
The tractability frontier of well-designed SPARQL queries∗

Miguel Romero
University of Oxford, UK

miguel.romero@cs.ox.ac.uk

ABSTRACT
We study the complexity of query evaluation of SPARQL
queries. We focus on the fundamental fragment of well-
designed SPARQL restricted to the AND, OPTIONAL and
UNION operators. Our main result is a structural charac-
terisation of the classes of well-designed queries that can be
evaluated in polynomial time. In particular, we introduce
a new notion of width called domination width, which relies
on the well-known notion of treewidth. We show that, under
some complexity theoretic assumptions, the classes of well-
designed queries that can be evaluated in polynomial time
are precisely those of bounded domination width.

1. INTRODUCTION
The Resource Description Framework (RDF) [20] is

the W3C standard for representing linked data on the
Web. In this model, data is represented as RDF graphs,
which consist of collections of triples of internationalised
resource identifiers (IRIs). Intuitively, such a triple
(s, p, o) represents the fact that a subject s is connected
to an object o via a predicate p.

SPARQL [26] is the standard query language for RDF
graphs. In a seminal paper, Pérez et al. [23] (see also
[22]) gave a clean formalisation of the language, which
laid the foundations for its theoretical study. Since
then, a lot of work has been done in different aspects of
the language such as query evaluation [19, 3, 15, 4, 16],
optimisation [17, 24, 14], and expressive power [2, 25,
15, 30, 11], to name a few.

As shown in [23], it is PSPACE-complete to evaluate
SPARQL queries. This motivated the introduction of
a natural fragment of SPARQL called the well-designed
fragment, whose evaluation problem is coNP-complete
[23]. More formally, the evaluation problem wdEVAL
for well-designed SPARQL is to decide, given a well-
designed query P , and RDF graph G and a mapping µ,
whether µ belongs to the answer JP KG of P over G. By
now the well-designed fragment is central in the study
of SPARQL and a lot of efforts has been done by the
theory community to understand fundamental aspects
∗This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No 714532). The paper reflects only the authors’ views and
not the views of the ERC or the European Commission. The
European Union is not liable for any use that may be made
of the information contained therein.

of this fragment (see e.g. [23, 17, 24, 4, 14, 11, 16, 15]).
In this paper, we focus on the core fragment of well-
designed SPARQL restricted to the AND, OPTIONAL
and UNION operators, as defined in [23].

Despite its importance, several basic questions remain
open for well-designed SPARQL. As first observed in
[17], while the problem wdEVAL is coNP-complete, it
becomes tractable, i.e. polynomial-time solvable, for re-
stricted classes of well-designed queries. Indeed, it was
shown that wdEVAL is in PTIME for every class C of
queries satisfying a certain local tractability condition
[23]. We emphasise that the above-mentioned result is
briefly discussed in [23] as the focus of the authors is on
the static analysis and optimisation of queries rather
than complexity of evaluation. Subsequent works [4,
16] have studied the complexity of evaluation in more
depth but the focus has been mainly on the fragment
of SPARQL including the SELECT operator (i.e., pro-
jection). In particular, the following fundamental ques-
tion regarding the core well-designed fragment remains
open: which classes C of well-designed SPARQL can be
evaluated in polynomial time?

Our main contribution is a complete answer to the
question posed above. In particular, we introduce a new
width measure for well-designed queries called domi-
nation width, which is based on the well-known no-
tion of treewidth (see Section 3 for precise definitions).
For a class C of well-designed queries, let us denote
by wdEVAL(C) the evaluation problem wdEVAL re-
stricted to the class C. Also, we say that a class C of
well-designed queries has bounded domination width if
there is an universal constant k ≥ 1 such that the dom-
ination width of every query in C is at most k. Then,
our main technical result is as follows (Theorem 3). As-
sume that FPT 6= W[1]. Then, for every recursively
enumerable class C of well-designed queries, the problem
wdEVAL(C) is in PTIME if and only if C has bounded
domination width. The assumption FPT 6= W[1] is a
widely believed assumption from parameterised com-
plexity (see Section 4 for precise definitions). As we ob-
serve in Section 3, one can remove the assumption of C
being recursively enumerable by considering a stronger
assumption than FPT 6= W[1] considering non-uniform
complexity classes.

Our result builds on the classical result by Dalmau
et al. [6] and Grohe [9] showing that a recursively enu-

ar
X

iv
:1

71
2.

08
80

9v
3

 [
cs

.D
B

]
 2

7
M

ar
 2

01
8

merable class of conjunctive queries (CQs) over schemas
of bounded arity is tractable if and only if the cores of
the CQs in C have bounded treewidth. (Recall that a
CQ is a first-order query using only conjunctions and
existential quantification.)

For the tractability part of our result, we exploit, as
in [6], the so-called existential pebble game introduced
in [12] (see also [6]). This game provides a polynomial-
time relaxation for the problem of checking the exis-
tence of homomorphisms, which is a well-known NP-
complete problem (see e.g. [5]). Using the existential
pebble game, we define a natural relaxation of the stan-
dard algorithm from [17] (see also [24]) for evaluating
well-designed queries. Then we show that this relax-
ation correctly solves instances of bounded domination
width (Theorem 1).

For the hardness part, we follow a similar strategy
as in [9]. The two main ingredients in our proof is an
adaptation of the main construction of [9] to handle
distinguished elements or constants (Lemma 2) and an
elementary property of well-designed queries of large
domination width (Lemma 3).

Finally, we emphasise that our classes of bounded
domination width significantly extend the classes that
are locally tractable [17], which, as we mentioned above,
are the most general tractable restrictions known so
far. This is even true in the case of UNION-free well-
designed queries. As we discuss in Section 3.2, the no-
tion of domination width for UNION-free queries can
be simplified and coincides with a width measure called
branch treewidth. Bounding this simpler width measure
still strictly generalises local tractability.

Organisation. We present the basic definitions in Sec-
tion 2. In Section 3, we introduce the measure of dom-
ination width and present our main tractability result.
The main hardness result is presented in Section 4. We
conclude with some final remarks in Section 5.

2. PRELIMINARIES

RDF Graphs. Let I be a countable infinite set of
IRIs. An RDF triple is a tuple in I× I× I and an RDF
graph is a finite set of RDF triples. In this paper, we
assume that no blank nodes appear in RDF graphs, i.e.,
we focus on ground RDF graphs.

SPARQL Syntax. SPARQL [26] is the standard query
language for RDF. We rely on the formalisation pro-
posed in [23]. We focus on the core fragment of the lan-
guage given by the operators AND, OPTIONAL (OPT
for short), and UNION.1 Let V = {?x, ?y, . . . } be a
countable infinite set of variables, disjoint from I. A
SPARQL triple pattern (or triple pattern for short) is a
tuple in (I∪V)× (I∪V)× (I∪V). The set of variables
from V appearing in a triple pattern t is denoted by
vars(t). Note that an RDF triple is simply a SPARQL
triple pattern t with vars(t) = ∅. A SPARQL graph pat-
tern (or graph pattern for short) is recursively defined

1Additional operators include FILTER and SELECT. We
briefly discuss these operators in Section 5.

as follows:

1. a triple pattern is a graph pattern, and

2. if P1 and P2 are graph patterns, then P1 ∗P2 is also
a graph pattern, for ∗ ∈ {AND,OPT,UNION}.

SPARQL Semantics. In order to define the seman-
tics of graph patterns, we follow again the presenta-
tion in [23]. A mapping µ is a partial function from V
to I. We denote by dom(µ) the domain of the map-
ping µ. Two mappings µ1 and µ2 are compatible if
µ1(?x) = µ2(?x), for all ?x ∈ dom(µ1) ∩ dom(µ2). If
µ1 and µ2 are compatible mappings then µ1 ∪ µ2 de-
notes the mapping with domain dom(µ1)∪dom(µ2) such
that µ1 ∪ µ2(?x) = µ1(?x), for all ?x ∈ dom(µ1), and
µ1∪µ2(?x) = µ2(?x), for all ?x ∈ dom(µ2). For a triple
pattern t and a mapping µ such that vars(t) ⊆ dom(µ),
we denote by µ(t) the RDF triple obtained from t by
replacing each ?x ∈ vars(t) by µ(?x).

For an RDF graph G and a graph pattern P , the
evaluation JP KG of P overG is a set of mappings defined
recursively as follows:

1. JtKG = {µ | dom(µ) = vars(t) and µ(t) ∈ G}, if t
is a triple pattern.

2. JP1 ANDP2KG = {µ1 ∪ µ2 | µ1 ∈ JP1KG, µ2 ∈
JP2KG and µ1, µ2 are compatible}.

3. JP1 OPTP2KG = JP1 ANDP2KG ∪ {µ1 | µ1 ∈ JP1KG
and there is no µ2 ∈ JP2KG compatible with µ1}.

4. JP1 UNIONP2KG = JP1KG ∪ JP2KG.

Well-designed SPARQL. A central class of SPARQL
graph patterns identified in [23], and also the focus
of this paper, is the class of well-designed graph pat-
terns. We say that a graph pattern is UNION-free if it
only uses the operators AND and OPT. A UNION-free
graph pattern P is well-designed if for every subpattern
P ′ = (P1 OPTP2) of P , it is the case that every variable
?x ocurring in P2 but not in P1, does not occur outside
P ′ in P . A SPARQL graph pattern P is well-designed if
it is of the form P = P1 UNION · · ·UNIONPm, where
each Pi is a UNION-free well-designed graph pattern.2

Example 1. Consider the following graph patterns:

P1 = ((?x, p, ?y) OPT (?z, q, ?x))

OPT ((?y, r, ?o1) AND (?o1, r, ?o2)),

P2 = ((?x, p, ?y) OPT (?z, q, ?x))

OPT ((?y, r, ?z) AND (?z, r, ?o2)).

Note that P1 is well-designed, while P2 is not. Indeed,
in the subpattern P ′2 = ((?x, p, ?y) OPT (?z, q, ?x)) of
P2, the variable ?z appears in (?z, q, ?x) and not in
(?x, p, ?y) but does occur outside P ′2 in P2.

2This top-level use of the UNION operator is known as
UNION-normal form [23]. Note that we are implicitly using
the fact that UNION is associative.

Well-designed patterns have good properties in terms
of query evaluation. More precisely, let wdEVAL be
the problem of deciding, given a well-designed graph
pattern P , an RDF graph G and a mapping µ, whether
µ ∈ JP KG. It was shown in [23] that wdEVAL is coNP-
complete, while the problem is PSPACE-complete for
arbitrary SPARQL graph patterns.

2.1 Pattern trees and pattern forests
Besides alleviating the cost of evaluation, another key

property of UNION-free well-designed graph patterns is
that they can be written in the so-called OPT-normal
form [23]. In turn, patterns in OPT-normal form admit
a natural tree representation, known as pattern trees
[17]. Intuitively, a pattern tree is a rooted tree where
each node represents a well-designed pattern using only
AND operators, while its tree structure represents the
nesting of OPT operators. Consequently, a well-designed
graph pattern P = P1 UNION · · · UNION Pm can be
represented as a pattern forest3[24], i.e., a set of pattern
trees {T1, . . . , Tm}, where Ti is the pattern tree repre-
sentation of Pi. Pattern trees/forests are useful for un-
derstanding how to evaluate and optimise well-designed
patterns, and have been used extensively as a basic tool
in the study of well-designed SPARQL (see e.g. [17, 24,
4, 14, 11, 16]). As we show in this work, pattern forests
are also fundamental to understand tractable evaluation
of well-designed SPARQL: by imposing restrictions on
the pattern forest representation, we can identify and
characterise the tractable classes of well-designed graph
patterns.

T-graphs and homomorphisms. A triple pattern
graph (or t-graph for short) is a finite set S of triple
patterns. We denote by vars(S) the set of variables
from V appearing in the t-graph S. Note that an RDF
graph is simply a t-graph S with vars(S) = ∅. Let t
be a triple pattern and h be a partial function from V
to I ∪ V such that vars(t) ⊆ dom(h). We define h(t)
to be the triple pattern obtained from t by replacing
each ?x ∈ vars(t) by h(?x). For two t-graphs S and S′,
we say that a partial function h from V to I ∪V is a
homomorphism from S to S′ if dom(h) = vars(S) and
for every t ∈ S, it is the case that h(t) ∈ S′.
Basics of pattern trees and forests. For an undi-
rected graph H, we denote by V (H) its set of nodes.
A well-designed pattern tree (or wdPT for short) is a
triple T = (T, r, λ) such that

1. T is a tree rooted at a node r ∈ V (T),

2. λ is a function that maps each node n ∈ V (T) to
a t-graph, and

3. the set {n ∈ V (T) |?x ∈ vars(λ(n))} induces a
connected subgraph of T , for every ?x ∈ V.

3In this paper, we work with a particular type of patterns
trees/forests, namely well-designed pattern trees/forests.
For simplicity, sometimes we abuse notation and use
the terms patterns trees/forests and well-designed pattern
trees/forests interchangeably.

Let T = (T, r, λ) be a wdPT. A wdPT T ′ = (T ′, r′, λ′)
is a subtree of T if (i) T ′ is a subtree of T , (ii) r′ = r,
and λ′(n) = λ(n), for all n ∈ V (T ′). Note that any
subtree of T contains the original root r. A child of
the subtree T ′ is a node n ∈ V (T) \ V (T ′) such that
n′ ∈ V (T ′), where n′ is the parent of n in T .

For convenience, we fix two functions pat(·) and vars(·)
as follows. Let T = (T, r, λ) be a wdPT. We define
pat(n) := λ(n), for every n ∈ V (T) and pat(T) :=⋃
n∈V (T) pat(n). Note that pat(n) and pat(T) are t-

graphs. We let vars(n) := vars(pat(n)), for n ∈ V (T)
and vars(T) := vars(pat(T)).

A well-designed pattern forest (wdPF for short) is a
finite set F = {T1, . . . , Tm} of well-designed pattern
trees.

In [17], it was shown that every wdPT can be trans-
lated efficiently into an equivalent wdPT in the so-called
NR normal form. A wdPT T = (T, r, λ) is in NR nor-
mal form if for every node n ∈ V (T) with parent n′ in
T , it holds that vars(n) \ vars(n′) 6= ∅. In this paper,
we assume that all wdPTs are in NR normal form.

Well-designed SPARQL and wdPFs. As in the
case of SPARQL graph patterns, we denote by JT KG
(resp., JFKG) the evaluation of a wdPT T (resp., wdPF
F) over an RDF graph G. In [17], for a wdPT T , the
set of mappings JT KG is defined via a translation to
well-designed graph patterns. However, if T is in NR-
normal form, then JT KG admits a simple characterisa-
tion stated in Lemma 1 below. In this paper, we adopt
this characterisation as the semantics of wdPTs.

Lemma 1 ([17, 24]). Let T be a wdPT in NR nor-
mal form, G an RDF graph and µ a mapping. Then
µ ∈ JT KG iff there exists a subtree T ′ of T such that

1. µ is a homomorphism from pat(T ′) to G.

2. there is no child n of T ′ and homomorphism ν
from pat(n) to G compatible with µ.

For a wdPF F = {T1, . . . , Tm} and an RDF graph G,
we define JFKG = JT1KG ∪ · · · ∪ JTmKG.

As shown in [17], every UNION-free well-designed
graph pattern P can be translated in polynomial time
into an equivalent wdPT T , i.e., a wdPT such that
JT KG = JP KG, for all RDF graphs G. Consequently and
as observed in [24], every well-designed graph pattern P
can be translated in polynomial time into an equivalent
wdPF F . Throughout the paper, we fix a polynomial-
time computable function wdpf that maps each well-
designed graph pattern to an equivalent wdPF.

Example 2. Recall P1 from Example 1 and consider
the following well-designed graph pattern:

P = P1 UNION

((?x, p, ?y) OPT ((?z, q, ?x) AND (?w, q, ?z))).

We have that wdpf(P) = {T1, T2}, where T1 and T2

are the wdPTs depicted in Figure 2, for k = 2 and
K2(?o1, ?o2) = {(?o1, r, ?o2)}.

2.2 Restrictions of the evaluation problem
Recall that wdEVAL denotes the problem of decid-

ing, given a well-designed graph pattern P , an RDF
graph G and a mapping µ, whether µ ∈ JP KG. In this
paper, we study restrictions of wdEVAL given by dif-
ferent classes C of admissible patterns. Formally, for a
class C of well-designed graph patterns, we define the
problem wdEVAL(C) as follows:

wdEVAL(C)
Input: a well-designed graph pattern P ∈ C,
an RDF graph G and a mapping µ.
Question: does µ ∈ JP KG hold?

Note that wdEVAL(C) is a promise problem, as we
are given the promise that P ∈ C. This allows us to
analyse the complexity of evaluating patterns in C in-
dependently of the cost of checking membership in C.

3. A NEW TRACTABILITY CONDITION
In this section, we introduce the notion of domina-

tion width of a well-designed graph pattern and show
our main tractability result: wdEVAL(C) is in PTIME,
for classes C of graph patterns of bounded domination
width. Before doing so, we need to introduce some ter-
minology.

A generalised t-graph is a pair (S,X), where S is a
t-graph and X ⊆ vars(S). Consider two generalised t-
graphs of the form (S,X) and (S′, X). A homomor-
phism from (S,X) to (S′, X) is a homomorphism h
from S to S′ such that h(?x) =?x, for all ?x ∈ X.
We write (S,X) → (S′, X) whenever there is a homo-
morphism from (S,X) to (S′, X); otherwise, we write
(S,X) 6→ (S′, X). Note that the relation → is tran-
sitive, i.e., (S,X) → (S′, X) and (S′, X) → (S′′, X)
implies (S,X)→ (S′′, X).

Let (S,X) be a generalised t-graph, G be an RDF
graph and µ be a mapping with dom(µ) = X. We write
(S,X) →µ G if there is a homomorphism h from S to
G such that h(?x) = µ(?x), for all ?x ∈ X. Notice
that → composes with →µ, i.e., (S,X) → (S′, X) and
(S′, X)→µ G implies (S,X)→µ G.

Below we state several notions and properties for gen-
eralised t-graphs. We emphasise that all these proper-
ties are well-known for conjunctive queries (CQs) and
relational structures and can be applied in our case as
there is a strong correspondence between generalised t-
graphs and CQs. Indeed, we can view a generalised
t-graph (S,X) as a CQ q(S,X) over a relational schema
containing a single ternary relation, where the variables
are vars(S), the free variables are X, and the IRIs ap-
pearing in S correspond to constants in q(S,X). How-
ever, for convenience and consistency with RDF and
SPARQL terminology, we shall work directly with gen-
eralised t-graphs throughout the paper.

Cores. Let (S,X) and (S′, X) be two generalised t-
graphs. We say that (S′, X) is a subgraph of (S,X) if
S′ ⊆ S, and a proper subgraph if S′ ⊆ S but S 6⊆ S′.
A generalised t-graph (S,X) is a core if there is no ho-
momorphism from (S,X) to one of its proper subgraphs

0. It can be proved that the labels produced by the previous algorithm are precisely the levels of G. We have the
following lemmas, from [21]:

Lemma 8.2. If G and H are two balanced digraphs such that G → H, then hg(G) ≤ hg(H).

Lemma 8.3. Let G and H be two balanced digraphs of the same height, then any homomorphism from G into H
preserves the levels of vertices.

Now we prove the Proposition. Let P and P ′ be oriented paths. We define the digraph D(P, P ′) as follows: Consider
the digraph ({a, b, c, d}, {(a, b), (a, d), (c, b), (c, d)}). Add disjoint copies of P and P ′ and identify the initial vertex
of the copy of P and P ′, with b and d, respectively. Finally, add disjoint copies of P and P ′ again, and identify the
terminal vertex of the copy of P and P ′, with a and c, respectively. See Figure 3.

(S, {?x, ?y, ?z})

(?x, p, ?y) (?x, p, ?y)
(?x, p, ?y)

(?z, q, ?x)

Kk(?o1, . . . , ?ok)

(?y, r, ?o1) (?z, q, ?x)

(?w, q, ?z) (?o, r, ?o)

n11 n12 n2 n3

r3r2r1

(?z, q, ?x)

T3T2T1

(?w, q, ?z′) Kk(?o1, . . . , ?ok) (?w, q, ?z)

(?z′, q, ?x)

(?x, p, ?y)

(?y, r, ?o1) (?z, q, ?x)(?z, q, ?x)

(?x, p, ?y)

(S∆1
, {?x, ?y}) (S∆2

, {?x, ?y})

(?z, q, ?x)

(?y, r, ?o1)

Kk(?o1, . . . , ?ok)

(?x, p, ?y)(?x, p, ?y) (?z, q, ?x)

(?y, r, ?o1)

Kk(?o1, . . . , ?ok)

(?y, r, ?o)

(?y, r, ?o)

(?o, r, ?o)

(S ′, {?x, ?y, ?z})

Figure 3:

Now, for oriented paths P and P ′, we define Dac(P, P ′) and Dbd(P, P ′) as the digraphs obtained from D(P, P ′) by
identifying a with c, and b with d, respectively. See Figure 4.

14

Figure 1: The generalised t-graphs from Example
3. We assume that k ≥ 2 and Kk(?o1, . . . , ?ok) =
{(?oi, r, ?oj) | i, j ∈ {1, . . . , k} with i < j}. Note that
the distinguished variables are underlined.

(S′, X). We say that (S′, X) is a core of (S,X) if (S′, X)
is a core itself, (S,X)→ (S′, X) and (S′, X)→ (S,X).
As stated below, every generalised t-graph (S,X) has a
unique core (up to renaming of variables), and hence,
we can speak of the core of a generalised t-graph.

Proposition 1 (see e.g. [1, 10]). Every generalised
t-graph (S,X) has a unique core (S′, X) (up to renam-
ing of variables).

Treewidth. The notion of treewidth is a well-known
measure of the tree-likeness of an undirected graph (see
e.g. [7]). For instance, trees have treewidth 1, cycles
treewidth 2 and Kk, the clique of size k, treewidth k−1.
Let H be an undirected graph. A tree decomposition of
H is a pair (F, β) where F is a tree and β is a function
that maps each node s ∈ V (F) to a subset of V (H)
such that

1. for every u ∈ V (H), the set {s ∈ V (F) | u ∈ β(s)}
induces a connected subgraph of F , and

2. for every edge {u, v} ∈ E(H), there is a node s ∈
V (F) with {u, v} ⊆ β(s).

The width of the decomposition (F, β) is max{|β(s)| |
s ∈ V (F)} − 1. The treewidth tw(H) of the graph H is
the minimum width over all its tree decompositions.

Let (S,X) be a generalised t-graph. The Gaifman
graph G(S,X) of (S,X) is the undirected graph whose
vertex set is vars(S)\X and whose edge set contains the
pairs {?x, ?y} such that ?x 6=?y and {?x, ?y} ⊆ vars(t),
for some triple pattern t ∈ S. We define the treewidth
of (S,X) to be tw(S,X) := tw(G(S,X)). If G(S,X)
has no vertices, i.e., vars(S) \X = ∅, or G(S,X) has no
edges, we let tw(S,X) = tw(G(S,X)) := 1.

For a generalised t-graph (S,X), we let ctw(S,X) :=
tw(S′, X), where (S′, X) is the core of (S,X).

Example 3. Let X = {?x, ?y, ?z} and consider the
generalised t-graphs (S,X) and (S′, X) depicted in Fig-
ure 1, where k ≥ 2 and Kk(?o1, . . . , ?ok) is the t-graph
given by the set

Kk(?o1, . . . ,?ok) :=

{(?oi, r, ?oj) | i, j ∈ {1, . . . , k} with i < j}.
Observe that (S,X) is a core and hence ctw(S,X) =
k − 1, as its Gaifman graph is the clique of size k. On

the other hand, the core of (S′, X) is (C ′, X), where

C ′ = {(?z, q, ?x), (?x, p, ?y), (?y, r, ?o), (?o, r, ?o)}.
Hence, ctw(S′, X) = 1 while tw(S′, X) = k − 1.

Existential k-pebble game. The existential k-pebble
game was introduced by Kolaitis and Vardi [12] to anal-
yse the expressive power of certain Datalog programs.
While the original definition deals with relational struc-
tures, here we focus on the natural adaptation to the
context of generalised t-graphs and RDF graphs.

Let k ≥ 2. The existential k-pebble game is played
by the Spoiler and the Duplicator on a generalised t-
graph (S,X), an RDF graph G and a mapping µ with
dom(µ) = X. During the game, the Spoiler only picks
elements from vars(S) \ X, while the Duplicator picks
elements from dom(G), where dom(G) ⊆ I is the set of
IRIs appearing in G. In the first round, the Spoiler
places pebbles on (not necessarily distinct) elements
?x1, . . . , ?xk ∈ vars(S)\X, and the Duplicator responds
by placing pebbles on elements a1, . . . , ak ∈ dom(G).
On any further round, the Spoiler removes a pebble and
places it on another element ?x ∈ vars(S)\X. The Du-
plicator responds by moving the corresponding pebble
to an element a ∈ dom(G). If after a particular round,
the elements covered by the pebbles are ?x1, . . . , ?xk
and a1, . . . , ak for the Spoiler and the Duplicator, re-
spectively, then the configuration of the game is ⊥ if
?xi =?xj and ai 6= aj , for some i, j ∈ {1, . . . , k} with i 6=
j; otherwise, it is the mapping µ ∪ ν, where dom(ν) =
{?x1, . . . , ?xk} and ν(?xi) = ai, for every i ∈ {1, . . . , k}
(note that dom(µ) ∩ dom(ν) = ∅).

The Duplicator wins the game if he has a winning
strategy, that is, he can indefinitely continue playing
the game in such a way that the configuration at the
end of each round is a mapping µ ∪ ν that is a partial
homomorphism, i.e., for every triple pattern t ∈ S with
vars(t) ⊆ dom(µ ∪ ν), it is the case that µ ∪ ν(t) ∈ G.
If the Duplicator can win the existential k-pebble game
on (S,X), G and µ, then we write (S,X)→µ

k G.
Note that if vars(S) \X = ∅, then for every k ≥ 2,

(S,X)→µ
k G if and only if (S,X)→µ G, (1)

i.e., µ is a homomorphism from S to G. Observe also
that for every k ≥ 2,

(S,X)→µ G implies (S,X)→µ
k G. (2)

In other words, the relation →µ
k is a relaxation of →µ.

As we state below, the relaxation given by →µ
k has

good properties in terms of complexity4: while check-
ing the existence of homomorphisms, i.e., (S,X) →µ

G is a well-known NP-complete problem [5], checking
(S,X)→µ

k G can be done in polynomial time, for every
fixed k ≥ 2.

Proposition 2 ([12]; see also [6]). Let k ≥ 2.
For a given generalised t-graph (S,X), an RDF graph
4The existential k-pebble game is known to capture the so-
called k-consistency test [13], which is a well-known heuristic
for solving constraint satisfaction problems (CSPs).

G and a mapping µ with dom(µ) = X, checking whether
(S,X)→µ

k G can be done in polynomial time.

As it turns out, there is a strong connection between
existential k-pebble games and the notion of treewidth.
In particular, it was shown by Dalmau et al. [6] that the
relations →k and → coincide for generalised t-graphs
(S,X) satisfying ctw(S,X) ≤ k − 15.

Proposition 3 ([6]). Let k ≥ 2. Let (S,X) be
a generalised t-graph, G be an RDF graph and µ be a
mapping with dom(µ) = X. Suppose that ctw(S,X) ≤
k − 1. Then (S,X)→µ

k G if and only if (S,X)→µ G.

We conclude with two basic properties of the existen-
tial pebble game that will be useful for us.

Proposition 4. Let k ≥ 2. Let (S1, X), (S2, X),
. . . , (S`, X) be generalised t-graphs (` ≥ 2), G be an
RDF graph and µ be a mapping with dom(µ) = X.
Then the following hold:

1. if (S1, X)→ (S2, X) and (S2, X)→µ
k G, then it is

the case that (S1, X)→µ
k G.

2. if (Si, X)→µ
k G, for all i ∈ {1, . . . , `} and (vars(Si)\

X) ∩ (vars(Sj) \ X) = ∅, for all i, j ∈ {1, . . . , `}
with i 6= j, then (S1 ∪ · · · ∪ S`, X)→µ

k G.

3.1 Domination width
We start by giving some intuition regarding the no-

tion of domination width. Let P be a well-designed
graph pattern, G be an RDF graph and µ be a mapping.
Suppose that wdpf(P) = F and F = {T1, . . . , Tm}, for
m ≥ 1. The natural algorithm for checking µ 6∈ JFKG
is as follows (see e.g. [17, 24]): we simply iterate over
all i ∈ {1, . . . ,m} such that µ is a potential solution of
Ti over G, i.e., there is a subtree T ′i of Ti such that µ
is a homomorphism from pat(T ′i) to G, and we ensure
that there is a child ni of T ′i where µ can be extended
consistently.

The key observation is that we can reinterpret the
above-described algorithm as follows. We can choose
one of the subtrees T ′i as above, and associate a col-
lection of generalised t-graphs GtG(T ′i) of the form
(S, vars(T ′i)), where S = pat(T ′i)∪⋃j∈I pat(nj), where

I ⊆ {1, . . . ,m} is the set of indices j such that µ is
a potential solution of Tj over G, and nj is a child of
T ′j . To avoid conflicts, for every j ∈ I, the variables
from vars(nj) that are not in vars(T ′i) = dom(µ), need
to be renamed to fresh variables. Therefore, checking
µ 6∈ JFKG amounts to checking that there is a homo-
morphism from some element of GtG(T ′i) to G, i.e.,
whether (S, vars(T ′i)) →µ G, for some (S, vars(T ′i)) ∈
GtG(T ′i).
5In [6], it was shown that →k and → coincide for relational
structures whose cores have treewidth at most k − 1. For
Proposition 3, we need a generalisation of the results in [6]
that considers relational structures equipped with a set of
distinguished elements. Indeed, such distinguished elements
correspond to the variables in X and the IRIs appearing in
the generalised t-graph (S,X). Such a generalisation follows
straightforwardly from the results in [6].

The idea behind domination width is to ensure that
GtG(T ′i) is always dominated by a subset G ⊆ GtG(T ′i)
where each generalised t-graph in G has small ctw. The
set G dominates GtG(T ′i) in the sense that, for every
(S′, vars(T ′i)) ∈ GtG(T ′i), there is a (S, vars(T ′i)) ∈ G
such that (S, vars(T ′i)) → (S′, vars(T ′i)). Therefore,
by transitivity of the relation →, checking µ 6∈ JFKG
amounts to checking that there is a homomorphism
from some element of G to G. Since generalised t-graphs
of small ctw are well-behaved with respect to the relax-
ation →k (see Proposition 3), this will imply that the
relaxation of the natural algorithm, described at the
beginning of this section, given by replacing homomor-
phism tests → by →k, correctly decides if µ 6∈ JFKG.
Below we formalise this intuition.

Let F = {T1, . . . , Tm} be a wdPF. A subtree T of
F is a subtree of some wdPT Ti, for i ∈ {1, . . . ,m}.
The support supp(T) of the subtree T contains pre-
cisely the indices i from {1, . . . ,m} such that there is
a subtree T ′i of Ti satisfying vars(T ′i) = vars(T). Note
that supp(T) 6= ∅, for every subtree T . Since wdPTs
are in NR normal form, whenever i ∈ supp(T), then
the witness subtree T ′i is unique. For i ∈ supp(T), we
denote such a T ′i by T sp(i).

Let T be a subtree of F = {T1, . . . , Tm}. A children
assignment for T is a function ∆ with a non-empty do-
main dom(∆) ⊆ supp(T) that maps every i ∈ dom(∆)
to a child ∆(i) of T sp(i). We denote by CA(T) the
set of all children assignments for T . Observe that if
∆ ∈ CA(T), then it must be the case that T sp(i) 6= Ti,
for every i ∈ dom(∆). In particular, it could be the case
that CA(T) = ∅. The renamed t-graphs assignment ρ∆

associated with ∆ maps i ∈ dom(∆) to a t-graph ρ∆(i)
obtained from pat(∆(i)) by renaming all variables in
vars(∆(i)) \ vars(T) to new fresh variables. In particu-
lar, if i, j ∈ dom(∆) and i 6= j, then

(vars(ρ∆(i)) \ vars(T)) ∩ (vars(ρ∆(j)) \ vars(T)) = ∅.
For ∆ ∈ CA(T), we define the t-graph S∆ as

S∆ := pat(T) ∪
⋃

i∈dom(∆)

ρ∆(i).

We say that a children assignment ∆ ∈ CA(T) is valid
if for every i ∈ supp(T) \ dom(∆), we have that

(pat(T sp(i)), vars(T)) 6→ (S∆, vars(T)).

We denote by VCA(T) the set of valid children assign-
ments for T . Finally, for the subtree T , we define the
set of generalised t-graphs associated with T as

GtG(T) := {(S∆, vars(T)) | ∆ ∈ VCA(T)}.

Example 4. Let k ≥ 2. Recall from Example 3 that

Kk(?o1, . . . ,?ok) :=

{(?oi, r, ?oj) | i, j ∈ {1, . . . , k} with i < j}.
Consider the wdPF Fk = {T1, T2, T3} depicted in Figure
2. For a wdPT T = (T, r, λ) and a subset N ⊆ V (T),
we denote by T [N] the subtree of T induced by the set
of nodes N . Observe that the only subtrees T of F

0. It can be proved that the labels produced by the previous algorithm are precisely the levels of G. We have the
following lemmas, from [21]:

Lemma 8.2. If G and H are two balanced digraphs such that G → H, then hg(G) ≤ hg(H).

Lemma 8.3. Let G and H be two balanced digraphs of the same height, then any homomorphism from G into H
preserves the levels of vertices.

Now we prove the Proposition. Let P and P ′ be oriented paths. We define the digraph D(P, P ′) as follows: Consider
the digraph ({a, b, c, d}, {(a, b), (a, d), (c, b), (c, d)}). Add disjoint copies of P and P ′ and identify the initial vertex
of the copy of P and P ′, with b and d, respectively. Finally, add disjoint copies of P and P ′ again, and identify the
terminal vertex of the copy of P and P ′, with a and c, respectively. See Figure 3.

T1

(?x, p, ?y) (?x, p, ?y)
(?x, p, ?y)

(?z, q, ?x)

Kk(?o1, . . . , ?ok)

(?y, r, ?o1) (?z, q, ?x)

(?w, q, ?z)

(?y, r, ?o)

(?o, r, ?o)

n11 n12 n2 n3

r3r2r1

(?z, q, ?x)

T3T2

Figure 3:

Now, for oriented paths P and P ′, we define Dac(P, P ′) and Dbd(P, P ′) as the digraphs obtained from D(P, P ′) by
identifying a with c, and b with d, respectively. See Figure 4.

e

b

P

P P ′

P ′

d

e

P

P ′

P ′P a c

Figure 4: The digraphs Dac(P, P ′) and Dbd(P, P ′).

We have the following claim:

Claim 8.4. Let P and P ′ be incomparable (P ̸→ P ′ and P ′ ̸→ P) oriented paths of the same net length k > 0, such
that each interior vertex (vertex different from the initial and terminal vertices) in P and P ′ has a level that is
neither 0 nor k. Then Dac(P, P ′) and Dbd(P, P ′) are incomparable cores.

14

Figure 2: The wdPF Fk = {T1, T2, T3} of Example 4.

0. It can be proved that the labels produced by the previous algorithm are precisely the levels of G. We have the
following lemmas, from [21]:

Lemma 8.2. If G and H are two balanced digraphs such that G → H, then hg(G) ≤ hg(H).

Lemma 8.3. Let G and H be two balanced digraphs of the same height, then any homomorphism from G into H
preserves the levels of vertices.

Now we prove the Proposition. Let P and P ′ be oriented paths. We define the digraph D(P, P ′) as follows: Consider
the digraph ({a, b, c, d}, {(a, b), (a, d), (c, b), (c, d)}). Add disjoint copies of P and P ′ and identify the initial vertex
of the copy of P and P ′, with b and d, respectively. Finally, add disjoint copies of P and P ′ again, and identify the
terminal vertex of the copy of P and P ′, with a and c, respectively. See Figure 3.

(S∆2
, {?x, ?y})

(?x, p, ?y) (?x, p, ?y)
(?x, p, ?y)

(?z, q, ?x)

Kk(?o1, . . . , ?ok)

(?y, r, ?o1) (?z, q, ?x)

(?w, q, ?z)

(?y, r, ?o)

(?o, r, ?o)

n11 n12 n2 n3

r3r2r1

(?z, q, ?x)

T3T2T1

(?w, q, ?z′) Kk(?o1, . . . , ?ok) (?w, q, ?z)

(?z′, q, ?x)

(?x, p, ?y)

(?y, r, ?o1) (?z, q, ?x)(?z, q, ?x)

(?x, p, ?y)

(S∆1
, {?x, ?y})

Figure 3:

Now, for oriented paths P and P ′, we define Dac(P, P ′) and Dbd(P, P ′) as the digraphs obtained from D(P, P ′) by
identifying a with c, and b with d, respectively. See Figure 4.

We have the following claim:

Claim 8.4. Let P and P ′ be incomparable (P ̸→ P ′ and P ′ ̸→ P) oriented paths of the same net length k > 0, such
that each interior vertex (vertex different from the initial and terminal vertices) in P and P ′ has a level that is
neither 0 nor k. Then Dac(P, P ′) and Dbd(P, P ′) are incomparable cores.

Proof: Suppose that Dac(P, P ′) is not a core. Then Dac(P, P ′)
h−→ Dac(P, P ′), where h is not surjective. Using

Lemma 8.3, we know that h preserves levels. It follows that h(e) = e (see Figure 5). Now, h(x1) is either x1 or x3.
Note that h(x1) = x3, implies that P → P ′, since no vertex in the copy of P between x1 and e can be mapped to
b or d, and no vertex, except for the terminal one, has level k. It follows that h(x1) = x1. Similarly, we have that
h(x3) = x3. Using the same argument, we have that h(b) = b, otherwise h(b) = d and P → P ′, since no vertex in

14

Figure 3: The generalised t-graphs (S∆1 , {?x, ?y}) and
(S∆2 , {?x, ?y}) from Examples 4 and 5.

with a non-empty set GtG(T) are T1[r1], T1[r1, n11],
T1[r1, n12], T2[r2] and T3[r3]. Consider first T1[r1] and
note that supp(T1[r1]) = {1, 2}. We have that

GtG(T1[r1]) = {(S∆1
, {?x, ?y}), (S∆2

, {?x, ?y})}
with ∆1,∆2 ∈ VCA(T1[r1]), where ∆1 and ∆2 are de-
scribed by ∆1 = {1 7→ n11, 2 7→ n2} and ∆2 = {1 7→
n12, 2 7→ n2}. Figure 3 illustrates (S∆1

, {?x, ?y}) and
(S∆2

, {?x, ?y}). Note how we need to rename ?z to a
fresh variable ?z′ in (S∆1

, {?x, ?y}). Observe also that,
for instance, the children assignment given by ∆3 =
{1 7→ n11} is not valid as 2 6∈ dom(∆3) and

(pat(T2[r2]), {?x, ?y})→ (S∆3
, {?x, ?y}).

For T1[r1, n11], we have that

GtG(T1[r1, n11]) = {(S∆, {?x, ?y, ?z})}
where ∆ = {1 7→ n12, 3 7→ n3}. Note that (S′, {?x, ?y, ?z})
in Figure 1 corresponds to (S∆, {?x, ?y, ?z}). In the
case of T1[r1, n12], we have that

GtG(T1[r1, n12]) = {(S∆′ , {?x, ?y, ?o1, . . . , ?ok})}
where ∆′ = {1 7→ n11}. Finally, note that GtG(T2[r2])
= GtG(T1[r1]) and GtG(T3[r3]) = GtG(T1[r1, n11]).

Now we are ready to define domination width.

Definition 1 (k-domination). Let G be a set of
generalised t-graphs of the form G = {(S,X) | S ∈ S},
where S is a set of t-graphs and X is a fixed set of
variables with X ⊆ vars(S), for all S ∈ S. We say that
G′ ⊆ G is a dominating set of G if for every (S,X) ∈ G\
G′, there exists (S′, X) ∈ G′ such that (S′, X)→ (S,X).

We say that G is k-dominated if the set {(S,X) ∈ G |
ctw(S,X) ≤ k} is a dominating set of G.

Definition 2 (Domination width). Let F be a
wdPF. The domination width of F , denoted by dw(F),
is the minimum positive integer such that for every sub-
tree T of F , the set of generalised t-graphs GtG(T) is
k-dominated.

For a well-designed graph pattern P , we define the
domination width of P as dw(P) := dw(wdpf(P)).

We say that a class C of well-designed graph patterns
has bounded domination width if there is a universal
constant k ≥ 1 such that dw(P) ≤ k, for every P ∈ C.
Example 5. Consider a class C = {Pk | k ≥ 2}

such that wdpf(Pk) = Fk, where Fk is the wdPF de-
fined in Figure 2 and Example 4. We claim that C has
bounded domination width as for every k ≥ 2, it is the
case that dw(Fk) = 1. Indeed, following the notation
from Example 4, we need to check that GtG(T1[r1]),
GtG(T1[r1, n11]) and GtG(T1[r1, n12]) are 1-dominated.

Note first that ctw(S∆′ , {?x, ?y, ?o1, . . . , ?ok}) = 1.
Therefore, GtG(T1[r1, n12]) is 1-dominated. Observe
also that (S∆, {?x, ?y, ?z}) coincides with (S′, {?x, ?y, ?z})
from Figure 1 and, as explained in Example 3, we have
ctw(S′, {?x, ?y, ?z}) = 1. It follows that GtG(T1[r1, n11])
is also 1-dominated. Finally, for T1[r1], we have that
ctw(S∆1

, {?x, ?y}) = 1 and ctw(S∆2
, {?x, ?y}) = k − 1

(see Figure 3). However, we have that (S∆1
, {?x, ?y})

→ (S∆2
, {?x, ?y}), and hence, GtG(T1[r1]) is also 1-

dominated.

The following is our main tractability result.

Theorem 1 (Main tractability). Let C be a class
of well-designed graph patterns of bounded domination
width. Then wdEVAL(C) is in PTIME.

Proof. Let k ≥ 1 be a positive integer such that
dw(P) ≤ k, for all P ∈ C. Fix P ∈ C, RDF graph G
and mapping µ. Let F := wdpf(P) and suppose that
F = {T1, . . . , Tm}. As hinted at the beginning of this
section, the idea for checking µ ∈ JFKG is to apply the
natural evaluation algorithm for wdPFs (see e.g. [17,
24]), but instead of checking whether µ can be extended
to a child via a homomorphism, we check whether it can
be extended via the existential (k + 1)-pebble game.

Formally, we iterate over the set {1, . . . ,m} starting
from i = 1, and check the existence of a subtree T µi of
Ti such that µ is a homomorphism from pat(T µi) to G
(in particular, vars(T µi) = dom(µ)). If there is no such
a subtree, we continue with i + 1. By condition (3) of
wdPTs, the previous check can be done in polynomial
time. Note also that T µi is unique (if it exists), as Ti is
in NR normal form. We now check that for all children
n of T µi , it is not the case that

(pat(T µi) ∪ pat(n), vars(T µi))→µ
k+1 G.

If this holds, we accept the instance; otherwise we con-
tinue with i+1. If for every i ∈ {1, . . . ,m} the instance
is not accepted, then we reject the instance.

Notice that by Proposition 2 the above-described al-
gorithm can be implemented in polynomial time. Ob-
serve also that the algorithm is always sound (indepen-
dently of the assumption that C is of bounded domi-
nation width). Indeed, suppose that µ 6∈ JFKG. This

means that for each i ∈ {1, . . . ,m}, either T µi does not
exist or there is such a T µi and there is a child n and a
homomorphism ν from pat(n) to G compatible with µ.
In other words,

(pat(T µi) ∪ pat(n), vars(T µi))→µ G.

By property (2), we have that

(pat(T µi) ∪ pat(n), vars(T µi))→µ
k+1 G.

Hence, the algorithm rejects (as it does not accept in
any iteration).

For completeness, assume that µ ∈ JFKG, i.e., µ ∈
JT`KG, for some ` ∈ {1, . . . ,m}. In particular, there is
a (unique) subtree T of T` such that µ is a homomor-
phism from pat(T) to G and, for every child n of T ,
(pat(T) ∪ pat(n), vars(T)) →µ G does not hold. To-
wards a contradiction suppose that the algorithm re-
jects the instance (F , G, µ). Let I ⊆ supp(T) be the
set of indices i such that, in the i-th iteration, the al-
gorithm finds a subtree T µi of Ti such that µ is a ho-
momorphism from pat(T µi) to G. Observe that I 6= ∅
as ` ∈ I. Since the algorithm rejects, we have that for
every i ∈ I, there is a child ni of the subtree T µi such
that

(pat(T µi) ∪ pat(ni), vars(T µi))→µ
k+1 G. (†)

Let ∆ be the children assignment with dom(∆) = I
such that ∆(i) = ni, for every i ∈ I.

For readability, we let X := vars(T). We show that
∆ is valid. By contradiction, suppose that there exists
j ∈ supp(T) \ I such that

(pat(T sp(j)), X)→ (S∆, X). (‡)
Note first that vars(T µi) = X, for every i ∈ I, and hence

(pat(T µi)∪pat(ni), vars(T µi)) = (pat(T µi)∪pat(ni), X).

Recall that ρ∆(i) is the renaming of pat(ni) where vari-
ables from vars(ni) \ X become fresh variables. We
have then that, for every i ∈ I, (pat(T µi)∪ ρ∆(i), X)→
(pat(T µi) ∪ pat(ni), X), and by (†) and Proposition 4,
item (1), (pat(T µi) ∪ ρ∆(i), X)→µ

k+1 G.
Now we can apply Proposition 4, item (2) to the gen-

eralised t-graphs {(pat(T µi) ∪ ρ∆(i), X) | i ∈ I} and
obtain that

(
⋃
i∈I

pat(T µi) ∪ ρ∆(i), X)→µ
k+1 G.

Recall that S∆ = pat(T) ∪⋃i∈I ρ∆(i), and since ` ∈ I
and T = T µ` , we have S∆ ⊆

⋃
i∈I pat(T µi) ∪ ρ∆(i). It

follows that

(S∆, X)→ (
⋃
i∈I

pat(T µi) ∪ ρ∆(i), X).

By Proposition 4, item (1), we have

(S∆, X)→µ
k+1 G (∗)

and by (‡), it follows that (pat(T sp(j)), X →µ
k+1 G. As

vars(T sp(j)) \X = ∅, we conclude by property (1) that
(pat(T sp(j)), X)→µ G, i.e., µ is a homomorphism from

pat(T sp(j)) to G. Since j 6∈ I, this is a contradiction
with the definition of I. Thus ∆ ∈ VCA(T).

Since dw(F) ≤ k, GtG(T) is k-dominated. In partic-
ular, it is the case that ctw(S∆′ , X) ≤ k and (S∆′ , X)→
(S∆, X), for some ∆′ ∈ VCA(T). Proposition 4, item
(1) and (∗) implies (S∆′ , X) →µ

k+1 G. By Proposition
3, we have that (S∆′ , X) →µ G. Since T sp(`) = T , we
have that (pat(T sp(`)), X) → (S∆′ , X), and since ∆′ is
valid, it must be the case that ` ∈ dom(∆′). Observe
that

(pat(T) ∪ pat(∆′(`)), X)→ (S∆′ , X)

as S∆′ contains a copy of pat(T) ∪ pat(∆′(`)), modulo
renaming of variables in vars(∆′(`)) \X. By composi-
tion, we have

(pat(T) ∪ pat(∆′(`)), X)→µ G.

Since ∆′(`) is a child of T , this contradicts the fact that
µ ∈ JT`KG. We conclude that the algorithm accepts the
instance (F , G, µ).

We remark that the classes of bounded domination
width strictly extend those that are locally tractable
[17] (see also [4]), which are the most general tractable
restrictions known so far. In our context, a class C is
locally tractable if there is a constant k ≥ 1 such that
for every P ∈ C with wdpf(P) = F , every wdPT T =
(T, r, λ) ∈ F , and every node n ∈ V (T) with n 6= r and
parent n′, it is the case that

ctw(pat(n), vars(n) ∩ vars(n′)) ≤ k.
Observe that local tractability implies bounded dom-

ination but the converse does not hold in general. In-
deed, it suffices to consider the class C = {Pk | k ≥ 2}
from Example 5. As shown in this example, C has
bounded domination width but due to node n12 in T1

(see Figure 2), C is not locally tractable.

3.2 The case of UNION-free patterns
In this section, we show that for well-designed pat-

terns using only AND and OPT, the notion of domi-
nation width boils down to a simpler notion of width
called branch treewidth. Recall that, in this case, well-
designed patterns can be represented by pattern trees,
instead of pattern forests.

For a wdPT T = (T, r, λ) and n ∈ V (T), we define the
branch Bn of n to be the set of nodes in V (T) appearing
in the unique path in T from the root r to the parent
of n. Note that Br = ∅. For n ∈ V (T) with n 6= r, we
define the t-graph Sbr

n := pat(n) ∪ ⋃n′∈Bn
pat(n′) and

the set of variables Xbr
n := vars(

⋃
n′∈Bn

pat(n′)). Note

that Xbr
n ⊆ vars(Sbr

n).

Definition 3 (Branch treewidth). Let T = (T,
r, λ) be a wdPT. We define the branch treewidth bw(T)
of T to be the minimum positive integer k such that for
all n ∈ V (T) with n 6= r, it is the case that ctw(Sbr

n , X
br
n)

≤ k.
For a UNION-free well-designed graph pattern P , we

define the branch treewidth of P to be bw(P) := bw(T),
where T is the wdPT such that wdpf(P) = {T }.

As it turns out, branch treewidth and domination
width coincide for UNION-free patterns.

Proposition 5. For every UNION-free well-designed
graph pattern P , we have that dw(P) = bw(P).

Proof. Assume that wdpf(P) = {T }, where T =
(T, r, λ) is a wdPT. We start by proving that dw(T) ≤
bw(T). Assume that bw(P) = k and let T ′ be a subtree
of T . We need to prove that GtG(T ′) is k-dominated.
We shall prove something stronger: for every (S∆, vars(T ′))
∈ GtG(T ′), we have ctw(S∆, vars(T ′)) ≤ k.

Let (S∆, vars(T ′)) ∈GtG(T ′), where ∆ ∈ VCA(T ′).
Observe that S∆ coincides with S′ := pat(T ′) ∪ pat(n)
modulo renaming of variables in vars(n)\vars(T ′), where
n is a child of T ′. Thus

ctw(S∆, vars(T ′)) = ctw(S′, vars(T ′)).
Note that n 6= r. Let (C,Xbr

n) be the core of (Sbr
n , X

br
n).

In particular, (C,Xbr
n) is a subgraph of (Sbr

n , X
br
n) and

(Sbr
n , X

br
n) → (C,Xbr

n). As Bn ⊆ V (T ′), where T ′ =
(T ′, r, λ′), we have that (pat(T ′)∪C, vars(T ′)) is a sub-
graph of (S′, vars(T ′)) and

(S′, vars(T ′))→ (pat(T ′) ∪ C, vars(T ′)).
Then the core of (S′, vars(T ′)) is a subgraph of (pat(T ′)∪
C, vars(T ′)). As treewidth does not increase by taking
subgraphs, and using the fact that

tw(pat(T ′) ∪ C, vars(T ′)) = tw(C,Xbr
n)

as their Gaifman graphs coincide, we have that

ctw(S∆, vars(T ′)) = ctw(S′, vars(T ′)) ≤ tw(C,Xbr
n).

Since bw(T) = k and n 6= r, we have that tw(C,Xbr
n)

≤ k, and hence, ctw(S∆, vars(T ′)) ≤ k as required.
We now prove that bw(T) ≤ dw(T). Let dw(T) = k.

By contradiction, suppose that there exists n ∈ V (T)
with n 6= r such that ctw(Sbr

n , X
br
n) > k. Let T ′ be the

subtree of T corresponding to Bn. In particular, n is a
child of T ′ and

(pat(T ′) ∪ pat(n), vars(T ′)) = (Sbr
n , X

br
n).

For readability, we let S := Sbr
n and X ′ := Xbr

n =
vars(T ′). Since GtG(T ′) is k-dominated and ctw(S,X ′)
> k, there exists a child n′ of T ′ with n′ 6= n such that

(Sn′ , X ′)→ (S,X ′) (†)
where Sn′ := pat(T ′) ∪ pat(n′) and ctw(Sn′ , X ′) ≤ k.
Let T ′′ be the subtree of T obtained from T ′ by adding
the child n′. Let Snn′ := pat(T ′′) ∪ pat(n) and X ′′ :=
vars(T ′′). Below we show that

ctw(Snn′ , X ′′) > k. (∗)
Towards a contradiction, assume that ctw(Snn′ , X ′′) ≤

k. We shall show that ctw(S,X ′) ≤ k, which is a con-
tradiction. It is a known fact (see [6, Theorem 12]) that
ctw(S,X ′) ≤ k if and only if (‡) there exists (S∗, X ′)
such that

• tw(S∗, X ′) ≤ k, and

• (S,X ′)→ (S∗, X ′) and (S∗, X ′)→ (S,X ′). In this
case, we write (S,X ′) � (S∗, X ′).

Also, observe that (†) implies that (Snn′ , X ′)→ (S,X ′).
As S ⊆ Snn′ , we have (S,X ′) → (Snn′ , X ′), and hence
(Snn′ , X ′) � (S,X ′). By transitivity of →, it suffices
to show (‡) with respect to Snn′ instead of S.

We have ctw(Sn′ , X ′) ≤ k and ctw(Snn′ , X ′′) ≤ k, by
hypothesis. Hence tw(Cn′ , X ′) ≤ k and tw(Cnn′ , X ′′) ≤
k, where (Cn′ , X ′) and (Cnn′ , X ′′) are the cores of (Sn′ , X ′)
and (Snn′ , X ′′), respectively. We define the following
generalised t-graphs:

Dn′ := Cn′ \ pat(T ′),
Dnn′ := Cnn′ \ pat(T ′′),
S∗ := pat(T ′) ∪Dn′ ∪Dnn′ .

Note that vars(Dn′) ∩ vars(Dnn′) ⊆ X ′. In particular,
the Gaifman graph of (S∗, X ′) is the disjoint union of
those of (Cn′ , X ′) and (Cnn′ , X ′′), and then tw(S∗, X ′) ≤
k. It suffices to show that (Snn′ , X ′) � (S∗, X ′).

Observe first that (S∗, X ′) → (Snn′ , X ′) as S∗ ⊆
Snn′ . For the other direction, observe that (Snn′ , X ′′)
→ (Cnn′ , X ′′) by definition of cores. Then (Snn′ , X ′)
→ (Cnn′ , X ′). Also by definition of cores, we have that
(Sn′ , X ′) → (Cn′ , X ′) via a homomorphism h. Hence,
by construction of S∗, the function g : vars(Cnn′) →
I∪V such that g(?x) = h(?x), for ?x ∈ vars(n′)\X ′, and
g(?x) =?x otherwise, is a homomorphism witnessing
(Cnn′ , X ′) → (S∗, X ′). By transitivity, (Snn′ , X ′) →
(S∗, X ′) as required. Thus claim (*) holds.

As GtG(T̂) is k-dominated for every subtree T̂ of
T , we can iterate the previous argument until we find
a subtree T ∗ of T such that n is its only child and
ctw(pat(T ∗) ∪ pat(n), vars(T ∗)) > k. It follows that
GtG(T ∗) cannot be k-dominated; a contradiction.

Proposition 5 tells us that if T is a wdPT with dw(T)
≤ k, then for every subtree T ′ of T , the set GtG(T ′)
is k-dominated due to the trivial reason: all elements of
GtG(T ′) are already of ctw ≤ k. Observe that this is
not the case for arbitrary patterns. Indeed, as Example
5 shows, dw(Fk) = 1 but the set GtG(T1[r1]) is not
trivially 1-dominated as ctw(S∆2 , {?x, ?y}) = k − 1.

The results in this paper (see Theorem 3 and Corol-
lary 1 in the next section) show that domination width
(and then branch treewidth for UNION-free patterns)
captures tractability for well-designed patterns. There-
fore, polynomial-time solvability of arbitrary patterns
and UNION-free patterns is based on two different prin-
ciples: for arbitrary patterns is based on k-domination,
while for UNION-free patterns branch tractability suf-
fices. As a matter of fact, this striking difference be-
tween the general and UNION-free case is also present
in other contexts: for instance, containment of UNION-
free patterns can be characterised in very simple terms,
while the general case requires more involved character-
isations (see e.g. [24, Theorem 3.7] and [14, Lemma 1]).

Finally, observe that bounded branch treewidth im-
plies local tractability, but the converse is not true in
general. Hence, we obtain new tractable classes even in

the UNION-free case. To see this, consider for instance
the class C = {P ′k | k ≥ 2}, where wdpf(P ′k) = {T ′k},
where T ′k = (T, r, λ) is a wdPT such that

• T = ({r, nk}, {{r, nk}}), i.e., T is the tree contain-
ing two nodes.

• λ(r) = {(?y, r, ?y)} and

λ(nk) = {(?y, r, ?o1)} ∪Kk(?o1, . . . , ?ok)

where Kk(?o1, . . . , ?ok) is defined as in Example 3.

We have that C has bounded branch treewidth as bw(T ′k)
= 1, for every k ≥ 2. Indeed, the core of (Sbr

nk
, Xbr

nk
) is

simply ({(?y, r, ?y)}, {?y}). On the other hand, C is not
locally tractable as ctw(pat(nk), {?y}) = k − 1.

4. A MATCHING HARDNESS RESULT
We start by giving some basic definitions from param-

eterised complexity theory as our hardness result relies
on it (we refer the reader to [8] for more details).

A parameterised problem (Π, κ) is a classical decision
problem Π equipped with a parameterisation κ that
maps instances of Π to natural numbers. The class
FPT contains all parameterised problems (Π, κ) that
are fixed-parameter tractable, that is, that can be solved
in time f(κ(x)) · |x|O(1), where |x| denotes the size of
the instance and f : N → N is a computable function.
An fpt-reduction from (Π, κ) to (Π′, κ′) is a function
r mapping instances of Π to instances of Π′ such that
(i) for all instance x of Π, we have x ∈ Π if and only if
r(x) ∈ Π′, (ii) r can be computed in time f(κ(x))·|x|O(1)

for some computable function f : N→ N, and (iii) there
is a computable function g : N 7→ N such that for all
instances x of Π, we have κ′(r(x)) ≤ g(κ(x)).

The class W[1] can be seen as an analogue of NP in pa-
rameterised complexity theory (for a precise definition,
see [8]). Proving W[1]-hardness (under fpt-reductions)
is a strong indication that the problem is not in FPT
as it is believed that FPT 6= W[1]. A canonical W[1]-
complete problem is p-CLIQUE, that is, the CLIQUE
problem parameterised by the size of the clique. Recall
that the CLIQUE problem asks, given an undirected
graph H and a positive integer k, whether H contains
a clique of size k.

Given a class C of well-designed graph patterns, we
denote by p-wdEVAL(C), the problem wdEVAL(C)
parameterised by the size |P | of the input well-designed
graph pattern P . We denote by co-wdEVAL(C) the
complement of wdEVAL(C), i.e., the problem of check-
ing µ 6∈ JP KG for a given well-designed pattern P , an
RDF graph G and a mapping µ. Similarly, we denote by
p-co-wdEVAL(C) the complement of p-wdEVAL(C).
4.1 Hardness result and main characterisation

theorem
Our main hardness result is as follows.

Theorem 2 (Main hardness). Let C be a recur-
sively enumerable class of well-designed graph patterns
of unbounded domination width. Then p-co-wdEVAL(C)
is W[1]-hard.

We provide a proof of Theorem 2 in the next section.
We now explain how Theorem 1 and 2 imply the main
characterisation result of this paper.

Theorem 3 (Main). Assume FPT 6= W[1]. Let C
be a recursively enumerable6class of well-designed graph
patterns. Then, the following are equivalent:

1. wdEVAL(C) is in PTIME.

2. p-wdEVAL(C) is in FPT.

3. C has bounded domination width.

Proof. (1)⇒(2) is immediate. For (2)⇒(3), if p-
wdEVAL(C) is in FPT, then p-co-wdEVAL(C) also is.
Then, by our assumption FPT 6= W[1], p-co-wdEVAL(C)
cannot be W[1]-hard. Therefore, C has bounded dom-
ination width, otherwise we reach a contradiction by
Theorem 2. The implication (3)⇒(1) follows directly
from Theorem 1.

As a corollary of Proposition 5, we have the following.

Corollary 1. Assume FPT 6= W[1]. Let C be a re-
cursively enumerable class of UNION-free well-designed
graph patterns. Then, the following are equivalent:

1. wdEVAL(C) is in PTIME.

2. p-wdEVAL(C) is in FPT.

3. C has bounded branch treewidth.

4.2 Proof of Theorem 2
We follow a similar strategy of the classical result

by Grohe [9] that shows W[1]-hardness for evaluating
a class C of CQs over schemas of bounded arity whose
cores have unbounded treewidth. As in [9], we exhibit
an fpt-reduction from p-CLIQUE to p-co-wdEVAL(C)
exploiting the Excluded Grid Theorem [28] that states
that there exists a function w : N → N such that for
every k ≥ 1, the (k × k)-grid is a minor of every graph
of treewidth at least w(k) (see [7] for technical details).
Throughout this section, we use w to denote such a func-
tion.

The first ingredient in our proof is the following vari-
ant of the main construction from [9] to take distin-
guished elements into account. (See the appendix for a
proof.)

Lemma 2. Let k ≥ 2 and H be an undirected graph.
Let (S,X) be a generalised t-graph with ctw(S,X) ≥
w(
(
k
2

)
). Then there is a generalised t-graph (B,X) such

that

1. if t ∈ S and vars(t) ⊆ X, then t ∈ B.

2. (B,X)→ (S,X).

3. H contains a clique of size k iff (S,X)→ (B,X).

6As in [9], we can remove the assumption of C being recur-
sively enumerable by assuming a stronger assumption than
FPT 6= W[1] involving non-uniform complexity classes.

4. (B,X) can be computed in time f(k, |(S,X)|)·|H|O(1),
where f : N× N→ N is a computable function.

The second ingredient is the following basic property
of wdPFs of large domination width. Intuitively, it
states that every wdPF F of large domination width
contains a subtree T with an associated generalised t-
graph (S,X) ∈ GtG(T) of large ctw(S,X), satisfying
a particular minimality condition.

Lemma 3. Let k ≥ 2 and F be a wdPF such that
dw(F) ≥ k. Then there exists a subtree T of F , and
(S, vars(T)) ∈ GtG(T) such that

1. ctw(S, vars(T)) ≥ k, and

2. whenever (S′, vars(T)) → (S, vars(T)) holds, then
(S, vars(T)) → (S′, vars(T)) also holds, for every
(S′, vars(T)) ∈ GtG(T).

Proof. Suppose that dw(F) ≥ k, i.e., dw(F) ≤
k−1 does not hold. By definition of domination width,
there is a subtree T of F such that GtG(T) is not
(k − 1)-dominated. In particular, the following subset
G ⊆ GtG(T) is non-empty: (R, vars(T)) ∈ G if and
only if (R, vars(T)) ∈ GtG(T), ctw(R, vars(T)) ≥ k,
and (R′, vars(T)) 6→ (R, vars(T)), for all (R′, vars(T)) ∈
GtG(T) with ctw(R′, vars(T)) ≤ k − 1. Consider the
directed graph H with vertex set G and the existence of
homomorphism relation → as the edge relation. Let C
be a minimal strongly connected component of H and
pick any (S, vars(T)) ∈ C. We claim that (S, vars(T))
satisfies the required conditions. Indeed, suppose that
(S′, vars(T)) → (S, vars(T)). Since (S, vars(T)) ∈ G,
and by construction of G, it must be the case that
(S′, vars(T)) ∈ G. Since C is minimal, (S′, vars(T)) ∈
C, and then there is a directed path from (S, vars(T))
to (S′, vars(T)) in H. By transitivity of the relation→,
we have (S, vars(T))→ (S′, vars(T)) as required.

The reduction. We now present an fpt-reduction from
p-CLIQUE to p-co-wdEVAL(C). Let k ≥ 2 and H
be an undirected graph. We start by enumerating the
class C until we find some P ∈ C such that dw(P) ≥
w(
(
k
2

)
). Since C has unbounded domination width, this

is always possible. Since the domination width is com-
putable, we can find P in time α(k), for a computable
function α : N → N. Let F := wdpf(P). Since

dw(F) ≥ w(
(
k
2

)
), we can apply Lemma 3 to obtain

a subtree T of F and (S, vars(T)) ∈ GtG(T) satis-
fying the conditions of the lemma. By condition (1),

ctw(S, vars(T)) ≥ w(
(
k
2

)
) and hence, by Lemma 2, we

can compute in time f(k, |(S, vars(T))|) · |H|O(1) a gen-
eralised t-graph (B, vars(T)) satisfying the conditions
in the lemma. Observe that (S, vars(T)) only depends
on k and thus, (B, vars(T)) can be computed in time
g(k) · |H|O(1), for some computable function g.

Now we define an RDF graph G and a mapping µ
with dom(µ) = vars(T). The idea is that G is precisely
B but interpreted as an RDF graph, i.e., we freeze the
variables of B, which now become IRIs, and µ is the

identity mapping over vars(T), modulo freezing of vari-
ables in B (note that vars(T) ⊆ vars(B)). Formally,
for ?x ∈ vars(B), we define a?x to be an IRI. We define
Ψ : vars(B) → I to be the mapping that maps each
?x ∈ vars(B) to a?x. Let G be the RDF graph defined
by the set G := {Ψ(t) | t ∈ B} and let µ be the map-
ping with dom(µ) = vars(T) such that µ(?x) = Ψ(?x),
for every ?x ∈ vars(T). By construction, Ψ is a homo-
morphism from B to G and (B, vars(T)) →µ G. We
also define a function Θ : dom(G) → I ∪ V, where
dom(G) ⊆ I is the set of IRIs appearing in G, such that
Θ(a) =?x if a = a?x and Θ(a) = a otherwise.

Observe that |P | ≤ α(k) and that (P,G, µ) can be
computed in fpt-time from (H, k), that is, in time g′(k)·
|H|O(1) for some computable function g′. It remains to
show that our reduction is correct, that is, H contains
a clique of size k if and only if µ 6∈ JP KG = JFKG.

Correctness of the reduction. Suppose first that H
contains a clique of size k. Assume F = {T1, . . . , Tm}
and (S, vars(T)) = (S∆, vars(T)), for some ∆ ∈ VCA(T).
Let T ′` be a subtree of T`, with ` ∈ {1, . . . ,m}, such that
µ is a homomorphism from pat(T ′`) to G. We claim that
there is a child n of T ′` such that

(pat(T ′`) ∪ pat(n), vars(T ′`))→µ G.

Note that this implies that µ 6∈ JT`KG, and since ` is
arbitrary, it follows that µ 6∈ JFKG as required. We
prove first that ` ∈ dom(∆). Note that Θ ◦ µ is a ho-
momorphism from pat(T ′`) to B. By definition of µ, we
have that (pat(T ′`), vars(T)) → (B, vars(T)). By item
(2) in Lemma 2, it follows that (pat(T ′`), vars(T)) →
(S∆, vars(T)). Since T ′` = T sp(`) and ∆ is valid, it
must be the case that ` ∈ dom(∆).

Recall that S∆ = pat(T) ∪ ⋃i∈dom(∆) ρ∆(i), where

ρ∆(i) is obtained from pat(∆(i)) by renaming the vari-
ables in vars(∆(i)) \ vars(T) to fresh variables. Since
H contains a clique of size k, we obtain from Lemma
2, item (3) that (S∆, vars(T)) → (B, vars(T)). Since
(B, vars(T)) →µ G, we have that (S∆, vars(T)) →µ G.
In particular, there is a homomorphism ν from ρ∆(`) to
G compatible with µ. It follows that there is a homo-
morphism ν′ from pat(∆(`)) to G compatible with µ.
By considering µ ∪ ν′, we have that

(pat(T ′`) ∪ pat(∆(`)), vars(T))→µ G.

As ∆(`) is a child of T sp(`) = T ′` , the claim follows.
Thus µ 6∈ JFKG.

Assume now that µ 6∈ JFKG. Let I ⊆ supp(T) such
that i ∈ I if and only if µ is a homomorphism from
pat(T sp(i)) to G. We claim that I 6= ∅. Since T is a
subtree of F , it suffices to show that µ is a homomor-
phism from pat(T) to G. To see this, let t ∈ pat(T).
In particular, t ∈ S∆ and vars(t) ⊆ vars(T). We can
invoke item (1) in Lemma 2 and obtain that t ∈ B. By
definition of G, Ψ(t) ∈ G, and since µ(t) = Ψ(t), it fol-
lows that µ(t) ∈ G. Then µ is a homomorphism from
pat(T) to G and I 6= ∅.

Since µ 6∈ JFKG, for every i ∈ I, there exists a child
ni of pat(T sp(i)) and a homomorphism νi from pat(ni)

to G compatible with µ. Let ∆′ be the children as-
signment with dom(∆′) = I such that ∆′(i) = ni, for
every i ∈ I. It follows that, for every i ∈ I, there is a
homomorphism ν′i from ρ∆′(i) to G compatible with µ.
By definition of S∆′ , the mapping h = µ ∪ ⋃i∈I ν′i is
well-defined and is a homomorphism from S∆′ to G. In
particular, (S∆′ , vars(T)) →µ G. We now show that
∆′ is valid. By contradiction, assume that there is
j ∈ supp(T) \ I such that (pat(T sp(j)), vars(T)) →
(S∆′ , vars(T)). Since (S∆′ , vars(T)) →µ G, we have
that

(pat(T sp(j)), vars(T))→µ G.

In particular, µ is a homomorphism from pat(T sp(j))
to G, which contradicts the definition of I. Hence ∆′ ∈
VCA(T) and consequently (S∆′ , vars(T)) ∈ GtG(T).

Observe that, by considering Θ ◦ h, (S∆′ , vars(T)) →
(B, vars(T)). By item (2) of Lemma 2, (B, vars(T)) →
(S∆, vars(T)), and hence, (S∆′ , vars(T))→ (S∆, vars(T)).
Since (S∆′ , vars(T)) ∈GtG(T) and by item (2), Lemma
3, we have that (S∆, vars(T)) → (S∆′ , vars(T)), and
then (S∆, vars(T)) → (B, vars(T)). We can apply item
(3) of Lemma 2 and conclude that H contains a clique
of size k as required.

5. CONCLUSIONS
We have introduced the notion of domination width

for well-designed graph patterns. We showed that pat-
terns with bounded domination width can be evalu-
ated in polynomial time (Theorem 1). In a matching
hardness result, we showed that classes of unbounded
domination width cannot be evaluated in polynomial
time (Theorem 2), unless a widely believed assump-
tion from parameterised complexity fails. This provides
a complete complexity classification for the evaluation
problem restricted to admissible classes of well-designed
graph patterns (Theorem 3).

A possible direction for future work is to additionally
consider the FILTER and SELECT operators (for a for-
mal semantics of these operators, we refer the reader to
[23, 24]). We remark, however, that a complete charac-
terisation of the tractable restrictions seems challenging
in these cases. Indeed, observe that our classification of
Theorem 3 is based on the following dichotomy: either
co-wdEVAL(C) is in PTIME or it is W[1]-hard. As we
explain below, it is known that this dichotomy fails if
we add FILTER or SELECT, in the sense that there is
a class C of queries such that co-wdEVAL(C) is in FPT
but is NP-hard.

For the case of FILTER, we note that well-designed
patterns using the FILTER operator can express CQs
with inequalities. Consequently, for each class of undi-
rected graphs H, it is possible to construct a class CH of
well-designed patterns using AND, OPT and FILTER
such that co-wdEVAL(CH) is polynomial-time equiv-
alent to the embedding problem EMB(H) for H. In
EMB(H), we are given two undirected graphs H and
H ′, where H ∈ H, and the question is whether there
is an embedding, i.e., an injective homomorphism from
H to H ′. It is known, for instance, that EMB(P) (and

consequently co-wdEVAL(CP)) is in FPT but is NP-
hard, where P is the class of all paths (see e.g. [9,
Section 8] and [8, Section 13.3] for more details).

For SELECT (or projection), it was recently shown in
[16] that the evaluation problem for the so-called classes
of patterns using AND, OPT and SELECT of bounded
global treewidth and semi-bounded interface is in FPT
(see [16, Theorem 5]) but NP-hard (as pointed out in
[16], NP-hardness already follows from results in [4]).

While the above discussion suggests that obtaining a
precise characterisation of the tractable classes in the
presence of FILTER or SELECT could be difficult, an
interesting research direction would be to characterise
the classes that are fixed-parameter tractable. In a
recent unpublished manuscript [21], this problem was
studied for (not necessarily well-designed) pattern trees
with projection and several complexity classifications
were obtained. Their work differs to ours in that they
consider more expressive patterns and aim for fixed-
parameter tractability while we consider simpler pat-
terns but deal with polynomial-time tractability. Re-
garding the FILTER operator, let us remark that ob-
taining characterisations for fixed-parameter tractabil-
ity in the presence of FILTER would require to solve a
known open problem, namely, the corresponding char-
acterisation for problems of the form EMB(H) (for fur-
ther details and recent results, see e.g. [9, 29, 18]).

It would be also interesting to obtain similar struc-
tural characterisations for other variants of the evalua-
tion problem such as the problem of counting the num-
ber of solutions or enumerating all solutions (see e.g.
[16, 27]); or for fragments beyond the well-designed one
such as the class of weakly well-designed queries [11].

Finally, note that, related to our results, we have the
recognisition problem: given a well-designed graph pat-
tern P , decide whether dw(P) ≤ k (we assume k ≥ 1 to
be fixed). Observe that Proposition 5 gives us an NP
upper bound for this problem in the case of UNION-
free patterns (as checking bw ≤ k is in NP). Also, by
using the fact that checking whether a relational struc-
ture has a core of treewidth at most k is NP-complete
[6, Theorem 13], we obtain that the recognition problem
for UNION-free patterns is actually NP-complete. For
arbitrary well-designed graph patterns, it is possible to
obtain a Πp

2 upper bound from the definition of domi-
nation width. It remains an open question whether this
Πp

2 bound is tight.

6. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations

of databases. Addison-Wesley, 1995.
[2] R. Angles and C. Gutiérrez. The expressive power

of SPARQL. In ISWC, pages 114–129, 2008.
[3] M. Arenas, S. Conca, and J. Perez. Counting

beyond a Yottabyte, or how SPARQL 1.1
property paths will prevent adoption of the
standard. In WWW, pages 629–638, 2012.

[4] P. Barceló, R. Pichler, and S. Skritek. Efficient
evaluation and approximation of well-designed
pattern trees. In PODS, pages 131–144, 2015.

[5] M. Chandra and P. Merlin. Optimal
implementation of conjunctive queries in
relational databases. In STOC, pages 77–90, 1977.

[6] V. Dalmau, P. Kolaitis, and M. Y. Vardi.
Constraint satisfaction, bounded treewidth, and
finite-variable logics. In CP, pages 310–326, 2002.

[7] R. Diestel. Graph theory. Springer, 2010.
[8] J. Flum and M. Grohe. Parameterized complexity

theory. Springer, 2006.
[9] M. Grohe. The complexity of homomorphism and

constraint satisfaction problems seen from the
other side. Journal of the ACM, 54(1):38–74,
2007.

[10] P. Hell and J. Nešetřil. The core of a graph.
Discrete Mathematics, 109(1):117 – 126, 1992.

[11] M. Kaminski and E. Kostylev. Beyond
well-designed SPARQL. In ICDT, pages 5:1–5:18,
2016.

[12] P. Kolaitis and M. Y. Vardi. On the expressive
power of Datalog: Tools and a case study. Journal
of Computer and System Sciences, 51:110–134,
1995.

[13] P. Kolaitis and M. Y. Vardi. A game-theoretic
approach to constraint satisfaction. In AAAI,
pages 175–181, 2000.

[14] E. Kostylev, J. Reutter, M. Romero, and
D. Vrgoc. SPARQL with property paths. In
ISWC, pages 3–18, 2015.

[15] E. Kostylev, J. L. Reutter, and M. Ugarte.
CONSTRUCT queries in SPARQL. In ICDT,
pages 212–229, 2015.

[16] M. Kroll, R. Pichler, and S. Skritek. On the
complexity of enumerating the answers to
well-designed pattern trees. In ICDT, pages
22:1–22:18, 2016.

[17] A. Letelier, J. Pérez, R. Pichler, and S. Skritek.
Static analysis and optimization of Semantic Web
queries. ACM Trans. on Database Systems, 38(4),
2013.

[18] B. Lin. The parameterized complexity of
k-biclique. In SODA, pages 605–615, 2015.

[19] K. Losemann and W. Martens. The complexity of
regular expressions and property paths in
SPARQL. ACM Trans. Database Syst.,
38(4):24:1–24:39, 2013.

[20] F. Manola and E. Miller. RDF Primer. W3C
Recommendation, 10 February 2004.
http://www.w3.org/tr/2004/rec-rdf-primer-
20040210/.

[21] S. Mengel and S. Skritek. On tractable query
evaluation for SPARQL. December 2017.
arXiv:1712.08939.

[22] J. Pérez, M. Arenas, and C. Gutierrez. Semantics
and complexity of SPARQL. In ISWC, pages
30–43, 2006.

[23] J. Pérez, M. Arenas, and C. Gutierrez. Semantics
and complexity of SPARQL. ACM Trans. on
Database Systems, 34(3), 2009.

[24] R. Pichler and S. Skritek. Containment and
equivalence of well-designed SPARQL. In PODS,
pages 39–50, 2014.

[25] A. Polleres and J. P. Wallner. On the relation
between SPARQL 1.1 and answer set
programming. Journal of Applied Non-Classical
Logics, 23(1–2):159–212, 2013.

[26] E. Prud’hommeaux and A. Seaborne. SPARQL
query language for RDF, W3C recommendation,
January 2008,
http://www.w3.org/tr/rdf-sparql-query.

[27] S. S. R. Pichler. On the hardness of counting the
solutions of SPARQL queries. In AMW, 2014.

[28] N. Robertson and P. D. Seymour. Graph minors.
V. Excluding a planar graph. J. Comb. Theory,
Ser. B, 41(1):92–114, 1986.

[29] B. L. Y. Chen, M. Grohe. The hardness of
embedding grids and walls. In WG, pages
180–192, 2017.

[30] X. Zhang and J. V. den Bussche. On the power of
SPARQL in expressing navigational queries. The
Computer Journal, 58(11):2841–2851, 2015.

7. APPENDIX

7.1 Proof of Lemma 2
Lemma 2. Let k ≥ 2 and H be an undirected graph.
Let (S,X) be a generalised t-graph with ctw(S,X) ≥
w(
(
k
2

)
). Then there is a generalised t-graph (B,X) such

that

1. if t ∈ S and vars(t) ⊆ X, then t ∈ B.

2. (B,X)→ (S,X).

3. H contains a clique of size k iff (S,X)→ (B,X).

4. (B,X) can be computed in time f(k, |(S,X)|)·|H|O(1),
where f : N× N→ N is a computable function.

We devote this section to prove this lemma. Our proof
is a simple modification of the main construction of [9]
to handle distinguished elements.

We start with some definitions. For k, ` ≥ 1, the
(k × `)-grid is the undirected graph with vertex set
{1, . . . , k} × {1, . . . , `} and an edge between (i, j) and
(i′, j′) if |i − i′| + |j − j′| = 1. It is a known fact that
the (k × k)-grid has treewidth k (see e.g. [7]). We
say that an undirected graph H = (V,E) is a minor
of H ′ = (V ′, E′) if there is a minor map from H to
H ′, that is, a function γ mapping each vertex of H to
a a non-empty set of vertices in H ′ such that (i) γ(u)
is connected for all u ∈ V , (ii) for all u, v ∈ V with
u 6= v, the sets γ(u) and γ(v) are disjoint, and (iii) for
all edges {u, v} ∈ E, there is an edge {u′, v′} ∈ E′ such
that u′ ∈ γ(u) and v′ ∈ γ(v). We say that the minor
map is onto if

⋃
u∈V γ(u) = V ′. Observe that if there is

a minor map from H to H ′, and H ′ is connected, then
there is a minor map of H onto H ′.

Let k ≥ 2, H = (V,E) be an undirected graph,
and (S,X) be a generalised t-graph with ctw(S,X) ≥
w(
(
k
2

)
). From now on, we let K :=

(
k
2

)
. Let (C,X) be

the core of (S,X) and G(C,X) be the Gaifman graph of
(C,X). Suppose that F1, . . . , Fr are the connected com-
ponents of G(C,X). As tw(G(C,X)) ≥ w(K), there is
a connected component Fi with tw(Fi) ≥ w(K). With-
out loss of generality, we assume that Fi = F1. By the
Excluded Grid Theorem, since tw(F1) ≥ w(K), it fol-
lows that the (K ×K)-grid is a minor of F1, and hence
(k × K)-grid is a minor of F1. Let γ be a minor map
from the (k ×K)-grid onto F1.

We fix a bijection ρ between {1, . . . ,K} and all un-
ordered pairs of elements of {1, . . . , k}. For p ∈ {1, . . . ,K},
we shall abuse notation and write p instead of ρ(p) and
i ∈ p instead of i ∈ ρ(p), for i ∈ {1, . . . , k}. We define
the following set V ⊆ V of variables: ?(v, e, i, p, ?a) ∈ V
iff v ∈ V , e ∈ E, i ∈ {1, . . . , k}, p ∈ {1, . . . ,K},
?a ∈ γ(i, p) and v ∈ e ⇐⇒ i ∈ p.

We denote by V (F1) ⊆ V the vertex set of F1. Let
Π : (V ∪ vars(C)) → V (F1) be the mapping such that
Π(?(v, e, i, p, ?a)) =?a, for all ?(v, e, i, p, ?a) ∈ V, and
Π(?x) =?x, for ?x ∈ vars(C). We define

Tr := {t ∈ (I ∪V)3 | vars(t) \X ⊆ V and Π(t) ∈ C}.
We also define Tr′ ⊆ Tr as follows. For t ∈ Tr, we have
t ∈ Tr′ iff (†) for all ?x, ?x′ ∈ vars(t) \X ⊆ V.

1. if ?x =?(v, e, i, p, ?a) and ?x′ =?(v′, e′, i, p′, ?a′),
then v = v′, and

2. if ?x =?(v, e, i, p, ?a) and ?x′ =?(v′, e′, i′, p, ?a′),
then e = e′.

Let also Tr0 := {t ∈ C | vars(t) \X 6⊆ V (F1)}. Then
we define B = Tr′ ∪ Tr0.

Note that Π is a homomorphism from B to C. Indeed,
if t ∈ Tr′, then t ∈ Tr, and hence Π(t) ∈ C. If t ∈ Tr0,
then Π(t) = t ∈ C. Since Π(?x) =?x, for all ?x ∈ X,
we have (B,X) → (C,X). Since (C,X) → (S,X), we
have (B,X) → (S,X) and condition (2) in the lemma
holds. For condition (1), let t ∈ S such that vars(t) ⊆
X. Since (S,X) → (C,X), then t ∈ C. In particular,
vars(t) \ X = ∅ ⊆ V and, by definition of Π, we have
Π(t) = t ∈ C. Hence t ∈ Tr. Since vars(t) \X = ∅, t ∈
Tr′ holds trivially. Then t ∈ B as required. Condition
(4) is immediate from the definition of B. It remains to
verify condition (3). We can follow the same arguments
as in [9].

Suppose that H contains a clique of size k and let
{v1, . . . , vk} be such a clique. For p ∈ K with ρ(p) =
{i, j}, where i, j ∈ {1, . . . , k} and i 6= j, we let ep
be the edge from vi to vj . In this case we can de-
fine h : vars(C) → vars(B) such that h(?x) =?x, if
?x 6∈ V (F1), and h(?a) =?(vi, ep, i, p, ?a) if ?a ∈ V (F1),
for i ∈ {1, . . . , k} and p ∈ {1, . . . ,K} with γ(i, p) =?a.
First note that vi ∈ ep ⇐⇒ i ∈ p. Note that since
vi and ep are determined by i and p, then for every
t ∈ C, it is the case that h(t) ∈ B. As h(?x) =?x,
if ?x ∈ X, we conclude that (C,X) → (B,X). Since
(S,X)→ (C,X), then (S,X)→ (B,X) as required.

Conversely, suppose that (S,X) → (B,X). In par-
ticular, (C,X) → (B,X) via a homomorphism h. We
claim that there is a homomorphism g from C to B with
g(?x) =?x, for all ?x ∈ X such that Π◦ g is the identity

mapping over vars(C). Indeed, let s = Π ◦ h. Then s
is a homomorphism witnessing (C,X)→ (C,X). Since
(C,X) is a core, then s must be a bijection and hence
an isomorphism. It suffices to conisder g = h ◦ s−1. It
follows that for all i ∈ {1, . . . , k}, p ∈ {1, . . . ,K}, ?a
such that γ(i, p) =?a, g(?a) is of the form

g(?a) =?(va?, e?a, i, p, ?a)

where v?a ∈ e?a ⇐⇒ i ∈ p. By the consistency condi-
tions (†) and the connectivity of F1, it follows that (i)
v?a = v?a′ and e?a = e?a′ , whenever ?a, ?a′ ∈ γ(i, p),
(ii) v?a = v?a′ , if ?a ∈ γ(i, p) and ?a′ ∈ γ(i, p′), and
(iii) e?a = e?a′ , if ?a ∈ γ(i, p) and ?a′ ∈ γ(i′, p). It
follows that there are vertices v1, . . . , vk ∈ V and edges
e1, . . . , eK such that whenever ?a ∈ γ(i, p) then g(?a) =
?(vi, ep, i, p, ?a). By the conditions vi ∈ ei ⇐⇒ i ∈ p,
we have that {v1, . . . , vk} is a clique in H as required.

	1 Introduction
	2 Preliminaries
	2.1 Pattern trees and pattern forests
	2.2 Restrictions of the evaluation problem

	3 A new tractability condition
	3.1 Domination width
	3.2 The case of UNION-free patterns

	4 A matching hardness result
	4.1 Hardness result and main characterisation theorem
	4.2 Proof of Theorem ??

	5 Conclusions
	6 References
	7 Appendix
	7.1 Proof of Lemma ??

