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Improvements on the k-center problem for uncertain data

Sharareh Alipour Amir Jafari

ABSTRACT

In real applications, there are situations where we need to
model some problems based on uncertain data. This leads us
to define an uncertain model for some classical geometric op-
timization problems and propose algorithms to solve them.
In this paper, we study the k-center problem, for uncertain
input. In our setting, each uncertain point Pi is located in-
dependently from other points in one of several possible lo-
cations {Pi,1, . . . , Pi,zi} in a metric space with metric d, with
specified probabilities and the goal is to compute k-centers
{c1, . . . , ck} that minimize the following expected cost

Ecost(c1, . . . , ck) =
∑

R∈Ω

prob(R) max
i=1,...,n

min
j=1,...k

d(P̂i, cj)

here Ω is the probability space of all realizations

R = {P̂1, . . . , P̂n}

of given uncertain points and

prob(R) =

n∏

i=1

prob(P̂i).

In restricted assigned version of this problem, an assignment
A : {P1, . . . , Pn} → {c1, . . . , ck} is given for any choice of
centers and the goal is to minimize

EcostA(c1, . . . , ck) =
∑

R∈Ω

prob(R) max
i=1,...,n

d(P̂i, A(Pi)).

In unrestricted version, the assignment is not specified and
the goal is to compute k centers {c1, . . . , ck} and an assign-
ment A that minimize the above expected cost.

We give several improved constant approximation factor
algorithms for the assigned versions of this problem in a Eu-
clidean space and in a general metric space. Our results
significantly improve the results of [14] and generalize the
results of [26] to any dimension. Our approach is to replace
a certain center point for each uncertain point and study the
properties of these certain points. The proposed algorithms
are efficient and simple to implement.

Keywords. k-center problem, uncertain points, ap-
proximation algorithm.

1. INTRODUCTION

It is not surprising that in many real-world applica-
tions, we face uncertainty about the data. Database
systems should be able to handle and correctly process

these uncertain data. Most of the time, we need to
deal with optimization problems in data bases, such as
data integration, streaming, cluster computing and sen-
sor network applications that involve parameters and
inputs whose values are known only with some uncer-
tainty[14]. So, an important challenge for database sys-
tems is to deal with large amount of data with uncer-
tainty.
In this paper we focus on a classical geometric opti-

mization problem, k-center problem, for uncertain data.
First, we introduce the uncertainty models and the pre-
vious works, then we propose our algorithms for these
models.

Problem Statement

In a metric spaceX with metric d, the k-center problem
for a set of (certain) points {P1, . . . , Pn} in X , asks for
k center points C = {c1, . . . , ck} in X that minimize the
following cost

cost(c1, . . . , ck) = maxi=1,...,n d(Pi, C),

where d(Pi, C) = minc∈C d(Pi, c). When the points
P1, . . . , Pn are uncertain, each point has a finite num-
ber of possible locations independently from the other
points with given probabilities. More precisely, we are
given a set D = {D1, . . . , Dn} of n discrete and in-
dependent probability distributions. The i-th distri-
bution, Di is defined over a set of zi possible loca-
tions Pi1, . . . , Pi,zi ∈ X . A probability pij is associ-
ated with each location such that

∑

j pij = 1 for every

i ∈ [n] = {1, . . . , n} and j ∈ {1, . . . , zi}. Thus, the prob-
abilistic points can be considered to be independent ran-
dom variablesXi. The locations together with the prob-
abilities specify their distributions Pr[Xi = Pij ] = pij
for every i ∈ [n] and j ∈ [zi]. A probabilistic set Y , con-
sisting of the probabilistic points, is therefore a random
variable. Let z = max{z1, . . . , zn} be the maximum
number of possibilities for uncertain points.
For simplicity, we use the notation P̂i for a realiza-

tion of the uncertain point Pi and the prob(P̂i) for its
probability. We let Ω denote the probability space of
all realizations R = {P1j1 , . . . Pnjn} with prob(R) =
∏n

i=1 prob(Pi,ji ).
There are three known versions of the k-center problem
for uncertain points based on the definition of the cost
function.
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• Unassigned version:
Here the goal is to find k centers C = {c1, · · · , ck}
that minimize

Ecost(c1, c2, . . . , ck) =
∑

R∈Ω prob(R)maxi=1,...,n d(P̂i, C).

• Unrestricted assigned version:
Here, all realizations of an uncertain point Pi are
assigned to a center denoted by A(Pi). In fact,
all realizations of an uncertain point Pi in the as-
signed version are in the cluster of the same center.
Therefore, the goal is to find k centers {c1, · · · , ck}
and an assignmentA : {P1, · · · , Pn} → {c1, · · · , ck}
that minimize

EcostA(c1, c2, . . . , ck) =
∑

R∈Ω prob(R)maxi=1,...,n d(P̂i, A(Pi)).

• Restricted assigned version:
Here for any set of uncertain points {P1, . . . , Pn}
and k centers {c1, . . . , ck} an assignment

A : {P1, . . . , Pn} → {c1, . . . , ck}

is given. The goal is to find {c1, . . . , ck} that min-
imizes EcostA(c1, . . . , ck)

In this paper, we consider three assignments: the
expected distance assignment that was first intro-
duced in [26], the 1-center assignments and the
expected point assignment for a Euclidean space
where both of them are new in this paper as far as
we know.

In the expected distance assignment, each uncer-
tain point Pi is assigned to

ED(Pi) = arg. min
Q∈{c1...,ck}

∑

P̂i∈Di

prob(P̂i)d(P̂i, Q).

In a Euclidean space, let

P̄i =
∑

P̂i∈Di

prob(P̂i)P̂i.

In the expected point assignment, each uncertain
point Pi is assigned to

EP (Pi) = arg. min
Q∈{c1...,ck}

d(P̄i, Q).

Finally, in the 1-center assignment, let P̃i be the
1-center of the single uncertain point Pi. An un-
certain point Pi is assigned to

OC(Pi) = arg. min
Q∈{c1...,ck}

d(P̃i, Q).

Related works

The deterministic k-center problem is a classical prob-
lem that has been extensively studied. It is well known
that the k-center problem is NP-hard even in the plane
[22] and approximation algorithms have been proposed
(e.g., see [3, 4, 15]). Efficient algorithms were also given
for some special cases, e.g., the smallest enclosing cir-
cle and its weighed version and discrete version [9, 20,
21], the Fermat-Weber problem [6], k-center on trees
[5, 12, 23]. Refer to [8] for other variations of facility
location problems. The deterministic k-center in one-
dimensional space is solvable in O(n logn) time [24].
One of the most elegant approximation algorithms for
k-center clustering is the 2-factor approximation algo-
rithm by Gonzalez [13] which can be made to run in
O(n log k) time [11]. One of the fastest methods for
k-center clustering in 2 and 3 dimensions is by Aggar-
wal and Procopiuc [1] which uses a dynamic program-
ming approach to k-center clustering and whose running

time is upper bounded by O(n log k)+ (kǫ )
O(k1−

1

d ). An-
other elegant solution to the k-center clustering prob-
lem was given by Badoiu et.a [4]. This algorithm gives
a (1 + ǫ)-approximation factor algorithm which runs in

2O((k log k)/ǫ2)dn in Rd. Another algorithm based on
coresets runs in O(kn) [19] and it is claimed that the
running time is much less than the worst case and thus
it’s possible to solve some problems when k is small (say
k < 5).
Several recent works have dealt with clustering prob-

lems on probabilistic data. One approach was to gener-
alize well-known heuristic algorithms to the uncertain
setting. For example a clustering algorithm called DB-
SCAN [10] was also modified to handle probabilistic
data by Kriegel and Pfeifle [17, 18] and Xu and Li [27].
Refer to [2] for a survey on data mining of uncertain
data.
Cormode and McGregor [7] introduced the study of

probabilistic clustering problems. They developed ap-
proximation algorithms for the probabilistic settings of
k-means, k-median as well as k-center clustering. They
described a pair of bicriteria approximation algorithms,
for inputs of a particular form; one of which achieves a
(1+ ǫ)-approximation with a large blow up in the num-
ber of centers, and the other which achieves a constant
factor approximation with only 2k centers.
Guha and Muhagala [14] improved upon the previ-

ous work. They achieved O(1)-approximations in fi-
nite metric space, while preserving the number of cen-
ters both for assigned and unassigned version of the
k-center problem. More precisely, the approximation
factor of their algorithm for unrestricted assigned ver-
sion is 15(1+2ǫ) and the running time of their algorithm

is polynomial in input size and
1

ǫ
.

Munteanu and et.al. presented the first polynomial
time (1 +ǫ)-approximation algorithm for the probabilis-
tic smallest enclosing ball problem with extensions to
the streaming setting[25] .
Wang and Zhang [26], introduced the restricted as-



signed version under the expected distance assignment.
They solved the one-dimensional k-center problem, in
O(zn log zn+n log k logn) time. If dimension is one and
the z locations of each uncertain point are sorted, they
reduced the problem to a linear programming problem
and thus solved the problem in O(zn) time by applying
a linear time algorithm.
Haung and Li [16] gave a PTAS for unassigned version

of the probabilistic k-center problem in Rd, when both
k and d are constants.

2. MAIN RESULTS

In this paper, we propose several approximation algo-
rithms for restricted and unrestricted assigned version
of uncertain k-center problem. In this section, we state
the main results and in the next section, we give their
proofs.
Our main approach is to replace each uncertain point

P with its expected point, P̄ , in the case of the Eu-
clidean space or its 1-center, P̃ , in the case of the gen-
eral metric space. Next, we compute the k-center for
the described certain points and prove that this solu-
tion gives an approximation solution for the uncertain
points. Note that there are efficient (1+ǫ)-approximation
algorithms for the certain k-center problem in the liter-
ature.

1-center in Euclidean space

The first theorem gives a 2-approximation solution for
the 1-center problem in the Euclidean space.

Theorem 2.1. Let P1, . . . , Pn be a set of uncertain
points in the Euclidean space, and

P̄1 =
∑

P̂1∈D1

prob(P̂1)P̂1

be the expected point of P1. Then P̄1 is a 2-approximation
solution for the 1-center problem for P1, . . . , Pn.

Note that, we can compute P̄1 in O(z) time which is
independent of n.

Restricted assigned k-center problem in the Eu-
clidean space

For the restricted assigned k-center problem in the Eu-
clidean space, we have the following theorem.

Theorem 2.2. For a set of uncertain points P1, . . . , Pn

in a Euclidean space, let c1, . . . , ck be (1+ǫ)-approximation
solution for the k-center problem for P̄1, . . . , P̄n. Let
optED and opEP be the minimum expected costs under
the expected distance assignment and expected point as-
signment, respectively. Then,

EcostED(c1, . . . , ck) ≤ (5 + ǫ)optED

and

EcostEP (c1, . . . , ck) ≤ (3 + ǫ)optEP .

Unrestricted assigned k-center problem

For unrestricted assigned k-center problem, we prove
a stronger approximation algorithm for the Euclidean
case and a slightly weaker one for a general metric space.
For the unrestricted version, we present theorems that

indicate the relation between the restricted assignment
and unrestricted assignment. Note that in the unre-
stricted version, we have to compute the optimal k cen-
ters and also the optimal assignment.

Theorem 2.3. For a set of uncertain points P1, . . . , Pn

in a metric space, the minimum expected cost under the
expected distance assignment is a 3-approximation for
the minimum expected cost for the unrestricted assigned
k-center problem.

So, any algorithm for the restricted assigned version un-
der the expected point assignment gives a 3-approximation
solution for the unrestricted assigned version. Since, the
restricted assigned version under the expected distance
assignment for R1 has exact solution [26], so we have a
3-approximation solution for the unrestricted assigned
version in R1. For higher dimensions, we present the
following theorems.

Theorem 2.4. For a set of uncertain points P1, . . . , Pn

in a Euclidean space, let c1, . . . , ck be (1+ǫ)-approximation
solution for the k-center problem for P̄1, . . . , P̄n. Let
c∗1, . . . , c

∗
k and an assignment A be the optimal solu-

tion for the unrestricted assigned k-center problem for
P1, . . . , Pn. Then,

EcostED(c1, . . . , ck) ≤ (5 + ǫ)EcostA(c
∗
1, . . . , c

∗
k).

If, in the above theorem, instead of expected distance
assignment we use the expected point assignment, then
we get a better approximation factor.

Theorem 2.5. For a set of uncertain points P1, . . . , Pn

in a Euclidean space, let c1, . . . , ck be (1+ǫ)-approximation
solution for the k-center problem for P̄1, . . . , P̄n. Let
c∗1, . . . , c

∗
k and an assignment A be the optimal solu-

tion for the unrestricted assigned k-center problem for
P1, . . . , Pn. Then,

EcostEP (c1, . . . , ck) ≤ (3 + ǫ)EcostA(c
∗
1, . . . , c

∗
k).

In a general metric space, we do not have the expected
point construction and instead we use the 1-center P̃i

of the single uncertain point Pi.

Theorem 2.6. For a set of uncertain points P1, . . . , Pn

in a metric space, let c1, . . . , ck be (1+ǫ)-approximation

solution for the k-center problem for P̃1, . . . , P̃n. Let
c∗1, . . . , c

∗
k and an assignment A be the optimal solu-

tion for the unrestricted assigned k-center problem for
P1, . . . , Pn. Then,

EcostED(c1, . . . , ck) ≤ (7 + 2ǫ)EcostA(c
∗
1, . . . , c

∗
k).



If, in the above theorem, instead of expected distance
assignment we use the 1-center assignment, then we get
a better approximation factor.

Theorem 2.7. For a set of uncertain points P1, . . . , Pn

in a metric space, let c1, . . . , ck be (1+ǫ)-approximation

solution for the k-center problem for P̃1, . . . , P̃n. Let
c∗1, . . . , c

∗
k and an assignment A be the optimal solu-

tion for the unrestricted assigned k-center problem for
P1, . . . , Pn. Then

EcostOC(c1, . . . , ck) ≤ (5 + 2ǫ)EcostA(c
∗
1, . . . , c

∗
k).

Note that the best constant approximation factor al-
gorithm for the unrestricted assigned version, was 15(1+
2ǫ), with the polynomial running time in input size and
1

ǫ
[14].

Our results are summarized in Table 1. Note that the
empty places for the running times are due to the fact
that they depend on a (1+ ǫ)-approximation algorithm
used for the k-center problem of certain points.

3. PROOFS

In this section, we provide the proofs of the theorems
stated in the previous section. First, we present two
lemmas that are crucial for the rest of this section.

Lemma 3.1. For an uncertain point P in a Euclidean
space and any point Q, we have

d(P̄ , Q) ≤ Ed(P,Q) =
∑

P̂∈D

prob(P̂ )d(P̂ , Q)

where P̄ =
∑

P̂∈D prob(P̂ )P̂ is the expected point of P .

Proof. Since, d(P̄ , Q) can be defined in terms of the
Euclidean norm as ||P̄ −Q||, using the triangle inequal-
ity

||P̄ −Q|| = ||
∑

P̂∈D

prob(P̂ )P̂ −Q||

= ||
∑

P̂∈D

prob(P̂ )(P̂ −Q)|| ≤
∑

P̂∈D

prob(P̂ )||P̂ −Q||

= Ed(P,Q).

Lemma 3.2. For uncertain points P1, . . . , Pn , any k
centers c1, . . . , ck and any assignment A, we have

EcostA(c1, . . . , ck) ≥
∑

P̂1∈D1

prob(P̂1)d(P̂1, A(P1)).

Proof. Let Ω(P̂1) be those realizations that P1 is

realized as P̂1. Then,
∑

R∈Ω(P̂1)
prob(R) = prob(P̂1).

We have

EcostA(c1, . . . , ck) =
∑

R∈Ω

prob(R) max
i=1...,n

d(P̂i, A(Pi))

=
∑

P̂1∈D1

∑

R∈Ω(P̂1)

prob(R) max
i=1...,n

d(P̂i, A(Pi))

≥
∑

P̂1∈D1

∑

R∈Ω(P̂1)

prob(R)d(P̂1, A(P1))

=
∑

P̂1∈D1

prob(P̂1)d(P̂1, A(P1)).

Proof of Theorem 2.1

Let c∗ be the optimal 1-center of P1, . . . , Pn, we need to
show that

Ecost(P̄1) ≤ 2Ecost(c∗).

By the definition of Ecost,

Ecost(P̄1) =
∑

R∈Ω

prob(R) max
i=1,...,n

d(P̄1, P̂i).

By triangle inequality,

≤
∑

R∈Ω

prob(R) max
i=1,...,n

(d(P̄1, c
∗) + d(c∗, P̂i))

= d(P̄1, c
∗) +

∑

R

prob(R) max
i=1,...,n

d(c∗, P̂i).

By Lemma 3.1 and definition of Ecost,

≤ (
∑

P̂1∈D1

prob(P̂1)d(P̂1, c
∗)) + Ecost(c∗).

By Lemma 3.2,

≤ 2Ecost(c∗).

Proof of Theorem 2.2

To prove Theorem 2.2, the following two lemmas are
needed.

Lemma 3.3. For a set of uncertain points P1, . . . , Pn

in a Euclidean space, let c1, . . . , ck be any k centers and
A : {P1, . . . , Pn} → {c1, . . . , ck} be any assignment, we
have
∑

R∈Ω

prob(R) max
i=1,...,n

d(P̂i, P̄i) ≤ 2EcostA(c1, . . . , ck),



Table 1: Our results for various versions of uncertain k-center

Objective Metric Running time Assignment Approx-Factor

1-center Euclidean O(z) - 2
k-center Euclidean O(nz + n log k) restricted assigned version expected distance 6
k-center Euclidean - restricted assigned version expected distance 5 + ǫ

k-center Euclidean O(nz + n log k) restricted assigned version expected point 4
k-center Euclidean - restricted assigned version expected point 3 + ǫ

k-center Euclidean O(nz + n log k) unrestricted assigned version 4
k-center Euclidean - unrestricted assigned version 3 + ǫ

k-center R1 O(zn log zn+ n log k log n) unrestricted assigned version 3
k-center any metric - unrestricted assigned version 5 + ǫ

in particular for any 1 ≤ i ≤ n,
∑

P̂i∈Di

prob(P̂i)d(P̂i, P̄i) ≤ 2EcostA(c1, . . . , ck).

Proof. We have
∑

R∈Ω

prob(R) max
i=1,...,n

d(P̂i, P̄i)

≤
∑

R∈Ω

prob(R) max
i=1,...,n

(d(P̂i, A(Pi) + d(A(Pi), P̄i))

≤
∑

R∈Ω

prob(R) max
i=1,...,n

d(P̂i, A(Pi)) + d(A(P1), P̄1)

where, we assume d(A(P1), P̄1) = maxi=1,...,n d(A(Pi), P̄i),
now the above term is

= EcostA(c1, . . . , ck) + d(A(P1), P̄1).

It is enough to show d(A(P1), P̄1) ≤ EcostA(c1, . . . , ck).
But, according to Lemma 3.2, we have

d(A(P1), P̄1) ≤
∑

P̂1∈D1

prob(P̂1)d(A(P1), P̂1).

and from Lemma 3.2, it follows that d(A(P1), P̄1) ≤
EcostA(c1, . . . , ck).

Lemma 3.4. Let P1, . . . , Pn be a set of uncertain points
for any k centers c1, . . . , ck and assignment A one has

cost(c1, . . . , ck) ≤ EcostA(c1, . . . , ck).

where cost is for the certain points P̄1, . . . , P̄n.

Proof. One has

cost(c1, . . . , ck) = d(ci, P̄j).

Since, ci is the closest center to P̄j and by Lemma 3.1,

≤ d(A(Pj), P̄j) ≤
∑

P̂j∈Dj

prob(P̂j)d(P̂j , A(Pj))

and by Lemma 3.2,

≤ EcostA(c1, . . . , ck).

Now, we present the proof of Theorem 2.2 for the
expected distance assignment. Let c∗1, . . . , c

∗
k be the op-

timal solution for restricted assigned version of k-center
problem with the expected distance assignment. We
need to show

EcostED(c1, . . . , ck) ≤ (5 + ǫ)EcostED(c∗1, . . . , c
∗
k).

By definition,

EcostED(c1, . . . , ck) =
∑

R

prob(R) max
i=1,...,n

d(P̂i, ED(Pi)).

By triangle inequality,

≤
∑

R

prob(R) max
i=1,...,n

(d(P̂i, P̄i) + d(P̄i, ED(Pi))).

If we let d(P̄1, ED(P1)) = maxi=1...,n d(P̄i, ED(Pi)) and
use Lemma 3.3,

≤ 2EcostED(c∗1, . . . , c
∗
k) + d(P̄1, ED(P1))

So, we need to show that

d(P̄1, ED(P1)) ≤ (3 + ǫ)EcostED(c∗1, . . . , c
∗
k).



Let ci be the closest point among {c1, . . . , ck} to P̄1.
Then, by Lemma 3.1,

d(P̄1, ED(P1)) ≤
∑

P̂1∈D1

prob(P̂1)d(P̂1, ED(P1)).

Since, ED(P1) has the closest expected distance to P1

among c1, . . . , ck,

≤
∑

P̂1∈D1

prob(P̂1)d(P̂1, ci).

By triangle inequality,

≤ (
∑

P̂1∈D1

prob(P̂1)d(P̂1, P̄1)) + d(P̄1, ci).

By Lemma 3.3,
∑

P̂1

prob(P̂1)d(P̂1, P̄1) ≤ 2EcostED(c∗1, . . . , c
∗
k).

So, it remains to show

d(P̄1, ci) ≤ (1 + ǫ)EcostED(c∗1, . . . , c
∗
k).

Since, ci is the closest center to P̄1 we have

d(P̄1, ci) ≤ cost(c1, . . . , ck)

where cost is for the certain points P̄1, . . . , P̄n. Since,
c1, . . . , ck is a (1 + ǫ)-approximation solution for the k-
center problem,

≤ (1 + ǫ)cost(c∗1, . . . , c
∗
k)

and by Lemma 3.4,

≤ (1 + ǫ)EcostED(c∗1, . . . , c
∗
k).

So, Theorem 2.2 for the expected distance assignment
is proved.
Now, we give the proof of Theorem 2.2 for the the ex-

pected point assignment. Let c∗1, . . . , c
∗
k be the optimal

solution for the restricted assigned k-center problem for
the expected point assignment. We need to show

EcostEP (c1, . . . , ck) ≤ (3 + ǫ)EcostEP (c
∗
1, . . . , c

∗
k).

By definition,

EcostEP (c1, . . . , ck) =
∑

R

prob(R) max
i=1,...,n

d(P̂i, EP (Pi)).

By triangle inequality,

≤
∑

R

prob(R) max
i=1,...,n

(d(P̂i, P̄i) + d(P̄i, EP (Pi)).

If we let d(P̄1, ED(P1)) = maxi=1...,n d(P̄i, ED(Pi)) and
use Lemma 3.3,

≤ 2EcostED(c∗1, . . . , c
∗
k) + d(P̄1, EP (P1)).

So, we need to show that

d(P̄1, EP (P1)) ≤ (1 + ǫ)EcostED(c∗1, . . . , c
∗
k).

By definition of expected point assignment,

d(P̄1, EP (P1)) = cost(c1, . . . , ck)

and since, c1, . . . , ck is a (1+ ǫ)-approximation solution,

cost(c1, . . . , ck) ≤ (1 + ǫ)cost(c∗1, . . . , c
∗
k)

and by Lemma 3.4,

≤ (1 + ǫ)EcostEP (c
∗
1, . . . , c

∗
k).

So, Theorem 2.2 is completely proved.

Remark 3.1. There is a greedy 2-approximation al-
gorithm for deterministic k-center problem of certain
points P̄1, . . . , P̄n in a metric space given in [13]. It is
as follows. First, choose any point, say P̄1 and then
choose the farthest point from P̄1, say P̄2 and then,
the farthest point from the set {P̄1, P̄2}, say P̄3 and
continue until finding the farthest point from the set
{P̄1, . . . , P̄k−1}, say P̄k. Then, the points P̄1, . . . , P̄k

is a 2-approximation solution for the deterministic k-
center problem. If we use this method, in the first phase
of the algorithm, we compute the expected point of each
probabilistic point which takes O(nz). Next, we compute
P̄1, . . . , P̄k, The running time of this phase is O(n log k)
[11]. So, the overall running time of algorithm is O(nz+
n log k) and we get respectively a 6 and 4 approximation
for the optimal expected cost of the k-center problem for
the expected distance and expected point assignments.

Proof of Theorem 2.3

Let c1, . . . , ck be the optimal solution for the restricted
assigned k-center problem with expected distance as-
signment. Let c∗1, . . . , c

∗
k and assignment A be the opti-

mal solution for the unrestricted assigned k-center prob-



lem. Then,

EcostED(c1, . . . , ck) ≤ EcostED(c∗1, . . . , c
∗
k)

=
∑

R

prob(R) max
i=1,...,n

d(P̂i, ED(Pi))

≤
∑

R

prob(R) max
i=1,...,n

(d(P̂i, A(Pi)) + d(A(Pi), ED(Pi)))

≤ EcostA(c
∗
1, . . . , c

∗
k) + d(A(P1), ED(P1))

where d(A(P1), ED(P1)) = maxi=1...,n d(A(Pi), ED(Pi)).
By triangle inequality,

d(A(P1), ED(P1))

≤
∑

P̂1∈D1

prob(P̂1)(d(A(P1), P̂1) + d(P̂1, ED(P1))

By Lemma 3.2 and the fact that ED(P1) has the small-
est expected distance from P1 among c∗1, . . . , c

∗
k, we get

≤ EcostA(c
∗
1, . . . , c

∗
k) +

∑

P̂1∈D1

prob(P̂1)d(P̂1, A(P1))

≤ 2EcostA(c
∗
1, . . . , c

∗
k).

So, Theorem 2.3 is proved.

Proof of Theorem 2.4

By definition,

EcostED(c1, . . . , ck) =
∑

R

prob(R) max
i=1...,n

d(P̂i, ED(Pi)).

By triangle inequality,

≤
∑

R

prob(R) max
i=1...,n

(d(P̂i, A(Pi)) + d(A(Pi), ED(Pi)))

≤ EcostA(a1, . . . , ak) + d(A(P1), ED(P1))

where d(A(P1), ED(P1)) = maxi=1...,n d(A(Pi), ED(Pi)).
Now by triangle inequality and Lemma 3.1,

d(A(P1), ED(P1)) ≤ d(A(P1), P̄1) + d(P̄1, ED(P1))

≤
∑

P̂1

prob(P̂1)d(A(P1), P̂1) +
∑

P̂1

prob(P̂1)d(P̂1, ED(P1)).

Let c1 be a center among c1, . . . , ck that is closest to
P̄1. By Lemma 3.2 and the fact that ED(P1) has the
closest expected distance to P1 among the centers we
get

≤ EcostA(c
∗
1, . . . , c

∗
k) +

∑

P̂1

prob(P̂1)d(P̂1, c1).

If instead of d(P̂1, c1), we put d(P̂1, A(P1))+d(A(P1), c1)
and use Lemma 3.2, we get

≤ 2EcostA(c
∗
1, . . . , c

∗
k) + d(A(P1), c1).

Now,

d(A(P1), c1) ≤ d(A(P1), P̄1) + d(P̄1, c1)

≤
∑

P̂1

prob(P̂1)d(P̂1, A(P1)) + cost(c1, . . . , ck).

By Lemma 3.2 and the fact that c1, . . . , ck is a (1 + ǫ)-
approximation solution for the k-center problem,

≤ EcostA(c
∗
1, . . . , c

∗
k) + (1 + ǫ)cost(c∗1, . . . , c

∗
k).

Finally, by Lemma 3.4,

≤ (2 + ǫ)EcostA(c
∗
1, . . . , c

∗
k).

This proves Theorem 2.4.

Proof of Theorem 2.5

By definition,

EcostEP (c1, . . . , ck)

=
∑

R∈Ω

prob(R) max
i=1,...,n

d(P̂i, EP (Pi))

≤
∑

R∈Ω

prob(R) max
i=1,...,n

(d(P̂i, P̄i) + d(P̄i, EP (Pi))).

If we let d(P̄1, EP (P1)) = maxi=1...,n d(P̄i, EP (Pi)) and
use Lemma 3.3 we get

≤ 2EcostA(c
∗
1, . . . , c

∗
k) + d(P̄1, EP (P1)).

Now, by Lemma 3.1,

d(P̄1, EP (P1)) ≤
∑

P̂1

prob(P̂1)d(P̂1, EP (P1)).

Since,

d(P̂1, EP (P1)) = cost(c1, . . . , ck)

≤ (1 + ǫ)cost(c∗1, . . . , c
∗
k),

also by Lemma 3.4,

≤ (1 + ǫ)EcostA(c
∗
1, . . . , c

∗
k),

this proves Theorem 2.5.



Proofs of Theorem 2.6 and Theorem 2.7

To prove theorems 2.6 and 2.7, we need two lemmas
that are analogue of Lemmas 3.3 and 3.4 for a metric
space.

Lemma 3.5. Let P1, . . . , Pn be a set of uncertain points
in a metric space. Let P̃i be the 1-center for the single
uncertain point Pi. For any set of centers c1, . . . , ck
and any assignment A : {P1, . . . , Pn} → {c1, . . . , ck} we
have
∑

R

prob(R) max
i=1,...,n

d(P̂i, P̃i) ≤ 3EcostA(c1, . . . , ck).

Proof. Let d(A(P1), P̃1) = maxi=1...,n d(A(Pi), P̃i).

If we use d(P̂i, P̃i) ≤ d(P̂i, A(Pi))+ d(A(Pi), P̃i), we get
that the left hand side is

≤ EcostA(c1, . . . , ck) + d(A(P1), P̃1).

By triangle inequality,

d(A(P1), P̃1)

≤
∑

prob(P̂1)d(A(P1), P̂1) +
∑

prob(P̂1)d(P̂1, P̃1).

Since, P̃1 is 1-center we get

≤ 2
∑

prob(P̂1)d(A(P1), P̂1),

and by Lemma 3.2,

≤ 2EcostA(c1, . . . , ck).

This proves the lemma.

Lemma 3.6. Let P1, . . . , Pn be a set of uncertain points
in a metric space. For any k centers c1, . . . , ck and as-
signment A one has

cost(c1, . . . , ck) ≤ 2EcostA(c1, . . . , ck).

where cost is for the certain points P̃1, . . . , P̃n, where P̃i

is the 1-center of the uncertain point Pi.

Proof. Let

cost(c1, . . . , ck) = d(ci, P̃j)

Then, since ci is the closest center to P̃j ,

≤ d(A(Pj), P̃j)

by triangle inequality,

≤
∑

prob(P̂j)d(A(Pj), P̂j) +
∑

prob(P̂j)d(P̂j , P̃j).

since, P̃j is 1-center of Pj ,

≤ 2
∑

prob(P̂j)d(A(Pj), P̂j)

≤ 2EcostA(c1, . . . , ck)

So, the lemma is proved.

We now prove Theorem 2.6. By definition,

EcostED(c1, . . . , ck) =
∑

R∈Ω

prob(R) max
i=1...,n

d(P̂i, ED(Pi))

≤
∑

R∈Ω

prob(R) max
i=1...,n

d(P̂i, P̃i) + d(P̃1, ED(P1)).

Where d(P̃1, ED(P1)) = maxi=1,...k d(P̃i, ED(Pi)). Since,
by Lemma 3.5, the first term is at most 3EcostA(c

∗
1, . . . , c

∗
k),

it is enough to show

d(P̃1, ED(P1)) ≤ (4 + 2ǫ)EcostA(c
∗
1, . . . , c

∗
k).

Now by triangle inequality and the fact that P̃1 is 1-
center of P1 we get

d(P̃1, ED(P1))

≤
∑

P̂1∈D1

prob(P̂1)(d(P̃1, P̂1) + d(P̂1, ED(P1)))

≤
∑

P̂1∈D1

prob(P̂1)
(

d(A(P1), P̂1) + d(P̂1, ED(P1))
)

≤ EcostA(c
∗
1, . . . , c

∗
k) +

∑

P̂1∈D1

prob(P̂1)d(P̂1, ED(P1))

≤ EcostA(c
∗
1, . . . , c

∗
k) +

∑

P̂1∈D1

prob(P̂1)d(P̂1, cj)

where cj is the closest among ci’s to P̃1. Now,
∑

P̂1∈D1

prob(P̂1)d(P̂1, cj)

≤
∑

P̂1∈D1

prob(P̂1)d(P̂1, P̃1)) + d(P̃1, cj)

≤
∑

P̂1∈D1

prob(P̂1)d(P̂1, A(P1)) + d(P̃1, cj)

≤ EcostA(c
∗
1, . . . , c

∗
k) + d(P̃1, cj).

Now, d(P̃1, cj) ≤ cost(c1, . . . , ck). Since, these centers
are a (1 + ǫ)-approximation solution for the k-center
problem,

cost(c1, . . . , ck)

≤ (1 + ǫ)cost(c∗1, . . . , c
∗
k)



by lemma 3.6,

≤ (2 + 2ǫ)EcostA(c
∗
1, . . . , c

∗
k)

and this finishes the proof of Theorem 2.6.
Finally, we prove Theorem 2.7. By definition,

EcostOC(c1, . . . , ck) =
∑

R

prob(R) max
i=1...,n

d(Pi, OC(Pi)).

By triangle inequality,

≤
∑

R

prob(R) max
i=1...,n

(d(Pi, P̃i) + d(P̃i, OC(Pi))).

By Lemma 3.5,

≤ 3EcostA(c
∗
1, . . . , c

∗
k) + d(P̃1, OC(P1))

where d(P̃1, OC(P1)) = maxi=1...,n d(P̃i, OC(Pi)). Now,

d(P̃1, OC(P1)) = cost(c1, . . . , ck) ≤ (1 + ǫ)cost(c∗1, . . . , c
∗
k)

and by lemma 3.6,

≤ (2 + 2ǫ)EcostA(c
∗
1, . . . , c

∗
k)

and this finishes the proof.

4. CONCLUSION

In this paper the k-center problem for uncertain data
points have been studied. We have proposed new as-
signment schemes and obtained improved constant ap-
proximation factor algorithms for them. Note that, the
new assignments introduced in this paper allowed us to
improve the approximation factor for the unrestricted
assigned version.
The restricted version with expected distance assign-

ment for R1 was studied in [26]. Here we gave approxi-
mation algorithms for Rd and also for any metric space.
The case of unrestricted assigned version which was

studied in [14], has been improved. The constant of
approximation has been reduced to 5 + ǫ from 15 + ǫ.
We have also separately studied the case for the metric
space and the Euclidean space. In a future work, we
intend to use our approach to study the k-median and
the k-mean problems.
Also, we intend to give a PTAS for the assigned ver-

sions of the uncertain k-center problem.
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