
First-Order Query Evaluation with Cardinality Conditions

Martin Grohe1 and Nicole Schweikardt∗2

1RWTH Aachen University
2Humboldt-Universität zu Berlin

July 20, 2017

Abstract

We study an extension of first-order logic that allows to express cardinality conditions in
a similar way as SQL’s COUNT operator. The corresponding logic FOC(P) was introduced
by Kuske and Schweikardt [16], who showed that query evaluation for this logic is fixed-
parameter tractable on classes of databases of bounded degree.

In the present paper, we first show that the fixed-parameter tractability of FOC(P) cannot
even be generalised to very simple classes of databases of unbounded degree such as unranked
trees or strings with a linear order relation.

Then we identify a fragment FOC1(P) of FOC(P) which is still sufficiently strong to
express standard applications of SQL’s COUNT operator. Our main result shows that query
evaluation for FOC1(P) is fixed-parameter tractable on nowhere dense classes of databases.

1 Introduction

Query evaluation is one of the most fundamental tasks of a database system. A large amount
of the literature in database theory and the related field of finite or algorithmic model theory is
devoted to designing efficient query evaluation algorithms and to pinpointing the exact compu-
tational complexity of the task. The query languages that have received the most attention are
the conjunctive queries and the more expressive relational calculus. The latter is usually viewed
as the “logical core” of SQL, and is equivalent to first-order logic FO. Here, one identifies a
database schema and a relational database of that schema with a relational signature σ and a
finite σ-structure A.

Apart from computing the entire query result, the query evaluation tasks usually studied are
model-checking (check if the answer q(A) of a Boolean query q on a database A is “yes”) and
counting (compute the number |q(A)| of tuples that belong to the result q(A) of a non-Boolean
query q on a database A); the counting problem is also relevant as the basis of computing
probabilities. Such a task is regarded to be tractable for a query language L on a class C of
databases if it can be solved in time f(k)·nc for an arbitrary function f and a constant c, where
k is the size of the input query q ∈ L and n the size of the input database A ∈ C. The task
then is called fixed-parameter tractable (fpt, or “in fpt”), and fixed-parameter linear (fpl, or “in
fpl”) in case that c = 1.

It is known that on unrestricted databases model-checking is W[1]-hard for conjunctive
queries [21], and the counting problem is #W[1]-hard already for acyclic conjunctive queries [5].
This means that under reasonable complexity theoretic assumptions, both problems are unlikely
to be in fpt.

∗Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SCHW 837/5-1.

1

ar
X

iv
:1

70
7.

05
94

5v
1

 [
cs

.L
O

]
 1

9
Ju

l 2
01

7

A long line of research has focused on identifying restricted classes of databases on which
query evaluation is fixed-parameter tractable for conjunctive queries, FO, or extensions of FO.
For example, model-checking and counting for FO (even, for monadic second-order logic) is in
fpl on classes of bounded tree-width [3, 2]. Model-checking and counting for FO are in fpl on
classes of bounded degree [22, 10], in fpl on planar graphs and in fpt on classes of bounded
local tree-width [11, 10], and in fpl on classes of bounded expansion [6, 14].

Grohe, Kreutzer, and Siebertz [13] recently provided an fpt model-checking algorithm for
FO on classes of databases that are effectively nowhere dense. This gives a fairly complete
characterisation of the tractability frontier for FO model-checking, as it is known that under
reasonable complexity theoretic assumptions, any subgraph-closed class that admits an fpt-
algorithm for FO model-checking has to be nowhere dense [15, 6]. The notion of nowhere dense
classes was introduced by Nešetřil and Ossona de Mendez [19] as a formalisation of classes of
“sparse” graphs. The precise definition of this notion will be relevant in this paper only in
Section 8; for now it should suffice to note that the notion is fairly general, subsumes all classes
of databases mentioned above, and there exist nowhere dense classes that do not belong to any
of those classes.

The counting problem on nowhere dense classes is known to be in fpt for purely existential
FO [20], but no extension to full FO is known [23]. Here, we obtain this extension as an
immediate consequence of our technical main result. We study an extension of FO that allows
to express cardinality conditions in a similar way as SQL’s COUNT operator. The corresponding
logic FOC(P) was introduced by Kuske and Schweikardt [16], who showed that model-checking
and counting for this logic is fixed-parameter linear on classes of databases of bounded degree.
The starting point for the work presented in this paper was the question whether this result can
be extended to other “well-behaved” classes of databases, such as the classes mentioned above.

Our first result is that the fixed-parameter tractability of FOC(P) cannot even be generalised
to very simple classes of databases of unbounded degree such as unranked trees or strings with
a linear order relation. Then, we identify a fragment FOC1(P) of FOC(P) which still extends
FO and is sufficiently strong to express standard applications of SQL’s COUNT operator. Our
main result shows that model-checking and counting for FOC1(P) is in fpt on nowhere dense
classes of databases. More precisely, for any effectively nowhere dense class C of databases we
present an algorithm that solves the model-checking problem and the counting problem in time
f(k, ε)·n1+ε for a computable function f and any ε > 0, where k is the size of the input query
q ∈ FOC1(P) and n is the size of the input database A ∈ C. Algorithms with such performance
bounds are often called fixed-parameter almost linear. This generalises the result of [13] from
FO to FOC1(P) and solves not only the model-checking but also the counting problem.

Our proof proceeds as follows. First, we reduce the query evaluation problem for FOC1(P)
to the counting problem for rather restricted FO-formulas (Section 6). Combining this with the
results on FO-counting mentioned above, we immediately obtain an fpt-algorithm for FOC1(P)
on planar graphs and classes of bounded local tree-width [10], of bounded expansion [14], and of
locally bounded expansion [23]. For nowhere dense classes, though, it is not so easy to generalise
the FO model-checking algorithm of [13] to solve the counting problem. For this, we generalise
the notion of “rank-preserving locality” of [13] from sentences to formulas with free variables
and to counting terms (Section 7), which then enables us to lift the model-checking algorithm
of [13] to an algorithm for the counting problem (Section 8).

The rest of the paper is structured as follows. Section 2 provides basic notations, Section 3
recalls the definition of FOC(P) of [16], Section 4 provides the hardness results for FOC(P) on
unranked trees and strings with a linear order, Section 5 introduces FOC1(P) and gives a precise
formulation of our main result, and Section 9 points out directions for future work.

2

2 Basic notation

We write Z, N, and N>1 for the sets of integers, non-negative integers, and positive integers,
resp. For all m,n ∈ N, we write [m,n] for the set {k ∈ N : m 6 k 6 n}, and we let [m] = [1,m].
For a k-tuple x̄ = (x1, . . . , xk) we write |x̄| to denote its arity k. By () we denote the empty
tuple, i.e., the tuple of arity 0.

A signature σ is a finite set of relation symbols. Associated with every relation symbol
R ∈ σ is a non-negative integer ar(R) called the arity of R. The size ||σ|| of a signature σ is
the sum of the arities of its relation symbols. A σ-structure A consists of a finite non-empty set
A called the universe of A, and a relation RA ⊆ Aar(R) for each relation symbol R ∈ σ. Note
that according to these definitions, all signatures and all structures considered in this paper are
finite, signatures are relational (i.e., they do not contain constants or function symbols), and
signatures may contain relation symbols of arity 0. Note that there are only two 0-ary relations
over a set A, namely ∅ and {()}.

We write A ∼= B to indicate that two σ-structures A and B are isomorphic. A σ-structure
B is the disjoint union of two σ-structures A1 and A2 if B = A1 ∪ A2, A1 ∩ A2 = ∅, and
RB = RA1 ∪RA2 for all R ∈ σ.

Let σ′ be a signature with σ′ ⊇ σ. A σ′-expansion of a σ-structure A is a σ′-structure B
such that B = A and RB = RA for every R ∈ σ. Conversely, if B is a σ′-expansion of A, then
A is called the σ-reduct of B.

A substructure of a σ-structure A is a σ-structure B with universe B ⊆ A and RB ⊆ RA for
all R ∈ σ. For a σ-structure A and a non-empty set B ⊆ A, we write A[B] to denote the induced
substructure of A on B, i.e., the σ-structure with universe B, where RA[B] = RA ∩Bar(R) for all
R ∈ σ.

Throughout this paper, when speaking of graphs we mean undirected graphs. The Gaifman
graph GA of a σ-structure A is the graph with vertex set A and an edge between two distinct
vertices a, b ∈ A iff there exists R ∈ σ and a tuple (a1, . . . , aar(R)) ∈ RA such that a, b ∈
{a1, . . . , aar(R)}. The structure A is called connected if its Gaifman graph GA is connected; the
connected components of A are the connected components of GA.

The distance distA(a, b) between two elements a, b ∈ A is the minimal number of edges
of a path from a to b in GA; if no such path exists, we let distA(a, b) := ∞. For a tuple
ā = (a1, . . . , ak) ∈ Ak and an element b ∈ A we let distA(ā, b) := mini∈[k] dist(ai, b). For every

r > 0, the r-ball of ā in A is the set NAr (ā) = {b ∈ A : distA(ā, b) 6 r}. The r-neighbourhood
of ā in A is defined as NAr (ā) := A[NAr (ā)] .

Let vars be a fixed countably infinite set of variables. A σ-interpretation I = (A, β) consists
of a σ-structure A and an assignment β in A, i.e., β : vars→ A. For k ∈ N, for a1, . . . , ak ∈ A,
and for pairwise distinct y1, . . . , yk ∈ vars, we write β a1,...,aky1,...,yk

for the assignment β′ in A with

β′(yj) = aj for all j ∈ [k], and β′(z) = β(z) for all z ∈ vars \ {y1, . . . , yk}. For I = (A, β) we let
I a1,...,aky1,...,yk

=
(
A, β a1,...,aky1,...,yk

)
.

The order of a σ-structure A is |A|, and the size of A is ‖A‖ := |A| +
∑

R∈σ |RA|. For a
graph G we write V (G) and E(G) to denote its vertex set and edge set, respectively. Sometimes,
we will shortly write ij (or ji) to denote an edge {i, j} between the vertices i and j. The size
of G is ‖G‖ := |V (G)|+ |E(G)|. Note that up to a constant factor depending on the signature,
a structure has the same size as its Gaifman graph.

3 Syntax and semantics of FOC(P)

In [16], Kuske and Schweikardt introduced the following logic FOC(P) and provided an according
notion of Hanf normal form, which was utilised to obtain efficient algorithms for evaluating
FOC(P)-queries on classes of structures of bounded degree. The syntax and semantics of FOC(P)
is defined as follows (the text is taken almost verbatim from [16]).

3

A numerical predicate collection is a triple (P, ar, J.K) where P is a countable set of predicate
names, ar : P→ N>1 assigns the arity to every predicate name, and JPK ⊆ Zar(P) is the semantics
of the predicate name P ∈ P. Basic examples of numerical predicates are P>1, P=, P6, Prime
with JP>1K := N>1, JP=K := {(m,m) : m ∈ Z}, JP6K := {(m,n) ∈ Z2 : m 6 n}, JPrimeK :=
{n ∈ N : n is a prime number}. For the remainder of this paper let us fix an arbitrary numerical
predicate collection (P, ar, J.K) that contains the predicate P>1.

Definition 3.1 (FOC(P)[σ]). Let σ be a signature. The set of formulas and counting terms
for FOC(P)[σ] is built according to the following rules:

(1) x1=x2 and R(x1, . . . , xar(R)) are formulas, where R ∈ σ and x1, x2, . . . , xar(R) are variables1

(2) if ϕ and ψ are formulas, then so are ¬ϕ and (ϕ ∨ ψ)

(3) if ϕ is a formula and y ∈ vars, then ∃y ϕ is a formula

(4) if P ∈ P, m = ar(P), and t1, . . . , tm are counting terms, then P(t1, . . . , tm) is a formula

(5) if ϕ is a formula, k ∈ N, and ȳ = (y1, . . . , yk) is a tuple of k pairwise distinct variables, then
#ȳ.ϕ is a counting term

(6) every integer i ∈ Z is a counting term

(7) if t1 and t2 are counting terms, then so are (t1 + t2) and (t1 · t2)

Note that first-order logic FO[σ] is the fragment of FOC(P)[σ] built by using only the
rules (1)–(3). Let I = (A, β) be a σ-interpretation. For every formula or counting term ξ
of FOC(P)[σ], the semantics JξKI is defined as follows.

(1) Jx1=x2KI = 1 if a1=a2 and Jx1=x2KI = 0 otherwise; JR(x1, . . . , xar(R))KI = 1 if (a1, . . . , aar(R)) ∈
RA, and JR(x1, . . . , xar(R))KI = 0 otherwise;
where aj := β(xj) for j ∈ {1, . . . ,max{2, ar(R)}}

(2) J¬ϕKI = 1− JϕKI and J(ϕ ∨ ψ)KI = max{JϕKI , JψKI}

(3) J∃y ϕKI = max{JϕKI
a
y : a ∈ A}

(4) JP(t1, . . . , tm)KI = 1 if
(
Jt1KI , . . . , JtmKI

)
∈ JPK, and JP(t1, . . . , tm)KI = 0 otherwise

(5) J#ȳ.ϕKI =
∣∣{(a1, . . . , ak) ∈ Ak : JϕKI

a1,...,ak
y1,...,yk = 1

}∣∣, where ȳ = (y1, . . . , yk)

(6) JiKI = i

(7) J(t1 + t2)KI = Jt1KI + Jt2KI , J(t1 · t2)KI = Jt1KI · Jt2KI

By FOC(P) we denote the union of all FOC(P)[σ] for arbitrary signatures σ. An expression
is a formula or a counting term. As usual, for a formula ϕ and a σ-interpretation I we will often
write I |= ϕ to indicate that JϕKI = 1. Accordingly, I 6|= ϕ indicates that JϕKI = 0. If s and t
are counting terms, then we write s− t for the counting term (s+ ((−1) · t)).

Example 3.2. The following FOC(P)-formula expresses that the sum of the numbers of nodes
and edges of a directed graph is a prime:

Prime
(

(#(x).x=x + #(x, y).E(x, y))
)
.

The counting term t := #(z).E(y, z) denotes the out-degree of y.

1in particular, if ar(R) = 0, then R() is a formula

4

The FOC(P)-formula P>1(t) expresses that the out-degree of y is > 1. For better readability
of such formulas we will often write “t > 1” instead of “P>1(t)”.

The FOC(P)-formula

∃x Prime
(

#(y).P=

(
#(z).E(x, z), #(z).E(y, z)

))
expresses that there is some number d (represented by a node x of out-degree d) such that the
number of nodes of out-degree d is a prime.

The construct ∃z binds the variable z ∈ vars, and the construct #ȳ in a counting term binds
the variables from the tuple ȳ; all other occurrences of variables are free. Formally, the set
free(ξ) of free variables of an FOC(P)-expression ξ is defined inductively as follows:

(1) free(x1=x2) = {x1, x2} and free(R(x1, . . . , xar(R))) = {x1, . . . , xar(R)}

(2) free(¬ϕ) = free(ϕ) and free((ϕ ∨ ψ)) = free(ϕ) ∪ free(ψ)

(3) free(∃y ϕ) = free(ϕ) \ {y}

(4) free(P(t1, . . . , tm)) = free(t1) ∪ · · · ∪ free(tm)

(5) free(#(y1, . . . , yk).ϕ) = free(ϕ) \ {y1, . . . , yk}

(6) free(i) = ∅ for i ∈ Z

(7) free((t1 + t2)) = free((t1 · t2)) = free(t1) ∪ free(t2)

We will often write ξ(z̄), for z̄ = (z1, . . . , zn) with n > 0, to indicate that at most the variables
from {z1, . . . , zn} are free in the expression ξ. A sentence is a formula without free variables, a
ground term is a counting term without free variables.

Consider an FOC(P)[σ]-counting term t(x̄), for x̄ = (x1, . . . , xm). For a σ-structure A and
a tuple ā = (a1, . . . , am) ∈ Am, we write t(A,ā) or tA[ā] for the integer JtK(A,β), where β is an
assignment in A with β(xj) = aj for all j ∈ [m]. For an FOC(P)[σ]-formula ϕ(x̄) we write
(A, ā) |= ϕ or A |= ϕ[ā] to indicate that JϕK(A,β) = 1. In case that m = 0 (i.e., ϕ is a sentence
and t is a ground term), we simply write tA instead of tA[ā], and we write A |= ϕ instead of
A |= ϕ[ā].

Two formulas or two counting terms ξ and ξ′ are equivalent (for short, ξ ≡ ξ′), if JξKI = Jξ′KI

for every σ-interpretation I. The size ||ξ|| of an expression is its length when viewed as a word
over the alphabet σ ∪ vars ∪ P ∪ {, } ∪ {=,∃,¬,∨, (,)} ∪ {#, .}.

4 The hardness of evaluating FOC(P)-queries

In [16] it was shown that on classes of structures of bounded degree, FOC(P)-query evaluation
is fixed-parameter linear (when using oracles for evaluating the numerical predicates in P). In
this section, we shall prove that there is no hope of extending this result to even very simple
classes of structures of unbounded degree such as trees and words: on these classes, the FOC(P)
evaluation problem is as hard as the evaluation problem for first-order logic on arbitrary graphs.
The latter is known to be PSPACE-complete [24] and, in the world of parameterised complexity
theory, complete for the class AW[∗] [4] (also see [9]). The hardness results hold for all P that
contain the “equality predicate” P= or the “positivity predicate” P>1. The AW[∗]-hardness is
the more relevant result for us here.2 It shows that the evaluation problem is unlikely to have
an algorithm running in time f(k)nc for an arbitrary function f and constant c, where k is the
size of the input formula and n the size of the input structure.

2PSPACE-completeness already holds over a fixed structure with two elements.

5

To state our result formally, we focus on the model-checking problem, that is, the query
evaluation problem for sentences. The model-checking problem for a logic L on a class C of
structures is the problem of deciding whether a given structure A ∈ C satisfies a given L-
sentence ϕ. A polynomial fpt-reduction between two such problems is a polynomial time many-
one reduction that, given an instance A, ϕ of the first model-checking problem, computes an
instance A′, ϕ′ of the second model-checking problem such that ‖A′‖ is polynomially bounded
in ‖A‖ and ‖ϕ′‖ is polynomially bounded in ‖ϕ‖.

Theorem 4.1. There is a polynomial fpt-reduction from the model-checking problem for FO on
the class of all graphs to the model-checking problem for FOC({P=}) on the class of all trees.

Proof. Let G be a graph, and let ϕ be an FO-sentence in the signature of graphs (consisting of
a single binary relation symbol E). W.l.o.g. we assume that V (G) = [n] for some n > 1. We
shall define a tree TG and an FOC({P=})-sentence ϕ̂ such that G satisfies ϕ if and only if TG
satisfies ϕ̂. We construct the tree TG as follows. The vertex set V (TG) consists of

• a “root” vertex r

• a vertex a(i) for every i ∈ [n]

• vertices bj(i) and cj(i) for every i ∈ [n] and j ∈ [i+1]

• a vertex d(i, j) for every i ∈ [n] and every neighbour j of i in G

• vertices ek(i, j) for every i ∈ [n], every neighbour j of i in G, and every k ∈ [j+1].

The edge set of TG consists of

• edges ra(i) for all i ∈ [n]

• edges a(i)bj(i) and bj(i)cj(i) for all i ∈ [n] and j ∈ [i+1]

• edges a(i)d(i, j) and d(i, j)ek(i, j) or all i ∈ [n], all neighbours j of i in G, and all k ∈ [j+1].

Then, TG is a tree (of height 3) that can be computed from G in quadratic time.
To define ϕ̂, we need auxiliary formulas ϕa(x), ϕb(x), . . . , ϕe(x) defining the sets of a, b, . . . , e-

vertices, respectively. We start from the observations that the c-vertices cj(i) are the precisely
those vertices of degree 1 whose unique neighbour has degree 2. The b vertices are the neighbours
of the c-vertices, and the a-vertices are the neighbours of the b-vertices that are not c-vertices.
The root vertex is the only vertex adjacent to all a vertices. The e-vertices are the vertices of
degree 1 that are not c-vertices, and the d-vertices are the neighbours of the e-vertices.

Note that the vertices of G are in one-to-one correspondence to the a-vertices of TG: vertex
i corresponds to the unique a-vertex with exactly (i+1) b-neighbours. To express that there is
an edge between a-vertices x, x′, we say that x has a d-neighbour y such that the number of
e-neighbours of y equals the number of b-neighbours of x′. This is precisely what the following
FOC({P=})-formulas says:

ψE(x, x′) := ∃y
(
E(x, y) ∧ P=

(
#z.

(
E(y, z) ∧ ψe(z)

)
,#z.

(
E(x′, z) ∧ ψb(z)

)))
.

Now we let ϕ̂ be the formula obtained from ϕ by replacing each atom E(x, x′) by ψE(x, x′) and
by relativizing all quantifiers to a-vertices, that is, replacing subformulas ∃xψ by ∃x(ψa(x)∧ψ).
Clearly, ϕ̂ can be computed from ϕ in polynomial time. Moreover, it should be clear from the
construction that G satisfies ϕ if and only if TG satisfies ϕ̂.

Corollary 4.2. The parameterised model-checking problem for FOC({P=}) on the class of all
trees is AW[∗]-complete.

6

We encode strings over the alphabet Σ as structures A of signature σ := {6}∪{Pa : a ∈ Σ},
where the binary relation 6A is a linear order of A, and the unary relation PAa consists of the
positions of all as in the string, for each symbol a ∈ Σ.

Theorem 4.3. There is a polynomial fpt-reduction from the model-checking problem for FO on
the class of all graphs to the model-checking for FOC({P=}) on the class of all strings of alphabet
Σ := {a, b, c}.

Proof. We use a similar idea as in the proof of Theorem 4.1. Given a graph G with vertex set
[n] and an FO-sentence ϕ, we construct a string SG and an FOC({P=})-sentence ϕ̂ such that G
satisfies ϕ if and only if SG satisfies ϕ̂.

This time, we use substrings (instead of subtrees) to represent the vertices of G. For a vertex
i with neighbours {j1, . . . , jm} in G, we let si be the string

acibcj1bcj2 . . . bcjm .

Then we let SG be the concatenation of the si for all i ∈ [n]. It is easy to complete the proof
along the lines of the proof of Theorem 4.1.

Corollary 4.4. The parameterised model-checking problem for FOC({P=}) on the class of all
strings (of alphabet Σ = {a, b, c}) is AW[∗]-complete.

Remark 4.5. Note that we can express “P=(t1, t2)” via “¬P>1(t1−t2) ∧ ¬P>1(t2−t1)”. There-
fore, the results of Theorem 4.1, Corollary 4.2, Theorem 4.3, and Corollary 4.4 also hold for the
logics FOC({P>1}).

5 The fragment FOC1(P) of FOC(P)

In this section, we define a fragment of FOC(P) called FOC1(P). This logic is an extension of
FO that allows to formulate cardinality conditions concerning terms that have at most one free
variable (hence the subscript 1 in “FOC1”). The logic FOC1(P) is designed in such a way that it,
although being relatively expressive, still allows for efficient query evaluation algorithms on well-
behaved classes of structures. This paper’s main result shows that FOC1(P)-query evaluation is
fixed-parameter tractable on nowhere dense classes of structures.

Definition 5.1 (FOC1(P)[σ]). Let σ be a signature.
The set of formulas and counting terms of FOC1(P)[σ] is built according to the rules (1)–(3)

and (5)–(7) and the following restricted version of rule (4) of Definition 3.1:

(4’) if P ∈ P, m = ar(P), and t1, . . . , tm are counting terms such that | free(t1)∪· · ·∪free(tm)| 6 1,
then P(t1, . . . , tm) is a formula

The first two formulas of Example 3.2 are in FOC1(P); the last formula of Example 3.2 and
the formula ψE(x, x′) from the proof of Theorem 4.1 are not. Based on the logic FOC1(P), we
define the following query language.

Definition 5.2 (FOC1(P)-queries). Let σ be a signature. An FOC1(P)[σ]-query is of the
form

{ (x1, . . . , xk, t1, . . . , t`) : ϕ } (∗)

where k, ` > 0, x1, . . . , xk are pairwise distinct variables, t1, . . . , t` are FOC1(P)[σ]-counting
terms with free(ti) ⊆ {x1, . . . , xk} for each i ∈ [`], and ϕ is an FOC1(P)[σ]-formula with free(ϕ) =
{x1, . . . , xk}.
When evaluated in a σ-structure A, a query q of the form (∗) returns the result q(A) := JqKA :={ (

a1, . . . , ak, n1, . . . , n`
)

: A |= ϕ[a1, . . . , ak] and nj = tAj [a1, . . . , ak] for each j ∈ [`]
}
.

7

Let us demonstrate that the usual examples for uses of the COUNT operation in SQL can
be expressed in this query language.

Example 5.3. In this example we consider FOC1(P)-queries where P is empty, and deal with
the database schema consisting of relations Customer(Id, FirstName, LastName, City, Country,
Phone) and Order(Id, OrderDate, OrderNumber, CustomerId, TotalAmount).3

To list the number of customers in each country, one can use the SQL-statement

SELECT Country, COUNT(Id)

FROM Customer

GROUP BY Country

or the FOC1(P)-query { (xco, t(xco)) : ϕ(xco) } with ϕ(xco) := xco=xco and t(xco) :=
#(xid).ψ with ψ :=

∃xfi ∃xla ∃xci ∃xph Customer(xid, xfi, xla, xci, xco, xph).

To return the total number of customers and the total number of orders stored in the
database, we can use the SQL-statement4

SELECT(

SELECT COUNT(*)

FROM Customer

) AS No_Of_Customers,

(

SELECT COUNT(*)

FROM Order

) AS No_Of_Orders

or, equivalently, the FOC1(P)-query { (tc, to) : ϕ } for

tc := #(x̄).Customer(x̄)

to := #(ȳ).Order(ȳ)

with x̄ = (xid, xfi, xla, xci, xco, xph) and ȳ = (yoid, yod, yon, ycid, yta) and where ϕ is a sentence
that is satisfied by every database, e.g., ϕ := ¬∃z ¬ z=z .

To list the total number of orders for each customer in Berlin, we can use the SQL-statement

SELECT C.FirstName, C.LastName, COUNT(O.Id)

FROM Customer C, Order O

WHERE C.City = Berlin AND O.CustomerId = C.Id

GROUP BY C.FirstName, C.LastName

or, equivalently, the FOC1(P)-query

{
(
xfi, xla, t(xfi, xla)

)
: ϕ(xfi, xla) }

with t(xfi, xla) :=

(yoid). ∃yod∃yon∃yta∃xid∃xci∃xco∃xph
(
Order(ȳ) ∧ Customer(x̄)

)
3taken from http://www.dofactory.com/sql/group-by
4This statement shall work for MySQL, PostgreSQL, and Microsoft SQL server; to make it work for Oracle,

the statement has to be appended by the line FROM dual.

8

http://www.dofactory.com/sql/group-by

for ȳ = (yoid, yod, yon, xid, yta) and x̄ = (xid, xfi, xla, xci, xco, xph) and ϕ(xfi, xla) :=

∃xid∃xci∃xco∃xph
(
Customer(x̄) ∧ RBerlin(xci)

)
.

Here, we use an atomic statement RBerlin(xci) to express that “xci = Berlin”. Of course, to avoid
such constructions, we could extend the definition of FOC1(P) in the usual way by allowing
constants taken from a fixed domain dom of potential database entries (cf. [1]).

Our query language is also capable of expressing more complicated queries:

Example 5.4. Consider a numerical predicate collection that contains the equality predicate
P= with JP=K = {(m,m) : m ∈ Z}. For better readability of FOC1(P) formulas we will write
t = t′ instead of P=(t, t′).

Consider the signature σ := {E,R,B,G} where E is a binary relation symbol and R, B,
G are unary relation symbols. We view a σ-structure A as a directed graph where each node
a ∈ A may be coloured with 0, 1, 2, or 3 of the colours R (red), B (blue), and G (green).

The ground term tR := #(x).R(x) specifies the total number of red nodes. The term

t∆(x) := #(y, z).
(
E(x, y) ∧ E(y, z) ∧ E(z, x)

)
specifies the number of directed triangles in which x participates. The formula ϕ∆,R(x) :=
t∆(x) = tR is satisfied by all nodes x such that the number of triangles in which x participates
is the same as the total number of red nodes. The ground term t∆,R := #(x).ϕ∆,R(x) specifies
the total number of such nodes. The term

tB(x) := #(y).
(
E(x, y) ∧B(y)

)
specifies the number of blue neighbours of node x.

For the formula ϕB,∆,R(x) := tB(x) = t∆(x) + t∆,R the FOC1(P)[σ]-query

{ (x, y, tB(x) · t∆(y)) :
(
ϕB,∆,R(x) ∧ G(y)

)
}

outputs all tuples in A2 × Z of the form (x, y, n) such that n is the product of the number of
blue neighbours of x and the number of triangles in which y participates, y is green, and x is a
node whose number of blue neighbours is equal to the sum of the number of triangles in which
x participates and the total number of nodes that participate in exactly as many triangles as
there are red nodes.

When speaking of an algorithm with P-oracle we mean an algorithm that has available an
oracle to decide, at unit cost, whether (i1, . . . , im) ∈ JPK when given a P ∈ P and a tuple of
integers (i1, . . . , im) of arity m = ar(P).

The paper’s main result reads as follows (see Section 8 for a precise definition of nowhere
dense classes).

Theorem 5.5 (Main Theorem). Let C be an effectively nowhere dense class of structures.
There is an algorithm with P-oracle which receives as input an ε > 0, an FOC1(P)-query q of
the form (∗) for some signature σ, a σ-structure A from C, and a tuple ā ∈ Ak, and decides
whether A |= ϕ[ā], and if so, computes the numbers nj := tAj [ā] for all j ∈ [`]. The algorithm’s

running time is f(||q||, ε) · ||A||1+ε, for a computable function f .

Since the counting problem for an FOC1(P)-formula ϕ(x̄) for x̄ = (x1, . . . , xk) coincides with
the task of evaluating the ground term #x̄.ϕ(x̄) of FOC1(P), we immediately obtain:

Corollary 5.6. On effectively nowhere dense classes C, the counting problem for FOC1(P) is
fixed-parameter almost linear. That is, there is an algorithm with P-oracle which receives as
input an ε > 0, an FOC1(P)-formula ϕ(x̄) of some signature σ, and σ-structure A from C, and
computes the number |ϕ(A)| of tuples ā ∈ A|x̄| with A |= ϕ[ā] in time f(||ϕ||, ε) · ||A||1+ε, for a
computable function f .

9

The first step towards proving Theorem 5.5 is to use a standard construction for getting rid
of the free variables. Given a query q of the form (∗), we extend the signature σ by fresh unary
relation symbols X1, . . . , Xk and let σ̃ := σ ∪ {X1, . . . , Xk}. Given a σ-structure A and a tuple

ā ∈ Ak, we consider the σ̃-expansion Ã of A where XÃi := {ai} for all i ∈ [k].

It is straightforward to translate ϕ(x̄) into a σ̃-sentence ϕ̃ such that Ã |= ϕ̃ iff A |= ϕ[ā]; and
similarly, for each j ∈ [`] we can translate the term tj(x̄) into a ground term t̃j of signature σ̃

such that t̃Ãj = tAj [ā]: W.l.o.g. assume that all occurrences of the variables x1, . . . , xk in ϕ and

t1, . . . , t` are free. We can choose ϕ̃ := ∃x1 · · · ∃xk
(∧k

i=1Xi(xi) ∧ ϕ(x̄)
)

. For each j ∈ [`],
the term tj is built using + and · from integers and from terms of the form #ȳ.θ(x̄, ȳ). By

replacing each θ(x̄, ȳ) by θ̃(ȳ) := ∃x1 · · · ∃xk
(∧k

i=1Xi(xi) ∧ θ(x̄, ȳ)
)

, we obtain a ground
term t̃j with the desired property.

To prove Theorem 5.5 it therefore suffices to prove the following.

Lemma 5.7. Let C be an effectively nowhere dense class of structures. There is an algorithm
with P-oracle which receives as input an ε > 0, a σ-structure A from C (for some signature σ)
and either an FOC1(P)[σ]-sentence ϕ or an FOC1(P)[σ]-ground term t. The algorithm decides
whether A |= ϕ and computes tA, resp. Letting ξ be the input expression ϕ or t, the algorithm’s
running time is f(||ξ||, ε) · ||A||1+ε, for a computable function f .

The remainder of the paper is dedicated to the proof of Lemma 5.7. In fact, we prove a
slightly stronger result: We cannot only evaluate sentences and ground terms, but also formulas
with one free variable and unary terms simultaneously at all elements of the input structure,
within the same time bounds.

6 A decomposition of FOC1(P)

The first step towards proving Lemma 5.7 is to provide a decomposition of FOC1(P)-expressions
into simpler expressions that can be evaluated in a structure A by exploring for each element a
in A’s universe only a local neighbourhood around a. This section’s main result is the Decom-
position Theorem 6.10.

Let us fix a signature σ.

6.1 Connected local terms

The following lemma summarises easy facts concerning neighbourhoods; the proof is straight-
forward.

Lemma 6.1. Let A be a σ-structure, r > 0, k > 1, and ā = (a1, . . . , ak) ∈ Ak.
NAr (a1, a2) is connected ⇐⇒ distA(a1, a2) 6 2r+1.
If NAr (ā) is connected, then NAr (ā) ⊆ NAr+(k−1)(2r+1)(ai), for each i ∈ [k].

The notion of local formulas is defined as usual [17]: Let r ∈ N. An FOC(P)[σ]-formula ϕ(x̄)
with free variables x̄ = (x1, . . . , xk) is r-local around x̄ if for every σ-structure A and all ā ∈ Ak
we have A |= ϕ[ā] ⇐⇒ NAr (ā) |= ϕ[ā] . A formula is local if it is r-local for some r ∈ N.

For an r ∈ N it is straightforward to construct an FO[σ]-formula distσ6r(x, y) such that for
every σ-structure A and all a, b ∈ A we have

A |= distσ6r[a, b] ⇐⇒ distA(a, b) 6 r .

To improve readability, we write distσ(x, y)6 r for distσ6r(x, y), and distσ(x, y)>r for ¬distσ6r(x, y).

For every k ∈ N>1 we let Gk be the set of all undirected graphs G with vertex set [k]. For
a graph G ∈ Gk, a number r ∈ N, a tuple ȳ = (y1, . . . , yk) of k pairwise distinct variables, we

10

consider the formula

δσG,r(ȳ) :=
∧

{i,j}∈E(G)

distσ(yi, yj)6 r ∧
∧

{i,j}6∈E(G)

distσ(yi, yj)>r .

connected components of the r-neighbourhood NAr (ā) correspond to the connected components
of G. Clearly, the formula δσG,2r+1(ȳ) is r-local around its free variables ȳ.

The main ingredient of our decomposition of FOC1(P)-expressions are the connected local
terms (cl-terms, for short), defined as follows.

Definition 6.2 (cl-Terms). Let r ∈ N and k ∈ N>1. A basic cl-term (of radius r and width k)
is a ground term g of the form

#(y1, . . . , yk).
(
ψ(y1, . . . , yk) ∧ δσG,2r+1(y1, . . . , yk)

)
or a unary term u(y1) of the form

#(y2, . . . , yk).
(
ψ(y1, . . . , yk) ∧ δσG,2r+1(y1, . . . , yk)

)
where ȳ = (y1, . . . , yk) is a tuple of k pairwise distinct variables, ψ(y1, . . . , yk) is an FO[σ]-formula
that is r-local around ȳ, and G ∈ Gk is connected.

A cl-term (of radius 6 r and width 6 k) is built from basic cl-terms (of radius 6 r and width
6 k) and integers by using rule (7) of Definition 3.1. I.e., a cl-term is a polynomial with integer
coefficients, built from basic cl-terms t1, . . . , t` (for ` > 0).

Remark 6.3. Note that cl-terms are “easy” with respect to query evaluation in the following
sense. Consider a basic cl-term u(y1) of the form

#(y2, . . . , yk).
(
ψ(y1, . . . , yk) ∧ δσG,2r+1(y1, . . . , yk)

)
.

Recall from Definition 6.2 that G is a connected graph. Therefore, given a σ-structure A and an
element a1 ∈ A, the number uA[a1] can be computed by only considering the R-neighbourhood
of a1, for R := r + (k−1)(2r+1) (cf. Lemma 6.1). After having computed the numbers uA[a1]
for all a1 ∈ A, the ground cl-term g :=

#(y1, . . . , yk).
(
ψ(y1, . . . , yk) ∧ δσG,2r+1(y1, . . . , yk)

)
can be evaluated easily, since gA =

∑
a1∈A u

A[a1].

Our decomposition of FOC1(P)-expressions proceeds by induction on the construction of
the input expression. The main technical tool for the construction is provided by the following
lemma.

Lemma 6.4. Let r > 0, k > 1, and let ȳ = (y1, . . . , yk) be a tuple of k pairwise distinct variables.
Let ψ(ȳ) be an FO[σ]-formula that is r-local around its free variables ȳ, and consider the terms
g and u(y1) with

g := #(y1, . . . , yk).ψ(y1, . . . , yk)

u(y1) := #(y2, . . . , yk).ψ(y1, . . . , yk) .

There exists a ground cl-term ĝ and a unary cl-term û(y1), both of radius 6 r and width 6 k,
such that ĝA = gA and ûA[a] = uA[a] for every σ-structure A and every a ∈ A.

Furthermore, there is an algorithm which upon input of r and ψ(ȳ) constructs ĝ and û(y1).

11

Proof. For a σ-structure A and a formula ϑ(ȳ) we consider the set

SAϑ := { ā = (a1, . . . , ak) ∈ Ak : A |= ϑ[ā] } .

Note that for every graph G ∈ Gk the formula

ψG(ȳ) := ψ(ȳ) ∧ δσG,2r+1(ȳ)

is r-local around ȳ. Furthermore, for every σ-structure A, the set SAψ is the disjoint union of

the sets SAψG for all G ∈ Gk. Therefore,

g ≡
∑
G∈Gk

#(y1, . . . , yk).ψG(y1, . . . , yk) and

u(y1) ≡
∑
G∈Gk

#(y2, . . . , yk).ψG(y1, y2, . . . , yk) .

To complete the proof of Lemma 6.4, it therefore suffices to show that for every G ∈ Gk the
terms

gψG := #(y1, . . . , yk).ψG(y1, . . . , yk) and

uψG(y1) := #(y2, . . . , yk).ψG(y1, y2, . . . , yk)

are equivalent to cl-terms of radius r. We prove this by an induction on the number of connected
components of G. Precisely, we show that the following statement (∗)c is true for every c ∈ N>1.

(∗)c: For every k > c, for every tuple ȳ = (y1, . . . , yk) of k pairwise distinct variables, for every
r > 0, for every FO[σ]-formula ψ(ȳ) that is r-local around ȳ, and for every graph G ∈ Gk
that has at most c connected components, the terms gψG and uψG(y1) are equivalent to
cl-terms of radius r.

The induction base for c = 1 is trivial: it involves only connected graphs G, for which by
Definition 6.2 the terms gψG and uψG(y1) are basic cl-terms (of radius r).

For the induction step from c to c+1, consider some k > c+1 and a graph G = (V,E) ∈ Gk
that has c+1 connected components. Let V ′ be the set of all nodes of V that are connected to
the node 1, and let V ′′ := V \ V ′.

Let G′ := G[V ′] and G′′ := G[V ′′] be the induced subgraphs of G on V ′ and V ′′, respec-
tively. Clearly, G is the disjoint union of G′ and G′′, G′ is connected, and G′′ has c connected
components.

To keep notation simple, we assume (without loss of generality) that V ′ = {1, . . . , `} and
V ′′ = {`+1, . . . , k} for some ` with 1 6 ` < k. For any tuple z̄ = (z1, . . . , zk) we let z̄′ :=
(z1, . . . , z`) and z̄′′ := (z`+1, . . . , zk).

Now consider a number r > 0 and the formula δσG,2r+1(ȳ) for ȳ = (y1, . . . , yk). For every

σ-structure A and every tuple ā = (a1, . . . , ak) ∈ Ak with A |= δσG,2r+1[ā], the r-neighbourhood

NAr (ā) is the disjoint union of the r-neighbourhoods NAr (ā′) and NAr (ā′′).
Let ψ(ȳ) be an FO[σ]-formula that is r-local around its free variables. By using the Feferman-

Vaught Theorem (cf., [8, 18]), we can compute a decomposition of ψ(ȳ) into a formula ψ̂(ȳ) (that
depends on G) of the form ∨

i∈I

(
ψi
′(ȳ′) ∧ ψi

′′(ȳ′′)
)
,

where I is a finite non-empty set, each ψi
′(ȳ′) is an FO[σ]-formula that is r-local around ȳ′, each

ψi
′′(ȳ′′) is an FO[σ]-formula that is r-local around ȳ′′, and for every σ-structure A and every

ā ∈ Ak with A |= δσG,2r+1[ā] the following is true:

12

(1) there exists at most one i ∈ I such that (A, ā) |=
(
ψi
′(ȳ′) ∧ ψi′′(ȳ′′)

)
, and

(2) A |= ψ[ā] ⇐⇒ A |= ψ̂[ā] .

This implies that the set SAψG is the disjoint union of the sets SA(ψi′∧ψi′′∧δσG,r)
for all i ∈ I.

Consequently,

gψG ≡
∑
i∈I

#(y1, . . . , yk).
(
ψi
′(ȳ′) ∧ ψi′′(ȳ′′) ∧ δσG,2r+1(ȳ)

)
and

uψG(y1) ≡
∑
i∈I

#(y2, . . . , yk).
(
ψi
′(ȳ′) ∧ ψi′′(ȳ′′) ∧ δσG,2r+1(ȳ)

)
.

To complete the proof, it suffices to show that each of the terms

gψ,iG := #(y1, . . . , yk).
(
ψi
′(ȳ′) ∧ ψi′′(ȳ′′) ∧ δσG,2r+1(ȳ)

)
and

uψ,iG (y1) := #(y2, . . . , yk).
(
ψi
′(ȳ′) ∧ ψi′′(ȳ′′) ∧ δσG,2r+1(ȳ)

)
is equivalent to a cl-term of radius r.

By the definition of the formula δσG,2r+1(ȳ) we obtain that the formula ψi
′(ȳ′) ∧ ψi′′(ȳ′′) ∧

δσG,2r+1(ȳ) is equivalent to the formula(
ψi
′(ȳ′) ∧ δσG′,2r+1(ȳ′)

)
︸ ︷︷ ︸

=: ϑ′(ȳ′)

∧
(
ψi
′′(ȳ′′) ∧ δσG′′,2r+1(ȳ′′)

)
︸ ︷︷ ︸

=: ϑ′′(ȳ′′)

∧
∧
j′∈V ′
j′′∈V ′′

distσ(yj′ , yj′′) > 2r+1 . (1)

Therefore, for every σ-structure A we have

SAψ′i∧ψ′′i ∧δσG,r
=

(
SAϑ′ × SAϑ′′

)
\ TA , for

TA :=
{
ā ∈ Ak : A |= ϑ′[ā′], A |= ϑ′′[ā′′], (A, ā) 6|=

∧
j′∈V ′
j′′∈V ′′

distσ(yj′ , yj′′) > 2r+1
}
.

Let H be the set of all graphs H ∈ Gk with H 6= G, but H[V ′] = G′ and H[V ′′] = G′′. Clearly,
every H ∈ H has at most c connected components. Furthermore, it is straightforward to see
that for every σ-structure A, the set TA is the disjoint union of the sets

TAH :=
{
ā ∈ Ak : A |= ϑ′[ā′], A |= ϑ′′[ā′′], A |= δσH,2r+1[ā]

}
for all H ∈ H. Since TA ⊆ (SAϑ′ × SAϑ′′), we obtain that(

gψ,iG

)A
= |SAψ′i∧ψ′′i ∧δσG,r | = |SAϑ′ | · |SAϑ′′ | −

∑
H∈H

|TAH | ;

and this holds for every σ-structure A. Therefore,

gψ,iG ≡
(

#ȳ′.ϑ′(ȳ′)
)

︸ ︷︷ ︸
=: t′

·
(

#ȳ′′.ϑ′′(ȳ′′)
)

︸ ︷︷ ︸
=: t′′

−
∑
H∈H

#ȳ.
(
ϑ′(ȳ′) ∧ ϑ′′(ȳ′′) ∧ δσH,2r+1(ȳ)

)︸ ︷︷ ︸
=: tH

.

By the induction hypothesis (∗)c, each of the terms t′, t′′, and tH is equivalent to a cl-term of

radius r. Hence, also gψ,iG is equivalent to a cl-term of radius r.

To complete the proof, we need to show that also uψ,iG (y1) is equivalent to a cl-term (of
radius r). This can be done in a We proceed by a similar reasoning as above. Note that for
every σ-structure A and every a1 ∈ A,(

uψ,iG
)A

[a1] = |SA,a1
ψ′i∧ψ′′i ∧δσG,2r+1

|

13

where SA,a1
ψ′i∧ψ′′i ∧δσG,2r+1

is defined as the set of all tuples (a2, . . . , ak) ∈ Ak−1 such that

(
A, (a1, a2, . . . , ak)

)
|= ψi

′(y1, y2, . . . , y`) ∧ ψi
′′(y`+1, . . . , yk) ∧ δσG,2r+1(y1, y2, . . . , yk) .

By (1) we know that SA,a1
ψ′i∧ψ′′i ∧δσG,2r+1

is the set of all tuples (a2, . . . , ak) ∈ Ak−1 such that

(
A, (a1, a2, . . . , ak)

)
|= ϑ′(y1, y2, . . . , y`) ∧ ϑ′′(y`+1, . . . , yk) ∧

∧
j′6`

j′′>`+1

distσ(yj′ , yj′′) > 2r+1 .

Analogously as above we have

SA,a1
ψ′i∧ψ′′i ∧δσG,2r+1

=
(
SA,a1ϑ′ × SAϑ′′

)
\ TA,a1 , where

SA,a1ϑ′ :=
{

(a2, . . . , a`) ∈ A`−1 : A |= ϑ′[a1, a2, . . . , a`]
}

and where TA,a1 is the set of all tuples (a2, . . . , ak) ∈ Ak−1 such that(
A, (a1, a2, . . . , ak)

)
|= ϑ′(y1, y2, . . . , y`) ∧ ϑ′′(y`+1, . . . , yk) ∧ ¬

∧
j′6`

j′′>`+1

distσ(yj′ , yj′′) > 2r+1 .

The set TA,a1 is the disjoint union of the sets TA,a1H for all H ∈ H, where TA,a1H is defined as the
set of all tuples (a2, . . . , ak) ∈ Ak−1 for which(
A, (a1, a2, . . . , ak)

)
|= ϑ′(y1, y2, . . . , y`) ∧ ϑ′′(y`+1, . . . , yk) ∧ δσH,2r+1(y1, y2, . . . , yk) .

Since TA,a1 ⊆ (SA,a1ϑ′ × SAϑ′′), we obtain that(
uψ,iG

)A
[a1] = |SA,a1

ψ′i∧ψ′′i ∧δσG,2r+1
| = |SA,a1ϑ′ | · |S

A
ϑ′′ | −

∑
H∈H

|TA,a1H | ;

and this holds for every σ-structure A and every a1 ∈ A. Therefore,

uψ,iG (y1) ≡ t′(y1) · t′′ −
∑
H∈H

tH(y1)

where

tH(y1) := #(y2, . . . , yk).
(
ϑ′(y1, y2, . . . , y`) ∧ ϑ′′(y`+1, . . . , yk) ∧ δσH,2r+1(y1, y2, . . . , yk)

)
,

t′′ := #(y`+1, . . . , yk).ϑ
′′(y`+1, . . . , yk) ,

t′(y1) :=

{
#(y2, . . . , y`).ϑ

′(y1, y2, . . . , y`) if ` > 2 ,

#(y2).
(
ϑ′(y1) ∧ y2=y1

)
if ` = 1 .

By the induction hypothesis (∗)c, each of the terms t′(y1), t′′, and tH(y1) is equivalent to a

cl-term of radius r. Hence, also uψ,iG (y1) is equivalent to a cl-term of radius r. This completes
the proof of Lemma 6.4.

As an easy consequence of Lemma 6.4 we obtain

Lemma 6.5. Let s > 0 and let χ1, . . . , χs be arbitrary sentences of signature σ.5 Let r > 0,
k > 1, and let ȳ = (y1, . . . , yk) be a tuple of k pairwise distinct variables. Let ϕ(ȳ) be a Boolean

5We do not restrict attention to FO[σ]-sentences here — the χj ’s may be sentences of any logic, e.g., FOC(P)[σ].

14

combination of the sentences χ1, . . . , χs and of FO[σ]-formulas that are r-local around their free
variables ȳ. Consider the ground term

g := #(y1, . . . , yk).ϕ(y1, . . . , yk)

and the unary term

u(y1) := #(y2, . . . , yk).ϕ(y1, y2, . . . , yk) .

For every J ⊆ [s] there is a ground cl-term ĝJ and a unary cl-term ûJ(y1) (both of radius 6 r
and width 6 k) such that for every σ-structure A there is exactly one set J ⊆ [s] such that

A |= χJ :=
∧
j∈J

χj ∧
∧

j∈[s]\J

¬χj ,

and for this set J we have ĝAJ = gA and ûAJ [a] = uA[a] for every a ∈ A.

Furthermore, there is an algorithm which upon input of r, ϕ(ȳ), and J constructs ĝJ and
ûJ(y1).

Proof. We can assumme w.l.o.g. that ϕ(ȳ) is of the form∨
J⊆[s]

(
χJ ∧ ψJ(ȳ)

)
where, for each J ⊆ [s], ψJ(ȳ) is an FO[σ]-formula that is r-local around its free variables ȳ.

For every J ⊆ [s] let ĝJ and ûJ(y1) be the cl-terms obtained by Lemma 6.4 for the terms
gJ := #ȳ.ψJ(ȳ) and uJ(y1) := #(y2, . . . , yk).ψJ(ȳ).

Now consider an arbitrary J ⊆ [s] and a σ-structure A with A |= χJ . Clearly,

gA =
(
#ȳ.ψJ(ȳ)

)A
= ĝAJ ,

and

uA[a] =
(
#(y2, . . . , yk).ψJ(ȳ)

)A
[a] = ûAJ [a] , for every a ∈ A.

Hence, the proof of Lemma 6.5 is complete.

6.2 A connected local normalform for FO

Definition 6.6. A formula in Gaifman normal form is a Boolean combination of FO[σ]-formulas
ψ(x̄) that are local around their free variables x̄, and of basic local sentences, i.e., FO[σ]-sentences
χ of the form

∃y1 · · · ∃yk
(∧

16i<j6k

distσ(yi, yj) > 2r ∧
∧

16i6k

ψ(yi)
)
,

where k > 1, r > 0, and ψ(y) is an FO[σ]-formula that is r-local around its unique free variable
y. The number r is called the radius of χ.

Theorem 6.7 (Gaifman [12]). Every FO[σ]-formula ϕ(x̄) is equivalent to a formula in Gaif-
man normal form.

Furthermore, there is an algorithm which transforms an input formula ϕ(x̄) into an equivalent
formula ϕ′(x̄) in Gaifman normal form. The algorithm also outputs the radius of each basic local
sentence of ϕ′, and a number r such that every local formula ψ(x̄) in ϕ′ is r-local around x̄.

By combining Lemma 6.4 with Gaifman’s locality theorem, we obtain the following normal
form for FO, which may be of independent interest.

15

Theorem 6.8 (cl-Normalform). Every FO[σ]-formula ϕ(x̄) is equivalent to a Boolean com-
bination of FO[σ]-formulas ψ(x̄) that are local around their free variables x̄, and of statements
of the form “g > 1”, for a ground cl-term g.

Furthermore, there is an algorithm which transforms an input FO[σ]-formula ϕ(x̄) into an
equivalent such formula ϕ′(x̄). The algorithm also outputs the radius of each ground cl-term in
ϕ′, and a number r such that every local formula ψ(x̄) in ϕ′ is r-local around x̄.

Proof. By Theorem 6.7 it suffices to translate a basic local sentence into a statement of the form
“g > 1” for a ground cl-term g.

For a basic local sentence χ := ∃y1 · · · ∃yk ϑ(y1, . . . , yk) with ϑ(y1, . . . , yk) :=∧
16i<j6k

distσ(yi, yj) > 2r ∧
∧

16i6k

ψ(yi)

let gχ be the ground term

gχ := #(y1, . . . , yk).ϑ(y1, . . . , yk) .

Note that ϑ(y1, . . . , yk) is r-local around its free variables. Hence, by Lemma 6.4 we obtain a
ground cl-term ĝχ such that ĝAχ = gAχ for every σ-structure A. Furthermore, A |= χ ⇐⇒ gAχ >
1 ⇐⇒ ĝAχ > 1 . This completes the proof of Theorem 6.8.

We use the notion cl-normalform to denote the formulas ϕ′(x̄) provided by Theorem 6.8.
Note that these cl-normalforms do not necessarily belong to FO, but can be viewed as formulas in
FOC1({P>1}) (recall that JP>1K = N>1), since statements of the form “g > 1” can be expressed
via P>1(g).

6.3 A decomposition of FOC1(P)-expressions

Our decomposition of FOC1(P) utilises Theorem 6.8 and is based on an induction on the maximal
nesting depth of constructs of the form #ȳ. We call this nesting depth the #-depth d#(ξ) of a
given formula or term ξ. Formally, d#(ϕ) is defined as follows:

(1) d#(ϕ) := 0, if ϕ is a formula of the form x1=x2 or R(x1, . . . , xar(R))

(2) d#(¬ϕ) := d#(ϕ) and d#((ϕ ∨ ψ)) := max{d#(ϕ),d#(ψ)}

(3) d#(∃y ϕ) := d#(ϕ)

(4) d#(P(t1, . . . , tm)) := max{d#(t1), . . . ,d#(tm)},

(5) d#(#ȳ.ϕ) := d#(ϕ) + 1,

(6) d#(i) := 0, for all terms i ∈ Z

(7) d#((t1 + t2)) := d#((t1 · t2)) := max{d#(t1), d#(t2)}, for all terms t1 and t2.

The base case of our decomposition of FOC1(P) is provided by the following lemma; the
lemma’s proof utilises Theorem 6.8.

Lemma 6.9. Let ϕ be an FOC1(P)[σ]-formula of the form P(t1, . . . , tm) with P ∈ P, m = ar(P),
and where t1, . . . , tm are counting terms of #-depth at most 1. Then, ϕ is equivalent to a Boolean
combination of

(i) formulas of the form P(t′1, . . . , t
′
m), for cl-terms t′1, . . . , t

′
m where free(t′i) = free(ti) for all

i ∈ [m],

(ii) statements of the form “g > 1” for ground cl-terms g, and

16

(iii) statements of the form P′(i1, . . . , im′) for P′ ∈ P, m′ = ar(P′), and integers i1, . . . , im′.

Furthermore, there is an algorithm which transforms an input formula ϕ into such a Boolean
combination ϕ′, and which also outputs the radius of each cl-term in ϕ′.

Proof. Let ϕ be of the form P(t1, . . . , tm) with P ∈ P, m = ar(P), and where t1, . . . , tm are
counting terms of #-depth at most 1. From Definition 5.1 we know that either free(ϕ) = ∅ or
free(ϕ) = {x} for a variable x. Furthermore, we know that for every i ∈ [m] the counting term
ti is built by using addition and multiplication based on integers and on counting terms θ′ of the
form #z̄.θ, for a tuple of variables z̄ = (z1, . . . , zk), such that free(θ) \ {z1, . . . , zk} ⊆ {x}. Let
Θ′ be the set of all these counting terms θ′ and let Θ be the set of all the according formulas θ.

By assumption we have d#(ϕ) 6 1. Therefore, every θ ∈ Θ has #-depth 0. We can thus view
each such θ as an FO[σ]-formula, possibly enriched by atomic sentences of the form P′(i1, . . . , im′)
with P′ ∈ P, m′ = ar(P′), and integers i1, . . . , im′ .

By Theorem 6.8, for each θ in Θ we obtain an equivalent formula ϕ(θ) in cl-normalform,
possibly enriched by atomic sentences of the form P′(i1, . . . , im′) with P′ ∈ P, m′ = ar(P′), and
integers i1, . . . , im′ . Let Φ be the set of all these ϕ(θ).

For each θ in Θ, the formula ϕ(θ) is a Boolean combination of (a) FO[σ]-formulas that are
local around the free variables of θ, and (b) statements of the form “g > 1” for a ground cl-
term g, and (c) statements of the form P′(i1, . . . , im′) with P′ ∈ P, m′ = ar(P′), and integers
i1, . . . , im′ .

Let χ1, . . . , χs be a list of all statements of the forms (b) or (c), such that each formula in
Φ is a Boolean combination of statements in {χ1, . . . , χs} and of FO[σ]-formulas that are local
around their free variables. For every J ⊆ [s] let χJ :=

∧
j∈J χj ∧

∧
j∈[s]\J ¬χj .

Let r ∈ N be such that each of the local FO[σ]-formulas that occur in a formula in Φ is
r-local around its free variables. For each θ′ in Θ′ of the form #z̄.θ, we apply Lemma 6.5 to the
term

t(θ
′) := #z̄.ϕ(θ)

and obtain for every J ⊆ [s] a cl-term t̂
(θ′)
J with the same free variables as θ′, for which the

following is true:

• If free(θ′) = ∅, then (θ′)A = (t̂
(θ′)
J)A for every σ-structure A with A |= χJ .

• If free(θ′) = {x}, then (θ′)A[a] = (t̂
(θ′)
J)A[a] for every σ-structure A with A |= χJ and

every a ∈ A.

Thus, for each J ⊆ [s] we have(
χJ ∧ P(t1, . . . , tm)

)
≡

(
χJ ∧ P(t1,J , . . . , tm,J)

)
where, for every i ∈ [m], we let ti,J be the cl-term obtained from ti by replacing each occurrence

of a term θ′ ∈ Θ′ by the term t̂
(θ′)
J . In summary, we obtain the following:

ϕ = P(t1, . . . , tm)

≡
∨
J⊆[s]

(
χJ ∧ P(t1, . . . , tm)

)
≡

∨
J⊆[s]

(
χJ ∧ P(t1,J , . . . , tm,J)

)
=: ϕ′ .

The formula χJ is a Boolean combination of statements of the form “g > 1” for ground cl-terms
g and statements of the form P′(i1, . . . , im′) for P′ ∈ P, m′ = ar(P′), and integers i1, . . . , im′ .
Furthermore, each of the terms ti,J is a cl-term with free(ti,J) = free(ti). Thus, the proof of
Lemma 6.9 is complete.

17

Theorem 6.10 (Decomposition of FOC1(P)). Let z be a fixed variable in vars. For every
d ∈ N and every FOC1(P)[σ]-expression ξ which is either a formula ϕ(x̄) or a ground term t of
#-depth d#(ξ) = d, there exists a sequence (L1 . . . , Ld+1, ξ

′) with the following properties.

(I) Li = (τi, ιi), for every i ∈ {1, . . . , d+1}, where

• τi is a finite set of relation symbols of arity 6 1 that do not belong to σi−1 := σ∪
⋃
j<i τj,

and

• ιi is a mapping that associates with every symbol R ∈ τi a formula ιi(R)

(i) of the form P(t1, . . . , tm), where P ∈ P, m = ar(P), and t1, . . . , tm are cl-terms of
signature σi−1, such that free(tj) ⊆ {z} for each j ∈ [m], or

(ii) of the form “g > 1” for ground cl-terms g of signature σi−1.

If R has arity 0, then ιi(R) has no free variable. If R has arity 1, then z is the unique
free variable of ιi(R) (thus, ιi(R) is of the form (i)).

(II) If ξ is a ground term t, then ξ′ := t′ is a ground cl-term of signature σd+1.

If ξ is a formula ϕ(x̄), then ξ′ := ϕ′(x̄) is a Boolean combination of (A) FO[σd+1]-
formulas ψ(x̄) that are local around their free variables x̄, where σd+1 := σ ∪

⋃
16i6d+1 τi,

and (B) statements of the form R() where R is a 0-ary relation symbol in σd+1. In case
that free(ϕ) = ∅, ϕ′ only contains statements of the latter form.

(III) For every σ-interpretation I = (A, β) we have

JξKI = Jξ′KId+1

(i.e., tA = (t′)Ad+1 in case that ξ is a ground term t, and I |= ϕ iff Id+1 |= ϕ′ in case that
ξ is a formula ϕ), where Id+1 = (Ad+1, β), and Ad+1 is the σd+1-expansion of A defined
as follows: A0 := A, and for every i ∈ [d+1], Ai is the σi-expansion of Ai−1, where for
every unary R ∈ τi we have

RAi := { a ∈ A : (Ai−1, a) |= ιi(R) }

and for every 0-ary R ∈ τi we have

RAi :=

{
{ () } if Ai−1 |= ιi(R) ,

∅ if Ai−1 6|= ιi(R) .

Moreover, there is an algorithm which constructs such a sequence D = (L1, . . . , Ld+1, ξ
′) for an

input expression ξ. The algorithm also outputs the radius of each cl-term in D, and a number
r such that every formula of type (A) in ϕ′ is r-local around its free variables.

Proof. We first prove the theorem’s statement for the case that the input expression ξ is a
formula ϕ(x̄).

We proceed by induction on i to construct for all i ∈ {0, 1, . . . , d} a tuple Li = (τi, ιi) and an
FOC1[σi]-formula ϕi(x̄) of #-depth (d−i), such that for every σ-interpretation I = (A, β) and
the interpretation Ii := (Ai, β) we have I |= ϕ ⇐⇒ Ii |= ϕi.

For i = 0 we are done by letting τ0 := ∅, σ0 := σ, ϕ0 := ϕ, and letting ι0 be the mapping
with empty domain. Now assume that for some i < d, we have already constructed Li = (τi, ιi)
and ϕi. To construct Li+1 = (τi+1, ιi+1) and ϕi+1, we proceed as follows.

Let Π be the set of all FOC1(P)[σi]-formulas of #-depth 6 1 of the form P(t1, . . . , tm), for
P ∈ P and m = ar(P), that occur in ϕi.

Now consider an arbitrary formula π in Π of the form P(t1, . . . , tm). From Definition 5.1 we
know that there is a variable y such that free(tj) ⊆ {y} for every j ∈ [m]. By Lemma 6.9, π is
equivalent to a Boolean combination π′ of

18

(a) formulas of the form P(t′1, . . . , t
′
m), for cl-terms t′1, . . . , t

′
m of signature σi, where free(t′j) =

free(tj) ⊆ {y} for each j ∈ [m],

(b) statements of the form “g > 1” for ground cl-terms g of signature σi, and

(c) statements of the form P′(i1, . . . , im′) for P′ ∈ P, m′ = ar(P′), and integers i1, . . . , im′ .

For each statement χ of the form (b) or (c), we include into τi+1 a 0-ary relation symbol Rχ, we
replace each occurrence of χ in π′ with the new atomic formula Rχ(), and we let ιi+1(Rχ) := χ.
For each statement χ in π of the form (a) we proceed as follows. If free(χ) = ∅, then we include
into τi+1 a 0-ary relation symbol Rχ, we replace each occurrence of χ in π′ with the new atomic
formula Rχ(), and we let ιi+1(Rχ) := χ. If free(χ) = {y}, then we include into τi+1 a unary
relation symbol Rχ, we replace each occurrence of χ in π′ by the new atomic formula Rχ(y), and
we let ιi+1(Rχ) be the formula obtained from χ by consistently replacing every free occurrence
of the variable y by the variable z. We write π′′ for the resulting formula π′.

Clearly, π′′ is a quantifier-free FO[σi+1]-formula, for σi+1 := σi ∪ τi; in particular, it has
#-depth 0. It is straightforward to see that for every σ-interpretation I = (A, β) we have

Ii |= π ⇐⇒ Ii+1 |= π′′ ,

for Ii := (Ai, β) and Ii+1 := (Ai+1, β).
The induction step is completed by letting ϕi+1 be the formula obtained from ϕi by replacing

every occurrence of a formula π ∈ Π by the formula π′′. It can easily be verified that ϕi+1 is
an FOC1(P)[σi+1]-formula of #-depth d#(ϕi) − 1 = ((d−i)−1) = (d−(i+1)), and that Ii |=
ϕi ⇐⇒ Ii+1 |= ϕi+1.

By the above induction we have constructed L1, . . . , Ld and an FOC1(P)[σd]-formula ϕd of
#-depth 0. Since d#(ϕd) = 0, we can view ϕd as an FO[σd]-formula, possibly enriched by
atomic sentences of the form P(i1, . . . , im) with P ∈ P, m = ar(P), and integers i1, . . . , im.
By Theorem 6.8 we obtain an equivalent formula ϕ̃ of signature σd in cl-normalform, possibly
enriched by atomic sentences of the form P(i1, . . . , im) with P ∈ P, m = ar(P), and integers
i1, . . . , im. I.e., ϕ̃ is a Boolean combination of

(A) FO[σd]-formulas that are local around their free variables x̄,

(B) statements of the form “g > 1”, for a ground cl-term g of signature σd, and

(C) statements of the form P(i1, . . . , im) with P ∈ P, m = ar(P), and integers i1, . . . , im.

For each statement χ of the form (B) or (C) we include into τd+1 a new relation symbol Rχ
of arity 0, we replace each occurrence of χ in ϕ̃ by the new atomic formula Rχ(), and we let
ιd+1(Rχ) := χ. Letting ξ′ := ϕ′ be the resulting formula ϕ̃ completes the proof of Theorem 6.10
for the case that the input expression ξ is a formula.

Let us now turn to the case where the input expression ξ is a ground term t. Then, t is
built using + and · from integers and from ground terms g of the form #ȳ.θ(ȳ). Let S be the
set of all these ground terms g, and let Θ be the set of all according formulas θ(ȳ). We have
already proven the theorem’s statement for the case where the input expression is a formula.
For each θ ∈ Θ, we therefore obtain a sequence Dθ = (Lθ1, . . . , L

θ
dθ+1, θ

′) with dθ = d#(θ) and

Lθi = (τ θi , ι
θ
i).

Each term g ∈ S is of the form #ȳ.θ(ȳ) for some θ ∈ Θ. Clearly, gA = (g′)Adθ+1 for
g′ := #ȳ.θ′(ȳ). Note that θ′ is local around its free variables ȳ. Therefore, from Lemma 6.4(a)
we obtain a ground cl-term ĝ′ that is equivalent to g′. We let ξ′ := t′ be the ground cl-term
obtained from t by replacing every term g ∈ S by ĝ′. We are done by letting Li := (τi, ιi) for
each i ∈ {1, . . . , d+1}, where τi (and ιi) is the union of τ θi (and ιθi , respectively) for all θ ∈ Θ.
This finally completes the proof of Theorem 6.10.

19

We call the sequence (L1, . . . , Ld#(ξ)+1, ξ
′) obtained from Theorem 6.10 for an FOC1(P)-

formula or ground term ξ a cl-decomposition of ξ.

Assume, we have available an efficient algorithm A for computing the value uB[b1] of a unary
basic cl-term u(y1) in a structure B for all values b1 ∈ B. This algorithm can also be used
to compute the value of a ground basic cl-term g := #(y1, . . . , yk).ψ(y1, . . . , yk) in B, since
gB =

∑
b1∈B u

B[b1] for the unary basic cl-term u(y1) := #(y2, . . . , yk).ψ(y1, y2, . . . , yk).

We argue that by Theorem 6.10, the algorithm A can also be used to evaluate an FOC1(P)-
expression ξ that is either a ground term t or a sentence ϕ in a σ-structure A. To evaluate ξ in
a A we can proceed as follows.

(1) Use Theorem 6.10 to compute a cl-decomposition D = (L1, . . . , Ld+1, ξ
′) of ξ, for d := d#(ξ).

(2) Let A0 := A.

(3) For each i ∈ [d+1], compute the σi-expansion of Ai−1. To achieve this, consider for each
R ∈ τi the formula ιi(R). This formula is a very simple statement concerning one or several
cl-terms (each of which is a polynomial built from integers and basic cl-terms). Let t1, . . . , ts
be the list of all basic cl-terms that appear in ιi(R). For each j ∈ [s] use algorithm A to
compute the values tAj [a] for all a ∈ A (resp., the value tAj , if tj is ground). Then, combine
the values and use a P-oracle to check for each a ∈ A whether ιi(R) is satisfied by (Ai−1, a),
and store the new relation RAi accordingly.

(4) If ξ is a sentence ϕ, then ϕ′ is a Boolean combination of statements of the form R(), for 0-ary
relation symbols R ∈ σd+1. Thus, checking whether Ad+1 |= ϕ′ boils down to evaluating a
propositional formula, and hence is easy.

If ξ is a ground term t, then t′ is a ground cl-term. I.e., t′ is a polynomial built from integers
and ground basic cl-terms t′1, . . . , t

′
s for some s > 1. For each j ∈ [s] we use algorithm A to

compute the value of t′j in Ad+1. Afterwards, we combine these values to compute the value
of t′ in Ad+1.

From [10, 14, 23] we obtain fixed-parameter almost linear algorithms for counting the number
of solutions of FO-queries on planar graphs, classes of bounded local tree-width, classes of
bounded expansion, and—most generally—classes of locally bounded expansion. By the above
approach, this immediately provides us with an fpt algorithm for FOC1(P) on these classes. For
nowhere dense classes, though, it is not so easy to generalise the FO model-checking algorithm
of [13] to compute the values of unary cl-terms. The remainder of the paper is dedicated to this
task.

7 Neighbourhood covers and local evaluation

The techniques of the previous section enable us to reduce the evaluation of FOC1(P)-sentences
and ground terms to the evaluation of unary basic cl-terms. To obtain an efficient algorithm
for evaluating the latter on structures A from a nowhere dense class of structures, we need to
provide a variant of basic cl-terms (along with techniques to decompose such terms) that are
based on so-called neighbourhood covers.

An r-neighbourhood cover of a structure A is a mapping X : A → 2A such that for every
a ∈ A the set X (a) is connected in the Gaifman graph GA of A and it holds that NAr (a) ⊆ X (a).
The sets X (a) (for a ∈ A), and depending on the context also the induced substructures A[X (a)],
are called the clusters of the cover. Usually, we want the clusters to have small radius, where the

radius of a connected set X ⊆ A is the least s such that there is a c ∈ X such that X ⊆ NA[X]
s (c).

Moreover, we want a neighbourhood cover to be sparse, which means that no b ∈ A appears in
too many of the sets X (a). We will see later (Theorem 8.1) that in structures from a nowhere

20

dense class of structures we can efficiently construct sparse r-neighbourhood covers of radius at
most 2r. In this section, we do not have to worry about the radius or sparsity of neighbourhood
covers.

We need some additional terminology for neighbourhood covers. We write X ∈ X to express
that X is a cluster of X , i.e., X = X (a) for some a ∈ A. We say that a cluster X ∈ X s-covers a
tuple ā ∈ Ak if NAs (ā) ⊆ X. Note that X (a) r-covers a, but there may be other clusters X ∈ X
that r-cover a as well.

FO+ is the extension of first-order logic by adding new atomic formulas dist(x, y)6 d, with
the obvious meaning. Note that FO+ is only a syntactic extension and not more expressive
than FO, because the “distance atoms” dist(x, y)6 d can be replaced by first-order formulas.
However, a first-order formula expressing dist(x, y)6 d has quantifier rank log d. We now in-
troduce a complicated 2-parameter “rank measure” for FO+-formulas where the contribution of
distance atoms to the rank is fine-tuned to exactly the right value. Let q, ` ∈ N. We say that an
FO+-formula ϕ has q-rank at most ` if it has quantifier-rank at most ` and each distance atom
dist(x, y)6 d in the scope of i 6 ` quantifiers satisfies d 6 (4q)q+`−i. We let fq(`) := (4q)q+` .

7.1 Rank-preserving locality

The main result of this subsection, Theorem 7.1, allows us to reduce the “global” evaluation of
a first-order formula in a structure A to the “local” evaluation of formulas in the clusters of a
neighbourhood cover of A.

To formulate the theorem, we need some more notation. We need to normalise FO+-formulas
in such a way that for every (finite) signature σ and all q, `, k ∈ N the set Φ+(σ, k, q, `) of
normalised FO+[σ]-formulas of q-rank at most ` with free variables among x1, . . . , xk is finite
and that every FO+[σ]-formulas of q-rank at most ` with free variables among x1, . . . , xk is
equivalent to a formula in Φ+(σ, k, q, `). We can do this in such a way that the set Φ+(σ, k, q, `)
is computable from σ, k, q, ` and that there is a normalisation algorithm that, given an FO+[σ]-
formula of q-rank at most ` with free variables among x1, . . . , xk, computes an equivalent formula
in Φ+(σ, k, q, `).

For a signature σ and numbers q, ` ∈ N, we let σ ? (q, `) be the signature obtained from
σ by adding a fresh unary relation symbol Pϕ for each ϕ(x1) ∈ Φ+(σ, 1, q, `). For σ-structure
A and an r-neighbourhood cover X of A, we let A ?X (q, `) be the σ ? (q, `)-expansion of
A in which Pϕ is interpreted by the set of all a ∈ A such that A[X (a)] |= ϕ[a]. We let
σ ?0 (q, `) := σ and A ?0

X (q, `) := A. For i > 0, we let σ ?i+1 (q, `) := (σ ?i (q, `)) ? (q, `) and
A ?i+1
X (q, `) := (A ?iX (q, `)) ?X (q, `). Note that for i < j we have σ ?i (q, `) ⊆ σ ?j (q, `), and the

σ ?i (q, `)-structure A ?iX (q, `) is the σ ?i (q, `)-reduct of the σ ?j (q, `)-structure A ?jX (q, `).
An (r, k)-independence sentence is of the form

∃x1 · · · ∃xk′
(∧

16i<j6k′

dist(xi, xj) > r′ ∧
∧

16i6k′

ψ(xi)
)
,

where k′ 6 k and r′ 6 r and ψ(x) is quantifier-free.
Let A be a σ-structure, let k > 1, let ā = (a1, . . . , ak) ∈ Ak and let r > 0. By GAā,r we

denote the graph with vertex set [k] where there is an edge between nodes i and j iff i 6= j and
distA(ai, aj) 6 r. We will often omit the superscript A and simply write Gā,r.

We say that ā is r-connected if the graph Gā,r is connected. An r-component of ā in A is
the vertex set of a connected component of the graph Gā,r.

For an arbitrary set J ⊆ [k], by āJ we denote the projection of ā to the positions in J .

Theorem 7.1 (Rank-Preserving Normal Form). Let q, k ∈ N such that k 6 q, let ` := q−k,
r := fq(`), and let σ? := σ ?` (q, `). Let ϕ(x̄), where x̄ = (x1, . . . , xk), be an FO+[σ]-formula of
q-rank at most `.

Then for each graph G ∈ Gk there are an mG ∈ N and for each i ∈ [mG]

21

• a Boolean combination ξiG of (r, q)-independence sentences of signature σ? and

• for each connected component I of G an FO+[σ?]-formula ψiG,I(x̄I) of q-rank at most `

such that the following holds.

(1) For all σ-structures A, all kr-neighbourhood covers X of A, and all ā ∈ Ak we have A |=
ϕ[ā] if and only if for G := Gā,r and A? := A ?`X (q, `) there is an i ∈ [mG] such that
A? |= ξiG and for every connected component I of G there is an X ∈ X that r-covers āI
and A?[X] |= ψiG,I [āI].

(2) For all σ-structures A, all kr-neighbourhood covers X of A, and all ā ∈ Ak there is at most
one i ∈ [mG] for G := Gā,r such that the conditions of (1) hold.

(3) For all σ-structures A, all kr-neighbourhood covers X of A, all ā ∈ Ak, all connected
components I of G := Gā,r, all X,X ′ ∈ X that both r-cover āI , and all i ∈ [mG], A?[X] |=
ψiG,I [āI] ⇐⇒ A?[X ′] |= ψiG,I [āI].

(4) The ξiG and ψiG,I can be computed from q, k,G, ϕ.

The proof is based on an Ehrenfeucht-Fräıssé game argument, which in its basic structure
is similar to the proof of Gaifman’s theorem by Ehrenfeucht-Fräıssé games (see [7]). Compared
to the “Rank-Preserving Locality Theorem” of [13], the main challenge here ist to deal with
free variables, which turned out to be nontrivial (as can already be seen from the complicated
statement of the theorem).

Let A,B be σ-structures. A partial r-isomorphism from A to B is a mapping h : X → Y with
domain X ⊆ A and range Y ⊆ B that is an isomorphism between the induced substructure A[X]
and the induced substructure B[Y] and in addition, preserves distances up to r, that is, for all
a, a′ ∈ X either distA(a, a′) = distB(h(a), h(a′)) or distA(a, a′) > r and distB(h(a), h(a′)) > r.

Let ā = (a1, . . . , ak) ∈ Ak, b̄ = (b1, . . . , bk) ∈ Bk and q, ` ∈ N such that ` 6 q. The `-round
EF+

q -game on (A, ā,B, b̄) is played by two players, called Spoiler and Duplicator. The game is
played for ` rounds. In round i, Spoiler picks an element ak+i ∈ A or an element bk+i ∈ B.
If Spoiler picks ak+i ∈ A, then Duplicator answers by choosing a bk+i ∈ B and if Spoiler
picks bk+i ∈ B, then Duplicator answers by choosing an ak+i ∈ A. Duplicator wins the game if
for 0 6 i 6 `, the mapping aj 7→ bj for 1 6 j 6 k + i is a partial fq(`−i)-isomorphism.

Theorem 7.2 ([13]). For all k, q, ` ∈ N with 0 6 ` 6 q, all σ-structures A and B, and all
tuples ā ∈ Ak and b̄ ∈ Bk, the following are equivalent.

(1) Duplicator has a winning strategy for the `-round EF+
q game on (A, ā,B, b̄).

(2) (A, ā) and (B, b̄) satisfy the same FO+[σ]-formulas ϕ(x1, . . . , xk) of q-rank at most `.

In order to prove Theorem 7.1, we need the following lemma.

Lemma 7.3. Let q, k ∈ N such that k 6 q, and let ` := q−k and r := fq(`). Let A and
B be σ-structures, let X and Y be r-neighbourhood covers of A and B, respectively, and let
A? := A ?`X (q, `) and B? := B ?`Y (q, `). Let ā = (a1, . . . , ak) ∈ Ak and b̄ = (b1, . . . , bk) ∈ Bk

such that the following conditions are satisfied.

(i) For all i, j ∈ [k] it holds that distA(ai, aj) 6 r ⇐⇒ distB(bi, bj) 6 r.

(ii) For every r-component J of ā there are clusters X ∈ X and Y ∈ Y such that X r-covers
āJ and Y r-covers b̄J and (A?[X], āJ) and (B?[Y], b̄J) satisfy the same FO+[σ?]-formulas
ϕ(x̄J) of q-rank at most `.

(iii) The structures A? and B? satisfy the same (r, q)-independence sentences.

22

Then (A, ā) and (B, b̄) satisfy the same FO+[σ] sentences of q-rank at most `.

Proof. For k 6 p 6 q, let rp := fq(q−p). Then rk = r. Let σp := σ ?q−p (q, `) and Ap :=
A?q−pX (q, `), Bp := B?q−pY (q, `). Then Ak = A? and Aq = A, and similarly, Bk = B? and Bq = B.

We shall prove that Duplicator has a winning strategy for the `-round EF+
q game on (A, ā,B, b̄).

Positions of the game will be pairs of tuples āp = (a1, . . . , ap), b̄
p = (b1, . . . , bp) of length k 6 p 6 q

whose first k entries coincide with the entries of ā, b̄.

We shall prove by induction on p that Duplicator can maintain the following invariants for
the position āp, b̄p reached after (p−k) rounds of the game.

(I) For all i, j ∈ [p], either distA(ai, aj) = distB(bi, bj) 6 rp or distA(ai, aj) > rp and
distB(bi, bj) > rp.

(II) For every rp-component J of āp in A there are induced substructures ApJ of Ap and BpJ
of Bp such that

a. NArp(ā
p
J) ⊆ AJ and NBrp(b̄

p
J) ⊆ BJ ;

b. (ApJ , ā
p
J) and (BpJ , b̄

p
J) satisfy the same FO+[σp] formulas ϕ(x̄J) of q-rank at most (q−p).

Note that for p = q this, in particular, implies that after (q−k) = ` rounds Duplicator’s winning
condition is satisfied.

For the base step p = k we let AkJ := A?[X] and BkJ := B?[Y]. Then (II) follows from (ii)
and (I) follows from (i) and (ii).

Now suppose that (I) and (II) hold for āp, b̄p, and in round (p+ 1− k) of the game, Spoiler
picks an element ap+1 ∈ A.

Case 1: distA(ai, ap+1) 6 rp+1 for some i ∈ [p].
Let x̄ = (x1, . . . , xp) and x̄′ = (x1, . . . , xp, xp+1). Let I be the rp-component of āp that
contains i, and let J be the rp+1-component of āp+1 = (a1, . . . , ap+1) that contains i and
p+1. Then J ⊆ I ∪ {p+1}, because rp > 2rp+1. Let ϕ(x̄′J) be the conjunction of all

ψ(x1, . . . , x|J |) ∈ Φ+(σp+1, |J |, q, q−p−1) such that ApI |= ψ[āp+1
J]. Let

χ(x̄I) := ∃xp+1

(
dist(xi, xp+1) 6 rp+1 ∧ ϕ(x̄′J)

)
.

Then χ is of q-rank at most (q − p), and ApI |= χ[āI]. Hence by (II-b), BpI |= χ[b̄I]. Let
bp+1 be a witness for the existential quantifier in χ. Duplicator choses bp+1 as her answer.

We let Ap+1
J be the σp+1-reduct of ApI , and for all other rp+1-components J ′ of āp+1 we

let Ap+1
J ′ be the σp+1-reduct of ApI′ , where I ′ is the rp-component of āp that contains J ′.

We define the structure Bp+1
J ′ similarly. Then (I) and (II) are satisfied for p+1.

Case 2: rp+1 < distA(aj , ap+1) for all j ∈ [p] and distA(ai, ap+1) 6 rp − rp+1 for some i ∈ [p].
Let I be the rp-component of āp that contains i. Then ap+1 ∈ AI by assumption (II-a).

By assumption (II-b), Duplicator wins the (q−p)-round EF+
q game on (AI , āp,BI , b̄p). Let

bp+1 be her answer if Spoiler plays ap+1. Then distB(bj , bp+1) > rp+1 for all j ∈ [p]. This
holds for j ∈ I by (II-b) and for j 6∈ I because distB(bi, bj) > rp. Thus (I) holds for p+1.

To see that (II) holds, note that {p+1} is an rp+1-component of āp+1. We let Ap+1
{p+1} :=

Ap+1[X (ap+1)] and Bp+1
{p+1} := Bp+1[Y(bp+1)]. Then (II-a) holds, because X and Y are r-

neighbourhood covers. (II-b) holds because ap+1 and bp+1 satisfy the same formulas Pϕ(x)
for symbols Pϕ ∈ σp = σ ?q−p (q, `).

Case 3: distA(ai, ap+1) > rp − rp+1 for all i ∈ [p].
Let Ψ be the set of all ψ(x1) ∈ Φ+(σp+1, 1, q, q−p−1) such that Ap+1[X (ap+1)] |= ψ[ap+1],

23

or equivalently, Ap |= Pψ[ap+1]. Let C be the set of all c ∈ A such that Ap |=
∧
ψ∈Ψ Pψ[c],

and let D be the set of all d ∈ B such that Bp |=
∧
ψ∈Ψ Pψ[d].

If there is a d ∈ D such that distB(bi, d) > rp+1 for all i ∈ [p], then we can let bp+1 := d
and argue as in case 2.

So suppose for contradiction that for each d ∈ D here is a j(d) ∈ [p] such that distB(bj(d), d) 6
rp+1.

Claim 1. There are s, t,m ∈ N such that 2rp+1 6 s 6 t − 4rp+1 and t < rp and m 6 p
and there are elements c1, . . . , cm ∈ C with distA(ci, cj) > t for all 1 6 i < j 6 m, but
there are no elements c1, . . . , cm+1 ∈ C with distA(ci, cj) > s for all 1 6 i < j 6 m+1.

Proof. We let s(1) := 2rp+1 and m(1) maximum such that there are c1, . . . , cm(1) ∈ C with
distA(ci, cj) > s(1) for all 1 6 i < j 6 m(1).

Suppose for contradiction thatm(1) > p. AsA? and B? satisfy the same (r, q)-independence
sentences and 2rp+1 6 r and p+1 6 q, there are d1, . . . , dp+1 ∈ D such that distB(di, dj) >
2rp+1. By the pigeonhole principle, there are distinct i, i′ ∈ [p+1] such that j(di) =
j(di′) =: j and thus distB(di, bj) 6 rp+1 and distB(di′ , bj) 6 rp+1. This implies distB(di, di′) 6
2rp+1, which is a contradiction. Hence m(1) 6 p.

Now suppose that s(h),m(h) are defined for some h > 1 in such a way that there are
c1, . . . , cm(h) ∈ C with distA(ci, cj) > s(h), and m(h) is maximum with this property. Let
s(h+1) := s(h) + 4rp+1. Let m(h+1) be maximum such that there are c′1, . . . , c

′
m(h+1) ∈ C

with distA(c′i, c
′
j) > s(h+1). Then m(h+1) 6 m(h). We continue this construction until

m(h+1) = m(h). We let s := s(h) and t := s(h+1).

Since p > m(1) > m(2) > . . . > m(h) = m(h+1) > 1, we have h 6 p and thus

t = s(1) + 4rp+1h = 4rp+1(h+ 1/2)) < 4rp+1(p+1) 6 4q rp+1 = rp . y

In the following, we let m, s, t be as in the claim. As A? and B? satisfy the same (r, q)-
independence sentences and t 6 rp 6 r and m 6 p 6 q, there are d1, . . . , dm ∈ D such
that distA(di, dj) > t. As dist(di, dj) > t > 2rp+1, we have j(di) 6= j(di′) for all distinct
i, i′ ∈ [m]. Without loss of generality we may assume that for every i ∈ [m] we have
j(di) = i. Then distB(di, bi) 6 rp+1 and hence distB(bi, bi′) > t − 2rp+1 for distinct
i, i′ ∈ [m]. As t− 2rp+1 < rp, it follows from (II-a) that

distA(ai, ai′) > t− 2rp+1

for distinct i, i′ ∈ [m].

Claim 2. For every i ∈ m there is a ci ∈ C such that distA(ai, ci) 6 rp+1.

Proof. Let i ∈ [m], let I be the rp-component of b̄ that contains i. Let

χ(x̄I) := ∃y
(

dist(xi, y) 6 rp+1 ∧
∧
ψ∈Ψ

Pψ(y)
)
.

Then BpI |= χ(b̄I), because di can be taken as witnesses for the existential quantifier.
Moreover, χ(x̄I) has q-rank at most (q−p), and thus ApI |= χ(āI). This implies that there
is a ci ∈ C such that distA(ai, ci) 6 rp+1. y

Let c1, . . . , cm ∈ C as in Claim 2. Then for distinct i, i′ ∈ [m] we have

distA(ci, ci′) > distA(ai, ai′)− 2rp+1 > t− 4rp+1 > s.

24

Moreover,

distA(ci, ap+1) > distA(ai, ap+1)− rp+1 > rp − 2rp+1 > s.

Thus c1, . . . , cm, ap+1 ∈ C have mutual distance greater than s, which contradicts Claim 1.

To prove Theorem 7.1, it will be convenient to use the language of types. A (k, q, `)-type
of signature σ is a subset t ⊆ Φ+(σ, k, q, `), and we let T(σ, k, q, `) := 2Φ+(σ,k,q,`) be the set
of all (k, q, `)-type of signature σ. Note that for each σ-structure A and k-tuple ā ∈ Ak,
there is a unique tk,q,`(A, ā) ∈ T(σ, k, q, `), which we call the (k, q, `)-type of A, ā, such that
A |= ϕ[ā] for all ϕ(x̄) ∈ tk,q,`(A, ā) and A |= ¬ϕ[ā] for all ϕ(x̄) ∈ Φ+(σ, k, q, `) \ tk,q,`(A, ā).
It is sometimes convenient to identify a type t ∈ T(σ, k, q, `) with the formula

∧
ϕ(x̄)∈t ϕ(x̄) ∧∧

ϕ(x̄)∈Φ+(σ,k,q,`)\t ¬ϕ(x̄) and use notations such as t(ȳ) for the formula obtained from t = t(x̄)
by substituting the variables in ȳ for those in x̄ and write A |= t[ā] instead of t = tk,q,`(A, ā).

Let Ξ(σ, r, k) be the set of all (r, k)-independence sentences of signature σ. An (r, k)-
independence type of signature σ is a subset i ⊆ Ξ(σ, r, k), and we let I(σ, r, k) := 2Ξ(σ,r,k)

be the set of all (r, k)-independence types of signature σ. We identify i ∈ I(σ, r, k) with the sen-
tence

∧
ξ∈i ξ ∧

∧
ξ∈Ξ(σ,r,k)\i ¬ξ. Then for each σ-structure A there is a unique ir,k(A) ∈ I(σ, r, k),

which we call the (r, k)-independence type of A, such that A |= ir,k(A).

Proof of Theorem 7.1. We fix a graph G ∈ Gk and let I1, . . . , In be the connected components
of G. For every j ∈ [n], let kj := |Ij | and Tj := T(σ?, kj , q, `). Furthermore, let I := I(σ?, r, q).
A combined type is a tuple

c = (i, t1, . . . , tn) ∈ I× T1 × . . .× Tn,

and we let C be the set of all combined types.
Let A be a σ-structure, X a kr-neighbourhood cover of A, and ā ∈ Ak with Gā,r = G. Let

A? := A?`X (q, `). We say that (A,X , ā) satisfies a combined type c = (i, t1, . . . , tn) ∈ C if A? |= i
and there are X1, . . . , Xn ∈ X such that Xj r-covers āIj and A?[Xj] |= tj [āIj] for all j ∈ [n].

Claim 1. (A,X , ā) satisfies some combined type c ∈ C.

Proof. We let i := ir,q(A?). For each j ∈ [n], say, with āIj = (ai1 , . . . , aikj), we let Xj := X (ai1).

Since āij is connected we have {ai1 , . . . , aikj } ⊆ N
A
(k−1)r(ai1) and thus

NAr (ai1 , . . . , aikj) ⊆ NAkr(ai1) ⊆ Xj ,

because X is a kr-neighbourhood cover. We let tj := tk,q,`(A?[Xj], āIj) and c = (i, t1, . . . , tn).
Then (A,X , ā) satisfies c. y

Observe that if there are c = (i, t1, . . . , tn) ∈ C and c′ = (i′, t′1, . . . , t
′
n) ∈ C such that (A,X , ā)

satisfies both c and c′, then i = i′, and (A,X , ā) also satisfies all c′′ = (i, t′′1, . . . , t
′′
n) such that

t′′i ∈ {ti, t′i} for all i. This implies that there are an i(A,X , ā) ∈ I and sets T1(A,X , ā) ⊆
T1, . . . ,T

n(A,X , ā) ⊆ Tn such that (A,X , ā) satisfies a combined type c if and only if

c ∈ {i(A,X , ā)} × T1(A,X , ā) × · · · × Tn(A,X , ā)︸ ︷︷ ︸
=: C(A,X , ā)

.

Claim 2. Let ψ(x̄Ij) :=
∨

t∈Tj(A,X ,ā) t. Then for all X,X ′ ∈ X that r-cover āIj we have

A?[X] |= ψ(x̄Ij) ⇐⇒ A?[X ′] |= ψ(x̄Ij).

Proof. Straightforward. y

25

Now let B be another σ-structure, Y a kr-neighbourhood cover of B, and b̄ ∈ Bk with
Gb̄,r = G. Then it follows from Lemma 7.3 that if both (A,X , ā) and (B,Y, b̄) satisfy some
combined type c ∈ C then

A |= ϕ[ā] ⇐⇒ B |= ϕ[b̄]. (2)

Let Cϕ1 , . . . ,C
ϕ
m be a list of all sets C(A,X , ā) for some σ-structure A, kr-neighbourhood cover

X of A, and ā ∈ Ak such that Gā,r = G and A |= ϕ[ā].

Claim 3. For all σ-structures A, all kr-neighbourhood covers X of A, and all ā ∈ Ak with
Gā,r = G, we have

A |= ϕ[ā] ⇐⇒ (A,X , ā) satisfies some c ∈
m⋃
i=1

Cϕi .

Proof. The implication “=⇒” is immediate from Claim 1 and the definition of Cϕ1 , . . . ,C
ϕ
m, and

the converse implication follows from (2). y

We let mG := m. Let i ∈ [m] and suppose that Cϕi = {ii} × T1
i × . . .× Tni . We let ξiG := ii,

and ψiG,Ij (x̄Ij) :=
∨

t∈Tji
t.

Now (1) and (2) follow from the construction and Claim 3, and (3) follows from Claim 2.
We omit the proof of (4), which is essentially the same as the corresponding part of the proof

of the Rank Preserving Locality Theorem in [13].

7.2 Rank-preserving term localisation

Let δG,r(ȳ) be the FO+[σ]-formula obtained from the FO[σ]-formula δσG,r(ȳ) of Section 6 by
replacing every subformula of the form distσ(yi, yj)6 r (resp., >r) by the “distance atom”
dist(yi, yj)6 r (resp., its negation).

Next, we define a variant of the cl-terms of Section 6 that is based on neighbourhood covers.
These “cover-cl-terms” are no counting terms of the logic FOC1(P); they are abstract objects
that come with their own semantics.

Definition 7.4 (Cover-cl-Term). Let r,m > 0, k > 1. A basic cover-cl-term with parameters
(r, k,m) and of signature σ is an object g of the form

#(y1, . . . , yk).
(
δG,r(y1, . . . , yk) ∧ ψ(y1, . . . , yk)

)
or an object u(y1) of the form

#(y2, . . . , yk).
(
δG,r(y1, . . . , yk) ∧ ψ(y1, . . . , yk)

)
where ȳ = (y1, . . . , yk) is a tuple of k pairwise distinct variables, G is a connected graph in Gk,
and ψ(y1, . . . , yk) is an FO+[σ]-formula such that the following is true for all σ-structures A, all
ā ∈ Ak with GAā,r = G, all m-neighbourhood covers X of A, and all clusters X and X ′ of X that
r-cover ā:

A[X] |= ψ[ā] ⇐⇒ A[X ′] |= ψ[ā] .

We say that g and u(y1) are of q-rank at most ` iff ψ is of q-rank at most `.
Semantics: For a σ-structure A and an m-neighbourhood cover X of A we let gA,X be

the number of tuples ā ∈ Ak such that GAā,r = G (i.e., A |= δG,r[ā]) and A[X] |= ψ[ā] for some

(and hence, all) clusters X of X that r-cover ā. Similarly, for a1 ∈ A we let uA,X [a1] be the
number of tuples (a2, . . . , ak) ∈ Ak−1 such that for ā := (a1, a2, . . . , ak) we have GAā,r = G and
A[X] |= ψ[ā] for some (hence, all) clusters X of X that r-cover ā.

A cover-cl-term with parameters (r, k,m) is built from integers and basic cover-cl-terms with
parameters (r′, k′,m′) with r′ 6 r, k′ 6 k, m′ 6 m by using rule (7) of Definition 3.1. The
cover-cl-term is of q-rank at most ` if all its basic cover-cl-terms are of q-rank at most `.

26

We generalise the notion to graphs G ∈ Gk that are not connected.

Definition 7.5 (Cover-Term). Let r,m > 0, k > 1. A cover-term with parameters (r, k,m)
and of signature σ is of the form

g := #(y1, . . . , yk).
(
δG,r(ȳ) ∧

∧
I∈C

ψI(ȳI)
)

or

u(y1) := #(y2, . . . , yk).
(
δG,r(ȳ) ∧

∧
I∈C

ψI(ȳI)
)

where k > 1, ȳ = (y1, . . . , yk) is a tuple of k pairwise distinct variables, G ∈ Gk, C is the
set consisting of all connected components I of G, and for every I ∈ C, ψI(ȳI) is an FO+[σ]-
formula such that for all σ-structures A, all ā = (a1, . . . , ak) ∈ Ak with GAāI ,r = G[I], all
m-neighbourhood covers X of A, and all clusters X and X ′ of X that r-cover āI we have

A[X] |= ψI [āI] ⇐⇒ A[X ′] |= ψI [āI] . (∗∗)

Semantics: For a σ-structure A and an m-neighbourhood cover X of A we let gA,X be the
number of tuples ā = (a1, . . . , ak) ∈ Ak such that Gā,r = G and for all I ∈ C, A[X] |= ψI [āI]
for some (and hence, all) clusters X of X that r-cover āI . Furthermore, for every a1 ∈ A we
let uA,X [a1] be the number of tuples (a2, . . . , ak) ∈ Ak−1 such that for ā := (a1, a2, . . . , ak) we
have Gā,r = G and for all I ∈ C, A[X] |= ψI [āI] for some (and hence, all) clusters X of X that
r-cover āI .

Lemma 7.6. Let σ be a relational signature, let r > 0, k > 1, m > 0, and consider cover-terms

g := #(y1, . . . , yk).
(
δG,r(ȳ) ∧

∧
I∈C

ψI(ȳI)
)

u(y1) := #(y2, . . . , yk).
(
δG,r(ȳ) ∧

∧
I∈C

ψI(ȳI)
)

with parameters (r, k,m).

There exists a ground cover-cl-term ĝ and a unary cover-cl-term û(y1), both with parameters
(r, k,m), such that ĝA,X = gA,X and ûA,X [a1] = uA,X [a1], for every σ-structure A, every m-
neighbourhood cover X of A, and every a1 ∈ A.

If ψI has q-rank at most ` for each I ∈ C, then also ĝ and û(y1) have q-rank at most `.

Furthermore, there is an algorithm which upon input of (r, k,m), G, and (ψI)I∈C constructs
ĝ and û(y1).

Proof. We proceed by induction on the number c := |C| of connected components ofG. Precisely,
we show that the following statement (∗)c is true for every c ∈ N>1.

(∗)c: Let k > c. Let G ∈ Gk consist of at most c connected components, and let C be the set
consisting of all connected components I of G. Let ȳ = (y1, . . . , yk) be a tuple of k pairwise
distinct variables. Let r,m > 0. For every I ∈ C let ψI(ȳI) be an FO+[σ]-formula such that
for all σ-structures A, all ā = (a1, . . . , ak) ∈ Ak with GAāI ,r = G[I], all m-neighbourhood
covers X of A, and all clusters X and X ′ of X that cover āI we have

A[X] |= ψI [āI] ⇐⇒ A[X ′] |= ψI [āI] .

Then, for the cover-terms g and u(y1) (as stated in the lemma) there are cover-cl-terms ĝ
and û(y1) with parameters (r, k,m) such that gA,X = ĝA,X and uA,X [a1] = ûA,X [a1] holds
for every σ-structure A, every m-neighbourhood cover X of A and all a1 ∈ A.

27

The induction base for c = 1 is trivial, since g and u(y1) are basic cover-cl-terms.
For the induction step from c to c+1, consider some k > c+1 and a graph G = (V,E) ∈ Gk

that has c+1 connected components. V ′ be the connected component of G that contains the
node 1 and let V ′′ := V \ V ′.

Let G′ := G[V ′] and G′′ := G[V ′′] be the induced subgraphs of G on V ′ and V ′′, respectively.
Clearly, G is the disjoint union of G′ and G′′, G′ is connected, G′′ has c connected components,
and C ′′ := C \ {V ′} is the set of all connected components of G′′.

To keep notation simple, we assume (without loss of generality) that V ′ = {1, . . . , k′} and
V ′′ = {k′+1, . . . , k} for some k′ with 1 6 k′ < k. For any tuple z̄ = (z1, . . . , zk) we let
z̄′ := (z1, . . . , zk′) and z̄′′ := (zk′+1, . . . , zk).

Now consider numbers r,m > 0 and formulas ψI(ȳI), for each I ∈ C, as in (∗)c+1’s assump-
tion.

For every σ-structure A and every m-neighbourhood cover X of A we let

SA,X

be the set of all tuples ā = (a1, . . . , ak) ∈ Ak such that GAā,r = G and where for each I ∈ C
we have A[X] |= ψI [āI] for some (and hence, every) cluster X of X that covers āI . Clearly,
gA,X = |SA,X | for the ground cover-term

g := #(y1, . . . , yk).
(
δG,r(ȳ) ∧

∧
I∈C

ψI(ȳI)
)
.

Similarly, we let
SA,X1

be the set of all tuples ā′ = (a1, . . . , ak′) ∈ Ak
′

such that GAā′,r = G′ and where A[X] |= ψV ′ [ā
′]

for some (and hence, every) cluster X of X that covers ā′. Clearly, gA,X1 = |SA,X1 | for the basic
cover-cl-term

ĝ1 := #(y1, . . . , yk′).
(
δG′,r(y1, . . . , yk′) ∧ ψV ′(y1, . . . , yk′)

)
.

Furthermore, we let
SA,X2

be the set of all tuples ā′′ = (ak′+1, . . . , ak) ∈ Ak−k
′

such that GAā′′,r = G′′ and where for each
I ∈ C ′′ we have A[X] |= ψI [ā

′′
I] for some (and hence, every) cluster X of X that covers ā′′I .

Clearly, gA,X2 = |SA,X2 | for the ground cover-term

g2 := #(yk′+1, . . . , yk).
(
δG′′,r(yk′+1, . . . , yk) ∧

∧
I∈C′′

ψI(ȳI)
)
.

By the induction hypothesis we know that (∗)c holds. Hence, there is a cover-cl-term ĝ2 such
that ĝA,X2 = gA,X2 = |SA,X2 | is true for all σ-structures A and all m-neighbourhood covers X of
A.

Note that for every σ-structure A and every m-neighbourhood cover X of A we have

SA,X =
(
SA,X1 × SA,X2

)
\ TA,X ,

where
TA,X

is the set of all tuples ā = (a1, . . . , ak) ∈ Ak such that ā′ ∈ SA,X1 , ā′′ ∈ SA,X2 , and there are
j′ ∈ {1, . . . , k′} and j′′ ∈ {k′+1, . . . , k} such that distA(aj′ , aj′′) 6 r.

Let H be the set of all graphs H ∈ Gk with H 6= G, but H[V ′] = G′ and H[V ′′] = G′′.
Clearly, every H ∈ H has at most c connected components. Furthermore, it is straightforward

28

to see that for every σ-structure A and every m-neighbourhood cover X of A, the set TA,X is
the disjoint union of the sets

TA,XH :=
{
ā ∈ Ak : ā′ ∈ SA,X1 and ā′′ ∈ SA,X2 and GAā,r = H

}
for all H ∈ H.

Clearly,

gA,X = |SA,X | = |SA,X1 | · |SA,X2 | −
∑
H∈H

|TA,XH | ;

and this holds for every σ-structure A and every m-neighbourhood cover X of A.
To finish the proof of the lemma’s statement concerning g, it therefore suffices to construct

for each H ∈ H a cover-cl-term ĝH such that ĝA,XH = |TA,XH | for every σ-structure A and every
m-neighbourhood cover X of A — afterwards, we are done by choosing

ĝ := ĝ1 · ĝ2 −
∑
H∈H

ĝH .

Let us consider a fixed H ∈ H. Note that every connected component of H is a union of one or
more connected components of G. Let I1, . . . , Is be the connected components of H (for s 6 c).
For each j ∈ [s] let Cj be the subset of C such that Ij =

⋃
I∈Cj I. W.l.o.g. let V ′ ∈ C1.

For each j ∈ [s] let

ψHIj (ȳIj) :=
∧
I∈Cj

ψI(ȳI) .

It is not difficult to verify that for all j ∈ [s], all σ-structures A, all ā = (a1, . . . , ak) ∈ Ak with
GAāIj ,r

= H[Ij], all m-neighbourhood covers X of A, and all clusters X and X ′ of X that r-cover

āIj we have

A[X] |= ψHIj [āIj] ⇐⇒ A[X ′] |= ψHIj [āIj] .

Hence, we can build the cover-term

gH := #(y1, . . . , yk).
(
δH,r(ȳ) ∧

∧
j∈[s]

ψHIj (ȳIj)
)

and obtain by the induction hypothesis (∗)c a ground cover-cl-term ĝH such that ĝA,XH = gA,XH

for all σ-structures A and all m-neighbourhood covers X of A. To finish the proof of the lemma’s
statement concerning g it remains to show that gA,XH = |TA,XH |.

By definition, gA,XH = |UA,XH |, for the set

UA,XH

of all tuples ā = (a1, . . . , ak) ∈ Ak such that GAā,r = H and for all j ∈ [s], A[X] |= ψHIj [āIj]

for some (and hence, all) clusters X of X that cover āIj . It is straightforward to verify that

UA,XH = TA,XH . This completes the proof of the lemma’s statement concerning g.
The proof of the lemma’s statement concerning u(y1) follows by an analogous reasoning.

By combining this lemma with Theorem 7.1 we obtain the following lemma.

Lemma 7.7 (Localisation Lemma). Let q, k ∈ N with k 6 q, let ` := q − k, r := fq(`), and
let σ? := σ ?` (q, `). Let ϕ(x̄), where x̄ = (x1, . . . , xk), be an FO+[σ]-formula of q-rank at most
`. Consider the terms

g := #(x1, . . . , xk).ϕ(x1, . . . , xk)

u(x1) := #(x2, . . . , xk).ϕ(x1, . . . , xk) .

29

There exists an s > 0 and (r, q)-independence sentences χ1, . . . , χs of signature σ? such that for
every J ⊆ [s] there are a ground cover-cl-term ĝJ and a unary cover-cl-term ûJ(x1), both with
parameters (r, k, kr), of q-rank at most `, and of signature σ?, such that for every σ-structure
A and every kr-neighbourhood cover X of A there is exactly one J ⊆ [s] with

A? |= χJ :=
∧
j∈J

χj ∧
∧

j∈[s]\J

¬χj

for A? := A ?`X (q, `), and for this J we have ĝA
?,X

J = gA and ûA
?,X

J [a] = uA[a] for every a ∈ A.
Furthermore, there is an algorithm which computes χ1, . . . , χs and

(
ĝJ , ûJ(x1)

)
J⊆[s]

upon

input of q, k, ϕ(x̄).

Proof. We apply Theorem 7.1 to the formula ϕ(x̄) and let χ1, . . . , χs be the list of all (r, q)-
independence sentences of signature σ? that occur in one of the ξiG for some G ∈ Gk and
i ∈ [mG]. For every J ⊆ [s] let S(J) be the set of all (G, i) with G ∈ Gk and i ∈ [mG] for which
the propositional formula obtained from ξiG by replacing every occurrence of χj by true if j ∈ J
and by false if j 6∈ J , evaluates to true.

For every G ∈ Gk we write C(G) for the set of all connected components of G. For every
(G, i) with G ∈ Gk and i ∈ [mG], consider the objects

g(G,i) := #(x1, . . . , xk).
(
δG,r(x̄) ∧

∧
I∈C(G)

ψiG,I(x̄I)
)

and
u(G,i)(x1) := #(x2, . . . , xk).

(
δG,r(x̄) ∧

∧
I∈C(G)

ψiG,I(x̄I)
)
.

From the statement of Theorem 7.1 we know that these objects are cover-terms of signature
σ?; and using Lemma 7.6, we can translate these into cover-cl-terms ĝ(G,i) and û(G,i)(x1) with
parameters (r, k, kr) and of q-rank at most `.

For every σ-structure A and every kr-neighbourhood cover X of A, there is a unique set
J ⊆ [s] such that A? |= χJ , for A? := A ?`X (q, `). From the statement of Theorem 7.1 we obtain
for

ĝJ :=
∑

(G,i)∈S(J)

ĝ(G,i)

and
ûJ(x1) :=

∑
(G,i)∈S(J)

û(G,i)(x1)

that ĝA
?,X

J = gA and ûA
?,X

J [a] = uA[a] for every a ∈ A.

7.3 The Removal Lemma

Recall that by z̄I we denote the projection of a tuple z̄ = (z1, . . . , zk) to the coordinates in
I ⊆ [k]. We extend the notation by letting z̄\I := z̄[k]\I .

Let σ be a signature and let r ∈ N. For every relation symbol R ∈ σ of arity k > 1 and for
every set I ⊆ [k] we introduce a fresh (k−|I|)-ary relation symbol R̃I , and we let σ̃ be the set
of all these relation symbols. We let σ̃r be the extension of σ̃ by fresh unary relation symbols
Si for all i ∈ [r]. For every σ-structure A of order |A| > 2 and every d ∈ A, we let A * d be the
σ̃-structure with universe A \ {d} and relations

R̃
A*d
I :=

{
ā\I : ā ∈ RA and I = {i ∈ [k] : ai = d}

}
for every k-ary R ∈ σ and every I ⊆ [k]. Furthermore, we let A *r d be the σ̃r-expansion of A *d
in which each Si is interpreted by the set of all b ∈ A \ {d} such that distA(d, b) 6 i. Note that
(for fixed σ and r), we can compute A *r d from A and d in linear time.

30

Lemma 7.8 (Removal Lemma for Formulas). Let q, ` ∈ N and r := fq(`). Then for every
FO+[σ]-formula ϕ(x̄) of q-rank at most `, where x̄ = (x1, . . . , xk), and for every set I ⊆ [k]
there is an FO+[σ̃r]-formula ϕ̃I(x̄\I) of q-rank at most ` such that for all σ-structures A of

order |A| > 2, all d ∈ A, and all ā = (a1, . . . , ak) ∈ Ak such that I = {i ∈ [k] : ai = d}, we have

A |= ϕ[ā] ⇐⇒ A *r d |= ϕ̃I [ā\I].

Furthermore, there is an algorithm that computes ϕ̃I from ϕ and I.

Proof. For the proof it will be convenient to consider sets V of variables instead of sets I of
indices. When given a formula ϕ, we construct for every finite set V of variables a formula ϕ̃V
with free(ϕ̃V) = free(ϕ) \ V , such that for all σ-structures A of order |A| > 2, all d ∈ A, and all
assignments β in A with V ∩ free(ϕ) = {x ∈ free(ϕ) : β(x) = d}, we have

(A, β) |= ϕ ⇐⇒ (Ã, β̃) |= ϕ̃V , (∗∗∗)

for Ã := A *r d and for every assignment β̃ in A *r d with β̃(z) = β(z) for all variables z 6∈ V .
Note that the lemma then follows by choosing ϕ̃I := ϕ̃V for V := {xi : i ∈ I}.

We construct ϕ̃V by induction on the shape of the given formula ϕ. The most interesting
cases are the base cases.

• If ϕ is of the form R(x1, . . . , xk) with k = ar(R), then let I := {i ∈ [k] : xi ∈ V } and
choose ϕ̃V := R̃I(x̄\I).

• If ϕ is of the form x1=x2, then

ϕ̃V :=


x1=x2 if {x1, x2} ∩ V = ∅
true if {x1, x2} ⊆ V
false otherwise .

• If ϕ is of the form dist(x1, x2) 6 i, then

ϕ̃V :=



true if x1 ∈ V, x2 ∈ V
Si(x2) if x1 ∈ V, x2 6∈ V
Si(x1) if x1 6∈ V, x2 ∈ V
dist(x1, x2) 6 i ∨

∨
06i1,i26i,
i1+i2=i

(
Si1(x1) ∧ Si2(x2)

)
if x1 6∈ V, x2 6∈ V .

The inductive step is straightforward:

• If ϕ is of the form ¬ψ, then ϕ̃V := ¬ ψ̃V .

• If ϕ is of the form (ψ ∨ χ), then ϕ̃V :=
(
ψ̃V ∨ χ̃V

)
.

• If ϕ is of the form ∃xψ, then ϕ̃V :=
(
ψ̃V ∪{x} ∨ ∃x ψ̃V \{x}

)
.

It is easy to see that ϕ̃V satisfies (∗∗∗). This completes the proof of Lemma 7.8.

A basic term is a term t(x̄) of the form #ȳ.ϕ(x̄, ȳ) for an FO+-formula ϕ(x̄, ȳ). The q-rank
of t(x̄) is the q-rank of ϕ, and the width of t(x̄) is |x̄| + |ȳ|. Usually, we are only interested in
ground basic terms, where |x̄| = 0 and unary basic terms, where |x̄| = 1.

Lemma 7.9 (Removal Lemma for Terms). Let σ be a signature. Let q, k ∈ N with k 6 q,
let ` := q−k and r := fq(`).

31

(a) For every ground basic term g of signature σ, width k, and q-rank at most ` there is a list
ĝ1, . . . , ĝm of ground basic terms of signature σ̃r, width at most k, and q-rank at most ` such
that for all σ-structures A of order |A| > 2 and all d ∈ A,

gA =
m∑
i=1

ĝ
A*rd
i

Furthermore, there is an algorithm that, given g, computes ĝ1, . . . , ĝm.

(b) For every unary basic term u(x) of signature σ, width k, and q-rank 6 ` there are a list
ĝ1, . . . , ĝm of ground basic terms and a list û1(x), . . . , ûn(x) of unary basic terms, all of
signature σ̃r, width at most k, and q-rank at most `, such that for all σ-structures A of
order |A| > 2 and all a, d ∈ A,

uA[a] =


∑m

i=1 ĝ
A*rd
i if a = d,∑n

i=1 û
A*rd
i [a] if a 6= d.

Furthermore, there is an algorithm that, given u(x), computes ĝ1, . . . , ĝm, û1(x), . . . , ûn(x).

Proof. We only prove assertion (b); the proof of (a) is similar. Let

u(x1) := #(x1, . . . , xk).ϕ(x1, . . . , xk),

where ϕ(x̄) is an FO+[σ]-formula of q-rank at most `. We apply Lemma 7.8 to ϕ(x̄) and obtain
formulas ϕ̃I(x̄\I) for all I ⊆ [k]. Let ψ1(x̄1), . . . , ψm(x̄m) be an enumeration of all formulas
ϕ̃I(x̄\I) with 1 ∈ I, and let ϑ1(x1, x̄

′
1), . . . , ϑn(xn, x̄

′
n) be an enumeration of all formulas ϕ̃I(x̄\I)

with 1 6∈ I. We let ĝi := #x̄i.ψi(x̄i) and ûj(x1) := #x̄′j .ϑj(x1, x̄
′
j).

8 Nowhere dense structures

The concept of nowhere dense graph classes tries to capture the intuitive meaning of “sparse
graphs” in a fairly general, yet still useful way. The original definition of nowhere dense classes
(see [20]), which is relatively complicated, refers to the edge densities of “flat minors” of the
graphs in the class. The definition has turned out to be very robust, and there are are several
seemingly unrelated characterisations of nowhere dense graph classes. Most useful for us is a
characterisation in terms of a the so-called “splitter game” due to [13], which we use as our
definition.

Let G be a graph and ρ, r > 0. The (ρ, r)-splitter game on G is played by two players called
Connector and Splitter as follows. We let G0 := G. In round i+1 of the game, Connector
chooses an element ai+1 ∈ V (Gi). Then Splitter chooses an element bi+1 ∈ NGi

r (ai+1). If
NGi
r (ai+1) \ {bi+1} = ∅, then Splitter wins the game. Otherwise, the game continues with

Gi+1 := Gi
[
NGi
r (ai+1) \ {bi+1}

]
.

If Splitter has not won after ρ rounds, Connector wins.
A strategy for Splitter is a function f that associates to every partial play (a1, b1, . . . , ai, bi)

with associated sequence G0, . . . , Gi of graphs and move ai+1 ∈ V (Gi) by Connector a bi+1 ∈
NGi
r (ai+1). A strategy f is a winning strategy for Splitter in the (ρ, r)-splitter game on G if

Splitter wins every play in which she follows the strategy f . If Splitter has a winning strategy,
we say that she wins the (ρ, r)-splitter game on G.

For a class C of graphs and a function λ : N → N, we say that Splitter wins the λ-splitter
game on C if for every r ∈ N and every G ∈ C she wins the (λ(r), r)-splitter game on G. A
class C of graphs is nowhere dense if there is a function λ : N → N such that Splitter wins the

32

λ-splitter game on C. If λ is computable, the class C is effectively nowhere dense. A class C of
structures is (effectively) nowhere dense if the class of Gaifman graphs of all structures in C is
(effectively) nowhere dense.

It follows from [13] that a class C of graphs is nowhere dense (in the sense just defined) if
and only if it is nowhere dense in the sense of [20].

It is easy to see that if Splitter wins the (ρ, r)-splitter game on a graph G, then she also
wins it on all subgraphs of G. Thus if we close a nowhere dense class of graphs under taking
subgraphs, the class remains nowhere dense.

Finally, we mention that for every nowhere dense class C of graphs there is a function f such
that for every ε > 0 and every graph G ∈ C, if |V (G)| > f(ε) then ‖G‖ 6 |V (G)|1+ε (see [20]).

8.1 Sparse neighbourhood covers

Let us now turn to sparse neighbourhood covers of nowhere dense graphs. Let X be an r-
neighbourhood cover of a graph G (or of some structure A with Gaifman graph G). The radius
of X is the least s such that all clusters of X have radius at most s, that is, for every X ∈ X
there is a c ∈ X such that X ⊆ NG[X]

s (c). We call each such c an s-centre of X. In the following,
an (r, s)-neighbourhood cover of G is an r-neighbourhood cover of radius at most s.

The degree of a vertex a ∈ V (G) in a neighbourhood cover X is the number of clusters
X ∈ X such that a ∈ X. The maximum degree ∆(X) is the maximum of the degrees of all
vertices a ∈ V (G). Note that

∑
X∈X |X| 6 |V (G)| ·∆(X).

Theorem 8.1 ([13]). Let C be a nowhere dense class of graphs. Then there is a function f
and an algorithm that, given an ε > 0, an r ∈ N, and a graph G ∈ C with n := |V (G)| > f(r, ε),
computes an (r, 2r)-neighbourhood cover of G of maximum degree at most nε in time f(r, ε)·n1+ε.
Furthermore, if C is effectively nowhere dense, then f is computable.

We remark that the construction of [13] also yields, together with an (r, 2r)-neighbourhood
cover X of G, a function cen : X → V (G) that associates with each cluster X ∈ X , a 2r-centre
cen(X) for X. Moreover, it is easy to see that for a given neighbourhood cover X of G we can
compute in linear time a data structure that associates with each X ∈ X the list of all a ∈ V (G)
with X (a) = X.

8.2 The main algorithm

In this section, we complete the proof of Lemma 5.7. We fix a numerical predicate collection
(P, ar, J.K) and a signature σ. Let C be a nowhere dense class of structures, and let GC be the
class of the Gaifman graphs of all structures in C. Without loss of generality we may assume
that GC is closed under taking subgraphs and that C is the class of all structures whose Gaifman
graph is in GC . Let λ : N→ N such that Splitter wins the λ-splitter game on GC .

We need to design an algorithm with P-oracle which receives as input an ε > 0, a σ-structure
A from C and an FOC1(P)[σ]-expression ξ which is either a sentence ϕ or a ground term t. The
algorithm decides whether A |= ϕ and computes tA, respectively. The algorithm’s running time
is f(p, ε)n1+ε, where p := ||ξ|| is the size of the input expression and n := |A| is the order of the
input structure.

Our algorithm is similar to the model-checking algorithm for FO-sentences on nowhere dense
classes of graphs from [13]. The design and analysis of our algorithm relies on subroutines and
results from [13]. However, we present a high level outline of the algorithm that should be
accessible without knowledge of [13].

The Decomposition Theorem 6.10 reduces the evaluation of FOC1(P)[σ]-sentences and ground
terms to the evaluation of first-order sentences and cl-terms over some signature τ ⊇ σ that ex-
tends σ by relation symbols of arity 6 1. Note that every τ -expansion of a σ-structure A has

33

the same Gaifman graph as A and hence also belongs to C. The evaluation of first-order sen-
tences has been taken care of in [13]. The evaluation of cl-terms can further be reduced to basic
cl-terms. In fact, it is not important that we have cl-terms; the important thing is that we have
basic terms with at most one free variable.

So all that remains is the evaluation of basic terms, either ground terms g or unary terms
u(x1). To simplify the notation, we just assume that these terms are in our original signature
σ. Moreover, we focus on unary terms here; ground terms can be dealt with similarly.

Hence, the input of our algorithm is an ε > 0, a σ-structure A and a unary basic term u(x1)
of width k and q-rank at most `, where q = k + `. As usual, we let r = fq(`). Our algorithm is
supposed to compute uA[a] for all a ∈ A.

The algorithm proceeds in the following steps.

1. Let δ := ε
2λ(2kr) .

If |A| < f(rk, δ) for the function f of Theorem 8.1, evaluate t by brute force and stop.

Otherwise, compute a (kr, 2kr)-neighbourhood cover X of A of maximum degree at most
nδ, where n := |A|. In addition, compute for each X ∈ X a 2kr-centre cen(X) and the set
of all elements a ∈ A with X (a) = X.

2. Let σ? := σ ?` (q, `). Compute A? := A ?`X (q, `), using the algorithm described in [13].

3. Applying the Localisation Lemma (Lemma 7.7), compute (r, q)-independence sentences
χ1, . . . , χs and cover-cl-terms

(
ĝJ , ûJ(x1)

)
J⊆[s]

with parameters (r, k, kr) and of q-rank at

most ` such that the evaluation of u(x1) in A reduces to the evaluation of these sentences
and terms in A?,X .

4. Evaluate the independence sentences χ1, . . . , χs in A? using the algorithm of [13].

Obviously, there is exactly one set J ⊆ [s] such that A? |= χJ for χJ :=
∧
j∈J χj ∧∧

j∈[s]\J ¬χj .

5. Compute ûA
?,X

J [a] = uA[a] for every a ∈ A.

It remains to explain in detail how the last step is carried out. Consider a basic cover-cl-term
û(x1) that occurs in ûJ(x1) and is of the form

û(x1) := #(x2, . . . , xk′).
(
δG,r′(x1, . . . , xk′) ∧ ψ(x1, . . . , xk′)

)
for a connected graph G ∈ Gk′ , a k′ 6 k, an r′ 6 r, and an FO+[σ?]-formula ψ(x1, . . . , xk′) of
q-rank at most `.

Let a ∈ A and X := X (a). As X is a kr-neighbourhood cover and G is connected, X r-covers
every tuple ā = (a1, . . . , ak′) such that Gā,r′ = G and a1 = a. Recall from Definition 7.4 that
ûA

?,X [a] is the number of tuples ā ∈ Ak′ such that a1 = a and Gā,r′ = G and A?[X] |= ψ[ā].

To be able to compute this number efficiently, we introduce a fresh unary relation symbol Q
and let BX be the (σ? ∪ {Q})-expansion of A?[X] where Q is interpreted by the set of all a ∈ A
such that X (a) = X. Let

t(x1) := #(x2, . . . , xk′).
(
δG,r′(x1, . . . , xk′) ∧ ψ(x1, . . . , xk′) ∧ Q(x1)

)
.

What our algorithm needs to do now is evaluate t(x1) in the structures BX , for all X ∈ X . This
is done in the following steps, which form the expanded version of step 5 of the algorithm.

5. For all X ∈ X

a. Compute BX

34

b. Let c := cen(X), and let d be Splitter’s answer if Connector plays c in the first round of
the (λ(2kr), 2kr)-splitter game on GA. It is explained in [13] how d can be computed
efficiently.

c. Compute B′ := BX *r d.

d. Apply the Removal Lemma (Lemma 7.9) to the unary basic term t(x1) and recursively
evaluate the resulting basic terms in B′.

e. For each a ∈ QBX , use the results of the recursive calls to compute tBX [a] according to
the Removal Lemma.

The algorithm terminates with a recursion depth of at most λ(2kr), because in the recursive
call we only need to consider the (λ(2kr)−1, 2kr)-splitter game.

Let us analyse the running time of the algorithm. We express the running time in terms of
the order n of the input structure and the number ρ of rounds of the Splitter game. Initially, we
have ρ = λ(2kr). The dependence on the class C, the signature σ, and the parameters k, ` goes
into the constants; of course λ(2kr) depends on C, k, `. If n 6 n0 for some constant n0 (depending
on C, σ, k, `, ε) then the algorithm terminates in constant time in line 1. If ρ = 1, then Splitter
wins the game in 1 round, which means that every connected component of GA only consists
of a single vertex. Thus either |A| = 1 and the algorithm terminates in line 1 in constant time
or the algorithm makes n recursive calls and each of these recursive calls terminates in constant
time. Thus we have the two basic equations T (n, ρ) = O(1) if n 6 n0, and T (n, 1) = O(n)
otherwise.

Suppose n > n0 and ρ > 1. Lines 1–4 can be carried out in time O(n1+δ) (by Theorem 8.1
for line 1). To analyse the time spent on line 5, let X ∈ X be of size nX := |X|. Lines 5.a–e can
be carried out in time O(‖BX‖) = O(‖A[X]‖) = O(n1+δ

X), because A[X] is from the nowhere
dense class C. The recursive calls in line 5.e require time O(T (nX , ρ−1)). Thus the time spent
on line 5 is

∑
X∈X O

(
T (nX , ρ−1) + n1+δ

X

)
, and, recalling that δ = ε/2λ(2kr) with ρ = λ(2kr),

we obtain a recurrence equation

T (n, ρ) =
∑
X∈X

O
(
T (nX , ρ−1) + n

1+ε/2ρ
X

)
+ O

(
n1+ε/2ρ

)
.

The same recurrence was obtained in [13], and it was shown there that it yields the desired
running time O(n1+ε). This completes our description and analysis of the algorithm and hence
the proof of Lemma 5.7.

9 Open questions

To conclude, let us point out some open questions.
(1) Can our approach be generalised to an extension of FO which, apart from COUNT, also

supports further aggregate operations of SQL, such as SUM and AVG?
(2) Can our approach be generalised to support database updates? In [16] this was achieved

for FOC(P) on bounded degree classes. But for other classes, e.g., planar graphs or classes of
bounded local tree-width (let alone nowhere dense classes), this is open even for FO.

(3) Can our approach be generalised to obtain an algorithm that enumerates the query result
with constant-delay? In [23] such an algorithm was obtained for FO-queries on classes of locally
bounded expansion. Can our machinery of Sections 6 and 7 help to generalise the result to
nowhere dense classes?

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

35

[2] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs. J.
Algorithms, 12(2):308–340, 1991.

[3] B. Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite graphs.
Inf. Comput., 85(1):12–75, 1990.

[4] R. Downey, M. Fellows, and K. Regan. Descriptive complexity and the W-hierarchy. In
P. Beame and S. Buss, editors, Proof Complexity and Feasible Arithmetic, volume 39 of
AMS-DIMACS Volume Series, pages 119–134. AMS, 1998.

[5] A. Durand and S. Mengel. Structural tractability of counting of solutions to conjunctive
queries. In Joint 2013 EDBT/ICDT Conferences, ICDT ’13 Proceedings, Genoa, Italy,
March 18-22, 2013, pages 81–92, 2013.

[6] Z. Dvořák, D. Král, and R. Thomas. Deciding first-order properties for sparse graphs. In
51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October
23-26, 2010, Las Vegas, Nevada, USA, pages 133–142, 2010.

[7] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer Verlag, 2nd edition, 1999.

[8] S. Feferman and R. Vaught. The first order properties of algebraic systems. Fund. Math.,
47:57–103, 1959.

[9] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.

[10] M. Frick. Generalized model-checking over locally tree-decomposable classes. Theory of
Computing Systems, 37(1):157–191, 2004.

[11] M. Frick and M. Grohe. Deciding first-order properties of locally tree-decomposable struc-
tures. J. ACM, 48(6):1184–1206, 2001.

[12] H. Gaifman. On local and non-local properties. In J. Stern, editor, Proceedings of the
Herbrand Symposium, Logic Colloquium ’81, pages 105–135. North Holland, 1982.

[13] M. Grohe, S. Kreutzer, and S. Siebertz. Deciding first-order properties of nowhere dense
graphs. ArXiv (CoRR), arXiv:1311.3899v2 [cs.LO], 2014. Conference Version in Proceedings
STOC’14.

[14] W. Kazana and L. Segoufin. Enumeration of first-order queries on classes of structures with
bounded expansion. In Proceedings of the 32nd ACM Symposium on Principles of Database
Systems, pages 297–308, 2013.

[15] S. Kreutzer. Algorithmic meta-theorems. In J. Esparza, C. Michaux, and C. Steinhorn, edi-
tors, Finite and Algorithmic Model Theory, chapter 5, page 177–270. Cambridge University
Press, 2011.

[16] D. Kuske and N. Schweikardt. First-order logic with counting: At least, weak Hanf normal
forms always exist and can be computed! In Proceedings of the 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS’17, 2017. Full version available at CoRR
abs/1703.01122.

[17] L. Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2004.

[18] J. A. Makowsky. Algorithmic uses of the Feferman-Vaught theorem. Ann. Pure Appl.
Logic, 126(1-3):159–213, 2004.

36

http://arxiv.org/abs/1311.3899

[19] J. Nešetřil and P. Ossona de Mendez. First order properties on nowhere dense structures.
J. Symb. Log., 75(3):868–887, 2010.

[20] J. Nešetřil and P. Ossona de Mendez. Sparsity. Springer-Verlag, 2012.

[21] C. H. Papadimitriou and M. Yannakakis. On the complexity of database queries. J. Comput.
Syst. Sci., 58(3):407–427, 1999.

[22] D. Seese. Linear time computable problems and first-order descriptions. Mathematical
Structures in Computer Science, 6(6):505–526, 1996.

[23] L. Segoufin and A. Vigny. Constant delay enumeration for FO queries over databases with
local bounded expansion. In 20th International Conference on Database Theory, ICDT
2017, March 21-24, 2017, Venice, Italy, pages 20:1–20:16, 2017.

[24] M. Vardi. The complexity of relational query languages. In Proceedings of the 14th ACM
Symposium on Theory of Computing, pages 137–146, 1982.

37

	1 Introduction
	2 Basic notation
	3 Syntax and semantics of FOC(P)
	4 The hardness of evaluating FOC(P)-queries
	5 The fragment FOC1(P) of FOC(P)
	6 A decomposition of FOC1(P)
	6.1 Connected local terms
	6.2 A connected local normalform for FO
	6.3 A decomposition of FOC1(P)-expressions

	7 Neighbourhood covers and local evaluation
	7.1 Rank-preserving locality
	7.2 Rank-preserving term localisation
	7.3 The Removal Lemma

	8 Nowhere dense structures
	8.1 Sparse neighbourhood covers
	8.2 The main algorithm

	9 Open questions

