCQ)). In par-
ticular, ifQ1 * Q2, then this is witnessed via a databaseJLK,
whereL is a tree accepted by the automatonA in Proposi-
tion 25. SinceA has exponentially many states, we can con-
clude that the trees accepted byA have size at most triple-
exponential. This is becauseA can be transformed into a
non-deterministic tree automaton with double-exponentially
many states, which in turn accepts trees of size at most triple-
exponential. Therefore,JLK is a triple-exponentially-sized
database. It is open whether this is an optimal upper bound.

6. FRONTIER-GUARDEDNESS
We proceed to show that Theorem 20 can be extended to

OMQs based on frontier-guarded tgds:

THEOREM 26. Cont((FG,CQ)) is complete for2EXP-
TIME. The lower bound holds even if the arity of the schema
is fixed, and the tgds are without constants.

As for Cont((G,CQ)), the lower bound is immediately
inherited from [12]. The rest of this section is devoted to es-
tablish the desired upper bound. As in the previous section,
we focus on constant-free tgds and constant-free BCQs, but
the result can be extended to the general case. In fact, in
order to simplify our analysis even more, let us observe that
for containment purposes under OMQs based on frontier-
guarded tgds, it suffices to focus on atomic Boolean queries,
i.e., BCQs consisting of a single atom; we refer to this class
of queries asBAQ. The reason for this is because a BCQ can
be seen as frontier-guarded tgd. More precisely, an OMQ
(S,Σ, q) ∈ (FG,BCQ) can be equivalently rewritten as the
OMQ (S,Σ∪{q → Ans},Ans) ∈ (FG,BAQ), where each
variable inq → Ans is interpreted as a universally quanti-
fied variable. From the above discussion, it suffices to show
thatCont((FG,BAQ)) is in 2EXPTIME.

Our goal is to provide a reduction fromCont((FG,BAQ))
to Cont((G,BAQ)), and then apply Theorem 20. The main
ingredients of our reduction are the following:

1. A queryQ ∈ (FG,BAQ) can be rewritten as a query
Q′ ∈ (G,BAQ) in such a way thatQ andQ′ are equiv-
alent overacyclicdatabases, i.e., databases that have a
[∅]-guarded tree decomposition.

2. We observe that for(G,BAQ) we can characterize sat-
isfiability via acyclic databases. In other words, if there
exists a database that satisfies a(G,BAQ) queryQ,
thenQ is satisfied by an acyclic database.

Let us make the above statements more formal. The trans-
lation of (FG,BAQ) into a (G,BAQ) relies on the notion
of treeification(see, e.g., [6, 7]), and is inspired by a con-
struction given in [7] that translates guarded negation fixed
point sentences into guarded negation sentences. Our goal
is to transform a frontier-guarded tgd into a set of guarded
tgds by treeifying the body of the former. In fact, the treefi-
cation procedure will first transform a tgd-body, which is
essentially a CQ, to a set ofstrictly acyclicCQs, i.e., CQs
that are acyclic and have an atom that contains its free vari-
ables. Then each strictly acyclic query will give rise to lin-
early many guarded tgds. Let us now recall treefications.

Consider a CQq(x̄) over a schemaS. TheT-treefication
of q(x̄), whereT ⊇ S, is the setΛT

q of all strictly acyclic
CQsq′(x̄) overT of size at most3|q| such that (i)q′ ⊆ q,
and (ii) is minimal, i.e., by removing an atom would render
into a CQ that is not strictly acyclic orq′ 6⊆ q. The setΛT

q

can be seen as the UCQΛT
q (x̄) defined as the disjunction

of all CQs contained inΛT
q . Notice that the queryq(x̄) is in

general not equivalent to its treeification. However,q(x̄) and
ΛT
q (x̄) are equivalent over acyclicT-databases [6, 7].
We are now ready to explain how a frontier-guarded OMQ

is transformed into a guarded OMQ. Consider a frontier-
guarded tgdτ : φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) and a schemaT. Let
fT

C (τ), whereC is a predicate not inT, be the set of tgds
{

q(x̄) → ∃z̄ ψ(x̄, z̄) | q(x̄) ∈ Λ
T∪{C}
∃ȳ φ(x̄,ȳ)

}

.

Notice that the tgds infT

C (τ) may not be guarded. However,
by construction, their bodies are strictly acyclic CQs, and
this allows us to rewrite each tgd infT

C (τ) into linearly many
guarded tgds, which we denote bygTC (τ). Now, given an
OMQQ = (S,Σ, q) ∈ (FG,BAQ), let

gC(Q) =

(

S ∪ {C},
⋃

τ∈Σ

g
S∪sch(Σ)
C (τ), q

)

∈ (G,BAQ),

whereC is an auxiliary predicate not inS ∪ sch(Σ). This
completes the translation from frontier-guarded to guarded
OMQs. We can show the following crucial lemma, which
actually formalizes the first intuitive statement given above.
Given a schemaS and a predicateC/n 6∈ S, for brevity, we
write SC for S ∪ {C}. Given anS-databaseD, letDC be
theSC -databaseD ∪ {C(t̄) | t̄ ∈ dom(D)n}. By thewidth
of an OMQQ, written width(Q), we mean the maximum
number of variables in the body of a tgd ofQ.

LEMMA 27. LetQ = (S,Σ, q) ∈ (FG,BAQ), andQ′ =
gC(Q), whereC 6∈ S has arity at leastwidth(Q). Then:

1. For each acyclicSC -databaseD,Q(D) = Q′(D).

2. For eachS-databaseD,Q(D) 6= ∅ ⇒ Q′(DC) 6= ∅.

Let us now formalize the second intuitive statement given
above. Actually, the next result is implicit in the proof of
Proposition 21, which establishes that non-containment for
(G,CQ) is witnessed via a tree-like database. We write
I → D for the fact that the instanceI can be mapped via
a homomorphism to the databaseD.

LEMMA 28. Consider anS-databaseD, and an OMQ
Q = (S,Σ, q) ∈ (G,BAQ). If Q(D) 6= ∅, then there is a
finite acyclicS-instanceI such thatQ(I) 6= ∅ andI → D.

Having the above lemmas in place, it is easy to show
that gC(·) provides a reduction fromCont((FG,BAQ)) to
Cont((G,BAQ)), if the arity ofC is sufficiently large.

PROPOSITION 29. Let Qi = (S,Σi, qi) ∈ (G,BAQ),
for i ∈ {1, 2}, and consider a predicateC 6∈ (S∪sch(Σ1)∪
sch(Σ2)) that has aritymaxi∈{1,2}{width(Qi)}. Then,

Q1 ⊆ Q2 ⇐⇒ gC(Q1) ⊆ gC(Q2).

PROOF (SKETCH). Let Q′
i = gC(Qi), for i ∈ {1, 2}.

Assume thatQ1 * Q2. This implies that there exists an
S-databaseD such thatQ1(D) 6= ∅ andQ2(D) = ∅. By
Lemma 27,Q′

1(DC) 6= ∅, and thus, by Lemma 28, there
exists a finite acyclicSC -instanceI such thatQ′

1(I) 6= ∅
andI → DC . SinceQ2(DC) = Q2(D) = ∅, andQ2 is
closed under homomorphisms,Q2(I) = ∅. Consequently,
by Lemma 27,Q′

2(I) = ∅, which implies thatQ′
1 * Q′

2.
The other direction can be shown analogously. �

The above proposition provides the desired reduction from
Cont((FG,BAQ)) to Cont((G,BAQ)), which allows us to
apply the algorithm forCont((G,CQ)), devised in Sec-
tion 5. However, it should not be overlooked that this re-
duction takes exponential time due to the treefication proce-
dure. In fact, for a CQq, |ΛT

q | ≤ |T|O(|q|)(|q|w)O(|q|w),
wherew is the maximum arity over all predicates ofT [6,
7]. Nevertheless, since the reduction provided by Proposi-
tion 29 increases the arity of the schema only polynomially,
while the algorithm forCont((G,BAQ)) provided by Theo-
rem 20 is double-exponential only on the arity of the under-
lying schema, we conclude thatCont((FG,BAQ)) is feasi-
ble in double-exponential time, as needed.

We would like to conclude this section by saying that,
as for guarded OMQs, we obtain a small witness property
for Cont((FG,CQ)), which states that non-containment is
witnessed via a triple-exponentially-sized database. More
precisely,Q1 * Q2 implies gC(Q1) * gC(Q2), and we
can show that the latter non-containment is witnessed via
a triple-exponentially-sized acyclic databaseD. Since, by
Lemma 27,Qi andgC(Qi), for i ∈ {1, 2}, are equivalent
over acyclic databases,D is a witness forQ1 * Q2.

7. COMBINING LANGUAGES
In the previous three sections, we studied the containment

problem relative to a languageO, i.e., both OMQs fall inO.
However, it is natural to consider the version of the problem
where the involved OMQs fall in different languages. This
is the goal of this section. Our analysis proceeds by con-
sidering the two cases where the left-hand side (LHS) query
falls in a UCQ rewritable OMQ language, or it is guarded.
Notice that the two cases where the LHS query is guarded or
frontier-guarded behave in the same way. Thus, for brevity,
we only focus on the former case.

7.1 The LHS Query is UCQ Rewritable
As an immediate corollary of Theorem 11 we obtain the

following result:Cont((C1,CQ), (C2,CQ)), for C1 6= C2,
C1 ∈ {L,NR, S} andC2 ∈ {L,NR, S,FG,G}, is decid-
able. By exploiting the algorithm underlying Theorem 11,
we establish optimal upper bounds for all the problems at
hand with the only exception ofCont((S,CQ), (NR,CQ)).
For the latter, we obtain a coNEXPTIMENP upper bound, by
providing a similar analysis as forCont((NR,CQ)), while a
NEXPTIME lower bound is inherited from query evaluation
by exploiting Proposition 5. It is rather tedious to go through
all the containment problems in question and explain in de-
tails how the exact upper bounds are obtained.6

6There are twenty-four different cases obtained by considering all

Regarding the matching lower bounds, in most of the cases
they are inherited from query evaluation or its complement
by exploiting Propositions 5 and 6, respectively. There are,
however, some exceptions:

• Cont((S,CQ), (L,CQ)) in the case of unbounded ar-
ity, where the problem is coNEXPTIME-hard, even for
sets of tgds that use only two constants. This is shown
by a reduction from the standard tiling problem for the
exponential grid2n × 2n.

• Cont((L,CQ), (S,CQ)) andCont((S,CQ), (L,CQ))
in the case of bounded arity, where both problems are
ΠP2 -hard even for constant-free tgds; implicit in [13].

7.2 The LHS Query is Guarded
We proceed with the case where the LHS query is guarded,

and we show the following result:

THEOREM 30. The problemCont((G,CQ), (C,CQ)) is
C-complete, where:

C =

{

2EXPTIME, if C ∈ {L, S},

3EXPTIME, if C = NR.

The lower bounds hold even if the arity of the schema is fixed.
Moreover, forC = L (resp.,C ∈ {NR, S}) it holds even for
tgds with one constant (resp., without constants).

Upper bounds. The 2EXPTIME membership whenC = L
is an immediate corollary of Theorem 20. This is not true
whenC ∈ {NR, S} since the right-hand side query is not
guarded. But in this case, since(NR,CQ) and(S,CQ) are
UCQ rewritable, one can rewrite the right-hand side query as
a UCQ, and then apply the machinery developed in Section 5
for solvingCont((G,CQ)). More precisely, given OMQs
Q1 ∈ (G,CQ) andQ2 ∈ (C,CQ), whereC ∈ {NR, S},
Q1 ⊆ Q2 iff Q1 ⊆ q, whereq is a UCQ rewriting ofQ2.
Thus, an immediate decision procedure, which exploits the
algorithmXRewrite, is the following:

1. Letq = XRewrite(Q2);

2. For eachq′ ∈ q: if Q1 ⊆ q′, then proceed; otherwise,
reject; and

3. Accept.

The above procedure runs in triple-exponential time. The
first step is feasible in double-exponential time [28]. Now,
for a single CQq′ ∈ q (which is a guarded OMQ with an
empty set of tgds) the check whetherQ1 ⊆ q′ can be done by
using the machinery developed in Section 5, which reduces
our problem to checking whether the language of a 2WAPA
A is empty. However, it should not be forgotten thatq′ is
of exponential size, and thus, the automatonA has double-
exponentially many states. This in turn implies that checking
whetherL(A) = ∅ is in 3EXPTIME, as claimed.

Although the above algorithm establishes an optimal up-
per bound for non-recursive OMQs, a more refined analysis

the possible pairs(O1,O2) of OMQ languages, whereO1 6= O2

andO1 is UCQ rewritable, and the two cases whether the arity of
the schema is fixed or not.

is needed for sticky OMQs. In fact, we need a more refined
complexity analysis for the problemCont((G,CQ),UCQ),
that is, to decide whether a guarded OMQ is contained in
a UCQ. To this end, we provide an automata construction
different from the one employed in Section 5, which al-
lows us to establish a refined complexity upper bound for
the problem in question. Consider a(G,CQ) queryQ, and
a UCQ q = q1 ∨ · · · ∨ qn. As usual, we write‖Q‖ and
‖qi‖ for the number of symbols that occur inQ andqi, re-
spectively, and we writevar≥2(qi) for the set of variables
that appear in more than one atom ofqi. By exploiting our
new automata-based procedure, we show that the problem
of checking ifQ ⊆ q is feasible in double-exponential time
in (‖Q‖ + max1≤i≤n{|var≥2(qi)|}), exponential time in
max1≤i≤n{‖qi‖}, and polynomial time inn.

This result allows us to show that the above procedure es-
tablishes 2EXPTIME-membership when the right-hand side
OMQ is sticky. But first we need to recall the following key
properties of the UCQ rewritingq = XRewrite(Q2), con-
structed during the first step of the algorithm:

1. q consists of double-exponentially many CQs,

2. each CQ ofq is of exponential size, and

3. for eachq′ ∈ q, var≥2(q
′) is a subset of the variables

of the original CQ that appears inQ2.

By combining these key properties with the complexity anal-
ysis performed above, it is now straightforward to show that
Cont((G,CQ), (S,CQ)) is in 2EXPTIME.

Lower Bounds. We establish matching lower bounds by re-
fining techniques from [22], where it is shown that contain-
ment of Datalog in UCQ is 2EXPTIME-complete, while con-
tainment of Datalog in non-recursive Datalog is 3EXPTIME-
complete; the lower bounds hold for fixed-arity predicates,
and constant-free rules. Interestingly, the LHS query can be
transformed into a Datalog query such that each rule has a
body-atom that contains all the variables, i.e., is guarded.
This is achieved by increasing the arity of some predi-
cates in order to have enough positions for all the body-
variables. However, for each rule, the number of unguarded
variables that we need to guard is constant, and thus, the
arity of the schema remains constant. We conclude that
Cont((G,CQ), (NR,CQ)) is 3EXPTIME-hard. Moreover,
containment of guarded OMQs in UCQs is 2EXPTIME-hard,
which in turn allows us to show, by exploiting the construc-
tion underlying Proposition 9, thatCont((G,CQ), (L,CQ))
is 2EXPTIME-hard, even if the set of linear tgds uses only
one constant, whileCont((G,CQ), (S,CQ)) is 2EXPTIME-
hard, even for tgds without constants.

8. CONCLUSIONS
We have concentrated on the fundamental problem of con-

tainment for OMQ languages based on the main decidable
classes of tgds, and we have developed specially tailored
techniques that allow us to obtain a relatively complete pic-
ture for the complexity of the problem at hand. Our main
conclusion is that for most of the OMQ languages in ques-
tion, the containment problem is harder (under widely ac-
cepted complexity assumptions) than query evaluation.

9. REFERENCES
[1] A. Amarilli, M. Benedikt, P. Bourhis, and M. Vanden

Boom. Query answering with transitive and
linear-ordered data. InIJCAI, pages 893–899, 2016.

[2] M. Arenas, R. Hull, W. Martens, T. Milo, and
T. Schwentick. Foundations of Data Management
(Dagstuhl perspectives workshop 16151).Dagstuhl
Reports, 6(4):39–56, 2016.

[3] F. Baader, M. Bienvenu, C. Lutz, and F. Wolter. Query
and predicate emptiness in ontology-based data
access.J. Artif. Intell. Res. (JAIR), 56:1–59, 2016.

[4] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat.
On rules with existential variables: Walking the
decidability line.Artif. Intell., 175(9-10):1620–1654,
2011.

[5] V. Bárány, M. Benedikt, and B. ten Cate. Rewriting
guarded negation queries. InMFCS, pages 98–110,
2013.

[6] V. Bárány, G. Gottlob, and M. Otto. Querying the
guarded fragment.Logical Methods in Computer
Science, 10(2), 2014.

[7] V. Bárány, B. ten Cate, and L. Segoufin. Guarded
negation.J. ACM, 62(3):22:1–22:26, 2015.

[8] C. Beeri and M. Y. Vardi. The implication problem for
data dependencies. InICALP, pages 73–85, 1981.

[9] M. Benedikt, P. Bourhis, and M. Vanden Boom. A step
up in expressiveness of decidable fixpoint logics. In
LICS, pages 817–826, 2016.

[10] M. Benedikt and G. Gottlob. The impact of virtual
views on containment.PVLDB, 3(1):297–308, 2010.

[11] G. Berger and A. Pieris. Ontology-mediated queries
distributing over components. InIJCAI, pages
943–949, 2016.

[12] M. Bienvenu, P. Hansen, C. Lutz, and F. Wolter. First
order-rewritability and containment of conjunctive
queries in horn description logics. InIJCAI, pages
965–971, 2016.

[13] M. Bienvenu, C. Lutz, and F. Wolter. Query
containment in description logics reconsidered. InKR,
2012.

[14] M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter.
Ontology-based data access: a study through
disjunctive datalog, csp, and MMSNP. InPODS,
pages 213–224, 2013.

[15] P. Bourhis, M. Krötzsch, and S. Rudolph. Reasonable
highly expressive query languages. InIJCAI, pages
2826–2832, 2015.

[16] P. Bourhis, M. Manna, M. Morak, and A. Pieris.
Guarded-based disjunctive tuple-generating
dependencies.ACM Trans. Database Syst., 41(4),
2016.

[17] A. Calì, G. Gottlob, and M. Kifer. Taming the infinite
chase: Query answering under expressive relational
constraints. InKR, pages 70–80, 2008.

[18] A. Calì, G. Gottlob, and M. Kifer. Taming the infinite
chase: Query answering under expressive relational
constraints.J. Artif. Intell. Res., 48:115–174, 2013.

[19] A. Calì, G. Gottlob, and T. Lukasiewicz. A general
Datalog-based framework for tractable query

answering over ontologies.J. Web Sem., 14:57–83,
2012.

[20] A. Calì, G. Gottlob, and A. Pieris. Towards more
expressive ontology languages: The query answering
problem.Artif. Intell., 193:87–128, 2012.

[21] A. K. Chandra and P. M. Merlin. Optimal
implementation of conjunctive queries in relational
data bases. InSTOC, pages 77–90, 1977.

[22] S. Chaudhuri and M. Y. Vardi. On the equivalence of
recursive and nonrecursive datalog programs.J.
Comput. Syst. Sci., 54(1):61–78, 1997.

[23] S. S. Cosmadakis, H. Gaifman, P. C. Kanellakis, and
M. Y. Vardi. Decidable optimization problems for
database logic programs (preliminary report). In
STOC, pages 477–490, 1988.

[24] E. Dantsin and A. Voronkov. Complexity of query
answering in logic databases with complex values. In
LFCS, pages 56–66, 1997.

[25] T. Eiter, T. Lukasiewicz, and L. Predoiu. Generalized
consistent query answering under existential rules. In
KR, pages 359–368, 2016.

[26] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: Semantics and query answering.Theor.
Comput. Sci., 336(1):89–124, 2005.

[27] J. Flum, M. Frick, and M. Grohe. Query evaluation via
tree-decompositions.J. ACM, 49(6):716–752, 2002.

[28] G. Gottlob, G. Orsi, and A. Pieris. Query rewriting
and optimization for ontological databases.ACM
Trans. Database Syst., 39(3):25:1–25:46, 2014.

[29] G. Gottlob and C. H. Papadimitriou. On the
complexity of single-rule datalog queries.Inf.
Comput., 183(1):104–122, 2003.

[30] G. Gottlob, A. Pieris, and M. Simkus. The impact of
active domain predicates on guarded existential rules.
Fundam. Inform., 2017. To appear.

[31] G. Gottlob, S. Rudolph, and M. Simkus.
Expressiveness of guarded existential rule languages.
In PODS, pages 27–38, 2014.

[32] E. Grädel and I. Walukiewicz. Guarded fixed point
logic. In LICS, pages 45–54, 1999.

[33] L. A. Hemachandra. The strong exponential hierarchy
collapses.J. Comput. Syst. Sci., 39(3):299–322, 1989.

[34] D. S. Johnson. A catalog of complexity classes. In
Handbook of Theoretical Computer Science, pages
67–161. 1990.

[35] D. S. Johnson and A. C. Klug. Testing containment of
conjunctive queries under functional and inclusion
dependencies.J. Comput. Syst. Sci., 28(1):167–189,
1984.

[36] J. C. Jung, C. Lutz, M. Martel, T. Schneider, and
F. Wolter. Conservative extensions in guarded and
two-variable fragments.CoRR, abs/1705.10115, 2017.

[37] T. Lukasiewicz, M. V. Martinez, A. Pieris, and G. I.
Simari. From classical to consistent query answering
under existential rules. InAAAI, pages 1546–1552,
2015.

[38] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing
implications of data dependencies.ACM Trans.

Database Syst., 4(4):455–469, 1979.
[39] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo,

M. Lenzerini, and R. Rosati. Linking data to
ontologies.J. Data Semantics, 10:133–173, 2008.

[40] Y. Sagiv and M. Yannakakis. Equivalences among
relational expressions with the union and difference
operators.J. ACM, 27(4):633–655, 1980.

[41] O. Shmueli. Equivalence of DATALOG queries is
undecidable.J. Log. Program., 15(3):231–241, 1993.

[42] M. Y. Vardi. Reasoning about the past with two-way
automata. InICALP, pages 628–641, 1998.

[43] T. Wilke. Alternating tree automata, parity games, and
modalµ-calculus.Bull. Belg. Math. Soc. Simon Stevin,
8(2):359–391, 2001.

