
ar
X

iv
:1

70
9.

06
18

6v
3

 [
cs

.D
B

]
 2

7
M

ar
 2

01
8

Compressed Representations of Conjunctive Query Results

Shaleen Deep1 Paraschos Koutris1

1University of Wisconsin-Madison, Madison, WI

{shaleen, paris}@cs.wisc.edu

March 28, 2018

Abstract

Relational queries, and in particular join queries, often generate large output results when
executed over a huge dataset. In such cases, it is often infeasible to store the whole material-
ized output if we plan to reuse it further down a data processing pipeline. Motivated by this
problem, we study the construction of space-efficient compressed representations of the output
of conjunctive queries, with the goal of supporting the efficient access of the intermediate com-
pressed result for a given access pattern. In particular, we initiate the study of an important
tradeoff: minimizing the space necessary to store the compressed result, versus minimizing the
answer time and delay for an access request over the result. Our main contribution is a novel
parameterized data structure, which can be tuned to trade off space for answer time. The
tradeoff allows us to control the space requirement of the data structure precisely, and depends
both on the structure of the query and the access pattern. We show how we can use the data
structure in conjunction with query decomposition techniques in order to efficiently represent
the outputs for several classes of conjunctive queries.

1 Introduction

In this paper, we study the problem of constructing space-efficient compressed representations
of the output of conjunctive query results, with the goal of efficiently supporting a given access
pattern directly over the compressed result, instead of the original input database. In many data
management tasks, the data processing pipeline repeatedly accesses the result of a conjunctive
query (CQ) using a particular access pattern. In the simplest case, this access pattern can be to
enumerate the full result (e.g., in a multiquery optimization context). Generally, the access pattern
can specify, or bound, the values of some variables, and ask to enumerate the values of the remaining
variables that satisfy the query.

Currently, there are two extremal solutions for this problem. In one extreme, we can materialize
the full result of the CQ and index the result according to the access pattern. However, since the
output result can often be extremely large, storing this index can be prohibitively expensive. In
the other extreme, we can service each access request by executing the CQ directly over the input
database every time. This solution does not need extra storage, but can lead to inefficiencies, since
computation has to be done from scratch and may be redundant. In this work, we explore the
design space between these two extremes. In other words, we want to compress the query output
such that it can be stored in a space-efficient way, while we can support a given access pattern over
the output as fast as possible.

Example 1. Suppose we want to perform an analysis about mutual friends of users in a social
network. The friend relation is represented by a symmetric binary relation R of size N , where a

1

http://arxiv.org/abs/1709.06186v3

tuple R(a, b) denotes that user a is a friend of user b. The data analysis involves accessing the
database through the following pattern: given any two users x and z who are friends, return all
mutual friends y. We formalize this task through an adorned view V bfb(x, y, z) = R(x, y), R(y, z),
R(z, x). The above formalism says that the view V of the database will be accessed as follows: given
values for the bound (b) variables x, z, we have to return the values for the free (f) variable y such
that the tuple is in the view V. The sequence bfb is called the access pattern for the adorned view.

One option to solve this problem is to satisfy each access by evaluating a query on the input
database. This approach is space-efficient, since we work directly on the input and need space O(N).
However, we may potentially have to wait Ω(N) time to even learn whether there is any returned
value for y. A second option is to materialize the view V (x, y, z) and build a hash index with key
(x, z): in this case, we can satisfy any access optimally with constant delay Õ(1).1 On the other
hand, the space needed for storing the view can be Ω(N3/2).

In this scenario, we would like to construct representations that trade off between space and
delay (or answer time). As we will show later, for this particular example we can construct a data
structure for any parameter τ that needs space O(N3/2/τ), and can answer any access request with
delay Õ(τ).

The idea of efficiently compressing query results has recently gained considerable attention,
both in the context of factorized databases [28], as well as constant-delay enumeration [32, 5]. In
these settings, the focus is to construct compressed representations that allow for enumeration of
the full result with constant delay: this means that the time between outputting two consecutive
tuples is O(1), independent of the size of the data. Using factorization techniques, for any input
database D, we can construct a compressed data structure for any CQ without projections, called a
d-representation, using space O(|D|fhw), where fhw is the fractional hypertree width of the query [28].
Such a d-representation guarantees constant delay enumeration of the full result. In [31, 5], the
compression of CQs with projections is also studied, but the setting is restricted to O(|D|) time
preprocessing –which also restricts the size of the compressed representation to O(|D|).

In this work, we show that we can dramatically decrease the space for the compressed represen-
tation by both (i) taking advantage of the access pattern, and (ii) tolerating a possibly increased
delay. For instance, a d-representation for the query in Example 1 needs O(N3/2) space, while no
linear-time preprocessing can support constant delay enumeration (under reasonable complexity
assumptions [5]). However, we show that if we are willing to tolerate a delay of Õ(N1/2), we can
support the access pattern of Example 1 using only Õ(N) space, linear in the input size.

Applications. We illustrate the applicability of compressed representations of conjunctive queries
on two practical problems: (i) processing graph queries over relational databases, and (ii) scaling
up statistical inference engines.

In the context of graph analytics, the graph to be analyzed is often defined as a declarative
query over a relational schema [34, 35, 36, 2]. For instance, consider the DBLP dataset, which
contains information about which authors write which papers through a table R(author, paper).
To analyze the relationships between co-authors, we will need to extract the co-author graph, which
we can express as the view V (x, y) = R(x, p), R(y, p). Most graph analytics algorithms typically
access such a graph through an API that asks for the set of neighbors of a given vertex, which
corresponds to the adorned view V bf(x, y) = R(x, p), R(y, p). Since the option of materializing the
whole graph (here defined as the view V) may require prohibitively large space, it is desirable to
apply techniques that compress V , while we can still answer any access request efficiently. Recent
work [34] has proposed compression techniques for this particular domain, but these techniques are

1the Õ notation includes a poly-logarithmic dependence on N .

2

limited to adorned views of the form V bf(x, y), rely on heuristics, and do not provide any formal
analysis on the tradeoff between space and runtime.

The second application of query compression is in statistical inference. For example, Felix [26]
is an inference engine for Markov Logic Networks over relational data, which provides scalability
by optimizing the access patterns of logical rules that are evaluated during inference. These access
patterns over rules are modeled exactly as adorned views. Felix groups the relations in the body
of the view in partitions (optimizing for some cost function), and then materializes each partition
(which corresponds to materializing a subquery). In the one extreme, it will eagerly materialize
the whole view, and in the other extreme it will lazily materialize nothing. The materialization in
Felix is discrete, in that it is not possible to partially materialize each subquery. In contrast, we
consider materialization strategies that explore the full continuum between the two extremes.

Our Contribution. In this work, we study the design space for compressed representations of
conjunctive queries in the full continuum between optimal space and optimal runtime, when our
goal is to optimize for a specific access pattern.

Our main contribution is a novel data structure that (i) can compress the result for every CQ
without projections according to the access pattern given by an adorned view, and (ii) can be tuned to
tradeoff space for delay and answer time. At the one extreme, the data structure achieves constant
delay O(1); At the other extreme it uses linear space O(|D|), but provides a worst delay guarantee.
Our proposed data structure includes as a special case the data structure developed in [13] for the
fast set intersection problem.

To construct our data structure, we need two technical ingredients. The first ingredient (Theo-
rem 1) is a data structure that trades space with delay with respect to the worst-case size bound of
the query result. As an example of the type of tradeoffs that can be achieved, for any CQ Q with-
out projections and any access pattern, the data structure needs space Õ(|D|ρ∗/τ) to achieve delay
Õ(τ), where ρ∗ is the fractional edge cover number of Q, and |D| the size of the input database. In
many cases and for specific access patterns, the data structure can substantially improve upon this
tradeoff. To prove Theorem 1, we develop novel techniques on how to encode information about
expensive sub-instances of the problem in a balanced way.

However, Theorem 1 by its own gives suboptimal tradeoffs, since it ignores structural properties
of the query (for example, for constant delay it materializes the full result). Our second ingredient
(Theorem 2) combines the data structure of Theorem 1 with a type of tree decomposition called
connex tree decomposition [5]. This tree decomposition has the property of restricting the tree
structure such that the bound variables in the adorned view always form a connected component
at the top of the tree.

Finally, we discuss the complexity of choosing the optimal parameters for our two main theo-
rems, when we want to optimize for delay given a space constraint, or vice versa.

Organization. We present our framework in Section 2, along with the preliminaries and basic
notation. Our two main results (Theorems 1 and 2) are presented in Section 3. We then present
the detailed construction of the data structure of Theorem 1 in Section 4, and of Theorem 2 in
Section 5. Finally, in Section 6, we discuss some complexity results for optimizing the choice of
parameters.

2 Problem Setting

In this section we present the basic notions and terminology, and then discuss in detail our frame-
work.

3

2.1 Conjunctive Queries

In this paper we will focus on the class of conjunctive queries (CQs), which are expressed as

Q(y) = R1(x1), R2(x2), . . . , Rn(xn)

Here, the symbols y,x1, . . . ,xn are vectors that contain variables or constants, the atom Q(y) is
the head of the query, and the atoms R1(x1), R2(x2), . . . , Rn(xn) form the body. The variables in
the head are a subset of the variables that appear in the body. A CQ is full if every variable in
the body appears also in the head, and it is boolean if the head contains no variables, i.e. it is of
the form Q(). We will typically use the symbols x, y, z, . . . to denote variables, and a, b, c, . . . to
denote constants. If D is an input database, we denote by Q(D) the result of running Q over D.

Natural Joins. If a CQ is full, has no constants and no repeated variables in the same atom, then
we say it is a natural join query. For instance, the triangle query ∆(x, y, z) = R(x, y), S(y, z), T (z, x)
is a natural join query. A natural join can be represented equivalently as a hypergraph H = (V, E),
where V is the set of variables, and for each hyperedge F ∈ E there exists a relation RF with
variables F . We will write the join as ✶F∈E RF . The size of relation RF is denoted by |RF |. Given
a set of variables I ⊆ V, we define EI = {F ∈ E | F ∩ I 6= ∅}.
Valuations. A valuation v over a subset V of the variables is a total function that maps each
variable x ∈ V to a value v(x) ∈ dom, where dom is a domain of constants. Given a valuation v
of the variables (xi1 , . . . , xiℓ), we denote RF (v) = RF ⋉ {v(xi1 , . . . , xiℓ)}.
Join Size Bounds. Let H = (V, E) be a hypergraph, and S ⊆ V. A weight assignment u =
(uF)F∈E is called a fractional edge cover of S if (i) for every F ∈ E , uF ≥ 0 and (ii) for every
x ∈ S,

∑

F :x∈F uF ≥ 1. The fractional edge cover number of S, denoted by ρ∗H(S) is the minimum
of
∑

F∈E uF over all fractional edge covers of S. We write ρ∗(H) = ρ∗H(V).
In a celebrated result, Atserias, Grohe and Marx [4] proved that for every fractional edge cover

u of V, the size of a natural join is bounded using the following inequality, known as the AGM
inequality:

| ✶F∈E RF | ≤
∏

F∈E

|RF |uF (1)

The above bound is constructive [25, 24]: there exist worst-case algorithms that compute the join
✶F∈E RF in time O(

∏

F∈E |RF |uF) for every fractional edge cover u of V.
Tree Decompositions. Let H = (V, E) be a hypergraph of a natural join query Q. A tree
decomposition of H is a tuple (T, (Bt)t∈V (T)) where T is a tree, and every Bt is a subset of V, called
the bag of t, such that

1. each edge in E is contained in some bag Bt; and

2. for each x ∈ V, the set of nodes {t | x ∈ Bt} is connected in T.

The fractional hypertree width of a tree decomposition is defined as maxt∈V (T) ρ
∗(Bt), where

ρ∗(Bt) is the minimum fractional edge cover of the vertices inBt. The fractional hypertree width of a
query Q, denoted fhw(Q), is the minimum fractional hypertree width among all tree decompositions
of its hypergraph.

Computational Model. To measure the running time of our algorithms, we will use the uniform-
cost RAM model [21], where data values as well as pointers to databases are of constant size.
Throughout the paper, all complexity results are with respect to data complexity (unless explicitly
mentioned), where the query is assumed fixed.

We use the notation Õ to hide a polylogarithmic factor logk |D| for some constant k, where D
is the input database.

4

database
D

CQ(D)
...

q2(D)

q1(D)adorned view
Qη

compression time
TC

space (S)

...

q2 = Qη[v2]

q1 = Qη[v1]

total answer time (TA)

Figure 1: Depiction of the compression framework along with the parameters.

2.2 Adorned Views

In order to model access patterns over a view Q defined over the input database, we will use the
concept of adorned views [33]. In an adorned view, each variable in the head of the view definition
is associated with a binding type, which can be either bound (b) or free (f). A view Q(x1, . . . , xk)
is then written as Qη(x1, . . . , xk), where η ∈ {b, f}k is called the access pattern. We denote by Vb
(resp. Vf) the set of bound (resp. free) variables from {x1, . . . , xk}.

We can interpret an adorned view as a function that maps a valuation over the bound variables
Vb to a relation over the free variables Vf . In other words, for each valuation v over Vb, the adorned
view returns the answer for the query Qη[v] = {Vf | Q(x1, . . . , xk) ∧ ∀xi ∈ Vb : xi = v(xi)}, which
we will also refer to as an access request.

Example 2. ∆bbf(x, y, z) = R(x, y), S(y, z), T (z, x) captures the following access pattern: given
values x = a, y = b, list all the z-values that form a triangle with the edge R(a, b). As another
example, ∆fff(x, y, z) = R(x, y), S(y, z), T (z, x) simply captures the case where we want to perform
a full enumeration of all the triangles in the result. Finally, ∆b(x) = R(x, y), S(y, z), T (z, x)
expresses the access pattern where given a node with x = a, we want to know whether there exists
a triangle that contains it or not.

An adorned view Qη(x1, . . . , xk) is boolean if every head variable is bound, it is non-parametric
if every head variable is free, and it is full if the CQ if full (i.e., every variable in the body also
appears in the head). Of particular interest is the adorned view that is full and non-parametric,
which we call the full enumeration view, and simply asks to output the whole result.

2.3 Problem Statement

Given an adorned view Qη(x1, . . . , xk) and an input database D, our goal is to answer any access
request Qη[v] that conforms to the access pattern η. The view Q can be expressed through any
type of query, but in this work we will focus on the case where Q is a conjunctive query.

There are two extremal approaches to handle this problem. The first solution is to answer
any such query directly on the input database D, without materializing Q(D). This solution is
efficient in terms of space, but it can lead to inefficient query answering. For instance, consider the
adorned view ∆bbf(x, y, z) = R(x, y), S(y, z), T (z, x). Then, every time we are given new values
x = a, y = b, we would have to compute all the nodes c that form a triangle with a, b, which can
be very expensive.

The second solution is to materialize the view Q(D), and then answer any incoming query over
the materialized result. For example, we could choose to materialize all triangles, and then create

5

an appropriate index over the output result. The drawback of this approach is that it requires a
lot of space, which may not be available.

We propose to study the solution space between these two extremal solutions, that is, instead
of materializing all of Q(D), we would like to store a compressed representation CQ(D) of Q(D).
The compression function CQ must guarantee that the compression is lossless, i.e., there exists a
decompression function DQ such that for every database D, it holds that DQ(CQ(D)) = Q(D). We
compute the compressed representation CQ(D) during a preprocessing phase, and then answer any
access request in an online phase.

Parameters. Our goal is to construct a compression that is as space-efficient as possible, while
it guarantees that we can efficiently answer any access query. In particular, we are interested in
measuring the tradeoff between the following parameters, which are also depicted in Figure 1:

Compression Time (TC): the time to compute CQ(D) during the preprocessing phase.

Space (S): the size of CQ(D).

Answer Time: this parameter measures the time to enumerate a query result, where the query
is of the form Qη[v]. The enumeration algorithm must (i) enumerate the query result without
any repetitions of tuples, and (ii) use only O(log |D|) extra memory2. We will measure answer
time in two different ways.

1. delay (δ): the maximum time to output any two consecutive tuples (and also the time
to output the first tuple, and the time to notify that the enumeration has completed).

2. total answer time (TA): the total time to output the result.

In the case of a boolean adorned view, the delay and the total answer time coincide. In an ideal
situation, both the compression time and the space are linear to the input size and any query can
be answered with constant delay O(1). As we will see later, this is achievable in certain cases, but
in most cases we have to tradeoff space and preprocessing time for delay and total answer time.

2.4 Some Basic Results

We present here some basic results that set up a baseline for our framework. We will study the
case where the given view definition Q is a conjunctive query.

Our first observation is that if we allow the compression time to be at least Ω(|D|), we can
assume without loss of generality that the adorned view Qη has no constants or repeated variables
in a single atom. Indeed, we can first do a linear time computation to rewrite the adorned view
Qη to a new view where constants and repeated variables are removed, and then compute the
compressed representation for this new view (with the same adornment).

Example 3. Consider Qfb(x, z) = R(x, y, a), S(y, y, z). We can first compute in linear time
R′(x, y) = R(x, y, a) and S′(y, z) = S(y, y, z), and then rewrite the adorned view as Qfb(x, z) =
R′(x, y), S′(y, z).

Hence, whenever the adorned view is a full CQ, we can w.l.o.g. assume that it is a natural join
query. We now state a simple result for the case where the adorned view is full and every variable
is bound.

2Memory requirement also depends on the memory required for executing the join algorithm. Note that worst case
optimal join algorithms such as NPRR [24] can be executed using log |D| memory assuming query size is constant
and all relations are sorted and indexed.

6

Proposition 1. Suppose that the adorned view is a natural join query with head Qb···b(x1, . . . , xk).
Then, in time TC = O(|D|), we can construct a data structure with space S = O(|D|), such that
we can answer any access request over D with constant delay δ = O(1).

Next, consider the full enumeration view Qf···f(x1, . . . , xk). A first observation is that if we
store the materialized view, we can enumerate the result in constant delay. From the AGM bound,
to achieve this we need space |D|ρ∗(H), where H is the hypergraph of Q. However, it is possible to
improve upon this naive solution using the concept of a factorized representation [28]. Let fhw(Q)
denote the fractional hypertree width of Q. Then, the result from [28] can be translated in our
terminology as follows.

Proposition 2 ([28]). Suppose that the adorned view is a natural join query with head Qf···f(x1, . . . , xk).
Then, in compression time TC = Õ(|D|fhw(Q)), we can construct a data structure with space
S = O(|D|fhw(Q)), such that we can answer any access request over D with constant delay δ = O(1).

Since every acyclic query has fhw(Q) = 1, for acyclic CQs without projections both the compres-
sion time and space become linear, O(|D|). In the next section, we will see how we can generalize
the above result to an arbitrary adorned view that is full.

3 Main Results and Application

In this section we present our two main results, and show how they can be applied. The first
result (Theorem 1) is a compression primitive that can be used with any full adorned view. The
second result (Theorem 2) builds upon Theorem 1 and query decomposition techniques to obtain
an improved tradeoff between space and delay.

3.1 First Main Result

Consider a full adorned view Qη(x1, . . . , xk), where Q is a natural join query expressed by the
hypergraph H = (V, E). Recall that Vb,Vf are the bound and free variables respectively. Since
the query is a natural join and there are no projections, we have Vb ∪ Vf = V. We will denote by
µ = |Vf | the number of free variables. We also impose a lexicographic order on the enumeration
order of the output tuples. Specifically, we equip the domain dom with a total order ≤, and then
extend this to a total order for output tuples in domµ using some order x1f , x

2
f , . . . , x

µ
f of the free

variables.3

Example 4. As a running example, consider

Qfffbbb(x, y, z, w1, w2, w3) =R1(w1, x, y), R2(w2, y, z),

R3(w3, x, z).

We have Vf = {x, y, z} and Vb = {w1, w2, w3}. To keep the exposition simple, assume that |R1| =
|R2| = |R3| = N .

If we materialize the result and create an index with composite key (w1, w2, w3), then in the
worst case we need space S = O(N3), but we will be able to enumerate the output for every access
request with constant delay. On the other hand, if we create three indexes, one for each Ri with key
wi, we can compute each access request with worst-case running time and delay of O(N3/2). Indeed,
once we fix the bound variables to constants c1, c2, c3, we need to compute the join R1(c1, x, y) ✶

R2(c2, y, z) ✶ R3(c3, x, z), which needs time O(N3/2) using any worst-case optimal join algorithm.

3There is no restriction imposed on the lexicographic ordering of the free variables.

7

For any fractional edge cover u of V, and S ⊆ V, we define the slack of u for S as:

α(S) = min
x∈S

(

∑

F :x∈F

uF

)

(2)

Intuitively, the slack is the maximum positive quantity such that (uF /α(S))F∈E is still a fractional
edge cover of S . By construction, the slack is always at least one, α(S) ≥ 1. For our running
example, suppose that we pick a fractional edge cover for V with uR1

= uR3
= uR3

= 1. Then, the
slack of u for Vf is α(Vf) = 2.

Theorem 1. Let Qη be an adorned view over a natural join query with hypergraph (V, E). Let u
be any fractional edge cover of V. Then, for any input database D and parameter τ > 0 we can
construct a data structure with

compression time TC = Õ(|D|+
∏

F∈E

|RF |uF)

space S = Õ(|D|+
∏

F∈E

|RF |uF /τα(Vf))

such that for any access request q = Qη[v], we can enumerate its result q(D) in lexicographic order
with

delay δ = Õ(τ)

answer time TA = Õ(|q(D)|+ τ · |q(D)|1/α(Vf))

Example 5. Let us apply Theorem 1 to our running example for u = (1, 1, 1) and τ = N1/2. The
slack for the free variables is α(Vf) = 2. The theorem tells us that we can construct in time Õ(N3)
a data structure with space Õ(N2), such that every access request q can be answered with delay
Õ(N1/2) and answer time Õ(|q(D)|+

√

N · |q(D)|).

We prove Theorem 1 in Section 4. We next show how to apply the theorem to obtain several
results on space-efficient compressed representations for CQs.

Applying Theorem 1. We start with the observation that we can always apply Theorem 1 by
choosing u to be the fractional edge cover with optimal value ρ∗(H). Since the slack is always ≥ 1,
we obtain the following result.

Proposition 3. Let Qη be an adorned view over a natural join query with hypergraph H. Then,
for any input database D and parameter τ > 0, we can construct a data structure with

space S = Õ(|D|+ |D|ρ∗(H)/τ)

such that for any access request q, we can enumerate its result q(D) in lexicographic order with

δ = Õ(τ), TA = Õ(τ · |q(D)|)

Proposition 3 tells us that the data structure has a linear tradeoff between space and delay.
Also, to achieve (almost) constant delay δ = Õ(1), the space requirement becomes Õ(|D|ρ∗); in
other words, the data structure will essentially materialize the whole result. Our second main result
will allow us to exploit query decomposition to avoid this case.

8

Example 6. Consider the following adorned view over the Loomis-Whitney join:

LW b···bf
n (x1, . . . , xn) =S1(x2, . . . , xn), S2(x1, x3, . . . , xn),

. . . , Sn(x1, . . . , xn−1)

The minimum fractional edge cover assigns weight 1/(n − 1) to each hyperedge and has ρ∗ =
n/(n−1). Then, Proposition 3 tells us that for τ > 0, we can construct a compressed representation
with space S = Õ(|D| + |D|n/(n−1)/τ) and delay δ = Õ(τ). Notice that if we aim for linear space,
we can choose τ = |D|1/(n−1) and achieve a small delay of Õ(|D|1/(n−1)).

Proposition 3 ignores the effect of the slack for the free variables. The next example shows that
taking slack into account is critical in obtaining better tradeoffs.

Example 7. Consider the adorned view over the star join

Sb···bf
n (x1, . . . , xn, z) = R1(x1, z), R2(x2, z), . . . , Rn(xn, z)

The star join is acyclic, which means that the d-representation of the full result takes only linear
space. This d-representation can be used for any adornment of Sn where z is a bound variable;
hence, in all these cases we can guarantee O(1) delay using linear compression space. However, we
cannot get any guarantees when z is free, as is in the adornment used above.

If we apply Proposition 3, we get space Õ(|D| + |D|n/τ) with delay Õ(τ). However, we can
improve upon this by noticing that for the fractional edge cover where u1 = · · · = un = 1, the slack
is α(Vf) = n. Hence, Theorem 1 tells us that with space Õ(|D|n/τn) we get delay Õ(τ) and answer
time Õ(|Q(D)|+ τ · |Q(D)|1/n).

We should note here that our data structure strictly generalizes the data structure proposed
in [13] for the problem of fast set intersection. Given a family of sets S1, . . . , Sn, the goal in this
problem is to construct a space-efficient data structure, such that given any two sets Si, Sj we can
compute their intersection Si∩Sj as fast as possible. It is easy to see that this problem is captured
by the adorned view Sbbf

2 (x1, x2, z) = R(x1, z), R(x2, z), where R is a relation that describes set
membership (R(Si, a) means that a ∈ Si).

3.2 Second Main Result

The direct application of Theorem 1 can lead to suboptimal tradeoffs between space and time/delay,
since it ignores the structural properties of the query. In this section, we show how to overcome
this problem by combining Theorem 1 with tree decompositions.

We first need to introduce a variant of a tree decomposition of a hypergraph H = (V, E), defined
with respect to a given subset C ⊆ V.

Definition 1 (Connex Tree Decomposition [5]). Let H = (V, E) be a hypergraph, and C ⊆ V. A
C-connex tree decomposition of H is a tuple (T , A), where:

1. T = (T, (Bt)t∈V (T)) is a tree decomposition of H; and
2. A is a connected subset of V (T) such that

⋃

t∈A Bt = C.

In a C-connex tree decomposition, the existence of the set A forces the set of nodes that contain
some variable from C to be connected in the tree.

9

Example 8. Consider the hypergraph H in Figure 2. The decomposition depicted on the left is
a C-connex tree decomposition for C = ∅. The C-connex tree decomposition on the right is for
C = {v1, v5, v6}. In both cases, A consists of a single bag (colored grey) which contains exactly the
variables in C.

In [5], C-connex decompositions were used to obtain compressed representations of CQs with
projections (where C is the set of the head variables). In our setting, we will choose C to be the
set of bound variables in the adorned view, i.e., C = Vb. Additionally, we will use a novel notion
of width, which we introduce next.

Given a Vb-connex tree decomposition (T , A), we orient the tree T from some node in A. For
any node t ∈ V (T) \ A, we denote by anc(t) the union of all the bags for the nodes that are the
ancestors of t. Define Vtb = Bt ∩ anc(t) and Vtf = Bt \ Vtb. Intuitively, Vtb (resp. Vtf) are the bound
(resp. free) variables for the bag t as we traverse the tree top-down. Figure 2 depicts each bag Bt

as Vtf | Vtb.
Given a Vb-connex tree decomposition, a delay assignment is a function δ : V (T)→ [0,∞) that

maps each bag to a non-negative number, such that δ(t) = 0 for t ∈ A. Intuitively, this assignment
means that we want to achieve a delay of |D|δ(t) for traversing this particular bag. For a bag t,
define

ρ+t = min
u

(

∑

F

uF − δ(t) · α(Vtf)
)

(3)

where u is a fractional edge cover of the bag Bt. The Vb-connex fractional hypertree δ-width of
(T , A) is defined as maxt∈V (T)\A ρ+t . It is critical that we ignore the bags in the set A in the max

computation. We also define u+t =
∑

F u′F where u′ is the fractional edge cover of bag Bt that
minimizes ρ+t .

When δ(t) = 0 for every bag t, the δ-width of any Vb-connex tree decomposition becomes
maxt∈V (T)\A ρ∗(Bt), where ρ∗(Bt) is the fractional edge cover number of Bt. Define fhw(H | Vb)
as the smallest such quantity among all Vb-connex tree decompositions of H. When Vb = ∅, then
fhw(H | Vb) = fhw(H), thus recovering the notion of fractional hypertree width. Appendex D shows
the relationship between fhw(H | Vb) and other hypergraph related parameters.

Finally, we define the δ-height of a Vb-connex tree decomposition to be the maximum weight
root-to-leaf path, where the weight of a path P is defined as

∑

t∈P δ(t).

Example 9. Consider the decomposition on the right in Figure 2, and a delay assignment δ that
assigns 1/3 to node t1 with Bt1 = {v2, v4, v1, v5}, 1/6 to the bag t2 with Bt2 = {v2, v3, v4}, and 0
to the node t3 with Bt3 = t3 = {v6, v7}. The δ-height of the tree is h = max{1/3 + 1/6, 0} = 1/2.
To compute the fractional hypertree δ-width, observe that we can cover the bag {v2, v4, v1, v5} by
assigning weight of 1 to the edges {v1, v2}, {v4, v5}, in which case ρ+t1 = (1+ 1)− 1/3 · 1 = 5/3. We
also have ρ+t2 = (1+ 1)− 1/6 · 2 = 5/3, and ρ+t3 = 1. Hence, the fractional hypertree δ-width is 5/3.
Also, observe that u+t1 = u+t2 = 2 and u+t3 = 1.

Theorem 2. Let q = Qη be an adorned view over a natural join query with hypergraph H =
(V, E). Suppose that H admits a Vb-connex tree decomposition. Fix any delay assignment δ, and
let f be the Vb-connex fractional hypertree δ-width, h the δ-height of the decomposition, and u∗ =
maxt∈V (T)\A u+t .

Then, for any input database D, we can construct a data structure in compression time TC =
Õ(|D|+ |D|u∗+maxt δ(t)) with space S = Õ(|D|+ |D|f), such that we can answer any access request
with delay Õ(|D|h).

10

v1 v2 v3 v4 v5 v6 v7

v2, v1 |

v3 | v2

v4 | v3

v5 | v4

v6 | v5

v7 | v6

v1, v5, v6

v2, v4 | v1, v5

v3 | v2, v4

v7 | v6

Figure 2: The hypergraph H for a path query of length 6, along with two C-connex tree decomposi-
tions. The decomposition on the left has C = ∅, and the decomposition on the right C = {v1, v5, v6}.
The variables in C are colored red, and the grey nodes are the ones in the set A.

If we write the delay in the above result as Õ(
∏

t∈P |D|δ(t)), where P is the maximum-weight
path, Theorem 2 tells us that the delay is essentially multiplicative in the same branch of the tree,
but additive across branches. Unlike Theorem 1, the lexicographic ordering of the result q(D) for
Theorem 2 now depends on the tree decomposition.

For our running example, Theorem 2 implies a data structure with space Õ(|D| + |D|5/3) and
delay Õ(|D|1/2). This data structure can be computed in time Õ(|D| + |D|7/3). Notice that this
is much smaller than the O(|D|4) time required to compute the worst case output. We prove the
theorem in detail in Section 5, and we discuss the complexity of choosing the optimal parameters
in Section 6. Next, we delve deeper into Theorem 2 and how to apply it.

Applying Theorem 2. We first give an example where Theorem 2 can substantially improve
upon the space/delay tradeoff of Theorem 1.

Example 10. Consider the following adorned view:

P bf···fb
n (x1, . . . , xn+1) = R1(x1, x2), R2(x2, x3), . . . , Rn(xn, xn+1).

A direct application of Theorem 1 results in a tradeoff of space Õ(|D| + |D|⌈n/2⌉/τ) with delay
Õ(τ). On the other hand, we can construct a connex tree decomposition where A has a single bag
{x1, xn+1}, which is connected to {x1, x2, xn, xn+1}, which is in turn connected to {x2, x3, xn−1, xn},
and so on. Consider the delay assignment that assigns to each bag δ(t) = log|D| τ . The δ-width of
this decomposition is 2− log|D| τ , while the δ-height is ⌊n/2⌋ · log|D| τ . Hence, Theorem 2 results in

a tradeoff of space Õ(|D|+ |D|2/τ) with delay Õ(τ ⌊n/2⌋).

Suppose now that our goal is to achieve constant delay. From Theorem 2, in order to do this
we have to choose the delay assignment to be 0 everywhere. In this case, we have the following
result (which slightly strengthens Theorem 2 in this special case by dropping the polylogarithmic
dependence).

Proposition 4. Let Qη be a full adorned view over a hypergraph H = (V, E). Then, for any input
database D, we can construct a data structure in compression time and space S = O(|D|fhw(H|Vb)),
such that we can answer any access request with delay O(1).

11

Observe that when all variables are free, then Vb = ∅, in which case fhw(H | Vb) = fhw(H), thus
recovering the compression result of a d-representation. Moreover, since the delay assignment is 0
for all bags, the compression time TC = Õ(|D|+ |D|fhw(H|Vb)).

Beyond full adorned views. Our work provides compression strategies for queries that do not
admit out-of-the-box factorization (such as Loomis-Whitney joins), and can also recover the result
of compressed d-representations as a special case when all variables are free (Proposition 4). On
the other hand, factorized databases support a much richer set of queries such as projections,
aggregations [7, 6] and analytical tasks such as learning regression models [30, 27]. One possible
approach to handling projections in our setting is to force a variable ordering in the Vb-connex
decomposition: more precisely, we can force projection variables to appear first in any root to leaf
path. This idea of fixing variable ordering would be similar to how order-by clauses are handled in
d-tree query plans [6]. Remarkably, the Vb-connex decomposition in our setting also corresponds
to the tree decompositions used to compute aggregations and orderings with group-by attributes
as Vb [27]. This points to a deeper connection between our compressed representation and d-tree
representations used to compute group-by aggregates. We defer the study of these connections and
extension of our framework to incorporate more expressive queries to future work.

3.3 A Remark on Optimality

So far we have not discussed the optimality of our results. We remark why proving tight lower
bounds might be a hard problem.

The problem of k-SetDisjointness is defined as follows. Given a family of sets S1, . . . , Sm of total
size N , we want to ask queries of the following form: given as input a subset I ⊆ {1, . . . ,m} of size
k, is the intersection

⋂

i∈I Si empty? The goal is to construct a space-efficient data structure such
that we can answer as fast as possible. Note that k-SetDisjointness corresponds to the following
adorned view: Qb···b(x1, . . . , xk) = R(x1, z), R(x2, z), . . . , R(xk, z), where R has size N . One can see
that we can use the data structure for the corresponding full view with head Qb···bf(x1, . . . , xk, z)
(see Example 7) to answer k-SetDisjointness queries in time Õ(τ), using space Õ(Nk/τk).

In a recent work, Goldstein et al. [19] conjecture the following lower bound:

Conjecture 1. (due to [19]) Consider a data structure that preprocesses a family of sets S1, . . . , Sm

of total size N . If the data structure can answer k-SetDisjointness queries in time (or delay) 4 T ,
then it must use S = Ω̃(Nk/T k) space.

The above conjecture is a generalization of a conjecture from [15] for the case k = 2, which in
turn generalizes a folklore conjecture of Patrascu and Roditty [29], which was stated only for the
case where τ = 1 and k = 2. Applied in our setting, Conjecture 1 implies that for the adorned
view Qb···b(x1, . . . , xk) = R1(x1, z), R2(x2, z), . . . , Rk(xk, z), the tradeoff between space and delay
(or answer time) is essentially optimal when all relations have equal size. Unfortunately, proving
even the weaker conjecture of [29] is considered a hard open problem.

4 A Compression Primitive

In this section, we describe the detailed construction of our data structure for Theorem 1.

4For boolean queries, answer time and delay coincide.

12

4.1 Intervals and Boxes

Before we present the compression procedure, we first introduce two important concepts in our
construction, f-intervals and f-boxes, both of which describe subspaces of the space of all possible
tuples in the output.

Intervals. The active domain D[x] of each variable x is equipped with a total order ≤ induced from
the order of dom. We will use ⊥,⊤ to denote the smallest and largest element of the active domain
respectively (these will always exist, since we assume finite databases). An interval for variable x
is any subset of D[x] of the form {u ∈ D[x] | a ≤ u ≤ b}, where a, b ∈ D[x], denoted by [a, b]. We
adopt the standard notation for closed and open intervals and write [a, b) = {u ∈ D[x] | a ≤ u < b},
and (a, b] = {u ∈ D[x] | a < u ≤ b}. The interval [a, a] is called the unit interval and represents a
single value. We will often write a for the interval [a, a], and the symbol � for the interval D[x].

By lifting the order from a single domain to the lexicographic order of tuples in Df = D[x1f]×
· · · × D[xµ

f
], we can also define intervals over Df , which we call f-intervals. For instance, if a =

〈a1, . . . , aµ〉 and b = 〈b1, . . . , bµ〉, the f-interval I = [a,b) represents all valuations vf over Vf that
are lexicographically at least a, but strictly smaller than b.

Boxes. It will be useful to consider another type of subsets of Df , which we call f-boxes.

Definition 2 (f-box). An f-box is defined as a tuple of intervals B = 〈I1, . . . , Iµ〉, where Ii is an
interval of D[xf f

i]. The f-box represents all valuations vf over Vf , such that vf(x
i
f) ∈ Ii for every

i = 1, . . . , µ.

We say that a f-box is canonical if whenever Ii 6= �, then every Ij with j < i is a unit interval.
A canonical f-box is always of the form 〈a1, . . . , ai−1, Ii,�, . . .〉. For ease of notation, we will omit
the � intervals in the end of a canonical f-box, and simply write 〈a1, . . . , ai−1, Ii〉.

A f-box satisfies the following important property:

Proposition 5. For every f-box B, (✶F∈E RF)⋉B =✶F∈E (RF ⋉B).

Proof. Suppose that the f-box is B = 〈I1, . . . , Iµ〉.
Consider some valuation v over V that belongs in (✶F∈E RF) ⋉B. Then, for every F ∈ E we

have v(F) ∈ RF , and also for every variable xif we have v(x
i
f) ∈ Ii. Since for every variable in F ∩Vf

we have v(xif) ∈ Ii as well, we conclude that v(F) ∈ (RF ⋉B). Thus, v belongs in ✶F∈E (RF ⋉B)
as well.

For the opposite direction, consider some valuation v over V that belongs in ✶F∈E (RF ⋉ B).
Since (RF ⋉ B) ⊆ RF , we have that for every F ∈ E , v(F) ∈ RF . Thus, in order to show the
desired result, it suffices to show that for every xif we have v(xif) ∈ Ii. Indeed, take any hyperdge
F such that xif ∈ F : then, v(F) ∈ (RF ⋉B) implies that v(xif) ∈ Ii.

In other words, if we want to compute the restriction of an output to tuples in B, it suffices to
first restrict each relation to B and then perform the join. We denote this restriction of the relation
as RF (B) = RF ⋉B.

Unfortunately, Proposition 5 does not extend to f-intervals. As we show in the example below,
it is generally not possible to first restrict each relation to RF ⋉ I and then perform the join.

Example 11. Consider the adorned view V fbff(x, y, z, w) = R1(x, y), R2(y, z), R3(z, w), R4(w, x).
Assume that the active domain is D[x] = D[y] = D[z] = D[w] = {1, 2}. Since Vf = {x, z, w},
consider the f-interval I = [a,b] where a = 〈1, 2, 1〉 and b = 〈2, 1, 2〉. In other words, interval I
contains the following valuations for Vf : (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2). It is easy to verify that
Ri ⋉ I = Ri for every i = 1, 2, 3, 4 and that (1, 1, 1, 1) is an output tuple. However, (✶F∈E RF)⋉ I

filters out (1, 1, 1, 1) as (1, 1, 1) does not lie in the interval I.

13

As we will see next, we can partition each f-interval to a set of f-boxes of constant size.

Box Decomposition. It will be useful to represent a f-interval I = (a,b) as a union of canonical
f-boxes. Let j be the first position such that aj 6= bj . Then, we define the box decomposition of I,
denoted B(I), as the following set of canonical f-boxes:

Bℓ
µ = 〈a1, . . . , aµ−1, (aµ,⊤]〉
. . .

Bℓ
j+1 = 〈a1, . . . , aj , (aj+1,⊤]〉
Bj = 〈a1, . . . , aj−1, (aj , bj)〉

Br
j+1 = 〈b1, . . . , bj , [⊥, bj+1)〉

. . .

Br
µ = 〈b1, . . . , bµ−1, [⊥, bµ)〉

Intuitively, a box decomposition divides an interval into a set of disjoint, lexicographically ordered
intervals. We give next an example of an f-interval and its decomposition into canonical f-boxes.

Example 12. For our running example (Example 4), let the active domain be D[wi] = {1, 2, . . . , 1000}
for i = 1, 2, 3. Consider an open f-interval I = (〈10, 50, 100〉, 〈20, 10, 50〉). The box decomposition
of I consists of the following 5 canonical f-boxes:

Bℓ
3 = 〈10, 50, (100,⊤]〉, Bℓ

2 = 〈10, (50,⊤]〉
B1 = 〈(10, 20)〉,
Br

2 = 〈20, [⊥, 10)〉 Br
3 = 〈20, 10, [⊥, 50)〉

For another f-interval I′ = [〈10, 50, 100〉, 〈10, 50, 200〉), where the first two positions coincide, the
box decomposition consists of one f-box: B3 = 〈10, 50, [100, 200)〉.

The following lemma summarizes several important properties of the box decomposition:

Lemma 1. Let I be an f-interval and B(I) be its box decomposition. Then:

1. The f-boxes in B(I) form an order, Bℓ
µ ≤ · · · ≤ Bℓ

j+1 ≤ Bj ≤ Br
j+1 ≤ · · · ≤ Br

µ, such that
two tuples from different f-boxes are ordered according to the order of their f-boxes.

2. The non-empty f-boxes of B(I) form a partition of I.

3. |B(I)| ≤ 2µ− 1, where µ = |Vf |.

Proof. To show item (1), we begin by considering two consecutive f-boxes of the form Bℓ
i . Consider

the largest element a> ∈ Bℓ
i and the smallest element a< ∈ Bℓ

i−1, for any i = j + 2, . . . , µ. Note
that a> has value ai−1 in the (i− 1)-th position and a> has a value from (ai−1,⊤] in its (i− 1)-th
position. Since ai−1 appears before any element in the set (ai−1,⊤] and both boxes agree on the
first i − 2 positions, it follows that a> < a< (notice that the inequality here is strict). A similar
argument applies to all other consecutive f-boxes in the decomposition.

We next show item (2). We have already shown that the f-boxes in the decomposition are all
disjoint. It is also easy to observe that every f-box in B(I) is a subset of I. Thus, in order to show
that the non-empty f-boxes form a partition of I, it suffices to show that every c ∈ I belongs in
some f-box of B(I). Let I = (a,b) and c = 〈c1, . . . , cµ〉 such that c ∈ I.

We start by looking at the value of cj where j is the first position such that aj 6= bj . We
distinguish three cases. If aj < cj < bj, then we have that c ∈ Bj and we are done. Suppose now

14

that cj = aj , and consider the first position k such that ck 6= ak. (Note that such a k always exists,
otherwise c = a 6∈ I.) Then it is easy to see that c ∈ Bℓ

k. If cj = bj, then we symmetrically consider
the first position k such that ck 6= bk; then one can see that c ∈ Br

k.

To prove item (3), observe that |B(I)| = (µ− j) + 1 + (µ− j) = 2µ+ (1− 2j) ≤ 2µ− 1, where
the last inequality follows because j ≥ 1.

The above lemma implies the following corollary:

Corollary 1. Let I be an f-interval and B(I) be its box decomposition.Then:

⋃

B∈B(I)

✶F∈E (RF ⋉B) = (✶F∈E RF)⋉ I

4.2 Two Key Ingredients

We describe here the intuition behind the compression representation. Our data structure is
parametrized by an integer τ ≥ 0, which can be viewed as a threshold parameter that works
as a knob. We seek to compute the result (✶F∈E RF (vb))⋉ I, where I is initially the f-interval that
represents all possible valuations. We can upper bound the running time for this instance using the
AGM bound. If the bound is less than τ , we can compute the answer in time and delay at most τ .

Otherwise, we do two things: (i) we store a bit (1 if the answer is nonempty, and 0 if it is
empty), and (ii) we split the f-interval into two smaller f-intervals. Then, we recursively apply the
same idea for each of the two f-intervals. Since we need to store one bit for every valuation that
exceeds the given threshold for a given f-interval, we need to bound the number of such valuations:
this bound will be our first ingredient. Second, we split each f-interval in the same way for every
valuation; we do it such that we can balance the information we need to store for each smaller
f-interval. The method to split the f-intervals in a balanced way is our second key ingredient.

Bounding the Heavy Valuations. Given a valuation vb for the bound variables, suppose we are
asked to compute the result restricted in some f-interval I, in other words (✶F∈E RF (vb))⋉ I. Let
RF (v,B) = RF (v) ⋉ B = (RF ⋉ v) ⋉ B. For an f-box B and valuation v over any variables, we
define:

T (B) =
∏

F∈E

|RF (B)|ûF , T (v,B) =
∏

F∈E

|RF (v,B)|ûF

We overload T to apply to an f-interval I and valuation v over any variables as follows:

T (I) =
∑

B∈B(I)

T (B), T (v, I) =
∑

B∈B(I)

T (v,B)

Proposition 6. The output (✶F∈E RF (vb))⋉ I can be computed in time O(T (vb, I)).

Proof. Consider the box decomposition B(I). First, observe that for any B ∈ B(I) the join (✶F∈E

RF (vb,B)) is over the variables Vf . Since every variable in Vf is covered by û, we can use any
worst-case optimal algorithm to compute the join in time at most T (vb,B). By Corollary 1, we can
now compute the join over every B and union the (disjoint) results to obtain the desired result.
The time needed for this is at most T (vb, I) =

∑

B∈B(I) T (vb,B).

We will use the above bound on the running time as a threshold of when it means that a
particular interval is expensive to compute.

15

Definition 3. A pair (vb, I) is τ -heavy for a fractional edge cover u if T (vb, I) > τ .

Observe that if a pair is not τ -heavy, this means that we can compute the corresponding
subinstance over I in time at most O(τ). The following proposition provides an upper bound for
the number of such τ -heavy pairs.

Proposition 7. Given a f-interval I and integer τ , let H(I, τ) be the valuations vb such that the
pair (vb, I) is τ -heavy for u. Then,

|H(I, τ)| ≤
(

T (I)

τ

)α

Proof. For the sake of simplicity, we will write H instead of H(I, τ). We can now write:

τ |H| ≤
∑

vb∈H

∑

B∈B(I)

∏

F∈E

|RF (vb,B)|ûF

=
∑

B∈B(I)

∑

vb∈H

11−1/α ·
(

∏

F∈E

|RF (vb,B)|uF

)1/α

≤
∑

B∈B(I)

∑

vb∈H

1

1−1/α

∑

vb∈H

∏

F∈E

|RF (vb,B)|uF

1/α

= |H|1−1/α ·
∑

B∈B(I)

∑

vb∈H

∏

F∈E

|RF (B)⋉ vb|uF

1/α

≤ |H|1−1/α ·
∑

B∈B(I)

(

∏

F∈E

|RF (B)|uF

)1/α

= |H|1−1/α
∑

B∈B(I)

T (B)

The first inequality comes directly from the definition of a τ -heavy pair. The second inequal-
ity is an application of Hölder’s inequality. The third inequality is an application of the Query
Decomposition Lemma from [25].

Example 13. Consider the following instance for our running example.

w1 x y

1 1 1
1 1 2
1 2 1
2 1 1
3 1 1

R1

w2 y z

1 1 2
1 2 1
1 2 2
2 1 1
2 1 2

R2

w3 x z

1 1 1
1 1 2
1 2 1
2 1 1
2 1 2

R3
We will use u = (1, 1, 1) as the fractional edge cover for V. Recall that the slack is α = 2,

and thus û = (1/2, 1/2, 1/2). Observe that D[x] = D[y] = D[z] = {1, 2}, D[w1] = {1, 2, 3},
D[w2] = {1, 2}, D[w3] = {1, 2, 3}. Consider the root interval I(r) = [〈1, 1, 1〉, 〈2, 2, 2〉]. The box
decomposition B(I(r)) is:

Bℓ
3 = 〈1, 1, [1, 2]〉, Bℓ

2 = 〈1, (1, 2]〉

16

Br
2 = 〈2, [1, 2)〉 Br

3 = 〈2, 2, [1, 2]〉

We can then compute T (I(r)) =
√

|3||3||4|+
√

|1||2||4|+
√

|1||3||1|+0 ≈ 10.56. Consider vb(w1, w2, w3) =
(1, 1, 1). One can compute T (vb, I(r)) =

√
2 + 2 + 1 = 4.414. If we pick τ = 4, then (vb, I(r)) is

τ -heavy.

Splitting an Interval. We next discuss how we perform a balanced splitting of an f-interval I.

Lemma 2. Let B = 〈I1, . . . , Ii, . . .〉 be an f-box, and J1, . . . , Jp a partition of the interval Ii. Denote
Bk = 〈I1, . . . , Jk, . . .〉. Then,

∑p
k=1 T (Bk) ≤ T (B).

Proof. Let F be the hyperedges that include the variable xif . Notice that if F /∈ F , then RF (Bk) =
RF (B) for every k = 1, . . . , p. Moreover, observe that for every F ∈ F , we have

∑p
k=1 |RF (Bk)| =

|RF (B)|. Thus, to prove the lemma it suffices to show that

p
∑

k=1

∏

F∈F

|RF (Bk)|ûF ≤
∏

F∈F

(

p
∑

k=1

|RF (Bk)|
)ûF

The above inequality is an application of Friedgut’s inequality [18] called the generalized Hölder
inequality, which we can apply because

∑

F∈F ûF ≥ 1.

Lemma 3. Consider the canonical f-box

B = 〈a1, . . . , ai−1, [βL, βU]〉.

Then, for any t ≥ 0, there exists β ∈ D[xif] such that

1. T (〈a1, . . . , ai−1, [βL, β)〉 ≤ t

2. T (〈a1, . . . , ai−1, (β, βU]〉) ≤ max{0, T (B) − t}.

Moreover, we can compute β in time Õ(1).

Proof. Let βL = b1, . . . , bn = βU be the elements of the interval [βL, βU] in sorted order. Define
vi = T (〈a1, . . . , ai−1, [βL, bi]〉) for i = 1, . . . , n. Observe that we have v1 ≤ v2 ≤ . . . vn = T (B).
Hence, we can view the elements bi as being sorted in increasing order w.r.t. to the value vi. We now
perform binary search to find β = mini{vi ≥ min(T (B), t)}; such an element always exists since vi
is increasing and vn = T (B). We can create an index that returns the count |RF (B)| in logarithmic
time, hence the running time to find β is Õ(1). By construction, we have T (〈a1, . . . , ai−1, [βL, β)〉) ≤
min(T (B), t) ≤ t. Finally, since the intervals [βL, β], [β, β] and and (β, βU] form a partition of
[βL, βU], we can apply Lemma 2 to obtain that T (〈a1, . . . , ai−1, (β, βU]〉) ≤ T (B)−min(T (B), t) =
max(0, T (B) − t).

We now present Algorithm 1, an algorithm that allows for balanced splitting of an f-interval I.

Proposition 8. Let I = [a,b] be an f-interval. Then, Algorithm 1 returns c ∈ Df that splits I into
I≺ = [a, c) and I≻ = (c,b] such that T (I≺) ≤ T (I)/2 and T (I≻) ≤ T (I)/2. Moreover, it terminates
in time Õ(1).

17

Algorithm 1: Splitting an f-interval I

1 B(I) = {B1, . . . ,Bk} in lexicographic order

2 T ←∑k
i=1 T (Bi)

3 s← argminj{
∑j

i=1 T (Bi) > T/2}
/* let Bs = 〈c1, . . . , ck−1, Ik, . . . , Iµ〉 */

4 γk−1 ←
∑s−1

i=1 T (Bi), ∆k−1 ← T (Bs)

5 for j=k to µ do

6 find min cj s.t. T (〈c1, . . . , cj−1, Ij ∩ [⊥, cj]〉) ≥ min{∆j−1, T/2 − γj−1}
7 ∆j ← T (〈c1, . . . , cj〉)
8 γj ← γj−1 + T (〈c1, . . . , cj−1, Ij ∩ [⊥, cj)〉
9 end

10 return (c1, . . . , cµ)

Proof. Notice first that line (6) of the algorithm always finds a cj, following Lemma 3. Hence, the
algorithm always returns a split point c = (c1, . . . , cµ).

Define B≺
j = 〈c1, . . . , cj−1, Ij ∩ [⊥, cj)〉 and B≻

j = 〈c1, . . . , cj−1, Ij ∩ (cj ,⊤]〉 for j = k, . . . , µ.

Similarly to γj, define γ̄k−1 =
∑µ

i=s+1 T (Bi), and for j = k, . . . , µ, γ̄j = γ̄j−1 + T (B≻
j).

Now, consider the following sets of canonical f-boxes:

B≺ = B1, . . . ,Bs−1,B
≺
k , . . . ,B

≺
µ

B≻ = B1, . . . ,Bs−1,B
≻
k , . . . ,B

≻
µ

The key observation is that B≺ = B(I≺) and B≻ = B(I≻). Moreover, by construction γµ =
∑

B∈B≺ T (B) and also γ̄µ =
∑

B∈B≻ T (B). Thus, to prove the statement, it suffices to show that
γµ, γ̄µ ≤ T/2.

We will first show that for any j = k − 1, . . . , µ : γj ≤ T/2. For γk−1 this follows by our choice
of s. For some j ≥ k, we have γj = γj−1 + T (B≺

j) ≤ γj−1 +min{∆j−1, T/2 − γj−1} ≤ T/2, where
the first inequality follows from the choice of cj.

Second, we will show by induction that for j = k − 1, . . . , µ : γ̄j ≤ T/2. For γ̄k−1, we have
γ̄k−1 = T −∑s

i=1 T (Bi) ≤ T − T/2 = T/2. Now, let j ≥ k. We can write:

γ̄j = γ̄j−1 + T (B≻
j)

≤ γ̄j−1 +max{0,∆j−1 − (T/2 − γj−1)}
= max{γ̄j−1, (∆j−1 + γ̄j−1 + γj−1)− T/2}

The first inequality follows from item (2) of Lemma 3. By the inductive hypothesis we have
γ̄j−1 ≤ T/2. We next show that γ̄j + γj ≤ T −∆j. From Lemma 2, it holds for every j = k, . . . , µ:

T (B≺
j) + T (B≻

j) ≤ ∆j−1 −∆j

18

Using the above inequality, we can write:

γ̄j + γj =
∑

i 6=s

T (Bi) +

j
∑

i=k

(T (B≺
i) + T (B≻

i))

≤
∑

i 6=s

T (Bi) +

j
∑

i=k

(∆j−1 −∆j)

=
∑

i 6=s

T (Bi) + ∆k−1 −∆j

= T −∆j

The runtime bound of Õ(1) follows from Lemma 3, which tells us that we can compute each cj
(line (6)) in time Õ(1).

4.3 The Basic Structure

We now have all the necessary pieces to describe how we construct the compressed representa-
tion. Recall that our data structure is parametrized by a threshold parameter τ , and by a weight
assignment u = (uF)F∈E that covers the variables in V. The construction consists of two steps.

1) The Delay-Balanced Tree. In the first step, we construct an annotated binary tree T . Each
node w ∈ V (T) is annotated with an f-interval I(w) and a value β(w) ∈ Df , which is chosen
according to Algorithm 1. The tree is constructed recursively.

Initially, we create a root r with interval I(r) = Df . Let w be a node at level ℓ with interval
I(w) = [a, c], and define the threshold at level ℓ to be τℓ = τ/2ℓ(1−1/α). In the case where T (I(w)) <
τℓ, w is a leaf of the tree. Otherwise, using β(w) as a splitting point, we construct two sub-intervals
of I:

I≺ = [a, β(w)) and I≻ = (β(w), c].

If I≺ 6= ∅, we create a new node wl as the left child of w, with interval I(wl) = I≺. Similarly, if
I≻ 6= ∅, we create a new node wr as the right child of w, with interval I(wr) = I≻. We call the
resulting tree T a delay-balanced tree.

Lemma 4. Let T be a delay-balanced tree. Then:

1. For every node w ∈ V (T) at level ℓ, we have T (I(w)) ≤ T (I(r))/2ℓ.

2. The depth of T is at most O(log T) and its size at most O(T), where T =
∏

F∈E |RF |uF /τα.

Proof. If w1 is a child of w2, then we have that T (I(w1)) ≤ T (I(w2))/2 by Proposition 8. Item (1)
follows by a simple induction on the depth of the tree.

Suppose that w is a node at level ℓ. From the condition that we use to stop expanding a node,
we have:

τℓ ≤ T (I(w)) ≤ T (I(r))/2ℓ

≤ (2µ− 1) ·
∏

F∈E

|RF |ûF /2ℓ

The bound on the size follows from the fact that the tree is binary.

19

I(r) = [〈1, 1, 1〉, 〈2, 2, 2〉]

β(r) = (1, 1, 2)

node r

I(rl) = [〈1, 1, 1〉, 〈1, 1, 1〉]

node rl
I(rr) = [〈1, 2, 1〉, 〈2, 2, 2〉]

β(rr) = (1, 2, 2)

node rr

[〈1, 2, 1〉, 〈1, 2, 1〉]

node rrl

[〈2, 1, 1〉, 〈2, 2, 2〉]

node rrr

Figure 3: Delay balanced tree for running example

Example 14. Continuing our running example, we will construct the delay-balanced tree. Since
ℓ = 0 for root node, τℓ = τ . We begin by finding the split point β(r) for root node. We start
with unit interval I(r)≺ = [〈1, 1, 1〉, 〈1, 1, 1〉] and keep increasing the interval range until the join
evaluation cost T (I(r)≺) > T (I(r))/2. For interval I(r)≺ = [〈1, 1, 1〉, 〈1, 1, 1〉], the box decomposition
is B(I(r)≺) = Bℓ

3 = 〈1, 1, 1〉.
The reader can verify that T (I(r)≺) =

√

|3||1||2| ≈ 2.44 units and changing the interval to
I′(r)≺ = [〈1, 1, 1〉, 〈1, 1, 2〉] gives T (I′(r)≺) =

√

|3||3||4| > T (I(r))/2. Thus, β(r) = (1, 1, 2) and
I(r)≻ = [〈1, 2, 1〉, 〈2, 2, 2〉] with T (I(r)≻) =

√

|1||2||4| +
√

|1||3||1| ≈ 4.56 .
For the next level ℓ = 1, the threshold τℓ = τ/

√
2 ≈ 2.82. Since T (I(r)≺) ≤ 2.82, it is a leaf

node. We recursively split I(rr) = I≻(r) = [〈1, 2, 1〉, 〈2, 2, 2〉] into I≺(rr) and I≻(rr). Fixing β(rr) =
(1, 2, 2), we get T (I≺(rr)) =

√

|1||2||1| ≈ 1.414 and I≻(rr) = [〈2, 1, 1〉, 〈2, 2, 2〉], T (I≻(rr)) =
√
3.

Since both worst case running times are smaller than τ2 = τ/2 = 2, our tree construction is
complete. We demonstrate the final delay-balanced tree T in Figure 3.

2) Storing Auxiliary Information. The second step is to store auxiliary information for the
heavy valuations at each node of the tree T . Recall that the threshold for a heavy valuation at a
node in level ℓ is τℓ = τ/2ℓ(1−1/α). We will construct a dictionary D that takes as arguments a node
w ∈ V (T) at level ℓ and a valuation vb such that (vb, I(w)) is τℓ-heavy and returns in constant
time:

D(w, vb) =
{

0, if (✶F∈E RF (vb))⋉ I(w) = ∅,
1, otherwise.

If (vb, I(w)) is not τℓ-heavy, then there is no entry for this pair in the dictionary and it simply
returns ⊥. In other words, D remembers for the pairs that are heavy whether the answer is empty
or not for the restriction of the result to the f-interval I(w).

We next provide an upper bound on the size of D.

Lemma 5. |D| = Õ(
∏

F∈E |RF |uF /τα).

Proof. We first bound the number of (w, vb) pairs that are stored in the dictionary for a node w
at level ℓ. Notice that for node w we will store an entry for at most the τℓ-heavy valuations. By
Proposition 7, these are at most

|H(I(w), τℓ)| ≤
(

T (I(w))

τℓ

)α

≤
(

T (I(r))

2ℓτℓ

)α

≤ (2µ − 1)α2−ℓατ−α
ℓ

∏

F∈E

|RF |uF

20

= c · 2−ℓτ−α
∏

F∈E

|RF |uF

where c = (2µ − 1)α is a constant. At level ℓ we have at most 2ℓ nodes. Hence, the total number
of nodes if the tree has L levels is at most:

L
∑

ℓ=0

2ℓ

(

τ−α2−ℓ
∏

F∈E

|RF |uF

)

≤ log |D| · τ−α
∏

F∈E

|RF |uF

This concludes the proof.

We show in Appendix A a detailed construction that allows us to build the dictionary D in
time Õ(

∏

F∈E |RF |uF), using at most Õ(
∏

F∈E |RF |uF /τα) space, i.e. no more space than the size
of the dictionary.

The final compressed representation consists of the pair (T ,D), along with the necessary indexes
on the base relations (that need only linear space).

Example 15. The last step for our running example is to construct the dictionary for all τℓ-
heavy valuations. Consider the valuation vb(w1, w2, w3) = (1, 1, 1), which we have shown to be
τ -heavy. Next, we store a bit in the dictionary at each node for vb denoting if the join output
is non-empty for the restriction of result to interval I. The reader can verify that (vb, I(r)) and
(vb, I(rr)) are τ0- and τ1-heavy respectively. Thus, the dictionary will store two entries for vb:
D(I(r), vb) = 1,D(I(rr), vb) = 1.

4.4 Answering a Query

We now explain how we can use the data structure to answer an access request q = Qη[v] given by
a valuation v. The detailed algorithm is depicted in Algorithm 2.

Algorithm 2: Answering a query q = Qη[vb]

input : tree T , dictionary D, valuation v
output: query answer q(D)

1 eval(r, vb) /* start from the root */
2 return

3 procedure eval(w, vb)
4 if D(w, vb) = ⊥ then

5 forall B ∈ B(I(w)) do
6 output ✶F∈E RF (vb,B)
7 end

8 else if D(w, vb) = 1 then

9 if w has left child wℓ then

10 eval(wℓ, vb)
11 output ✶F∈E RF (vb, [β(w), β(w)])
12 if w has right child wr then

13 eval(wr, vb)

14 return

We start traversing the tree starting from the root r. For a node w, if D(w, vb) = ⊥, we
compute the corresponding subinstance using a worst-case optimal algorithm for every box in the

21

1

1

1

1

0⊥

0

1

1

⊥
(w′)

0

1

01

⊥⊥
(w)

Figure 4: An example subtree Tv traversed by Algorithm 2 to answer q = Qη[v]. Each node w is
annotated by the dictionary entry D(w, vb). The dashed edges show the path from node w that
outputs tuple t, to node w′ that outputs the lexicographically next tuple t′.

box decomposition. If D(w, vb) = 0, we do nothing. If D(w, vb) = 1, we recursively traverse the
left child (if it exists), compute the instance for the unit interval [β(w), β(w)], then recursively
traverse the right child (if it exists). This traversal order guarantees that the tuples are output in
lexicographic order.

Algorithm Analysis. We now analyze the performance of Algorithm 2. Let Tv be the subtree of
T that contains the nodes visited by Algorithm 2. The algorithm stops traversing down the tree
only when it finds a node w ∈ V (T) such that D(w, vb) 6= 1. (The leaf nodes of T have all ⊥ entries,
since by construction they contain no heavy pairs.) Thus, the leaves of Tv have D(w, vb) ∈ {0,⊥}
and the internal nodes have D(w, vb) = 1. Figure 4 depicts an instance of such an incomplete
binary tree.

Lemma 6. Let w be a node in Tv. Algorithm 2 spends O(1) time at w if D(w, vb) 6= ⊥; otherwise
it spends time O(τℓ), where ℓ is the level of node w.

Proof. It takes constant time to retrieve the value D(w, vb) from the dictionary. If the result is
0, we do nothing more on node w. If the result is 1, we also need to evaluate the subinstance
✶F∈E RF (vb, [β(w), β(w)]). But this can be done in constant time, since [β(w), β(w)] is a unit
interval, and thus the evaluation can be done by checking a constant number of hash tables.

If D(w, vb) = ⊥ and w is at level ℓ, the algorithm will evaluate the subinstance with interval
I(w), which by definition takes time O(τℓ).

Proposition 9. Algorithm 2 enumerates q(D) in lexicographic order with delay δ = Õ(τ).

Proof. Suppose that Algorithm 2 outputs t ∈ q(D), and the lexicographically next tuple exists and
is t′. We will show that the time to output t′ after t is Õ(τ).

If t, t′ are output while Algorithm 2 is at the same node w, it must be that D(w, vb) = ⊥, in
which case the delay will be trivially bounded by O(τ). Otherwise let w be the node where t is
output, and w′ the node where t′ is output. Notice that t will be the last tuple from w that is
output, and t′ the first tuple from w′. Now, let P be the unique path in Tv that connects w with
w′, with nodes w = w1, w2, . . . , wk = w′. An example of P is depicted in Figure 4. All the nodes in
the path, except possibly the endpoints w1, wk are internal nodes and thus we have D(wi, vb) = 1
for i = 2, . . . , k− 1. Moreover, there must exist some q = 1, . . . , k such that: (i) if j ≤ q, then wj−1

is a child of wj , and (ii) if j > q, then wj is a child of wj−1.

22

Let us consider the first segment of the path, where j ≤ q. If wj−1 is the right child of wj ,
then the algorithm will exit wj and visit the next node in the path. If it is the left child, then the
algorithm will visit the subtree rooted at its right child first. However, the subtree can only have
a single node w′′ with D(w′′

i , vb) 6= 1, since otherwise t′ would not have been the next tuple to be
output. Thus, after at most O(τ) time, the algorithm will visit the next node in the path. By a
symmetric argument, the algorithm will take at most O(τ) time to visit the next node in the path
for the second segment, where j ≥ q. Since the length of P is at most 2 times the depth of the
tree, which is O(log |D|), the algorithm will visit w′ (and thus output t′) in time O(τ log |D|).

In the case where there is no next tuple after t, it is easy to see that there exists again a path
P that ends at the root node r. A similar argument can be done to bound the time to output the
first tuple.

We now proceed to bound the time to answer the query. The next lemma relates the output
size |q(D)| to the size of the tree Tv.

Lemma 7. The number of nodes in Tv is Õ(|q(D)|).

Proof. Let F be the set of internal nodes of Tv, such that there is no child with entry 1. The key
observation is that |q(D)| ≥ |F |, since the intervals of the nodes in F do not overlap, and each
interval will produce at least one output tuple. We can easily also see that |V (Tv)| ≤ |F | · log |D|.
Hence, |V (Tv)| = O(|q(D)| · log |D|).

Proposition 10. Algorithm 2 enumerates q(D) in lexicographic order in TA = Õ(|q(D)| + τ ·
|q(D)|1/α) time.

Proof. We first bound the time needed to visit the nodes w in Tv with entry 6= ⊥. Since every
such node requires constant time to visit, and by Lemma 7 the total number of nodes in tree is
Õ(|q(D)|), we need Õ(|q(D)|) time. Second, we bound the time to visit the nodes with entry = ⊥.
Let V be the set of such nodes. Every node in V is a leaf in Tv. For a node w, let ℓw be its level.
The answer time can be bounded by:

∑

w∈V

τℓw =
∑

w∈V

τ · 2−ℓw(1−1/α)

= τ ·
∑

w∈V

11/α(2−ℓw)1−1/α

≤ τ |V |1/α
(

∑

w∈V

2−ℓw

)1−1/α

≤ Õ(τ · |q(D)|1/α)

The first inequality is an application of Hölders inequality. The second inequality is an application
of Kraft’s inequality [23], which states that for a binary tree we have

∑

w leaf 2
−depth(w) ≤ 1.

5 Query Decompositions

In this section, we prove Theorem 2. Consider an adorned view over a natural join query (with
hypergraph H), with bound variables Vb. Fix a Vb-connex tree decomposition (T , A). Observe
that, since the bags in A do not play any role in the width or height, we can assume w.l.o.g. that A
consists of a single bag tb. We consider as the running example in this section the one in Figure 2.

23

5.1 Constant Delay Enumeration

As a warm-up, we first show how to construct the data structure for Proposition 4, when our goal
is to achieve constant delay for the enumeration of every access query.

In the full enumeration case, where Vb = ∅, we can take any optimal tree decomposition with
fractional hypertree width fhw(H) (so a Vb-connex decomposition), materialize the tuples in each
bag by running the query restricted on the vertices of the bag, and finally apply a sequence of
semi-joins in a bottom-up order to remove any tuples from the bags that do not participate in the
final result. Additionally, for each node t ∈ V (T), we construct a hash index over the materialized
result with key Vtb = Bt ∩ anc(t), and output values for the variables in Vtf = Bt \ Vtb. For example,
the node with bag {v2, v3} constructs an index with key v2 that returns all the matching values
of v3. Given such indexes, we can perform a full enumeration in constant delay starting from the
root (which will be the empty bag), and visiting the nodes of the tree T in a pre-order fashion by
following the indexes at each bag. This construction uses the same idea as d-representations [28],
and requires space O(|D|fhw(H)).

When Vb 6= ∅, the standard tree decomposition may not be useful to achieve constant delay
enumeration. For instance, for the example hypergraph of Figure 2, if the adorned view has
Vb = {v1, v5, v6}, then the pre-order traversal of the decomposition on the left will fail to achieve
constant delay. However, we can use a Vb-connex decomposition to successfully answer any access
request (e.g., the right decomposition in Figure 2). We first materialize all the bags, except for
the bag of tb. Then, we run a sequence of semi-joins in a bottom-up manner, where we stop right
before the node tb (since it it not materialized). For each node t ∈ V (T)\{tb}, we construct a hash
index over the materialized result with key Vtb. Finally, for the root node tb, we construct a hash
index that tests membership for every hyperedge of H that is contained in Vb. For the example in
Figure 2, we construct one such index for the hyperedge {v5, v6}.

Given a valuation vb over Vb, we answer the access request as follows. We start by checking
in constant time whether vb(v5, v6) is in the input. Then, we use the hash index of the node
{v2, v4, v1, v5} to find the matching values for v2, v4 (since v1, v5 are bound by vb), and subsequently
use the hash index of {v3, v2, v4} to find the matching values for v3; similarly, we also traverse the
right subtree starting of the root node to find the matching values of v7. We keep doing this
traversal until all tuples are enumerated. We describe next how this algorithm generalizes for any
adorned view and beyond constant delay.

5.2 Beyond Constant Delay

We will now sketch the construction and query answering for the general case. The detailed
construction and algorithms are presented in Appendix B, C. Along with the tree decomposition,
let us fix a delay assignment δ.

Construction Sketch. The first step is to apply for each node t in T (except tb) the construction
of the data structure from Theorem 1, with the following parameters: (i) hypergraph H′ = (V ′, E ′)
where V ′ = Bt and E ′ = EBt

, (ii) bound variables V ′b = Vtb, (iii) τ = |D|δ(t), and (iv) u the
fractional edge cover that minimizes ρ+t . For the root node tb, we simply construct a hash index
that tests membership for every hyperedge of H that is contained in Vb. This construction uses for
each bag space Õ(|D|+ |D|ρ+t −δ(t)·α(Vt

f
)), which means that the compressed representation has size

Õ(|D|+ |D|f).
The second step is to set run a sequence of semi-joins in bottom-up fashion. However, since

the bags are not fully materialized anymore, this operation is not straightforward. Instead, we set
any entry of the dictionary Dt(w, vb) of the data structure at node t that is 1 to 0 if no valuation

24

in the interval I(w) joins with its child bag. This step is necessary to guarantee that if we visit an
interval in the delay-balanced tree with entry 1, we are certain to produce an output for the full
query (and not only the particular bag). To perform this check, we do not actually materialize the
bag of the child, but we simply use its dictionary (hence costing an extra factor of maxt δ(t) during
preprocessing time).

Query Answering. To answer an access query with valuation vb, we start from the root node tb
of the decomposition and check using the indexes of the node whether vb belongs to all relations
RF such that F ⊆ Vb. Then, we invoke Algorithm 2 on the leftmost child t0 of tb, which outputs a
new valuation in time at most Õ(|D|δ(t0)), or returns nothing. As soon as we obtain a new output,
we recursively proceed to the next bag in pre-order traversal of T, and find valuations for the (still
free) variables in the bag. If there are no such valuations returned by Algorithm 2 for the node
under consideration, this means that the last valuation outputted by the parent node does not
lead to any output. In this case, we resume the enumeration for the parent node. Finally, when
Algorithm 2 finishes the enumeration procedure, then we resume the enumeration for the pre-order
predecessor of the current node (and not the parent). Intuitively, we go the predecessor to fix
our next valuation, in order to enumerate the cartesian product of all free variables in the subtree
rooted at the least common ancestor of current node and predecessor node.

The delay guarantee of Õ(|D|h) comes from the fact that, at every node t in the tree, we will
output in time Õ(|D|δ(t)) at most Õ(|D|δ(t)) valuations, one of which will produce a final output
tuple. Moreover, when a node has multiple children, then for a fixed valuation of the node, the
traversal of each child is independent of the other children: if one subtree produces no result, then
we can safely exit all subtrees and continue the enumeration of the node. The full details and
analysis of the algorithm are in Appendix C.

6 The Complexity of Minimizing Delay

In this section, we study the computational complexity of choosing the optimal parameters for
Theorem 1 and Theorem 2. We identify two objectives that guide the parameter choice: (i) given
a space constraint, minimize the delay, and (ii) given a delay constraint, minimize the necessary
space.

We start with the following computational task, which we call MinDelayCover. We are given
as input a full adorned view Qη over a CQ, the sizes |RF | of each relation F , and a positive integer
Σ as a space constraint. The size of Qη, denoted |Qη|, is defined as the length of Qη when viewed
as a word over alphabet that consists of variable set V, dom and atoms in the body of the query.
The goal is to output a fractional edge cover u that minimizes the delay in Theorem 1, subject to
the space constraint S ≤ Σ.

We observe that we can expressMinDelayCover as a linear fractional program with a bounded
and non-empty feasible region. Such a program can always be transformed to an equivalent linear
program [11], which means that the problem can be solved in polynomial time.

Proposition 11. MinDelayCover can be solved in polynomial time in the size of the adorned
view, the relation sizes, and the space constraint.

Proof. Consider the bilinear program in Figure 5a. Without loss of generality, assume that all
relations are of the same size. The first constraint ensures that |D|

∑
uF /τα ≤ Σ, while the fourth

constraint encodes the fractional edge covers. However, the program is not an LP as α log τ is a
bilinear constraint. We can easily transform it into a linear fractional program as shown in Figure 5b
where τ̂ = α log τ . Notice that we can replace the objective in program 5a from τ to log τ without

25

changing the optimal solution. The key idea is that we can convert the linear fractional program to
a linear program using the Charnes-Cooper transformation [11] provided that the feasible region is
bounded and non-empty. Our claim follows from the observation that the region is indeed bounded
since uF ≤ 1, α ≤ |Q|, τ̂ ≤ |Q|2 log |D| and non-empty as uF = 1, α = 1, τ = |D||Q| is a valid
solution.

minimize τ
subject to ρ log |D| ≤ log |Σ|+ α log τ

ρ =
∑

F∈E uF
∀x ∈ Vf :

∑

F :x∈F uF ≥ α
∀x ∈ V :

∑

F :x∈F uF ≥ 1
∀F ∈ E : 0 ≤ uF ≤ 1
α ≥ 1

(a) Linear program with bilinear constraint

minimize τ̂ /α
subject to ρ log |D| ≤ log |Σ|+ τ̂

ρ =
∑

F∈E uF
∀x ∈ Vf :

∑

F :x∈F uF ≥ α
∀x ∈ V :

∑

F :x∈F uF ≥ 1
∀F ∈ E : 0 ≤ uF ≤ 1
α, τ̂ ≥ 1

(b) Transformed linear fractional program

Figure 5: Left to right: Bilinear program to minimize delay; Equivalent linear fractional program

We also consider the inverse task, called MinSpaceCover: given as input a full adorned view
Qη over a CQ, the sizes |RF | of each relation F , and a positive integer ∆ as a delay constraint, we
want to output a fractional edge cover u that minimizes the space S in Theorem 1, subject to the
delay constraint τ ≤ ∆.

To solve MinSpaceCover, observe that we can simply perform a binary search over the space
parameter S, from |D| to |D|k, where k is the number of atoms in Q. For each space, we then run
MinDelayCover and check whether the minimum delay returned satisfies the delay constraint.

Proposition 12. MinSpaceCover can be solved in polynomial time in the size of the adorned
view, the relation sizes, and the delay constraint.

We next turn our attention to how to optimize for the parameters in Theorem 2.
Suppose we are given a full adorned view Qη over a CQ, the database size |D|, and a space

constraint Σ, and we want to minimize the delay. If we are given a fixed Vb-connex tree decompo-
sition, then we can compute the optimal delay assignment δ and optimal fractional edge cover for
each bag as follows: we iterate over every bag in the tree decomposition, and then solve MinDe-

layCover for each bag using the space constraint. It is easy to see that the delay that we obtain
in each bag must be the delay of an optimal delay assignment. For the inverse task where we are
given a Vb-connex tree decomposition, a delay constraint, and our goal is to minimize the space,
we can apply the same binary search technique as in the case of MinSpaceCover (observe the
that δ-height is also easily computable in polynomial time). In other words, we can compute the
optimal parameters for our given objective in polynomial time, as long as we are provided with a
tree decomposition.

In the case where the tree decomposition is not given, then the problem of finding the optimal
data structure according to Theorem 2 becomes intractable. Indeed, we have already seen that if
we want to achieve constant delay τ = 1, then the tree decomposition that minimizes the space S
is the one that achieves the Vb-connex fractional hypertree width, fhw(H | Vb). Since for Vb = ∅
we have fhw(H | Vb) = fhw(H), and finding the optimal fractional hypertree width is NP-hard [20],
finding the optimal tree decomposition for our setting is also NP-hard.

26

7 Related Work

There has been a significant amount of literature on data compression; a common application is to
apply compression in column-stores [1]. However, such compression methods typically ignore the
logical structure that governs data that is a result of a relational query. The key observation is
that we can take advantage of the underlying logical structure in order to design algorithms that
can compress the data effectively. This idea has been explored before in the context of factorized
databases [28], which can be viewed as a form of logical compression. Our approach builds upon
the idea of using query decompositions as a factorized representation, and we show that for certain
access patterns it is possible to go below |D|fhw space for constant delay enumeration. In addition,
our results also allow trading off delay for smaller space requirements of the data structure. A long
line of work has also investigated the application of a broader set of queries with projections and
aggregations [7, 6], as well as learning linear regression models over factorized databases [30, 27].
Closely related to our setting is the investigation of join-at-a-time query plans, where at each step, a
join over one variable is computed [12]. The intermediate results of these plans are partial factorized
representations that compress only a part of the query result. Thus, they can be used to tradeoff
space with delay, albeit in a non-tunable manner.

Our work is also connected to the problem of constant-delay enumeration [31, 32, 5]: in this
case, we want to enumerate a query result with constant delay after a linear time preprocessing
step. We can view the linear time preprocessing step as a compression algorithm, which needs
space only O(|D|). It has been shown that the class of connex-free acyclic conjunctive queries can
be enumerated with constant delay after a linear-time preprocessing. Hence, in the case of connex-
free acyclic CQs, there exists an optimal compression/decompression algorithm. However, many
classes of widely used queries are not factorizable to linear size, and also can not be enumerated
with constant-delay after linear-time preprocessing. Examples in this case are the triangle query
∆fff(x, y, z) = R(x, y), R(y, z), R(z, x), or the 2-path query P ff

2 (x, y) = R(x, y), R(y, z).
Beyond CQs, related work has also focussed on evaluating signed conjunctive queries [10, 9].

CQs that contain both positive and negative atoms allow for tractable enumeration algorithms
when they are free-connex signed-acyclic [10]. Nearby problems include counting the output size
|Q(D)| using index structures for enumeration [16, 17], and enumerating more expressive queries
over restricted class of databases [22].

The problem of finding class of queries that can be maintained in constant time under updates
and admit constant delay enumeration is also of considerable interest. Recent work [8] considered
this particular problem and obtained a dichotomy for self-join free and boolean CQs. Our work is
also related to this problem in that the class of such queries have a specific structure that allow
constant delay enumeration.

Query compression is also a central problem in graph analytics. Many applications involve
extracting insights from relational databases using graph queries. In such situations, most systems
load the relational data in-memory and expand it into a graph representation which can become
very dense. Analysis of such graphs is infeasible, as the graph size blows up quickly. Recent
work [35, 34, 36] introduced the idea of controlled graph expansion by storing information about
high-degree nodes and evaluating acyclic CQs over light sub-instances. However, this work is
restricted only to binary views (i.e., graphs), and does not offer any formal guarantees on delay or
answer time. It also does not allow the compressed representation to grow more than linear in the
size of the input.

Finally, we also present a connection to the problem of set intersection. Set intersection has
applications in problems related to document indexing [13, 3] and proving hardness and bounds for
space/approximation tradeoff of distance oracles for graphs [29, 14]. Previous work [13] has looked

27

at creating a data structure for fast set intersection reporting and the corresponding boolean version.
Our main data structure is a strict generalization of the one from [13].

8 Conclusion

In this paper we propose a novel and tunable data structure that allows us to compress the result
of a conjunctive query so that we can answer efficiently access requests over the query output.

This work initiates an exciting new direction on studying compression tradeoffs for query results,
and thus there are several open problems. The main challenge is to show whether our proposed
data structure achieves optimal tradeoffs between the various parameters. Recent work [3] makes
it plausible to look for lower bounds in the pointer machine model. A second open problem is to
explore how our data structures can be modified to support efficient updates of the base tables.
Recent results [8] indicate that efficient maintenance of CQ results under updates is in general a
hard problem. This creates a new challenge for designing data structure and algorithms that provide
theoretical guarantees and work well in practice. A third challenge is to extend our algorithms to
support views with projections: projections add the additional challenge that we have to deal with
duplicate tuples in the output. Finally, an interesting question is whether it is possible to build our
data structure on-the-fly without a preprocessing step.

References

[1] D. J. Abadi, S. Madden, and M. Ferreira. Integrating compression and execution in column-oriented
database systems. In Proceedings of the ACM SIGMOD International Conference on Management of
Data, Chicago, Illinois, USA, June 27-29, 2006, pages 671–682, 2006.

[2] I. Abdelaziz, R. Harbi, S. Salihoglu, P. Kalnis, and N. Mamoulis. Spartex: A vertex-centric framework
for rdf data analytics. Proceedings of the VLDB Endowment, 8(12):1880–1883, 2015.

[3] P. Afshani and J. A. S. Nielsen. Data structure lower bounds for document indexing problems. In
ICALP 2016Automata, Languages and Programming. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik GmbH, 2016.

[4] A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for relational joins. SIAM Journal
on Computing, 42(4):1737–1767, 2013.

[5] G. Bagan, A. Durand, and E. Grandjean. On acyclic conjunctive queries and constant delay enumera-
tion. In Computer Science Logic, 21st International Workshop, CSL 2007, 16th Annual Conference of
the EACSL, Lausanne, Switzerland, September 11-15, 2007, Proceedings, pages 208–222, 2007.

[6] N. Bakibayev, T. Kočiskỳ, D. Olteanu, and J. Závodnỳ. Aggregation and ordering in factorised
databases. Proceedings of the VLDB Endowment, 6(14):1990–2001, 2013.

[7] N. Bakibayev, D. Olteanu, and J. Závodnỳ. Fdb: A query engine for factorised relational databases.
Proceedings of the VLDB Endowment, 5(11):1232–1243, 2012.

[8] C. Berkholz, J. Keppeler, and N. Schweikardt. Answering conjunctive queries under updates. In
proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI symposium on Principles of database systems,
pages 303–318. ACM, 2017.

[9] J. Brault-Baron. A negative conjunctive query is easy if and only if it is beta-acyclic. Computer Science
Logic 2012, page 137, 2012.

[10] J. Brault-Baron. De la pertinence de lénumération: complexité en logiques propositionnelle et du premier
ordre. PhD thesis, Université de Caen, 2013.

[11] A. Charnes and W. W. Cooper. Programming with linear fractional functionals. Naval Research
Logistics (NRL), 9(3-4):181–186, 1962.

[12] R. Ciucanu and D. Olteanu. Worst-case optimal join at a time. Technical report, Technical report,
Oxford, 2015.

28

[13] H. Cohen and E. Porat. Fast set intersection and two-patterns matching. Theoretical Computer Science,
411(40-42):3795–3800, 2010.

[14] H. Cohen and E. Porat. On the hardness of distance oracle for sparse graph. arXiv preprint
arXiv:1006.1117, 2010.

[15] P. Davoodi, M. Smid, and F. van Walderveen. Two-dimensional range diameter queries. In Proceedings
of the 10th Latin American International Conference on Theoretical Informatics, LATIN’12, pages
219–230, Berlin, Heidelberg, 2012. Springer-Verlag.

[16] A. Durand and S. Mengel. The complexity of weighted counting for acyclic conjunctive queries. Journal
of Computer and System Sciences, 80(1):277–296, 2014.

[17] A. Durand and S. Mengel. Structural tractability of counting of solutions to conjunctive queries. Theory
of Computing Systems, 57(4):1202–1249, 2015.

[18] E. Friedgut. Hypergraphs, entropy, and inequalities. The American Mathematical Monthly, 111(9):749–
760, 2004.

[19] I. Goldstein, T. Kopelowitz, M. Lewenstein, and E. Porat. Conditional lower bounds for space/time
tradeoffs. In Workshop on Algorithms and Data Structures, pages 421–436. Springer, 2017.

[20] G. Gottlob, G. Greco, and F. Scarcello. Treewidth and hypertree width. Tractability: Practical Ap-
proaches to Hard Problems, 1, 2014.

[21] J. E. Hopcroft, J. D. Ullman, and A. Aho. The design and analysis of computer algorithms, 1975.
[22] W. Kazana and L. Segoufin. Enumeration of first-order queries on classes of structures with bounded

expansion. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI symposium on Principles of
database systems, pages 297–308. ACM, 2013.

[23] B. McMillan. Two inequalities implied by unique decipherability. IRE Transactions on Information
Theory, 2(4):115–116, December 1956.

[24] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algorithms. In Proceedings of
the 31st ACM SIGMOD-SIGACT-SIGAI symposium on Principles of Database Systems, pages 37–48.
ACM, 2012.

[25] H. Q. Ngo, C. Ré, and A. Rudra. Skew strikes back: new developments in the theory of join algorithms.
SIGMOD Record, 42(4):5–16, 2013.

[26] F. Niu, C. Zhang, C. Ré, and J. Shavlik. Felix: Scaling Inference for Markov Logic with an Operator-
based Approach. ArXiv e-prints, Aug. 2011.

[27] D. Olteanu and M. Schleich. Factorized databases. ACM SIGMOD Record, 45(2):5–16, 2016.
[28] D. Olteanu and J. Závodný. Size bounds for factorised representations of query results. ACM Trans.

Database Syst., 40(1):2, 2015.
[29] M. Patrascu and L. Roditty. Distance oracles beyond the thorup-zwick bound. In Foundations of

Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages 815–823. IEEE, 2010.
[30] M. Schleich, D. Olteanu, and R. Ciucanu. Learning linear regression models over factorized joins. In

Proceedings of the 2016 International Conference on Management of Data, pages 3–18. ACM, 2016.
[31] L. Segoufin. Enumerating with constant delay the answers to a query. In Joint 2013 EDBT/ICDT

Conferences, ICDT ’13 Proceedings, Genoa, Italy, March 18-22, 2013, pages 10–20, 2013.

[32] L. Segoufin. Constant delay enumeration for conjunctive queries. SIGMOD Record, 44(1):10–17, 2015.
[33] J. D. Ullman. Implementation of logical query languages for databases. ACM Trans. Database Syst.,

10(3):289–321, Sept. 1985.
[34] K. Xirogiannopoulos and A. Deshpande. Extracting and analyzing hidden graphs from relational

databases. In Proceedings of the 2017 ACM International Conference on Management of Data, pages
897–912. ACM, 2017.

[35] K. Xirogiannopoulos, U. Khurana, and A. Deshpande. Graphgen: Exploring interesting graphs in
relational data. Proceedings of the VLDB Endowment, 8(12):2032–2035, 2015.

[36] K. Xirogiannopoulos, V. Srinivas, and A. Deshpande. Graphgen: Adaptive graph processing using
relational databases. In Proceedings of the Fifth International Workshop on Graph Data-management
Experiences & Systems, GRADES’17, pages 9:1–9:7, New York, NY, USA, 2017. ACM.

29

A Dictionary Construction

In this section, we show how to efficiently construct the dictionary D from the input database D.
In particular, we prove the following:

Lemma 8. The dictionary D can be constructed in time Õ(
∏

F∈E |RF |uF), using at most Õ(
∏

F∈E |RF |uF /τα)
space.

We construct the dictionary D as follows:

a) Find Heavy Valuations. The first step of the algorithm is to compute the list of heavy
valuations vb for any interval I.

Proposition 13. Let LI denote the sorted list of all valuations of Vb such that (vb, I) is τ -heavy.
Then, LI can be constructed in time Õ(

∑

B∈B(I)

∏

F∈EVb
|RF ⋉ B|uF) and using space at most

O((T (I)/τ)α).

Proof. The first observation is that for all heavy (vb, I) valuations, since T (vb, I) > τ , there exists
a B ∈ B(I) such that RF (vb) ⋉ B is non-empty for each F ∈ EVb

. This implies that πF∩Vb
(vb) ∈

πF∩Vb
(RF ⋉ B) (otherwise the relation will be empty and T (vb, I) = 0). Thus, it is sufficient to

compute πVb
((✶F∈EVb

RF)⋉ I) to find all heavy valuations.
We can construct the list LI by running a worst case join algorithm in timeO(

∑

B∈B(I)

∏

F∈EVb

|RF⋉

B|uF). Additionally, as soon as the worst case join algorithm generates an output vb, we check if
vb is τ -heavy in Õ(1) time. This can be done by using linear sized indexes on base relations to
count the number of tuples in each relation RF∈E(vb, I) and using u as cover to check whether the
execution time is greater than the threshold τ . Since we need only heavy valuations, we only retain
those in memory. Proposition 7 bounds the space requirement of LI to at most O((T (I)/τ)α).
Sorting LI introduces at most an additional O(log |D|) factor.

b) Using join output to create D. Consider the delay balanced tree T as constructed in the
first step. Without loss of generality, assume that the tree is full. We bound the time taken to
create D(w, vb) for all nodes wL at some level L (applying the same steps to other levels introduces
at most log |D| factor). Detailed algorithm is presented below.

Algorithm Analysis. We first bound the running time of the algorithm.

Proposition 14. Algorithm 3 runs in time Õ(
∏

F∈E |RF |uF).

Proof. We will first compute the time needed to construct the list LI(w) for all nodes w at level
L. Proposition 13 tells us that to find the heavy valuations for an interval I(w) we need time
Õ(
∑

B∈B(I(w))

∏

F∈EVb
|RF⋉B|uF). We will apply Lemma 2 to show that

∑

w∈wL

∑

B∈B(I(w))

∏

F∈E |RF⋉

B|uF = O(
∏

F∈E |RF |uF). Consider all the f-boxes in the box decomposition of I(w),∀w ∈ wL. All
f-boxes that have the first µ − 1 variables fixed are of the form Bk

µ = 〈a1, . . . , aµ−1, (a
k
µ, b

k
µ)〉. We

apply Lemma 2 with i = µ to all such boxes. Thus,
∑

k T (B
k
µ) ≤ T (〈a1, . . . , aµ−1,�〉).

After this step, all f-boxes have unit interval prefix of length at most µ−1 and have the domain
of xfµ as �. Now, we repeatedly apply lemma 2 to all boxes with i = µ−1, µ−2, . . . , 1 sequentially.
Each application merges the boxes and fixes the domain of xif = �. The last step merges all f-boxes
of the form 〈a〉 to I(r) = 〈�, . . . ,�〉. This gives us,

∑

w∈wL

∑

B∈B(I(w))

∏

F∈E

|RF ⋉B|uF ≤
∏

F∈E

|RF ⋉ I(r)|uF

= O(
∏

F∈E

|RF |uF)

30

Algorithm 3: Create Dictionary D(w, vb) for level L nodes in T
input : tree T
output: D(w, vb) for all leaf nodes

1 forall w in wL do

/* Run NPRR on (✶F∈EVb
RF)⋉ I(w) to compute LI(w) */

2 forall vb ∈ LI(w) do

3 D(w, vb) = 0 /* initializing D with all heavy pairs */
4 end

/* Run NPRR on (✶F∈E RF)⋉ I(w) */
5 forall j ← output tuple from NPRR /* requires log |D| main memory */
6 do

7 vb ← ΠVb
(j)

8 if vb ∈ LI(w) then /* binary search over LI(w) */

9 D(w, vb) = 1
10 end

11 end

12 end

The second step is to bound the running time of the worst case join optimal algorithm to
compute (✶F∈E RF) ⋉ I(w) in line 5. Observe that this join can also be computed in worst case
time

∑

w∈wL

∑

B∈B(I(w))

∏

F∈E |RF ⋉B|uF = O(
∏

F∈E |RF |uF).

Finally, note that all steps in line 7-line 10 are Õ(1) operations.

Next, we analyze the space requirement of Algorithm 3.

Proposition 15. Algorithm 3 requires space O(
∏

F∈E |RF |uF /τα)

Proof. Lines 2-3 take |D| amount of space. The NPRR algorithm requires log |D| amount of memory
to keep track of pointers 5. Since we are only streaming through the join output, there is no
additional memory overhead in this step. Thus, the bound on memory required follows from
Proposition 13 (bounding the size of LI(r)) and Lemma 5.

B Constructing Data Structure for Query Decomposition

In this section, we present the detailed construction of data structure and time required for The-
orem 2. Without loss of generality, we assume that all bound variables are present in a single
bag tb in the Vb-connex tree decomposition of the hypergraph H. This can be achieved by simply
merging all the bags t with Bt ⊆ Vb into tb which is also designated as the root. Note that the
delay assignment for root node is δtb = 0. Let λ(T) denote the set of all root to leaf paths in T, h
be the δ-height of the decomposition and f be the Vb-connex fractional hypertree δ-width of the
decomposition. We also define the quantity u∗ = maxt∈V (T)\tb(

∑

F uF) where u is the fractional

edge cover for bag Bt. We will show that in time TC = Õ(|D| + |D|u∗+maxt δt), we can construct
required data structure using space S = Õ(|D|+ |D|f) for a given Vb-connex tree decomposition T

of δ-width f . The construction will proceed in two steps:

5If we have at least |D| memory, i.e, all relations can fit in memory, then we require no subsequent I/O’s

31

(i) Apply Theorem 1 to decomposition. We apply theorem 1 to each bag (except tb) in the
decomposition with the following parameters: (i)Ht = (Vt, E t) where Vt = Bt and E t = EBt

,
(ii)Vtb = anc(t) ∩ Bt and Vtf = Bt \ anc(t), and (iii) the edge cover u is the cover of the node t
in the decomposition corresponding to ρ+t . Thus, in time Õ(|D| + |D|u∗

) we can the construct
delay-balanced tree Tt and the corresponding dictionary Dt for each bag other than the root. The
space requirement for each bag is no more than Õ(|D|+ |D|f).

However, the dictionary Dt needs to be modified for each bag since there can be dangling tuples
in a bag that may participate only in the join output of the bag but not in join output of the branch
containing t. In the following description, we will use the notation vtb to denote a valuation over
variables Vtb. Note that vb is the valuation over Vb.

Algorithm 4: Modifying (D)t∈V (T)

input : Vb-bound decomposition T, (T ,D)t∈V (T)

1 forall t ∈ T \ {tb ∪ children of tb} in post-order fashion do

2 parent ← parent of t
3 forall w ∈ wL of Tparent /* wL represents all nodes at level L in Tparent */
4 do

5 forall heavy vparentb ∈ w and Dparent(w, v
parent
b) = 1 do

6 forall k ← Qparent(v
parent
b ,D)⋉ I(w) /* computing (✶F∈E

Vt RF) via box

decomposition */
7 do

8 if Algorithm 2 on t with vtb = πBparent∩Bt
(k) is empty for all k then

9 Dt(w, πVparent

b
(k)) = 0

10 end

11 end

12 end

13 end

14 end

(ii) Modify Dt using semijoins. Algorithm 4 shows the construction of the modified dictionary
Dt to incorporate the semijoin result. The goal of this step is to ensure that if Dt(w, v

t
b) = 1, then

there exists a set of valid valuations for all variables in the subtree rooted at t. We will apply a
sequence of semijoin operations in a bottom up fashion which we describe next.

Bottom Up Semijoin. In this phase, the bags are processed according to post-order traversal
of the tree in bottom-up fashion. The key idea is to stream over all heavy valuations of a node in
Tt and ensure that they join with some tuple in the child bags. Let Qt(v

t
b,D) denote the NPRR

join instance on the relations covering variables Vt where bound variables are fixed to vtb. When
processing a non-root (or non-child of root) node tj, a semijoin is performed with its parent ti to
flip all dictionary entries of ti from 1 to 0 if the entry does not join with any tuple in tj on their
common attributes Bti ∩Btj . To perform this operation, we stream over all tuples k ← Qti(v

ti
b ,D)

and check if πBti
∩Btj

(k) is present in the join output of relations covering tj. This check in bag tj

can be performed by invoking Algorithm 2 with bound valuation πBti
∩Btj

(k) in time Õ(|D|δtj).
Algorithm Analysis. We will show that Algorithm 4 can be executed in time Õ(|D|u∗+maxt δt).

Proposition 16. Algorithm 4 executes in time Õ(|D|u∗+maxt δt).

32

Proof. The main observation is that the join Qparent(v
t
b,D)⋉ I(w) for all nodes at level L in Tparent

can be computed in time at most O(|D|u∗

) as shown in Proposition 14. Since the operation in
Line 8 can be performed in time Õ(|D|δt) for each k and Tparent has at most logarithmic number of
levels, the total overhead of the procedure is dominated by the semijoin operation where delay for
bag t is largest. This gives us the running time of Õ(|D|u∗+maxt δt) for the procedure.

Proposition 17. If Dt(w, v
t
b) = 1, then there exists a set of valuations for all variables in the

subtree rooted at t for vtb.

Proof. Consider a valuation such that Dt(w, v
t
b) = 1. If vtb does not join with the relations of any

child bag c, then Line 8 would be true and Algorithm 4 would have flipped the dictionary entry
to 0. Thus, there exists a valuation for Vcf . Applying the same reasoning inductively to each child
bag c till we reach the leaf nodes gives us the desired result.

The modified dictionary, along with the enumeration algorithm, will guarantee that valuation
of free variables that is output by Algorithm 2 for a particular bag will also produce an output for
the entire query. Note that the main memory requirement of Algorithm 4 is only O(1) pointers
and the data structures for each bag which takes Õ(|D|+ |D|f) space.

C Answering using Query Decomposition

In this section, we present the query answering algorithm for the given Vb-connex decomposition.
We will first add some metadata to each bag in the decomposition and then invoke algorithm 2 for
each bag in pre-order fashion.

Adding pointers for each bag. Consider the decomposition T along with (T ,D)t∈V (T)\tb for
each bag. We will modify T as follows: for each node of the tree, we fix a pointer predecessor(t),
that will point to the pre-order predecessor of the node. Intuitively, pre-order predecessor of a node
is the last node where valuation for a free variable will be fixed in the pre-order traversal of the
tree just before visiting the current node. Figure 6 shows an example of a modified decomposition.
This transformation can be done in O(1) time.

v1, v2

v3 | v1, v2

v4 | v3

v5 | v4 v6 | v4

v7 | v3

Figure 6: Example of the modified tree decomposition: the arrows in color are the predecessor
pointers

For ease of description of the algorithm, we assume that the Algorithm 2 answering Qη[vtb]
for any bag t is accessible using the procedure nextt(v

t
b). Let Vtpred represent all bound variables

encountered in the pre-order traversal of the tree from tb to t (including bound variables of t).

33

Algorithm Description. The algorithm begins from the root node and fixes the valuation for all
free variables in root bag. Then, it proceeds to the next bag recursively considering all ancestor
variables as bound variables and finds a valuation for Bt \ anc(t). At the first visit to any bag, if
the bound variables vtb do not produce an output in delay Õ(|D|δt), then we proceed to the next
valuation in the parent bag. However, if the enumeration for some vtb did produce output tuples
but the procedure nextt(v

t
b) has finished, we proceed to the predecessor of the bag to fix the next

valuation for variables in predecessor bag. In other words, the ancestor variables remain fixed and
we enumerate the cartesian product of the remaining variables.

Lemma 9. Algorithm 5 enumerates the answers with delay at most Õ(|D|h) where h is the δ-height
of the decomposition tree. Moreover, it requires at most O(log |D|) memory

Proof. Since the size of the decomposition is a constant, we require at most O(1) pointers for
predecessors and O(1) pointers for storing the valuations of each free variable. Let nℓ be the set of
nodes at depth ℓ. We will express the delay of the algorithm in terms of the delay of the subtrees of
every node. The delay at the root tb after checking whether valuation vb is in the base relations is
dtb = O(

∑

t∈n1
dt). This is because the enumeration of each subtree rooted at depth ℓ = 1 depends

only on its ancestor variables and is thus independent of the other subtrees at that depth. Since
each node in the tree can produce at most |D|δt valuations in Õ(|D|δt) time, the recursive expansion
of δtb gives δtb = O(

∑

p∈λ(T) Õ(|D|
∑

t∈p δt)). The largest term over all root to leaf paths is Õ(|D|h)
which gives us the desired delay guarantee.

D Comparing width notions

We briefly discuss the connection of fhw(H | Vb) for a Vb-connex decomposition with other related
hypergraph notions.

The first observation is that the minimum edge cover number ρ∗ is always an upper bound on
fhw(H | Vb). On the other hand, the fhw(H | Vb) is incomparable with fhw(H). Indeed, Example 17
shows that fhw(H | Vb) < fhw(H), and the example below shows that the inverse situation can
happen as well.

Example 16. The query R(x, y), S(y, z) is acyclic and has fhw(H) = 1. Let Vb = {x, z}. The only
valid Vb-bound decomposition is the one with two bags, {x, z}, {x, y, z}, and hence fhw(H | Vb) = 2.
In this scenario, fhw(H | Vb) > fhw(H).

Example 17. Figure 7 shows an example hypergraph and a Vb-bound tree decomposition (the
variables in Vb are colored red). For this example, fhw(H) = 2, but fhw(H | Vb) = 3/2. Indeed,
observe that we can cover the lower bag of the tree decomposition with a fractional edge cover of
value only 3/2.

34

Algorithm 5: Query Answering using Vb-connex decomposition

input : tree T, (T ,D)t∈V (T), vb
output: query answer Q(D)

1 Initialize tvisited ← 0 for all nodes, v ← vb, t← left child of tb, parent(t)← t
2 Check if RF (vb) 6= ∅, F ∈ E , F ⊆ C
3 forall nodes in pre-order traversal starting from t do
4 v ← πVt

pred
(v)

5 vtf ← nextt(πVt
b
(v))

6 if vtf is empty and tvisited = 0 then

7 t← parent(t)
8 continue

9 end

10 if vtf is empty and tvisited = 1 then

11 tvisited ← 0
12 t← predecessor(t)
13 continue

14 end

15 tvisited ← 1
16 v ← (v, vtf)
17 if t is last node in the tree then

18 if RF (v) 6= ∅, F ∈ E then

19 emit v
20 end

21 go to line 4 /* If t is last node in tree, find next valuation for Vtf */

22 end

23 end

v5

v1 v2W

V

U T

RS

v3 v4

v1, v2, v3, v4

tb

v5 | v1, v2

Figure 7: Query hypergraph and corresponding C-bound tree decomposition with C =
{v1, v2, v3, v4}

35

