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ABSTRACT

Consistent query answering (CQA) aims to find meaningful answers
to queries when databases are inconsistent, i.e., do not conform
to their specifications. Such answers must be certainly true in all
repairs, which are consistent databases whose difference from the
inconsistent one is minimal, according to some measure. This task
is often computationally intractable, and much of CQA research
concentrated on finding islands of tractability. Nevertheless, there
are many relevant queries for which no efficient solutions exist,
which is reflected by the limited practical applicability of the CQA
approach. To remedy this, one needs to devise a new CQA frame-
work that provides explicit guarantees on the quality of query
answers. However, the standard notions of repair and certain an-
swers are too coarse to permit more elaborate schemes of query
answering. Our goal is to provide a new framework for CQA based
on revised definitions of repairs and query answering that opens
up the possibility of efficient approximate query answering with
explicit guarantees. The key idea is to replace the current declara-
tive definition of a repair with an operational one, which explains
how a repair is constructed, and how likely it is that a consistent
instance is a repair. This allows us to define how certain we are
that a tuple should be in the answer. Using this approach, we study
the complexity of both exact and approximate CQA. Even though
some of the problems remain hard, for many common classes of
constraints we can provide meaningful answers in reasonable time,
for queries going far beyond the standard CQA approach.
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1 INTRODUCTION

Consistent query answering (CQA) is an elegant idea introduced in
the late 1990s by Arenas, Bertossi, and Chomicki [2] that has been
extensively studied since. The main premise is that databases are
often inconsistent, i.e., do not conform to their specifications in the
form of integrity constraints. The reason behind this is that data is
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not perfect and clean: it may come, for example, from several con-
flicting sources. Data cleaning attempts to fix this problem, but it is
not always possible. In such a case, CQA aims to deliver meaningful
answers to queries that can still be obtained from inconsistent data.
The key elements of the CQA approach are [2, 5]:

(1) the notion of a repair of an inconsistent database D, i.e., a
consistent database D’ whose difference with D is minimal;

(2) the notion of query answering based on certain answers, i.e.,
one looks at answers that are true in all repairs.

Since there could be many repairs, finding certain answers is most
commonly in coNP in data complexity, and it is very often coNP-
hard, even for conjunctive queries [12, 40]. This led to a large body
of work on drawing the tractability boundary for query answering
[20-22, 28, 29]. Much of it views a dichotomy result, classifying all
query answering into tractable and coNP-hard, as the ultimate goal
of the CQA endeavor, although there are strong indications that for
some common classes of database integrity constraints obtaining
such a dichotomy would be extremely hard [19, 35].

Nevertheless, even obtaining good sufficient conditions for
tractability leaves many relevant queries beyond reach of the CQA
approach. Thus, the standard approach, while yielding good theo-
retical results, appears to be a bit of dead end which is reflected by
its limited practical applicability [20, 31]. We would like to rectify
this. We believe that the ultimate goal of a practically applicable
CQA approach should be efficient approximate query answering with
explicitly stated guarantees. However, in the current state of affairs
this goal does not seem to be attainable. Efficient probabilistic algo-
rithms with bounded one-sided or two-sided error are unlikely for
CQA: placing it in tractable randomized complexity classes such as
RP or BPP would imply that the polynomial hierarchy collapses [26].
For coming up with more refined approximation techniques, the
current CQA framework lacks flexibility and finer details related to
its key concepts, as we now explain.

The standard approach simply imposes a condition that a repair
and an inconsistent database must satisfy, and then defines query
answering by means of certain answers. This provides little infor-
mation for two reasons. First, the notion of repairs does not explain
how repairs are constructed; we know that an instance is a repair
or not. Moreover, we do not know when, and crucially why, is one
repair more likely to appear than another. Second, the notion of
certain answers only says that a tuple is entailed by all repairs, or
is not entailed by some repair. But the former is too strict and the
latter not very useful. Instead, we would like to know how likely a
tuple is to be in the answer. However, with few exceptions [23], the
standard CQA approach does not consider this. Thus, we strongly
believe that making progress towards turning CQA into a practi-
cally viable approach requires a different framework for the key
notions of repairs and query answering.


https://doi.org/10.1145/3196959.3196966
https://doi.org/10.1145/3196959.3196966
https://doi.org/10.1145/3196959.3196966
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3196959.3196966&domain=pdf&date_stamp=2018-05-27

Session: Consistent Query Answering, Certain Answers
and Repairs

Our main idea is to replace the declarative approach to repairs
with an operational one that explains the process of constructing a
repair. As it gives us a finer understanding of why an instance is a
repair, it also leads to more refined ways of answering queries by
letting us define precisely how certain we are that a tuple should
be in the answer. This approach offers us a lot more flexibility: for
example, in defining the operational approach we can also reason
about more or less likely updates that lead to a repair. This in
turn lets us define probabilistic guarantees for query answers, and
construct efficient algorithms that produce such guarantees for
common classes of constraints that have previously been beyond
reach of the CQA approach.

Outline of the operational framework. The key elements of the
new approach to database repairs are:

(1) the notion of violations of constraints;

(2) repairing sequences of operations on databases;

(3) assigning likelihood to repairs based on operations used in
repairing sequences; and

(4) flexible query answering based on the likelihood of a tuple
appearing in an answer on different repairs.

A repairing sequence applies operations to a database to eliminate
violations of constraints, and does so until a consistent database is
produced. For example, for relational databases, one may consider
sequences of operations inserting and deleting tuples. For a database
D and a set T of constraints, a violation of a constraint k € ¥ explains
why D |£ k. Constraints are usually logical statements of the form
Vx a(x) — p(x). Then a violation is given by a tuple a such that
D |= a(a) but D |£ f(a). These are the violations we deal with here,
but in general there could be others, for other types of data and/or
constraints. We write V(D, X) for the set of all violations of ¥ in D.

We now formulate a minimal set of requirements for repairing
sequences: these ought to be true in every data model and for
every notion of constraints. A repairing sequence is a sequence
of operations s = opy, 0p,, ..., op,. Starting with a database D,
these produce a sequence of databases Dy = D, D1 = op;(Dyp), ...,
Di = op;(...opy(D)...), etc. The minimal requirements imposed
on such repairing sequences are:

(1) each operation must be justified, i.e., remove at least one
violation; and

(2) a violation eliminated by op; cannot be reintroduced later
by an operation op; for j > i.

Formally, these are stated as follows:

reql V(Dj_1,2) — V(op;(Di-1),%) # @ for every i > 0.
req2 (V(D;-1,%) - V(D;, %)) N V(D}, %) = @ for j > i.

In a specific model of data and updates, these minimal require-
ments may be supplemented by others. For instance, for relational
databases and insertion/deletion updates, the same tuple should not
belong to both an insertion and a deletion operation of a repairing
sequence: it makes no sense to insert a tuple only to delete it later.

For a sequence s = opy, ..., op, of operations, its result s(D)
is op,, (... op;(D)...). A repairing sequence attempts to construct
a repair: it may succeed, if s(D) satisfies X, or it may fail, if no
further operations can be applied and s(D) still violates . We view
databases s(D) when s succeeds as our operational repairs.
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There is no a priori reason to believe that all such repairs are
equally likely. The idea that not all repairs are created equal has
already been explored in the CQA context [18, 36], but here we take
it further. The operational approach lets us say why one repair is
more likely, and also assign a quantitative measure to such output.
For this, all we need is a measure of likelihood of operations in a
given state of repair. Say we reached some state s(D) by applying
a sequence s = 0py,. .., op, of operations to D. If s(D) is not yet
consistent, there may be several operations op{, . op;c one can
apply to remove violations. We can assign the notion of likelihood
to those, which in turn leads to the notion of likelihood of a repair.

This idea is very naturally modeled by tree-shaped Markov chains
[27]. If we assign probabilities p1, . . ., py. to operations op], . . ., op}.
that can follow the sequence s so that p;’s add up to 1, we have a
Markov chain on repairing sequences. Then the probability of a
particular successful repairing sequence arising in such a Markov
chain is given by what is known as its hitting distribution. This is
how we define the likelihood of a particular repair.

Probabilities can be naturally assigned to repairing operations in
many scenarios leading to inconsistencies. Consider, for instance,
a data integration scenario that results in an integrated database
containing facts R(a, b) and R(a, c) that violate the constraint that
the first attribute of R is a key. Suppose we have a level of trust
in each of the sources supplying data; say we believe that each
is 50% reliable. Then with probability 0.5 - 0.5 = 0.25 we do not
trust either tuple and apply the operation that removes both facts.
With probability (1 — 0.25)/2 = 0.375 we remove either R(a, b) or
R(a, c). The standard CQA aproach [2] only allows the removal
of one of the two facts (with equal probability 0.5 in this case). It
somehow assumes that we trust at least one of the sources, even
though we know they are in conflict. Our approach is more flexible,
as we account (with a smaller probability) for the case when neither
source supplies correct facts. We shall expand this in Section 3.

The notion of operational repair fulfills our goal of providing
new flexible ways of query answering: for a given tuple f, we can
add up the likelihoods of all repairing sequences s for which €
Q(s(D)) to get the likelihood that # is in the answer to Q. This
is a much more refined notion than the usual certain answers. It
allows us to devise approximation schemes with different types of
guarantees for answering not only conjunctive, but arbitrary first-
order queries in the CQA framework. In fact, as an application of
our framework we shall study the complexity of different types of
approximation schemes. While some remain computationally hard,
we show that for a large class of updates, efficient approximations
with probabilistic guarantees exist for all first-order queries and
most common database constraints.

Outline of main results. Our main contributions include the new
operational framework for database repairs and consistent query
answering, and the study of its exact and approximate complexity.

The operational approach, described in detail in Section 3, formal-
izes the notions informally presented earlier: constraints and their
violations, justified operations, repairing sequences, and Markov
chains on such repairing sequences that let us compare their rela-
tive importance. This culminates in the definition of an operational
repair and a new semantics of query answering based on the de-
gree of certainty that a tuple is in the answer. Since operational
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repairs have probabilities assigned to them, this degree of certainty
is formally defined as a conditional probability that a tuple is in the
query answer, under the condition that the database on which the
query is asked is an operational repair. We also present detailed
examples to illustrate the new framework.

With the framework in place, we study the complexity of query
answering. Since operational repairs can encode the classical repairs
of [2], it is not surprising that the complexity of query answering
for first-order (and even conjunctive) queries is intractable. We
pinpoint the exact complexity: FP*P-complete (note that the output
of the query answering in this case is not yes or no, but rather a
number, namely the conditional probability, as explained above).

With this bound, one looks for approximations, and given the
probabilistic nature of query answers, we look for approximations
via randomized algorithms. There are two types of guarantees for
calculating the conditional probability p of a tuple f by means
of a randomized algorithm that returns a number a. Either |a —
pl < €-p, for a fixed € > 0 (multiplicative error guarantees),
or |a — p| < € (additive error guarantees). Since a is the output
of a randomized algorithm, we require these to hold with a high
probability, say at least 1—8 for small 1 > § > 0. Multiplicative error
algorithms (so-called FPRAS: fully polynomial-time randomized
approximation scheme) are more common in the literature since
the relative error between the output of an FPRAS and the value
we want to approximate is bounded by €. In the case of additive
error algorithms, only the absolute error is bounded by €, whereas
the relative error increases as the value we want to approximate
decreases. Nevertheless, additive error algorithms are equally useful
for our purposes since we are approximating probabilities. Thus,
having a high relative error for tuples with small probability is a
reasonable price to pay, since such tuples are much less important
than tuples with high probability.

We establish two results: our query answering problem does not
admit an FPRAS (under some widely believed complexity-theoretic
assumptions) but it does admit a polynomial-time randomized ap-
proximation algorithm with additive error guarantees. The latter
happens under a mild restriction on the Markov chain that it does
not admit failing sequences of updates, i.e., sequences that cannot
be extended but do not yet repair the database. This is a common
occurrence and it covers such common cases as key (or, more gener-
ally, EGD) violations. We describe this randomized algorithm, and
discuss how it can be implemented in practice.

Organization. Notations are given in Section 2. In Section 3 we
present the basics of the operational approach, and in Section 4
we describe query answering under this approach and study its
complexity. In Section 5 we study approximations of the query
answering problem with different types of guarantees. In Section 6
we give an extensive list of open problems that we hope to solve
with the new framework.

2 PRELIMINARIES

In this section, we recall the basics on relational databases and
constraints, and we fix some basic notation.

Relational Databases. We assume a countably infinite set C of
constants from which database elements are drawn. A (relational)
schema S is a finite set of relation symbols (or predicates) with

241

PODS’18, June 10-15, 2018, Houston, TX, USA

associated arity. We write R/n to denote that R has arity n. A fact
over S is an expression of the form R(cy,...,cp), where R/n € S
withn > 0,and ¢; € Cfor eachi < n. A database instance (or simply
database) over S is a finite set of facts over S. The active domain of
a database D, denoted dom(D), is the set of constants in D.

Constraints. We shall be using standard database constraints:
tuple- and equality-generating dependencies as well as denial con-
straints. Let V be a countably infinite set of variables disjoint from
C. An atom over a schema S is an expression R(t1, . . ., t,), where
R/neS,andt; € CUV foreach 1 < i < n (thus, a fact is an atom
without variables). Our constraints over a schema S are defined as
first-order sentences:

o a tuple-generating dependency (TGD) is of the form
VeV (p(x, §) — 3z ¥(%,2)),
where ¢ and ¢ are non-empty conjunctions of atoms;
e an equality-generating dependency (EGD) is of the form

1)

()
where ¢ is a non-empty conjunction of atoms, and x;, x; are
variables of x;

e a denial constraint (DC) is of the form

VE(p(x) — xi = x;j),

V& —(%), ®3)

where ¢ is a non-empty conjunction of atoms.

A database D satisfies a constraint if the corresponding sen-
tence is true in D. In what follows, we use commas instead of A for
conjunctions of atoms, as is common in the rule-based syntax of
conjunctive queries. Recall that EGDs can express keys and func-
tional dependencies; for instance, to say that the first attribute of
R is a key, we write Vx,y,z (R(x,y), R(x,z) — y = z). TGDs can
express inclusion dependencies, e.g., Vx,y (R(x,y) — 3z S(z, x))
is the inclusion dependency R[1] C S[2]. Thus the combination of
EGDs and TGDs can express foreign keys. With denial constraints,
one can express conditions such as disjointness of attribute do-
mains: e.g., Vx, y, z =(R(x, y), R(z, x)) says that the same constant
cannot be a value of both the first and the second attribute of R. As is
common, we omit universal quantifiers from TGDs, EGDs, and DCs;
that is, every variable that occurs in them, except those existentially
quantified in TGDs, is assumed to be universally quantified.

It is convenient to view satisfaction of these constraints via
homomorphisms; this will be useful for formalizing the notion of
violations. For a set of atoms A, we let dom(A) be the set of all
constants and variables occurring in A. A homomorphism from a set
of atoms A to a set of atoms A’ is a mapping h : dom(A) — dom(A’),
which is the identity on C, such that, for every atom R(f) € A, the
atom R(h(f)) is in A’. Let h(A) = {R(h(?)) | R(}) € A}.

Notice that a conjunction of atoms in a formula can be viewed as
a set of atoms (i.e., the tableau). Thus we can talk about homomor-
phisms from a conjunction of atoms to a database. In view of this,
the notion of satisfaction of constraints can be restated as follows.
A database D satisfies

e TGD (1) if for every homomorphism A from ¢(x,§) to D,
there is a homomorphism A’ from y/(h(%), Z) to D;

e EGD (2) if, for every homomorphism h from ¢(x) to D, we
have h(x;) = h(xj);

e DC (3) if there is no homomorphism from ¢(x) to D.
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Henceforth, we use the term constraint to refer to TGDs, EGDs
and DCs. A database D is consistent with a set > of constraints,
written D |= 3, if D satisfies each constraint of X; otherwise, D is
inconsistent with X.

Queries. We consider first-order queries Q(x) that are expressions
of the form {x | ¢}, where ¢ is a first-order formula with free
variables x. The output of Q on a database D is the set of tuples
Q(D) = {¢ € dom(D)*! | D [ (e)}.

Consistent Query Answering. As said in Section 1, inconsistent
databases are a real-life phenomenon that arise due to many reasons
such as integration of conflicting sources. To obtain meaningful
answers from inconsistent data, [2] introduced the notion of con-
sistent query answers, which we now recall.

For two databases D, D’, the measure of distance between them is
defined as their symmetric difference A(D, D") = (D—D’)U(D’-D).
Then for an inconsistent database D (w.r.t. a set of constraints %),
a consistent database D’ over dom(D) and constants used in ¥ is
a repair if A(D, D’) is minimal w.r.t. to subset inclusion. In other
words, there is no other such consistent database D’/ for which
A(D,D"") C A(D, D’). We denote the set of repairs of D w.r.t 3 by
[[D]]QBC; i.e., the Arenas-Bertossi-Chomicki (ABC) semantics of an
inconsistent database. Consistent query answers, as defined in [2],
are certain answers under the ABC semantics. Given a database
D, a set of constraints ¥, and a query Q, the consistent answer to Q
w.r.t. D and 3, is the set of tuples N{Q(D’) | D’ € [[D]]QBC}.

3 THE OPERATIONAL APPROACH

We propose a new operational approach to CQA, based on the
concepts of operations, violations of constraints and repairing se-
quences, and ways to assign likelihood to such sequences. We
proceed to define these concepts for relational databases and con-
straints from the three classes seen earlier (TGDs, EGDs, and DCs)
in a way that satisfy the minimal requirements from Section 1.

Operations and Violations

The notion of operation is the building block of our approach. For
relational databases, the operations that we consider are standard
updates +F that add a set of facts F using constants occurring in the
database and the constraints, or —F that remove F from a database.
To formalize this, we define the base, denoted by B(D, X), for a
database D and a set > of constraints over a schema S, as the set of
all facts R(cy . ..,cn) where R/n € S, and ¢y, . . ., ¢, are constants
that occur in dom(D) or in 3. We use the notation $(-) for powerset.

Definition 3.1. (Operation) For a database D and a set X of
constraints, a (D, X)-operation is a function op : P(B(D,2)) —
P(B(D, X)) such that either:

(1) op(D") = D’ UF, for every D’ € P(B(D,X)); or

(2) op(D’) = D’ — F, for every D’ € P(B(D, X))
for a set of facts F C B(D, X). We shall refer to these operations as
+F or —F respectively. [

Technically speaking, the operations +F and —F depend on D
and 3, as they are only defined over B(D, 2). Since D and ¥ will be
clear from the context, we may refer to them simply as operations,
omitting D and X. Also when F contains a single atom R(a), we
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write +R(a) and —R(a) instead of the more formal +{R(a)} and
—{R(a)}. At this point, let us clarify that, although we focus on
insertions and deletions of facts as described above, the proposed
framework can be extended by considering also other forms of
operations such as insertions with null values [6, 7] or attribute-
based operations [39]. Actually, as discussed in Section 6, these are
issues that we are planning to address in the near future. The idea
is then to iteratively apply operations, starting from a database D,
until we reach a database that is consistent with 3. However, by
itself this does not meet the minimal requirement req1 that at least
one violation should be resolved. To impose this requirement, we
need to keep track of all the reasons that cause the inconsistency
of D with X. This brings us to the notion of constraint violation.
Recall that all constraints we consider here are of the form k =
Vx(p(x) — (x)), where ¥ may contain existential quantifiers.
We also often omit universal quantification, simply writing k =
@(x) — Y(x). This includes TGDs, EGDs, and DCs as well, since
—¢ is of course ¢ — L. A violation of such a constraint is an
instantiation a of free variables that makes the implication false,
i.e., p(a) is true but ¥(a) is false. It will be convenient to formally
define violations in terms of homomorphisms. Recall that in all the
constraints k = ¢(X) — (x), the formula ¢ is a conjunction of
atoms, and thus can be viewed as a set of atoms over constants and
variables in X. An assignment of values a to variables ¥ making
¢(a) true is then a homomorphism h : dom(p) — dom(D). We let
h(x) be k in which every variable x from x is replaced with A(x).

Definition 3.2. (Constraint Violation) For a database D, a
D-violation of a constraint x = ¢ — ¢ is a homomorphism
h : dom(p) — dom(D) such that D does not satisfy h(x). We denote
the set of D-violations of k by V(D, k) and for a set X of constraints
we write V(D, X) for {(k,h) | k € X and h € V(D, k)}. ]

Therefore, (x, h) € V(D, 2) means that one of the reasons why
the database D is inconsistent with X is because it violates x € X
due to the homomorphism h. A (D, X)-operation op is (D’, 3)-fixing,
for D’ € B(D, %), if V(D’, %) - V(op(D’), ) # &. Sequences of such
operations will satisfy the minimal requirement req1.

While fixing operations meet the minimal requirement, in the
concrete case of TGDs, EGDs and DCs, they may add or remove
facts without any justification, as shown below.

Example 3.3. Let D = {R(a,b),R(a,c),T(a,b)} and consider the
set X = {0, 1} of constraints

o
n

Clearly, the operation op; = +{S(a, b, c), S(a, a, a)} is fixing since
it eliminates from V(D, 3) the violation (o, h), where h = {x +—
a,y — b}. However, there is no justification for adding the fact
S(a, a,a). Actually, the operation +S(a, b, c), which adds fewer
atoms than op;, is still fixing.

Another example of an operation that is fixing but unjustified
is op, = —{R(a, b), T(a, b)}. The above operation is fixing since it
removes from V(D, X) the pairs (o, h1), (1, h2) and (1, h3), where
h ={xw— ay— b},hp ={x > ayw bz c}and hs =
{x » a,y — ¢,z — b}. Nevertheless, there is no justification
for removing the fact T(a, b) since it does not contribute in any of

R(x,y) — 3FzS(x,y,z2)
R(x,y),R(x,z) — y=z.
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the above D-violations of . An example of a justified operation
that resolves (o, h1) is —R(a, b). Moreover, there are three justified
operations that resolve (1, h2) and (5, h3), namely —R(a, b), —R(a, c)
and —{R(a, b), R(a,c)}. n

From the above discussion, we conclude that operations should
not only be fixing, but also add as few facts as possible in order to
fix a violation, and delete a set of facts only if it contributes as a
whole in a violation. Such operations are called justified.

Definition 3.4. (Justified Operation) Let D be a database and =
a set of constraints. For a database D’ C B(D, %), an operation op €
{+F,—F} is called (D', 3)-justified if there exists (x, h) € V(D’,X) —
V(op(D’), X) such that for every non-empty set G C F

(1) if op = +F then (x,h) € V(+G(D’), %)

(2) if op = —F then (x,h) ¢ V(-G(D’),X). n

Note that a (D’, 3)-justified operation is (D', 3)-fixing since
V(D’,3) — V(op(D’"),%) # @. For TGDs, EGDs, and DCs, these
operations can be described as follows.

PROPOSITION 3.5. Let D be a database, 3 a set of constraints, and
D’ C B(D,ZX). If op is (D', X)-justified, then there exists (x,h) €
V(D', %) — V(op(D’), X) such that

o Ifk = ¢ox,9) — JzY(x,Z) and op =
k' (Y(x,2)) — D', for some extension h’ of h.

o Ifx is an arbitrary constraint of the form ¢ —  and op = —F,
then F C h(p).

+F, then F =

This simply says that justified operations are very cautious with
additions: they add the minimal set of atoms necessary to satisfy
a TGD. Notice that single-atom insertions may not be enough to
satisfy a multi-head TGD in a single step, and thus, it is crucial to
allow the addition of sets of atoms. On the other hand, justified
operations are less cautious with deletions, in the sense that they do
not try to minimize the number of atoms that need to be removed.
This reflects the discussion in the introduction that removing a
set of facts that collectively contribute to a violation is a justified
operation in constructing repairs, due to the fact that we do not
know a priori which atoms should be eliminated, and are, therefore,
forced to explore all the possible ways.

Repairing Sequences of Operations

The core idea of our operational approach is that one repeatedly
applies justified operations starting from an inconsistent database
D. Justified operations ensure requirement req1, i.e., every single
step in isolation is justified. However, due to potential interaction
of operations, they may break requirement req2 that previously
eliminated violations cannot be reintroduced. It is easy to construct
examples showing how an addition may reintroduce a violation
that has been previously eliminated by a deletion, and vice versa.

We could simply impose req2 on repairing sequences and then
consider those of them that lead to a consistent database. However,
as discussed in Section 1, these are minimal requirements that
assume nothing about the structure of update operations, databases,
and constraints. For our concrete data model and operations, these
minimal requirements may be supplemented by others. We now
consider two of them, motivated by examples below.
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Example 3.6. Consider the database D and key constraint 1 of
Example 3.3, and let 3’ = {0, n}, where 0 = T(x,y) — R(x,y).
Assume that we apply —{R(a, b), R(a, c¢)} followed by +R(a, b). It
is easy to check that this sequence satisfies req1, req2, and leads
to a consistent database. Nevertheless, we would like to rule out
such a sequence since it has two conflicting operations —R(a, b)
and +R(a, b). In fact, this sequence is equivalent to a simpler one
consisting just of —R(a, ¢). We would like to rule out sequences in
which an operation cancels the effect of another one, i.e., impose
the following condition:

o No Cancellation: A fact that has been added (removed) should
not be removed (added) later. [ ]

Our next example shows that in a sequence of justified opera-
tions, which lead to a consistent database, a fact that has been added
may become unjustified. We should not consider such sequences
as repairing ones since a fact should be added only if it is really
needed to satisfy a constraint.

Example 3.7. Consider the database D and the set ¥ = {0, 5} of
constraints given in Example 3.3. Assume that we apply the opera-
tions +5(a, b, ¢) and —R(a, b) in this order. This sequence satisfies
req1 and req2, and can easily be extended (e.g., with +S(a, ¢, b)) to
lead to a consistent database. However, the reason why S(a, b, ¢)
has been added was the existence of R(a, b), or, in other words, the
violation (o, h), where h = {x > a,y — b}. But, after the removal
of R(a, b) by the second operation, S(a, b, ¢) is not needed anymore.
Thus, its existence becomes unjustified. We want to forbid this by
imposing the following condition:

o Global Justification of Additions: The justification for added
facts should remain valid. L]

We proceed to formalize the above properties, and introduce the
notion of repairing sequence. Consider a database D and a set % of
constraints. Given a sequence (perhaps even infinite) s = (0p;)i>1
of (D, X)-operations, we define

Dy=D and Df=op;(---op;(D)---) fori>0.

In other words, D7 is obtained by applying to D the first i operations
of s. The notion of repairing sequence follows:

Definition 3.8. (Repairing Sequence) Consider a database D
and a set ¥ of constraints. A sequence of (D, X)-operations s =
(op;)i>1 is called (D, X)-repairing if it satisfies req1 and req2, and
for every i > 1:

(1) (Local Fustification) op; is (D}_,, Z)-justified.

(2) (No Cancellation) op; = +F and op; =G implies FNG = &,

for every i # j.
(3) (Global Fustification of Additions) For every j > i, op; = +F
implies op; is (D;_; — H,¥)-justified, withH= U G.

i<k§j,npk:—G
Let RS(D, %) be the set of all (D, X)-repairing sequences. [

We now establish some crucial properties of repairing sequences.

PRroPOSITION 3.9. Consider a database D, a set ¥ of constraints,
ands = (op;)i>1 € RS(D, X). It holds that s and RS(D, X) are finite.

Finiteness of repairing sequences is an immediate corollary of
reql, req2, and the fact that the number of violations is finite.
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Actually, it is implicit in the proof of Proposition 3.9 that the length
of a repairing sequence is polynomial in the size of D. Finiteness
of repairing sequences, together with the fact that the number of
operations is finite, implies finiteness of RS(D, X). For a repairing
sequence s = (0p;)1<i<n, we define its result as s(D) = Dj,.

Note that in the definition of repairing sequences we did not
insist that the resulting database is consistent, i.e., that s(D) |= X.
There are sequences s such that no extension s - op is a (D, X)-
repairing sequence; we call these sequences complete. Complete
sequences describe attempts to construct repairs, and attempts can
succeed or fail. They succeed if s(D) |= %, ie., the sequence is
successful, otherwise it is failing. Consider, e.g., the database D =
{R(a)} and the set of constraints X = {R(x) — T(x), T(x) —L1}.
The (D, ¥)-repairing sequence s = +T(a) is failing since s cannot
be extended into a repairing sequence and s(D) [~ X.

Operational Repairs

The high-level idea of our approach is to repair an inconsistent
database by repeatedly applying justified operations, as long as they
give rise to a repairing sequence. This gives us additional flexibility
in deciding which updates are more likely than others, while the
standard CQA approach declares them all to be equally likely. A
formalization of different likelihoods of different operations can be
done by using a well known tool from probability theory, namely
Markov chains [27]. Let us illustrate this via a simple example.

Repairing Sequences in Action. Consider the database

D = {Pref(a, b),Pref(a, c), Pref(a, d),
Pref(b, a), Pref(b, d), Pref(c, a)},

and the set ¥ that contains a single DC Pref(x, y), Pref(y, x) — L,
which states that the preference relation over, e.g., products, is not
symmetric. It is clear that D is inconsistent w.r.t. £. Our goal is to
repair D via a (D, ¥)-repairing sequence of operations, which, in this
case, are always deletions. However, during the repairing process,
we would like to take into account the fact that some products have
more support than other ones. For example, a has more support
than b since a is preferred more often than b. This is achieved by
applying the (D, X)-operation —Pref(b, a) with higher probability
than —Pref(a, b) since it is more likely that a is preferred over b,
and thus we would like to keep Pref(a, b) with higher probability
than removing it.

Our intention described above can be nicely captured via a tree-
shaped Markov chain like the one shown below. Such a Markov
chain is basically a tree encoding all the possible (D, X)-repairing
sequences that lead to a database that is consistent with >:

2/9 3/9

3/9

~(a,b) -(b,a) ~(c.a)

~(ac)

1/3 2/3 2/4, 2/4

1/4 2/5 3/5

-(a,b), -(ac) -(ab),-(c,a) -(a,c), -(a,b)

~(b,a), ~(c.a)

-(a,c), -(b,a)

-(b,a), -(ac) ~(c:a), -(a.b) -(c,a), <(b.a)
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For brevity, we omit the predicate Pref in the above figure, i.e., in-
stead of writing —Pref(a, b) we simply write —(a, b). The states of
M are (D, X)-repairing sequences with ¢ being the empty sequence,
which is by definition repairing. The edges are labeled with a prob-
ability p € [0, 1], which is simply the probability of moving from
one state to another.

Starting from the database D, the probability of removing
Pref(b, a) is 3/9, and the probability of removing Pref(a, b) is 2/9.
This captures our intention of keeping Pref(a, b) with higher prob-
ability than removing it since a has more support than b in D. In
fact these probabilities are not arbitrary but rather are provided by
a precise algorithm that extracts them from the data; this will be ex-
plained in Example 3.11. Analogously, since a has more support than
¢ in D, the probability of removing Pref(c, a) is higher than the prob-
ability of removing Pref(q, c). Now, assume that we choose to apply
—Pref(b, a), and thus construct the database D’ = D — {Pref(b, a)}.
The probability of removing Pref(c, a) is 3/4, while the probability
of removing Pref(a, c) is 1/4, which again captures our intention of
keeping Pref(a, c¢) with higher probability than removing it since
a has more support than ¢ in D’. Observe that the leaves of M are
repairing sequences s such that s(D) |= 2. These sequences are com-
plete, and thus cannot be extended further. Since in a Markov chain
the probabilities of the outgoing edges of a state must sum up to one,
every leaf of M has an implicit outgoing edge connecting it to itself
with probability 1. Having the Markov chain M in place, we can
assign probabilities to repairs. For example, the probability of the
repair D — {Pref(b, a), Pref(c, a)} is % . % + %’ . % = 0.45, which is the
probability that the initial state ¢ reaches the state —(b, a), —(c, a)
plus the probability that ¢ reaches the state —(c, a), —(b, a).

As we shall see in the next section, having repairs with probabil-
ities allows us to talk about the probability with which a consistent
answer is entailed. We now proceed with the formalizations of our
approach. But first we need to recall the basics on Markov chains.

The Basics on Markov Chains. A Markov chain is essentially
an edge-labeled directed graph, where the nodes are its states and
the edges are labeled with a probability p € [0, 1] so that for each
node s, the labels of its outgoing edges sum up to 1. An edge (s, s”)
with label p says that with probability p, the state changes from
s to s”. The goal is to answer questions of the form: what is the
probability that, starting from a certain state s, we reach state s’
after k steps? Consider, for example, the Markov chain over the
state space {so, 51,2} shown below:

1 1/2

1/2 1/2

12

It is naturally encoded as a matrix

0 1 0
P=1|0 1/2 1/2
/2 0 1/2

where in each row entries add up to 1. If we want to know the
probability of reaching sy from s; after 3 steps, this is simply
P3(sl,32) = 3/8, i.e., the (1,2)-th cell of the matrix obtained by
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multiplying P three times (that is, the sum of the probabilities of
all paths of length 3 from s; to s3).

Formally, a Markov chain M over a (finite) state space S =
{s0,...,Sg} is a pair (sg, P), where sj is the initial state of M and
P:SxS — [0, 1] is a stochastic function, i.e., ), cg P(s,s”) = 1 for
every state s € S. Since S is finite, the function P can be naturally
seen as an |S| X |S| matrix, called probability transition matrix, whose
(i, j)-th cell contains P(s;, s;). By abuse of notation, whenever P is
treated as a matrix, we write P(s;, sj) instead of P(i, j). Starting from
the state s;, the probability of reaching s; after n steps is P"(s;, s;),
where P = [, P.

A state s € S is called absorbing if P(s,s) = 1, i.e., s is reachable
from itself with probability 1. The set of reachable absorbing states
of M is the set of absorbing states of M that are reachable from s
with non-zero probability, i.e., the set

P(s,s) = 1 and }

ras(M) = {s €s 3n such that P"(sg,s) > 0

Finally, a key notion is the hitting distribution of M, defined as the
limit lim,, o P™(sp) if it exists, where P"(s) is the 0-th row of
P"; otherwise, we say that M does not admit a hitting distribution.
Intuitively, the hitting distribution describes the long-term behavior
of the Markov chain.

Repairs via Markov Chains. We now formalize the idea of assign-
ing likelihoods to operations extending sequences: for all possible
extensions s - 0p;, .. .,s - opy of a repairing sequence s, we assign
probabilities p1, ..., pg to them so they add up to 1. This is done
by exploiting a tree-shaped Markov chain that arranges its states
(i.e., repairing sequences) in a tree, where the children of each state
are its possible extensions. Furthermore, states corresponding to
complete sequences, i.e., cannot be extended, coincide with the
absorbing states of the Markov chain. Formally, let ¢ be the empty
sequence of operations, which is by definition repairing.

Definition 3.10. (Repairing Markov Chain) For a database D
and a set X of constraints, a (D, X)-repairing Markov chain is a
Markov chain of the form (¢, P), where P : RS(D, X) X RS(D, ) —
[0, 1] is such that:

(1) For each sequence s € RS(D, %), s is complete iff it is absorb-
ing, i.e, P(s,s) = 1.
(2) If s,s’ € RS(D,X) are distinct, then P(s,s’) > 0 implies
s’ = s - op for some (D, X)-operation op.
A repairing Markov chain generator w.rt. ¥ is a function My assign-
ing to every database D a (D, X)-repairing Markov chain. u

The purpose of the repairing Markov chain generator is to pro-
vide a generic mechanism for defining a family of repairing Markov
chains independently of the input database. This means that one
can design a repairing Markov chain generator My once, and when-
ever the database D changes, the desired repairing Markov chain is
obtained by simply applying My on D. Of course, the way the re-
pairing Markov chain generator is designed depends on the specific
application. For instance, in our preference example given above,
our intention is to assign probabilities to operations in such a way
that the repairing process reflects the fact that some products have
more support than other ones in the input database. Instead of de-
vising a (D, X)-repairing Markov chain that captures our intention
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on the particular database D, as we did above, one can design a
repairing Markov chain generator My, such that, for every input
database D over the schema {Pref}, Mx (D) is the desired repairing
Markov chain that captures our intention on D.

Example 3.11. Consider again the product preferences scenario,
and let X be the set that contains the single denial constraint which
states that the preference relation is not symmetric. We define a
repairing Markov chain generator My, such that, for every database
D over {Pref}, Mx(D) is the repairing Markov chain that we are
looking for. Let the weight w(e, D) of an atom a = {Pref(a, b)} in
a database D be the number of facts Pref(q, -) in D, i.e., where a is
preferred. Assuming that V5 (D) collects all the atoms involved in
a violation of ¥ by D, the importance Is(a, D) of an atom a € D is
defined as the relative weight of & w.r.t. all the atoms involved in a
violation, i.e., In(a, D) = w(a, D)/ ¥ gevy(p) W(B, D). We define the
probability of removing an atom a = Pref(a, b) as the importance of
its symmetric atom & = Pref(b, a). Formally, the repairing Markov
chain M5 (D) = (¢, P) is such that for s, s’ € RS(D, ),

1 if s =s” and s is complete

P(s,s’) = { Is(a,s(D)) ifs’=s--a,foraeD

0 otherwise.

It is easy to verify that this gives us a Markov chain (probabilities
sum up to 1), and if we consider the database D used in our prefer-
ence example above, then Ms (D) is precisely the (D, X)-repairing
Markov chain depicted in the figure. u

The aim of the above simple was to illustrate the key notion of
the repairing Markov chain generator. To demonstrate the existence
of appropriate Markov chain generators in realistic scenarios, we
give another, slightly more involved example, based on the standard
scenario of data integration. In such a scenario, different (possibly
conflicting) facts, which are coming from different sources, have
to be integrated into a single unified database. In this setting, it is
common to assign to each fact a level of trust that depends on the
source it is coming from. Such a level of trust can be computed by
applying one of the many methodologies that have been proposed
in the literature; see, e.g., [16, 41].

Example 3.12. Consider the schema S = {R/2} and let ¥ contain a
single key R(x, y), R(x, z) — y = z (the discussion easily generalizes
to an arbitrary set of keys). Let D be a database over S that has
been obtained by integrating data from different sources, where
each fact ¢ € D is assigned a level of trust denoted by tr(a) € [0, 1].
Given two facts @, f € D, we define the relative trust of a w.r.t. §
astrg|p = tr(a)/(tr(a) + tr(B)).

Let V5(D) = {{a, f} € D | {a, B} |£ =} be the set of all pairs
of atoms violating 3. There are three possible ways of fixing the
violations due to {a, f} € V5(D): either remove only «, or remove
only 8, or remove both. Our intention is as follows: try g < trg|
implies that the operation —a should have a higher probability
than —f. Furthermore, the probability of —{«, 8} should be lower
than the probability of —« and the probability of —f. To formally
capture our intention via a repairing Markov chain generator, we
first define the weight of each operation trying to fix the violations
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due to {a,f} € V(D). The weight w, g(—F) of applying —F is
equal to 0 if F Q {a, B}, otherwise

Wa,p(=@) = trpjg - (1=tra|p - trp|q)
Wa,ﬁ(_ﬁ) = tra|ﬁ~(l—tra|/,"tr/3|a)
Wa,ﬁ(_{a,ﬁ}) = (1_tra\ﬁ)'(1_trﬂ|a)'

The first (resp., second) formula encodes the event of trusting f
(resp., @) but not both a and f, while the last formula encodes the
event of trusting neither a nor . Notice that for every {a, f} €
V5(D), the three weights above sum up to one, i.e., they encode
relative weights of each operation fixing a violation due to {«, 5}

To devise our repairing Markov chain generator My, we nor-
malize the weights of each set {«, f} € V(D) w.r.t. all the sets in
V(D). For every database D over the schema S, M5(D) = (¢, P) is
such that for s, s” € RS(D, X),

1 if s = s’ is complete
Y wep(-P)
P(S,S/) = {a, p}eVs(s(D)) e
ifs"=s-—F
[Vs(s(D))]
0 otherwise.
This completes the definition of Ms. u

We proceed to define our notion of operational repair: they are
obtained by repairing sequences that are reachable absorbing states
of a repairing Markov chain.

Definition 3.13. (Operational Repair) Given a database D, a
set X of constraints, and a repairing Markov chain generator My
w.r.t. X, an (operational) repair of D w.r.t. My is a consistent database
of the form s(D), where s is a reachable absorbing state of My (D),
ie., s € ras(Ms(D)). ]

If we consider again the database D and the set X in our prefer-
ence example above, it is easy to see that D has four repairs w.r.t. My,
where My, is the Markov chain generator defined in Example 3.11.
In particular, we get the following repairs:

D — {Pref(a, b), Pref(a, c)} with probability 2/9-1/3 +1/9-2/4
D — {Pref(a, b), Pref(c, a)} with probability 2/9-2/3 +3/9-2/5
D — {Pref(b, a), Pref(a, c)} with probability 3/9-1/4+1/9-2/4
D — {Pref(b, a), Pref(c, a)} with probability 3/9-3/4+3/9-3/5

An operational repair may be obtainable via multiple repairing
sequences that are reachable absorbing states of the underlying
repairing Markov chain. To calculate the probability of a repair D’,
we have to sum up the probabilities of all reachable absorbing states
s so that D’ = s(D). These must come from the hitting distribution,
but in general Markov chains may not admit it. Fortunately, in our
case the hitting distribution always exists since a repairing Markov
chain is a finite tree-like structure, and thus, there is always a finite
path leading to an absorbing state.

PROPOSITION 3.14. Given a database D and a set X of constraints,
every (D, X)-repairing Markov chain (e, P) admits a hitting distribu-
tion, ie., lim,— 00 P (¢) exists.
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The existence of a hitting distribution allows us to define the
probability of an operational repair D’ of D w.r.t. Mx, as

Pp.ms(D) = 7(s),
s€ras(My(D)) and D’=s(D)

where 7 is the hitting distribution of My (D). For a database D’ C
B(D, %) that is not an operational repair, we let Pp_yg, (D”) = 0.
Finally, we define our semantics of an inconsistent database as the
set of repair-probability pairs

[Dlps = {(D', Pp, M5 (D)

D’ C B(D,X),
PD,ME(D’) >0

We conclude this section by comparing operational repairs with
the standard repairs of Arenas, Bertossi, and Chomicki [2] (see the
definition of the ABC semantics [[D]]éBC in Section 2). Of course
operational repairs depend on the underlying Markov chain; it may
be set up in such a way that some of the ABC repairs are not reached
(for example, by assigning probability 0 to deletions, we will not
be able to repair key violations). However, we can always find a
Markov chain so that operational repairs with respect to it include
all ABC repairs. Let My be the uniform Markov chain generator:
if for s € RS(D, %) its possible extensions in RS(D, ¥) are exactly
$S1=S0pq,...,Sk =S 0opy, thenP(s,s;) = 1/k forall i < k.

ProPOSITION 3.15. Let D be a database and X. a set of constraints,
andletD’ € I[D]]/Z\BC. Then D’ is an operational repair of D w.r.t. M¥.

4 OPERATIONAL CONSISTENT QUERY
ANSWERING

We are targeting a more refined approach to query answering com-
pared to the usual certain answers: its goal is to compute the prob-
ability that a tuple is in the answer. For a database D, a set of
constraints X, a Markov chain generator My, a query Q(x) and a tu-
ple t of constants of arity |x|, we define the conditional probability
of # being in the answer to Q over some operational repair as:

z
(7, p)€llD] gy and 7€Q(D)

CPp,my,0(f) = 5 -
(D) D T,

if at least one operational repair exists (and thus the denominator is
not zero); otherwise, CPp, af,., Q(f) = 0. For brevity, if D, Ms, and Q
are clear from the context, we simply write CP(#). Note that failing
repairing sequences will be assigned a non-zero probability in the
hitting distribution, but they should not contribute towards the
probability that a tuple is in the answer. The conditional probability
accounts for this by normalizing the probability of the tuple being in
the answer over the probabilities of successful repairing sequences.
The definition of consistent answers follows.

Definition 4.1. (Operational Consistent Answers) For a data-
base D, a set X of constraints, a repairing Markov chain generator
M, and a query Q(%), the set of operational consistent answers to Q
w.r.t. D and Ms is defined as the set of tuple-probability pairs

OCAM; (D, Q) = {(,CPp sy, 0(D) | F € dom(B(D,%))X!}.  m

Example 4.2. We use the database D from our preference example
and the repairing Markov chain generator My, from Example 3.11.
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Consider a query Q(x) stating that x is the most preferred product,
ie., Yy (Pref(x,y) V x = y). The set of the certain answers to Q
under the ABC semantics is empty. Indeed, in three out of four
repairs (see above) such most preferred product does not exist. In the
last of the repairs, {Pref(a, b), Pref(a, c), Pref(a, d), Pref(b, d)}, such
a product does exist, namely a. Thus, OCA s, (D, Q) = {(a,0.45)}.
This information on the degree of certainty that a is preferred
over all the other products is something that the traditional CQA
approach cannot provide us with. [

Complexity Analysis
We now study the complexity of computing operational consis-

tent answers. We focus on the following function problem, called
operational consistent query answering:

PROBLEM : OCQA
INPUT : A database D, a set of constraints X,
a repairing MC generator My w.r.t. 3,
a query Q(x), and f € dom(B(D, Z))'ﬂ.
OUTPUT : CPD,MZ,Q(E)

Let us clarify that this general formulation refers to the combined
complexity of the problem. We are interested in the data complexity,
i.e., complexity of the problem OCQA(Z, Mz, Q) when X, My, and
Q are fixed, and only the database D and the tuple ¢ form the
input. We adopt the convention that when we talk about the data
complexity of a problem like OCQA (i.e., the class of problems
OCQA(Z, Ms, Q)), we say that it is complete for a class K if each
of the problems OCQA(Z, M5, Q) is in K, and there is one problem
OCQA(Z, Mz, Q) that is K-hard.

Before giving the complexity of OCQA, we need to clarify a
technical issue related to the presentation of Markov chain (genera-
tors). We assume that they are well-behaved. For a (D, X)-repairing
Markov chain (¢, P) this means that P is a function computable
in polynomial time w.r.t. the size of D. Note that this implies that
the problem of checking whether a (D, ¥)-repairing sequence is
complete is solvable in polynomial time w.r.t. D (see condition 1
in Definition 3.10). We can formally show that checking whether
a (D, X)-repairing sequence is complete is indeed solvable in poly-
nomial time in D, which means that assuming P is computable in
polynomial time is not unrealistic.

A Markov chain generator My, w.r.t. X is well-behaved if for every
database D, My (D) is computable in polynomial time w.r.t. the size
of D, and there is a polynomial f(-) such that Mx(D) = (¢,P) is
well-behaved and the probabilities computed by P have a common
denominator encoded using f(|D|) bits, i.e., there exists a natural
number d > 0 of f(|D|) bits such that each probability computed
by P is of the form k/d, where 0 < k < d and k € N. In the
absence of the well-behavedness assumption, the complexity of
OCAQA of course may increase, but this will be due to reasons that
have nothing to do with consistent query answering but rather
with the internal representation of Markov chains.

Returning to the OCQA problem, it can be solved in polyno-
mial time having access to a #P oracle. Recall that #P is the class
of function problems that ask for the number of solutions to an
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NP problem. Recall also that FP is the class of function problems
that can be solved in polynomial time.

THEOREM 4.3. OCQA is FP*P-complete in data complexity. The
hardness holds even for inclusion dependencies or keys or denial con-
straints, and conjunctive queries.

The hardness is shown by a reduction from query answering
over probabilistic databases [14]. Notice that in [14] it is shown that
the latter problem is #P-hard. However, it is known that a problem
is #P-hard iff it is FP*P-hard; see, e.g., [1].

Let us now discuss the upper bound. It is implicit in [37] that FP*?
= FP¥E) , where #Zé7 is the class of function problems that ask for the
number of solutions to a 25 problem. Therefore, it suffices to show

that OCQA is in FP*%% in data complexity. Consider an instance
(D, 2, Ms, Q, ) of OCQA. By employing a padding argument, we
first show that there exist two decision problems IT; and ITy, which
accept as input D, 2, My, Q, t such that

#so0l(I1)
an = p

(D', p)e[ D]y and F€Q(D’)

and
#s0l(I1y)
d—n = p’

(D7, p) el Dl as,

where #s0l(IT) is the number of solutions to the problem II, d is
the common denominator of the probabilities computed by Msx(D),
which exists since My, is well-behaved, and n is the maximum length
of a (D, X)-repairing sequence, which, by Proposition 3.9, is finite.

We then show that I1; and II, are in 25 if ¥, My, Q are fixed.
This relies on the fact that Mx(D) = (e,P) can be computed in
polynomial time, P is a polynomial-time computable function, and
d can be encoded using polynomially many bits. We also exploit
the fact that checking whether a sequence s belongs to RS(D, )
is solvable in polynomial time. Finally, we use the fact that n is
polynomial in the size of D and |RS(D, )| is exponential in D,
which is implicit in the proof of Proposition 3.9.

Having IT; and II; in place, we can easily solve our problem in
polynomial time by applying the following algorithm:

(1) Compute the numbers #so0l(I;) and #sol(II3).

(2) If #s0l(ITz) > 0, then return 235523

else, return 0.

Step 1 can be done in O(1) time via a #25 oracle. Note that #sol(I1;)

and #sol(Ily) are, in general, exponential numbers, and can be rep-
#sol(I1;)

> #s0l(I1y)

puted in polynomial time, and Theorem 4.3 follows.

Thus, OCQA cannot be efficiently solved with respect to data
complexity. This of course is not surprising since operational repairs
can encode the standard ones of [2], and for them the problem
of finding certain answers (i.e., insisting on probability 1) can be
coNP-hard. The main contribution of Theorem 4.3 is pinpointing
the exact complexity of the problem. The key advantage of our
flexible approach to consistent query answering is that it allows us
to talk about approximations as opposed to exact query answering.
This is the subject of the next section.

can be com-

resented using polynomially many bits. Thus
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5 TOWARDS EFFICIENT APPROXIMATIONS

When a problem is computationally hard, it is natural to approxi-
mate it. Our problem is FP*P-complete, and its output is a number,
namely CPp a1, o(f). In general, approximations to such problems
can be computed by randomized algorithms A with some probabilis-
tic guarantees. Such algorithms, in addition to their input, receive a
stream of random bits that they can use for the purpose of making
random choices. The output of a randomized algorithm A, with
input x, is a random variable A(x) that, in our case, should be close
to CP(#) with high probability. The guarantees come in two shapes:
multiplicative and additive errors [38].

In our case, assume that algorithm A takes D and f as an input,
with a set of constraints X, a Markov chain generator My, and
a query Q fixed. It also takes as input two numbers € > 0 and
0 < § < 1. Multiplicative error means that

Pr(lA(D,%,€,8) - CP(})| <€-CP(}) = 1-6
where Pr is the probability of an event, while additive error means
Pr(lA(D,f,€,8) = CP(})| <€) > 1-6.

The algorithm is required to run in time polynomial in D, #, 1/€,
and log(1/8). The parameters € and J tell us how certain we are
that the randomized algorithm provides a good approximation.

In the case of multiplicative error such an algorithm is known
as a fully polynomial-time randomized approximation scheme, or
FPRAS. In general, an FPRAS is preferable than an additive error
algorithm. The reason is because the relative error between the out-
put of an FPRAS and the value we want to approximate is bounded
by €. This is not true for additive error algorithms, where only the
absolute error is bounded by e, while the relative error increases as
the value we want to approximate decreases. Nevertheless, addi-
tive error algorithms are very useful for our purposes since we are
approximating probabilities (i.e., the probability of a tuple being
in the query answer). Thus, having a high relative error for tuples
with small probability is a reasonable price to pay, since such tuples
are much less important than tuples with high probability.

The above discussion suggests to study both multiplicative and
additive error algorithms. Our main result is that it is hard to obtain
an FPRAS for our problem, but approximation with additive error
can be obtained in polynomial time for a large class of Markov
chain generators that include (but are not limited to) all constraints
we considered here, all first-order queries, and deletion updates.

Probability Spaces and Random Variables. We need to recall
a few basic definitions. A probability space is a pair PS = (Q, ),
where Q is a finite set, called sample space, and 7 : Q — [0,1] is
a function such that ), cq 7(w) = 1. A subset E C Q is called an
event. The probability of an event E, denoted Pr(E) is defined as
YiweE T(w). A random variable over PS is a function X : Q@ — Q.
The probability distribution of X is a function 7y from the image
of X to [0, 1] such that mx(x) = Pr(X = x), where X = x denotes
the event {w € Q | X(w) = x}.

Approximation Via FPRAS

We proceed to show that the problem OCQA does not admit an
FPRAS, even for very restricted settings such as keys and con-
junctive queries. We fix a set X of constraints, a repairing Markov
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chain generator My w.rt. ¥, and a query Q(x). An FPRAS for
OCQA(Z, Ms, Q) is a randomized algorithm A that takes an in-
stance I = (D, f) as well as € and §, and produces a random variable
A(I, €, ) over some sample space Q1. In fact, A(I, €, §)(w) is a ratio-
nal number for w € Q. Consider the event E C Q given by

E={0eQ | |AUe 8)w)—CP®{)| < e-CP().

Then A is an FPRAS for OCQA(Z, Ms, Q) if
Pr(E)>1-6

and A runs in polynomial time in I, 1/e and log(1/9).

We proceed to show that the OCQA problem does not admit
an FPRAS, under the widely accepted complexity assumption that
RP # NP. Recall that RP is the complexity class of problems that
are efficiently solvable by a randomized algorithm with a bounded
one-sided error (i.e., the answer may mistakenly be “no”) [4].

THEOREM 5.1. Assume RP# NP. Then there is a set of constraints 3,
a Markov chain generator My, w.r.t. %, and a first-order query Q such
that there is no FPRAS for OCQA(Z, My, Q). We can further assume
that 3 contains only inclusion dependencies or only key dependencies
or only denial constraints, and that Q is a conjunctive query.

A standard approach for establishing the non-existence of an
FPRAS is to show that the decision version of the function problem
in question is NP-hard [25]. This is how we prove Theorem 5.1. The
decision version of OCQA(Z, My, Q), which we call tuple probability
checking, is as follows:

PROBLEM : TPC(Z, M3, Q(x))
INPUT : A database D and 7 € dom(B(D, Z))l’zl.
OUTPUT: Is CPD,M);,Q(E) > 0?

We show that:

PROPOSITION 5.2. There exists a set of constraints X, a Markov
chain generator My, wr.t. X, and a first-order query Q such that
TPC(Z, M3, Q) is NP-hard. The hardness holds even under the restric-
tions of Theorem 5.1.

Assume now that OCQA(Z, Mz, Q) admits an FPRAS. We can
show that TPC(Z, Ms, Q) is in BPP, i.e., the class of decision prob-
lems that are efficiently solvable via a randomized algorithm with
a bounded two-sided error [4]. Since TPC(Z, My, Q) is NP-hard, by
Proposition 5.2, we conclude that NP C BPP. But it is well-known
that this implies RP = NP [25], and Theorem 5.1 follows.

Approximation With Additive Error

Even though OCQA is not approximable with multiplicative error,
we now show that it admits an approximation with additive error.
Since the output of OCQA is a probability, this is a strong positive
result, as explained above. To obtain it, we need to impose a restric-
tion on repairing Markov chain generators. Recall that ras(M) is
the set of absorbing states of a Markov chain M that are reachable
from the initial state with non-zero probability.

I There is no restriction on the sample space Q. As we shall see below, a natural sample
space is the set of reachable absorbing states of our repairing Markov chain.
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Definition 5.3. A repairing Markov chain generator Ms, is non-
failing if, for every database D, the set ras(Mx (D)) does not contain
any failing repairing sequences. ]

This covers several important cases, in particular, the case where
only deletions are used, which has been thoroughly studied in the
classical CQA setting [12]. A (D, X)-repairing Markov chain M =
(e, P) supports only deletions if, for every s, s’ € RS(D, ) such that
s #5s’,P(s,s") > 0 implies s’ = s-—F for some F C B(D, Y), i.e., only
deletions are assigned non-zero probability. A repairing Markov
chain generator My, supports only deletions if M5 (D) supports only
deletions for every database D.

PRrOPOSITION 5.4. Consider a set 2 of TGDs, EGDs, and DCs, and a
repairing Markov chain generator Ms. If My, supports only deletions,
then it is non-failing.

We now show that for non-failing Markov chain generators,
OCAQA is efficiently approximable up to a polynomial additive error
factor. Intuitively, the reason why we focus on such Markov chain
generators is that in the absence of a failing repairing sequence,
the probability CP(#) of a tuple f is not a conditional probability
anymore since the event of reaching a failing repairing sequence
has probability 0. Thus, we have to approximate only the numerator
of CP(f). The algorithm that we provide does this, but it is not yet
clear how it could be used to approximate the ratio that defines the
conditional probability where the denominator is less than one.

In the rest of the section, fix a set ¥ of constraints, a non-failing re-
pairing Markov chain generator My w.r.t. %, and a first-order query
Q(x). As for the case of multiplicative error, a polynomial-time ran-
domized approximation with additive error for OCQA(Z, My, Q) is
a randomized algorithm A such that, for every instance I = (D, )
of it, where D is a database and € dom(B(D,%))!*!, e > 0, and
0 < § < 1, guarantees

Pr(JA(I,e,8) —CP(f)| <€) > 1-9,

and runs in polynomial time in I, 1/€ and log(1/6). In other words,
A returns a random variable over some sample space Q, and the
probability of the event

{weQ | |A(€,0)(w)— CP(F)| < €}

is at least 1 — §. Notice that the crucial difference compared to the
definition of FPRAS for OCQA(Z, Mz, Q) is that € is not multiplied
by CP(%). Our main positive result follows:

THEOREM 5.5. For every set of constraints X, non-failing repair-
ing Markov chain generator Ms, w.r.t. 2, and first-order query Q,
OCQA(Z, Ms, Q) admits a polynomial-time randomized approxima-
tion with additive error.

We proceed to establish the above result. The sample space Q
that we use in the proof is the set ras(Mx (D)) of reachable absorb-
ing states of Mx(D). Since My is non-failing, the elements of Q
are successful repairing sequences. The distribution 7 on Q is the
hitting distribution of Mx(D).

Assume we have access to a polynomial-time randomized algo-
rithm, which we call Sample, that works as follows. It takes as input
an instance I = (D, ) of OCQA(Z, Mz, Q) and outputs a random
variable X; over (Q, 7) that maps Q to {0,1}, and Pr(X; = 1) =
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CP(%). Under this assumption, we devise a polynomial-time ran-
domized approximation with additive error for OCQA(Z, My, Q).
Once this is done, we provide a formal definition of Sample.
Consider n > 0 random variables XIl, . ,XI” that are computed
using Sample. Let X7, , be the random variable 1/n- 37 X;, which
is the sample mean of X1, ... ,X}’. Note thatXIl, o ,X;’ are defined
over the same probability space, they have the same image {0, 1},
and Pr(XIi = 1) = CP(f) for every 1 < i < n. By Hoeffding’s
inequality, which provides a lower bound on the probability that
the sample mean of n random variables does not deviate from its
expected value by more than some factor [24], we obtain that

Pr(Xpn - CP(B) <d) > 1-2e720%
for d > 0. Having this inequality in place, it is easy to show that
Pr(|X;.n —CP(F)| <e) > 1-6,

where e > 0,0 < § < 1, and n = 1/2¢% - In(2/8). It remains to
show that X; ,, is computable in polynomial time in the size of I,
1/€, and log(1/d), which immediately implies that there exists a
polynomial-time randomized approximation with additive error for
OCQA(Z, Ms, Q), as needed. This is done via the algorithm Sample:
make n = 1/2€2 - In(2/8) calls Sample(I), and return the ratio m/n,
where m is the number of times Sample(I) outputs 1.

The Algorithm Sample. The above argument heavily relies on the
fact that we have access to the randomized algorithm Sample, which
we now describe. Recall that Sample(I), where I = (D, t), should run
in polynomial time and output a random variable Xj : Q — {0, 1},
and Pr(X; = 1) = CP(f). The formal definition follows:

(1) (e,P) := M5(D)
(2) s:=¢
(3) while s(D) is inconsistent with % do:

(@) N:={op|s-opeRS(D,ZX),P(s,s - op) >0}

(b) Choose op € N with probability P(s, s - op)

(c) s:=s-o0p

end while

(4) If € Q(s(D)), then return 1; otherwise, return 0.

Roughly, the algorithm randomly chooses a (D, ¥)-repairing se-
quence s and returns 1 if s(D) entails the input tuple f; otherwise,
it returns 0. Note that the while-loop terminates since there are no
failing sequences and, by construction, Sample(I) is a random vari-
able over (Q, ). A key property that the algorithm Sample exploits
is the tree-like structure of the repairing Markov chain Ms (D). This
allows the algorithm to construct in polynomial time, in a level-
by-level fashion, the probability z(s) of a sequence s € ras(Mx(D)),
where 7 is the hitting distribution of Mx (D). We can then show
that Sample is indeed the desired randomized algorithm:

PROPOSITION 5.6. Consider an instance I = (D, t) of the problem
OCQA(Z, Ms, Q). The following hold:

o Sample(I) terminates after polynomially many steps.
o Pr(Sample(I) = 1) = CP(%).

Note that in fact one shows the following:

Pr(Sample(I) = 1) = Z P
(D',p)€|[D]]Mz and feQ(D’)
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In general, this may be different from the probability CP(Z) since
the denominator X(p, p)ef Dl P is missing. Nevertheless, since
M, is non-failing, CP(#) is not a conditional probability (i.e., the
denominator equals to one), and thus Pr(Sample(I) = 1) = CP(#).

On implementing the approximation scheme. Theorem 5.5
tells us that we can efficiently approximate OCQA with additive
error. How can such a scheme be implemented in practice, when Q
is an SQL query? We now outline a possible scheme for the common
case of deletion updates and key violations.

The user sets numbers € and §, and computes the number n of
samples from it as 1/2¢%-In(2/8). To give an idea of the magnitude of
this number, it is not small but not very large either: fore = § = 0.1,
for example, it is 150, which looks like a reasonable price to pay for
approximating an intractable problem). We then do the following
n times: from each group of tuples in relation R that violate a key
(i.e., tuples with the same value of the key), randomly pick at most
one tuple to be left there, and collect others in a relation Ry,;. Then
run the original query Q in which each relation R is replaced with
R — Ry.;, and append the outcome to a temporary table T that
collects results of the n random runs. When T is computed, for
each tuple  we compute the number of times n; it occurs with a
simple aggregate query, and return n; /n for each such #. This is the
approximation of CP(%).

The question is how this will perform in practice. The right way
to answer this question is to design a proper set of experiments,
which we intend to do in the followup work. At this early stage
we wanted to make sure that the idea of the approximation is
plausible. The biggest obstacle to it would be a significant slowdown
of modified queries in which relations R are replaced with R — R .;;
such slowdowns due to optimizer difficulties are not unheard of,
even in simple cases of mild changes in queries [13]. Repeating a
much slower modified query multiple times would not be feasible.
We thus ran a few initial experiments on such modified queries,
which showed that their performance is quite similar to that of the
original query. This gives us hope that, in addition to its theoretical
guarantees, the approach can be successfully used in practice.

6 CONCLUSIONS AND FUTURE WORK

We presented a new framework for consistent query answering
that provides us with a much better understanding of how repairs
are constructed, and consequently with a new flexible paradigm for
query answering. Based on it, we were able to push the boundaries
of the CQA approach quite far, providing an efficient approximation
scheme for all FO queries in the setting where constraints come
from the most commonly used classes, and where arbitrary deletion
updates are allowed. These promising early results lead to a host of
new questions we would like to address.

Approximation for Insertions and Deletions. How do we ex-
tend the additive error approximation scheme to handle both in-
sertions and deletions? In this case we have to approximate a ratio
and not a single number.

More Expressive Languages. We would like to extend the ap-
proach to other languages with tractable data complexity (e.g., with
aggregates [3] or various flavors of Datalog [34]), and extend the
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class of constraints, e.g., with active constraints that also suggest
an update operation as in [11].

Different Types of Updates. We can also consider modifications
of tuples. Actually, the approach closest in the spirit to ours [23]
looked at such operations.

Equally Likely Repairs. Another idea of [23] that we could apply
in our setting is to use the proportion of repairs in which a given
tuple is in the answer as a measure of certainty. This means that
every repair (not even every repairing sequence) is equally likely.

Preferences. In our framework, we express likelihoods of oper-
ations, repairs, and query answering via probabilities. A milder
way is preferences, among operations or sequences of operations,
similarly to [18, 36], or at the source level, if inconsistent data is
the result of integration [15].

Null Values. We could also use nulls (either SQL or marked) in
repairs, in cases when we insisted on adding tuples from the base.
This, of course, would bring to the fore many issues related to
incomplete information handling [33].

Other Data Models. We could also try to use our approach with
other data models (tree and graph-structured), as well as probabilis-
tic databases [32].

Optimizations. There are several ideas in the literature that were
proposed to speed up CQA, and which appear to be applicable in our
framework. Among them is the idea of localization of repairs [17],
i.e., concentrating on the part of the database where violations
occur, and dealing with partial satisfaction of constraints [10, 31].

Query Rewriting. One can express additive error approximations
by means of FO queries. These queries themselves are dependent
on the inconsistent database but their size is not. To understand
their practical feasibility we need to conduct an experimental study.

Ontological Query Answering. The standard ABC semantics for
inconsistent databases has been lifted to the ontological setting
giving rise to the so-called ABox repair semantics [30]. As it is com-
putationally hard, even for lightweight ontology languages, several
other semantics have been developed with the aim of approximat-
ing the set of consistent answers [8, 9, 30]. Approximation in this
setting refers to a subset of consistent answers, without giving any
guarantees. We would like to apply our approach in this scenario,
with the aim of providing probabilistic guarantees.
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